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Exotic topologically protected zero modes with parafermionic statistics (also called fractionalized
Majoranamodes) have been proposed to emerge in devices fabricated from a fractional quantumHall system
and a superconductor. The fractionalized statistics of these modes takes them an important step beyond the
simplest non-Abelian anyons, Majorana fermions. Building on recent advances towards the realization of
fractional quantum Hall states of bosonic ultracold atoms, we propose a realization of parafermions in a
system consisting of Bose-Einstein-condensate trenches within a bosonic fractional quantum Hall state.
We show that parafermionic zero modes emerge at the end points of the trenches and give rise to a
topologically protected degeneracy. We also discuss methods for preparing and detecting these modes.
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In recent years the concept of topological order has
revolutionized the way we understand quantum phases of
matter. Topological phases in one- and two-dimensional
systems are particularly interesting as the nontrivial
exchange statistics of particles allows for exotic states of
matter. For example, Majorana zero modes can emerge at
boundaries of one-dimensional topological superconductors
[1] or in two-dimensional semiconductor heterostructures
[2–4]; see also suggestive experimental signatures in
Refs. [5–10]. These topological modes have been a subject
of intense interest due to their potential applications in
quantum computation, although they do not support univer-
sal quantum computing with braiding alone [11–16]. In two
dimensions, certain fractional quantum Hall (FQH) states
have been proposed to manifest emergent non-Abelian
excitations with universal braiding statistics [17–19].
However, an experimental confirmation of such emergent
non-Abelian anyons has so far remained elusive [20–22].
Recently, it has been proposed that one can engineer

non-Abelian excitations by adding defects in the form of
ferromagnet-superconductor interfaces at the edges of
adjacent Abelian FQH states [23–26]. The domain wall
at their interface binds exotic zero modes with parafer-
mionic commutation relations. These parafermionic zero
modes are associated with a ground-state degeneracy that is
exponential in the number of domain walls (defects). As
with any non-Abelian anyon, the exchange of the defects
binding these parafermionic operators generates a unitary
rotation in the ground-state subspace. However, the set of
operations for quantum computation available through
such exchanges is richer than that available through
Majorana exchange [23]. While the braiding of parafer-
mions is not in itself universal for quantum computation,
recent proposals have also used these modes in constructing
new 2D topological phases that do support excitations

with computationally universal braid statistics [27].
Parafermions may also be realized in bilayer quantum
Hall systems, where the role of the superconducting-induced
coupling is played by an interlayer tunneling term [28,29].
For a recent proposal on parafermions, see also Ref. [30].
While existing proposals are based on an experimentally

challenging combination of FQH and superconducting
systems of electrons, rapid advances towards creating a
bosonic FQH state open new opportunities to realize
topologically nontrivial states in the context of ultracold
bosonic systems [31–34]. FQH states have been predicted
for ultracold neutral bosons in rotating traps [35–39] and in
optical lattices [40–44].
Unlike fermionic systems, where a condensed state

requires pairing of fermions, systems of ultracold bosons
form Bose-Einstein condensates (BECs) without any addi-
tional pairing interaction. Thus, if a FQH state is realized
in bosons, adding a Bose condensed state to such a system
can be expected to be simpler than in the corresponding
fermionic implementation.
In this Letter, we propose realizing a bosonic analog

of a FQH-superconductor system by inserting a trench
containing a BEC in the middle of a bosonic FQH system,
as shown in Fig. 1. Such a trench of BEC can be created by
introducing a potential well that would trap a high density of
bosons as compared to the FQH region outside. We will
show that the introduction of such a BEC trench induces a
novel state in the quantum Hall edge with a pairing gap
similar to the states with superconductors in contact with the
FQH system. Further, we will show that systems containing
a pair of such trenches feature a ground state degeneracy
arising from the topology of the underlying quantum Hall
system. We explicitly construct fractionalized Majorana
fermions as localized zero modes at the end points of the
trenches.
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Model.—Let us consider a bosonic FQH state with a
filling fraction ν ¼ 1=m, where m is an even integer. While
the bulk of the FQH fluid is incompressible, its boundaries
support gapless edge excitations with a fractionalized
charge, or boson number in this case, and statistics
[45,46]. The edge modes of a FQH state can be described
by a bosonized field eiφðξÞ that carries boson number 1=m
and satisfies a nontrivial commutation relation [47]

