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We show that two photons coupled to Rydberg states via electromagnetically induced transparency can
interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound
states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states
tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy
spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom.
Under certain conditions, the wave function resembles that of a diatomic molecule in which the two
polaritons are separated by a finite “bond length.” These states propagate with a negative group velocity in
the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of
bound Rydberg atoms.
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Photons are fundamentalmassless particles that are essen-
tially noninteracting for optical frequencies. However, a
medium that couples light to its atomic constituents can
induce interactions between photons. This interaction may
lead to exotic, many-body states of light [1–3], or can be
used as a basis for realizing deterministic quantum gates
between two photons [4–7]. A promising approach to
create strongly interacting photons is to couple the light
to atomic Rydberg states [3,4,6,8–36], as realized in recent
experiments [37–52].
Rydberg polaritons are superpositions of Rydberg atoms

and light, which propagate almost without dissipation under
the conditions of electromagnetically induced transparency
(EIT) [8,53–55]. EIT strongly reduces the group velocity
and makes Rydberg polaritons dispersive. The large admix-
ture of the Rydberg state can induce strong interactions
between polaritons via the inherent Rydberg-Rydberg
interactions. Specifically, the blockade effect prevents the
formation of two Rydberg polaritons within the so-called
“blockade radius” of each other [38,43,48,56–59]. When
the probe photons are detuned from the atomic transition,
they can form bound states. A shallow bound state of light
was observed in recent experiments [45], while stronger
interactions result in deep bound states of Rydberg polar-
itons tied together within the blockaded region [29]. One
can imagine these bound states as consisting of a photon
trapped by a Rydberg excitation in a deep square well.
In this Letter, we predict and explore a class of photonic

states resembling diatomicmolecular states inwhich the two
bound photons can be separated by a nonzero “bond length.”

This is achieved by considering Rydberg polaritons with
the quantized light red detuned from the excited atomic
state. In such a system, we show the existence of metastable
bound states exhibiting the Coulomb spectrum, akin to the
hydrogen atom. Such states can potentially be used as
building blocks for more complex quantum states of light.
To gain an intuitive understanding, consider the level

structure of the Rydberg medium shown in Fig. 1(a). The
probe field coupling the ground state jgi to the intermediate
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FIG. 1 (color online). (a) The probe field couples the ground
state jgi to the excited state jei and is red detuned by Δ. A control
field with Rabi frequency Ω couples jei to the Rydberg state jRi
and is blue detuned by Δ, thus putting the probe on an EIT
transmission resonance. The Rydberg state is thus shifted down-
ward by Ω2=Δ. The van der Waals interaction with another
reference Rydberg excitation at r ¼ 0 can bring jRi into an
absorption resonance with the two-photon transition. (b) The
effective potential of two Rydberg polaritons as a function of
their separation r exhibits a singularity at jrj ¼ rb (the blockade
radius) and behaves near this singularity as a Coulomb potential.
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excited state jei is red detuned by Δ > 0, and the Rabi
frequency of the control field coupling jei to the Rydberg
state jRi is Ω. For Ω ≪ Δ, the Rydberg state is shifted
downward by Ω2=Δ [see Fig. 1(a)]. The van der Waals
interaction VðrÞ ¼ C6=r6 between Rydberg states modifies
this picture (we assume C6 > 0 or more generally
C6Δ > 0). In particular, at small separations r, the strong
interaction shifts two Rydberg states upward and out of
resonance, while at large separations, the interaction is
negligible and the energy level of each atom asymptotes to
−Ω2=Δ (we set ℏ ¼ 1). For intermediate separations on the
order of the blockade radius rb, defined by VðrbÞ ¼ 2Ω2=Δ
[60], the system goes through a resonance (the factor
of 2 arises since both atoms experience the Ω2=Δ shift).
This resonance, associated with a pair (or “molecule”) of
Rydberg atoms, endows the effective interaction VeffðrÞ
between two Rydberg polaritons with a singularity sepa-
rating repulsion outside the blockade region from attraction
inside; see Fig. 1(b). This effective interaction between
two Rydberg polaritons can be roughly thought of as the
difference in susceptibility of a single Rydberg polariton
with and without a Rydberg excitation at r ¼ 0 [45].
Interestingly, the effective potential near the resonant edge
is that of the Coulomb interaction that changes sign across
the blockade radius. This potential admits a continuum
of states consisting of pairs of bound Rydberg atoms
(Rydberg molecules) dressed by the photons. Within the
continuum, we identify multiple branches of metastable
states whose lifetime diverges with the strength of the
interaction. When the effective energy of the two-polariton
state lies below both Veffð∞Þ and Veffð0Þ, the bound state
experiences a repulsive core and the wave function
becomes double peaked near $rb, resembling a diatomic
molecular state. We further show that the group velocity of
these states is negative, consistent with the fact that they
have a finite lifetime.
Model.—To describe a propagating polariton in a