eiφðξÞeiφðξ0Þ ¼ eiðπ=mÞsgnðξ−ξ0Þeiφðξ0ÞeiφðξÞ; ð1Þ
where ξ and ξ0 are the coordinates along the boundary.
Equivalently, the chiral field φ satisfies the chiral commu-
tation relations. The creation operator for bosons is given
by eimφðξÞ; note that bosonic operators commute according
to the above algebra. Furthermore, the density of bosons on
the edge is given by ρðξÞ ¼ ∂ξφ=2π. The Hamiltonian
H0 ¼ ðmv=4πÞ RΓ dξð∂ξφÞ2, along with the chiral commu-
tation ½φðξÞ; ∂ξ0φðξ0Þ� ¼ ð2πi=mÞδðξ − ξ0Þ describes a free
chiral edge mode propagating at velocity v along the
boundary Γ of the FQH state.
As shown in Fig. 1, we consider a BEC trench inside a

bosonic FQH state that can be introduced by varying the
potential. The topological phase realized by this FQH system
will be characterized by a topological degeneracy. To create a
Hilbert space that allows us to access this degeneracy,wewill
need to consider a system containing two such trenches in the
FQH system [two copies of the trench in Fig. 1]. The total
Hamiltonian describing the boundaries of the FQH state at
the edges of the two BEC trenches is given by

H ¼ H1ðφ1; Q1Þ þH2ðφ2; Q2Þ
with Q1 þQ2 ¼ 0 mod 1; ð2Þ

where the subscripts denote the trenches, and Qi is the
fractional number (“charge”) of quasiparticles modulo 1 on
the edge of the ith trench. While each edge can have a
fractional charge, the total number of quasiparticlesmust add
up to an integer bosonic charge, i.e.,Q1 þQ2 ¼ 0mod1.We
show that, under certain conditions, the Hilbert space of this

system manifests degenerate ground states characterized by
parafermionic zero modes at the ends of the BEC trenches.
The defects at each end of the trench thus act as non-Abelian
anyons. This is the central result of this Letter. We also
analyze the robustness of this degeneracy to realistic exper-
imental imperfections.
Single-trench Hamiltonian.—For simplicity, we first

focus on a single edge, with the Hamiltonian H1ðφ1; Q1Þ,
without the constraint in Eq. (2), but will impose it later in
our discussion of the degeneracy of the two-trench system.
For now, we also drop the subscript 1 for notational
simplicity. The tunneling between the BEC field Ψ and
the edge states on the trench is described by

Htun ¼ −Δ
Z

Γ
dξeimφðξÞΨðξÞ þ H:c: ð3Þ

Note that only a boson, i.e., m quasiparticles bound
together, can directly tunnel to the BEC. Opening a
topological gap on the trench requires a coupling between
the counterpropagating states on the two edges of the
trench. The simple single boson tunneling term obtained by
approximating ΨðxÞ ≈Ψ0 does not couple the edges and
leaves a state topologically equivalent to the gapless chiral
edge on the trench. To solve this problem, we consider
fluctuations in the BEC field as ΨðxÞ ¼ Ψ0 þ δΨðxÞ,
where δΨðxÞ is the bosonic fluctuation field in a three
dimensional BEC. δΨðxÞ can be integrated out to obtain an
effective self-energy for the edge induced by the BEC,
Σ ¼ Σð1Þ þ Σð2Þ, where Σð1Þ ¼ −Ψ0Δ

R
Γ dξe

imφðξÞ þ H:c. is
linear in Δ, while Σð2Þ couples pairs of points directly
across the trench, separated by a distance comparable to the
trench’s width W, as shown in Fig. 2. It is convenient to
define the coordinate x ∈ ½0; L� along the trench of length
L, together with the left- and right-moving fields φLðxÞ ¼
φðxÞ and φRðxÞ ¼ φð2L − xÞ propagating along the top
and bottom edge, respectively. Σð2Þ induces an interaction
between the opposite edges of the BEC trench both via
pairing as well as backscattering of bosons. On the other
hand, we can use the freedom in tuning the trap potential to
change the chemical potential in the BEC, which, in turn,
changes the momentum of quasiparticles on the edge. A
uniform change of density by ρ0 implies φðξÞ → φðξÞ þ
2πρ0ξ, and thus gives rise to an oscillating phase in Eq. (3).