Rydberg medium, we define E†ðzÞ and S†ðzÞ as bosonic
creation operators for a photon and a Rydberg excitation,
respectively, at position z. They obey the equal-time
commutation relations ½EðzÞ; E†ðz0Þ& ¼ ½SðzÞ; S†ðz0Þ& ¼
δðz − z0Þ. We define g to be the collectively enhanced
atom-photon coupling [53] and assume that the decay rates
2γ of the excited state (satisfying γ ≪ Δ) and 2γ0 of the
Rydberg state can be neglected. In the regime of slow light
(g ≫ Ω) and with large single-photon detuning (Δ ≫ Ω),
one can adiabatically eliminate the excited state jei [29,45].
The two-state Hamiltonian of the Rydberg medium is then

H ¼
Z

dz
!
E

S

"†!−ic∂z þ g2=Δ Ωg=Δ
Ωg=Δ Ω2=Δ

"!
E

S

"

þ 1

2

Z
dzdz0Vðz − z0ÞS†ðzÞS†ðz0ÞSðz0ÞSðzÞ: ð1Þ

In the Supplemental Material [61], we show that this treat-
ment of the medium as a one-dimensional continuum of

stationary atoms is experimentally relevant. In the absence
of interactions, H diagonalizes into dark- and bright-state
polaritons,where, at low energies, the former [∝ ðgS†−ΩE†Þ
when ∂z ¼ 0] is mostly composed of jRi and travels at a
reduced group velocity [53]. In the presence of interactions,
the Hamiltonian in Eq. (1) can be projected onto the sector
containing two particles (at positions z and z0) described by
the quantum state jΦiwith two-photon amplitude EEðz; z0Þ,
atom-photon amplitudes ESðz; z0Þ and SEðz; z0Þ, and two-
atom amplitude SSðz; z0Þ. These are defined as EEðz; z0Þ ¼
h0jEðzÞEðz0ÞjΦi, ESðz; z0Þ ¼ h0jEðzÞSðz0ÞjΦi, SEðz; z0Þ ¼
h0jSðzÞEðz0ÞjΦi, and SSðz;z0Þ¼h0jSðzÞSðz0ÞjΦi, where j0i
is the vacuum state. The problem is simplified by noting that,
for two particles, the total energy ω and the center of mass
momentum K are good quantum numbers.
In the limit g → 0, the SS component decouples

from the photonic amplitudes (ωSSðz; z0Þ ¼ ½−2Ω2=Δþ
Vðz − z0Þ&SSðz; z0Þ) giving rise to a continuum of (δ-
function) states of Rydberg molecules. Upon increasing
g the continuum of states is still present while the wave
function remains localized to the blockade radius. To see
this, note that the Heisenberg equations of motion for
the above amplitudes immediately lead [29,61] to the
Shrödinger-like equation

#
−
1

m
∂2
r þ

C6

r6 − ½rbðωÞ&6 þ i0þ

$
ψðrÞ ¼ EψðrÞ; ð2Þ

where r is the relative coordinate of the two particles,
and ψ is the symmetrized light-Rydberg wave function
ψðrÞ≡ ½ESðrÞ þ SEðrÞ&=2. Notice that the van der Waals
potential is replaced by an effective potential VeffðrÞ ¼
C6=(r6 − ½rbðωÞ&6 þ i0þ) modified within the blockaded
region as in Fig. 1(b). [In contrast, for C6Δ < 0, the
effective potential is a simple well VeffðrÞ ∝ −1=(r6 þ
½rbðωÞ&6) of width ∼2rb with no repulsive core at r ¼ 0;
this potential harbors bound states of width ≳rb centered at
r ¼ 0, as studied in Ref. [29] and observed in Ref. [45].]
For a nonzero ω, the blockade radius rbðωÞ depends
on frequency via the resonant condition C6=½rbðωÞ&6 ¼
2Ω2=Δþ ω (the dependence of rb on ω will often be
implicit below). i0þ in Veff is obtained in the limit of
vanishingly small γ and γ0, which is further required
by causality. In the limit of small energy and momentum,
m is the mass of a single dark-state polariton due to the
curvature of the linear susceptibility and is given by
m ¼ g4=2c2Ω2Δ [62,63], while the energy is given by
E ¼ ω − vgK with vg ¼ ðΩ2=g2Þc being the EIT group
velocity. More generally, the parameters in Eq. (2) can be
simply derived from single-polariton physics: for two
Rydberg dark-state polaritons with momenta k1 and k2
and dispersion ω1;2 ¼ ωðk1;2Þ, the constraints ω1þω2 ¼ω
and k1 þ k2 ¼ K yield an expression for the relative
momentum p ¼

ffiffiffiffiffiffiffi
mE

p
consistent with the full expressions

for m and E [29,61].
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Coulomb states.—The effective potential Veff diverges
as 1=ðr$ rbÞ near the blockade radius, like a Coulomb
potential. Across the singularity, the wave function ψ
should be continuous, while its derivative does not have
to be. The full wave function Ψω;KðrÞ ¼ ðEE;ES; SE; SSÞ
has various components that are related to ψ as [29,45]

EEðrÞ ¼ −
2gΩ=Δ

2g2=Δþ ω − cK
ψðrÞ;

ESðrÞ ¼
!
1 −

ic
ðg2 þ Ω2Þ=Δþ ω − cK=2

∂r

"
ψðrÞ;

SSðrÞ ¼ 2gΩ
ΔC6

P
#

ψðrÞ
r−6 − r−6b

$
þ αδðr$ rbÞ; ð3Þ

where, for states with ψðrbÞ ≠ 0, the principal value
symbol P removes the 1=½r$ rbðωÞ& singularity in SS
near the blockade radius. The coefficient α of the δ function
is determined by the discontinuity in the derivative of ψ at
the blockade radius [61].
We now notice that Eqs. (2) and (3) admit a special set of

solutions, which are a superposition of a normalizable wave
function vanishing for jrj ≥ rb [ψðrbÞ ¼ 0] and a δ-function
singularity in the SS component, but without the 1=½r$
rbðωÞ& singularity. Such states can be interpreted in analogy
to a “leaky box” where a quasibound particle tunnels
through a potential barrier: for the leaky box, a true
eigenstate is a superposition of the metastable bound state
and a plane wave, which is a momentum eigenstate selected
from a continuum. Similarly, for the above special eigen-
states [with ψðr ≥ rbÞ ¼ 0], the role of the continuum of
eigenstates is played by the δ functions in SS, which are
position eigenstates. When the δ function is removed, the
other components of the wave function form a metastable
bound state. Furthermore, in the limit of an infinitely strong
interaction, i.e., g → ∞, our special eigenstates lose their
δ-function component [61]. This is again analogous to the
leaky box, where, in the limit of an infinitely tall barrier (i.e.,
the no-leak limit), one obtains exact eigenstates confined
to the box and decoupled from the plane-wave component
sitting outside the box. Henceforth, we call the metastable
bound states above (without the δ function) Coulomb states,
and study their spectrum and other properties in detail.
Figure 2(a) shows the energy spectrum of the exact

eigenstates (i.e., with the δ function) underlying the
Coulomb states. The exact solutions are depicted as solid
lines, while the dashed lines show the energy spectrum
derived from the WKB quantization condition [applied to
the case ψð$rbÞ ¼ 0]