FIG. 1 (color online). A quasi-one-dimensional finite trench, i.e.,
a potential dip, is created by spatially modulating the intensity of
the laser used to create the dipole trapping potential confining the
atoms to the plane (a cut midway along one trench is shown).
Within the trench, the two-dimensional density of trapped bosons
deviates from the FQH filling fraction and gives rise to a BEC.

FIG. 2 (color online). The top view of a BEC trench within a
FQH state. The trapping potential is engineered such that the
boson density is uniform across the shaded area but vanishes in a
small region of size l near the end points. Quantum fluctuations of
the BEC couple opposite edges in the shaded region.
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This phase would ensure momentum conservation [48], as
the result of which Σð1Þ is suppressed, and only those terms
that conserve the total momentum contribute significantly to
Σð2Þ. Physically, the only terms that satisfy these constraints
are scattering terms on the same edge or pairing between
opposite edges. The former simply renormalizes the veloc-
ity, while the latter is analogous to superconducting pairing.
Taking the above constraints into account, the dominant, and
local, contribution to the effective interaction is

Veff ¼ −λ
Z

L−l

l
dx cosð2mϕÞ; ð4Þ

where we have defined the (nonchiral) fields ϕðxÞ and θðxÞ
by φLðRÞðxÞ ¼ ϕðxÞ∓θðxÞ, and the coupling coefficient
λ ∝ Δ2. The new nonchiral fields are self-commuting at
all points, but satisfy ½ϕðxÞ; θðx0Þ� ¼ iðπ=mÞΘðx − x0Þ. For
details of the derivation of the effective Hamiltonian, see the
Supplemental Material [49].
The term cosð2mϕÞ represents the effective pairing

between the edges and is reminiscent of the sine-Gordon
model [50]. The resulting Hamiltonian that describes the
BEC trench (Fig. 2) can be written as

Heff ≈
mv
2π

Z
L

0

dx½ð∂xϕÞ2 þ ð∂xθÞ2�− λ

Z
L−l

l
dxcosð2mϕÞ;

ð5Þ

where the continuity of ∂xφðxÞ near x ∼ 0; L transforms
into the boundary condition ∂xϕðx ¼ 0; LÞ ¼ 0. We note
that, in addition, we are required to preserve the boundary
conditions for θ at the end points: θðx ¼ LÞ ¼ 0 follows
from the definition, while θðx ¼ 0Þ ¼ πN=m, where N is
the total number of quasiparticles. The latter is due to the
fact that the total density of bosons on both edges is
ρ ¼ −∂xθ=π. However, similar to other restrictions on the
Hilbert space, we will restore these boundary conditions at
the end of the calculation. At large λ > 0, the sine-Gordon
model [Eq. (5)] supports several ground states jpi charac-
terized by the expectation values

hpjeiϕðxÞjpi ≈ eiπp=m; p ¼ 0; 1;…; 2m − 1; ð6Þ
for x away from the edges and in the limit of large L [50].
To restore the appropriate boundary conditions for

θðx¼0;LÞ, we notice that θðx ¼ LÞ commutes with ϕðxÞ
and Heff , hence it can be set to any value [θðx ¼ LÞ ¼ 0 in
our case] without consequence for the single trench. On the
other hand, θðx ¼ 0Þ ¼ πN=m obeys a nontrivial commu-
tation relation with ϕðxÞ such that ½N;ϕ� ¼ −i; however,
R ¼ eiðπ=mÞN commutes with Heff . The operator R, despite
being a symmetry of the Hamiltonian, transforms ϕðxÞ in a
nontrivial way as