Z
rb

r0
pðrÞdr ¼ nπ; n ¼ 1; 2;… ð4Þ

with pðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðE − VeffðrÞÞ

p
defined by Eq. (2), and

r0 < rb being the classical turning point near the origin

[64]. Figure 2(a) demonstrates that the WKB quantization
agrees with the full solution for values of K near 2g2=cΔ.
WhenK is close to 2g2=cΔ, we can analytically compute

the integral in Eq. (4) to find

1þ ωΔ=2Ω2

1 − cKΔ=2g2
¼ A

½g2rbðωÞ=cΔ&2

n2
; ð5Þ

where A ¼ ½Γð2=3Þ=Γð1=6Þ
ffiffiffi
π

p
&2 ≈ 0.014 and Γ is the

Gamma function. If rb were independent of ω, Eq. (5)
would imply that ω is quantized as 1=n2 (plus a constant),
reminiscent of the energy spectrum of the Coulomb
potential. However, due to the ω dependence of rb, the
quantization changes to ωn ∼ 1=n3=2 (plus a constant) [65],
which still sharply contrasts with the finite-square-well
energy quantization in Refs. [29,45].
The fact that the blockade radius, and, thus, the inter-

action strength, is sensitive to frequency is a typical feature
of nonlinear optical systems [13]. We also stress that
4g2rb=cΔ is identical to the figure of merit in the far-
detuned regime ODbγ=Δ, where ODb is the optical depth
per blockade radius. The figure of merit quantifies the
strength of the interaction as two polaritons imprint a phase
∼ODbγ=Δ on each other [45].
With the dispersion in hand, we now explore the stability

of the Coulomb states. The solutions given by Eq. (3) are
a complete set of eigenstates for the two-particle Hilbert
space. To normalize these states, we take K to be fixed and
use the energy normalization hΨω0;KjΨω;Ki ¼ δðω − ω0Þ.

FIG. 2 (color online). (a) Dispersion curves for the exact eigen-
states underlying the metastable Coulomb bound states (only the
first four branches n ¼ 1–4 are shown) with g2rb=cΔ ¼ 40 and
Ω=g ¼ 0.05. The solid lines give the exact solution, while the
dashed lines represent the WKB results. For K → 2g2=cΔ, the
WKB results are almost exact. The dispersion curves converge to
one point with a negative slope, or group velocity. (b) Decom-
position of the metastable Coulomb bound states (Ψc

n, defined
as Ψωn;Kn

with the δ-function contribution removed) into the
continuum of exact eigenstates. Here, we took g2rb=cΔ ¼ 40
and Ω=g ¼ 0.01 with a fixed center of mass momentum
cKΔ=2g2 ¼ 0.95. The width of these distributions is much less
than the energy spacing, indicating they are spectrally distin-
guishable. The inset shows the wave function components
for the n ¼ 1 Coulomb state with the parameters in (a) and
cKΔ=2g2 ¼ 0.98. (The EE component is exaggerated by a factor
of 1.5 for better visibility.)
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We can then verify the metastability of the Coulomb states
{ψ ½rbðωÞ& ¼ 0} with the δ function removed by looking
at their spectral width, i.e., their decomposition into the
normalized eigenstates. Figure 2(b) shows this decompo-
sition for several n, where we see that the Coulomb states
are sharply peaked at the expected frequencies. The width
of these distributions can be much narrower than the
spacing between states, a strong signature of spectral
distinguishability [66]. Furthermore, the Coulomb states
converge to the exact eigenstates for a very strong inter-
action strength, which is analogous to the leaky box in the
limit of an infinitely deep potential [61].
A unique feature of the dispersion curves in Fig. 2(a) is