RϕðxÞR† ¼ ϕðxÞ þ π

m
: ð7Þ

It then follows that, including the boundary conditions,
different values of ϕ in Eq. (6) indeed correspond to the
same energy. Exploiting the above symmetry, we can
describe the ground states in a basis that also makes the
operator R diagonal as

jni ¼
X2m−1

p¼0

eiπnp=mjpi; ð8Þ

which satisfyRjni ¼ eiπn=mjni. Physically, n corresponds to
the number of quasiparticles modulo pairs of bosons on the
edge of a given trench. In our model thus far, this is a well-
defined quantum number since the cosine term in Eq. (5)
transfers only pairs of bosons from the condensate. Note that
N takes 2m distinct eigenvalues. This allows us to associate a
degeneracy of

ffiffiffiffiffiffiffi
2m

p
with each of the end points of the BEC

trench (the “defects”) in the limit of a large number of
trencheswhere restrictions on theHilbert spacemaybe safely
ignored.Wewill discuss Hilbert space constraints for a small
number of trenches in the next section. Finally, we remark
that the fractional part of the boson number on a trench,
which is invariant under the addition of single bosons, is
Q ¼ N=m mod 1, whileQb ≡ ½N=m −Q� ∈ f0; 1g defines
the boson parity. The

ffiffiffiffiffiffiffi
2m

p
degeneracy thus also requires

protection by a Z2 symmetry due to boson parity.
Degeneracy.—So far we have focused on the spectrum of

a single trenchwithout the physical constraints of theHilbert
space. With a finite number of trenches, the total fractional
charge Q should be 0 mod 1 [51]. Considering the double
trench model of Eq. (2), the fractional boson numbers on
the two trenches satisfy Q1 ¼ −Q2 ¼ 0; 1=m;…; 1 − 1=m,
while their boson parities Qb;1 ¼ 0; 1 and Qb;2 ¼ 0; 1 are
unconstrained, which yields a total degeneracy of D ¼ 4m
for two trenches. More generally, a system of k trenches
with boson-parity conservation intact has the degeneracy

D ¼ 2ð2mÞk−1: ð9Þ
We shall discuss the (topological) robustness of this degen-
eracy, which partially survives the Z2 symmetry breaking,
after we explicitly construct operators that span the 4m
degeneracy present in the two trench case.
Parafermion operators.—Wenowconstruct the operators

spanning the above two-trench degeneracy. As remarked
earlier, this degeneracy is spanned by the exchange of
quasiparticles between the end points of the trenches. Let
U†

l (U†
r) be the exchange operator between the left (right)

end points of the two trenches. They can be expressed as

U†
l;r ≡ T†

l;rBl;r; ð10Þ
where T† and B† represent quasiparticle vertex operators
acting on the top and bottom trench, respectively,
and projected onto the ground-state sector. For example,
T†
l;r ¼ eiφ1ðx¼0;LÞ adds a quasiparticle on one of the two

ends of the first trench with the projection onto the
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ground state implicit. The operator B on the second
trench can be defined similarly by φ1 → φ2; however, we
must insure that the exchange of quasiparticles between
the two trenches respects the exchange statistics. This
can be done consistently by including a Klein factor as
B†
l;r ¼ eiπN1=meiφ2ðx¼0;LÞ, where N1 is the number of quasi-

particles on the first trench. With this construction, we now
focus on the operator T defined above. Note that the chiral
field at the ends is given by φ1 ¼ ϕ1 − θ1. As we discussed
earlier, θ1ðLÞ ¼ 0 and θ1ð0Þ ¼ πNθ;1=m mod 2π with
Nθ;1 ≡mðQb;1 þQ1Þ the total number of quasiparticles
modulo 2m on the first trench. Since we are interested in
the ground state sector, the field ϕ is roughly assumed to
be pinned according to Eq. (6) over the entire edge as
ϕ1ð0Þ ≈ ϕ1ðLÞ ≈ 2πNϕ;1=m with integer Nϕ;1. We find

T†
l ¼ eiðπ=mÞðNϕ;1−Nθ;1Þ; T†

r ¼ eiðπ=mÞNϕ;1 ; ð11Þ

which satisfy the algebra

ðT†
l;rÞ2m ¼ 1; T†

l T
†
r ¼ e−iðπ=mÞT†

rT
†
l : ð12Þ

These relations describe parafermions, a generalization of
the fermionic algebra [23–26,52], see also Ref. [53].
The operators Bl;r can be defined similar to Eq. (11) by

including the Klein factor expðiπNθ;1=mÞ explained above,
and with Nθ;1 → Nθ;2 ¼ mð−Q1 þQb;1Þ and Nϕ;1 → Nϕ;2.
The parafermionic algebra implies that ðU†Þ2m ¼ 1, which
yields 2m degenerate ground states in a sector with a fixed
total parity [the operator U does not change the total parity
according to Eq. (10)]. With the twofold degeneracy due to
the total parity, one recovers the full 4m degeneracy of the
system.
Robustness.—Heretofore, we have focused on the

Hamiltonian in Eq. (5). In principle, however, a single boson
can tunnel to or from the BEC, which might arise from terms
of the type V ¼ cos½mϕðx ¼ 0; LÞ� near the end points of
the trench. In fact, introducing the perturbationV within first
order degenerate perturbation theory reduces the 4m fold
degeneracy toD0 ¼ m=2; see theSupplementalMaterial [49]
for details. While such a term clearly breaks the boson parity
symmetry [hence (Qb;1; Qb;2) are no longer good quantum
numbers], it also breaks a twofold degeneracy of the frac-
tional number of quasiparticlesQ1. The remainingm=2-fold
degeneracy is topologically protected, and we find in general
that the degeneracy for k trenches is given by

D0 ¼ ðm=2Þk−1: ð13Þ

This gives a quantum dimension of
ffiffiffiffiffiffiffiffiffi
m=2

p
for the defects

ending the BEC trenches. However, if the vacuum regions
(Fig. 2) are sufficiently large, single-boson tunneling is
suppressed, and one recovers the degeneracy in Eq. (9).
We also briefly remark that the long-range fluctuations

of the BEC can be considered effectively as long-range

tunneling, and can provide another mechanism to break the
boson-parity symmetry, while the quantum dimension in
Eq. (13) will not be affected.
Preparation and detection.—There is some evidence that

a ν ¼ 1=2 fractional Chern insulator has a continuous
transition to a BEC, which allows for quasiadiabatic
preparation of the former [54]. A similar procedure may
exist for FQH states. The parafermions in the FQH state can
be prepared by starting with a small island which can be
grown to a trench in linear time by modulating the laser
beams. Furthermore, Bragg spectroscopy can provide
direct information about the topological phase of the
system. For example, one should observe a zero bias peak
at the end points of the trench [55]. Parafermionic zero
modes can also be probed using braiding, which corre-
sponds to the topologically protected manipulation of the
underlying quantum information and which requires
dynamically changing the geometry of the system, bringing
different sets of parafermionic edge modes in close prox-
imity to each other [23,24]. Such dynamical changes can
easily be achieved by dynamically changing the laser beam
used to create the BEC trenches.
It is worth pointing out that a theoretically simpler but

experimentally more challenging approach would proceed
by analogy with Ref. [56]: A BEC of diatomic molecules can
be coherently dissociated into pairs of atoms, which readily
gives the effective Hamiltonian in Eq. (4). We also mention
that ultracold fermionic systems too can be utilized to create
parafermionic zero modes; however, the pairing term has to
be generated from a BEC of molecules of fermionic atoms,
or some other paired state, which is, nevertheless, more
complicated experimentally than a BEC trench proposed
here. Furthermore, ultracold bosons are more common
experimentally than ultracold fermions in part because they
are easier to cool. Finally, for a fermionic system, one can
use the solid-state proposals almost directly, while our
bosonic model gives rise to qualitatively different results.
Conclusion.—In this work, we have considered a BEC

trench in a FQH liquid, and showed that, in a certain
regime, the combined system is in a topological phase,
which is identified by the zero mode operators at the end
points of the trench. These zero modes are shown to be
parafermions, a generalization of the usual fermionic or
bosonic algebra. We have also derived the topological
degeneracy of the parafermionic modes, and examined their
robustness against local perturbations. While we have
focused on bosonic FQH states in the series ν ¼ 1=m,
with m an even integer, our results may be extended in a
straightforward manner to other bosonic and fermionic
quantum Hall states in an ultracold-atomic setting [57].
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