that their slope, and thus the group velocity, is negative.
While true eigenstates cannot have a negative group velocity
in the absence of left-movingmodes (SupplementalMaterial
[61]), Coulomb states are not exact eigenstates and even-
tually decay into Rydberg molecules. Equation (5) gives the
group velocity as v ¼ −Aðg2rb=cΔÞ2vg=n2, where vg is the
EIT group velocity. Therefore, the velocity is also quantized
as 1=n2 for different branches of bound states (and fixed
values of ω). This quantization and the negative sign make
the group velocity an ideal signature for detecting different
Coulomb states and distinguishing them from the bound
states of Refs. [29,45]. We also remark that a small γ (≪ Δ)
contributes to the energy a small imaginary part, propor-
tional to γ=Δ, which thus becomes negligible for large
detuning.
We now show how to prepare these states and measure

their dispersion. We assume that we have access to an
additional hyperfine ground state jqi, which, as shown in
Fig. 3(a), is connected to both jgi and the Rydberg state jRi
through two-photon transitions via an excited state je0i.
With these additional states, we can effectively turn on and
off the polariton interactions by applying a fast π pulse on
the two-photon transition between jqi and jRi.
The preparation procedure is as follows. First, we store

two identical photons (equivalently a weak coherent state
followed by postselection) in the atomic state jqi using
standard protocols [53,67]. To have a significant overlap
with the Coulomb states once we map to jRi, the state
has to have the correct center of mass momentum K.
To achieve this, we introduce a linear energy gradient E0

along the atomic cloud for a time τ, which could be
achieved with a magnetic field gradient, another optical
beam, or a microwave field. This will impart a phase
e−iE

0τR on the stored two-photon state. By choosing
the appropriate τ and then mapping jqi to jRi, we can
selectively excite different Coulomb states provided they
have a large enough spatial overlap with the initial product
state input. As the bound states travel with negative group
velocity, the Coulomb state component will separate from
the rest of the wave function. To detect the state, one can
then map the Rydberg state back to jqi and either measure
the population of the state jqi directly or retrieve the state

into light. In Figs. 3(b)–3(d), for realistic parameters
(including γ and γ0) [41], we verify this approach by
preparing a variational state that has a large overlap
with the SS component of the Coulomb state [shown in
Fig. 3(b)] with other components equal to zero and solve
numerically for the time evolution [61]. In this case,
the effective energy E of the bound state lies above
Veffð0Þ and the wave function is peaked at r ¼ 0, similar
to Refs. [29,45]. We have also verified that, when
E < Veffð0Þ, the backward propagating state becomes
double peaked (in contrast to Refs. [29,45]) and that,
for smaller decay rates and larger g2rb=cΔ, the negative
group velocity observed in the numerics agrees with the
WKB prediction from Eq. (4) for the n ¼ 1, 2, and 3
Coulomb states within a few percent in each case [61].
Outlook.—While our proposal opens the avenue for the

creation of Coulomb-like two-photon states, we expect that
a wide class of both useful and exotic two-photon and
multiphoton states can be created via refined engineering
of photon-photon interactions, e.g., by using microwave
fields [43]. The detailed understanding of the two-photon
Rydberg-EIT physics provided by this work also opens
up an avenue towards understanding the full—and much
richer—many-body problem involving an arbitrary number
of photons in any dimension.
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FIG. 3 (color online). (a) Level structure used to prepare the
initial SS distribution. (b)–(d) Time evolution of a wave packet
with all components initially zero except SS, which is chosen to
be a Gaussian wave packet of variational n ¼ 1 Coulomb state
solutions (with the δ function removed) centered at ω ¼ 0 and
having width Ω2=2Δ [61]. Specifically, jEEj, initially zero, is
shown after the initial transient evolution subsides at (b) t ¼ tf=4,
and at (c) t ¼ tf=2 and (d) t ¼ tf, where tf ¼ 5.5Δ=Ω2. Thewave
packet within the blockade radius has the expected shape of
the Coulomb state, propagates backward, and decays, while the
wave packet outside the blockade radius propagates forward
with vg and disperses. We took a medium of length L ¼ 16rb,
g2rb=cΔ ¼ 5, g=2π ¼ 17 GHz, Ω=2π ¼ 1.5 MHz, rb ¼ 25 μm,
Δ=2π ¼ 30 MHz, γ=2π ¼ 3 MHz, and γ0=2π ¼ 5 kHz [61].
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