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Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are
nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental
platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify
these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics.
While these states and their phase transitions have been studied extensively with mean-field theory, the validity of
the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic
approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of
models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of
the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and
the universal behavior including the dynamics near the steady state is generically described by a thermodynamic
universality class.
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I. INTRODUCTION

Condensed matter systems typically relax to their equilib-
rium state on very short time scales. A successful paradigm of
statistical physics developed over many years explains various
aspects of equilibrium or near-equilibrium phenomena in
many-body systems. Specifically, quantum phase transitions,
which emerge at zero temperature, have been the subject of
intense research over the past several decades [1].

In contrast, experiments with ultracold matter have opened
new avenues to probe far-from-equilibrium many-body sys-
tems in the presence of both coherent dynamics and controlled
dissipation, the so-called driven-dissipative systems. While the
subject is not new, the vast range of experimental platforms
have brought driven-dissipative many-body systems into light
again and made it necessary to undertake a more thorough
investigation. Experiments range from polariton condensates
in the context of semiconductor quantum wells in optical
cavities [2–6] and arrays of microcavities [7–10] to trapped
ions [11,12] and optomechanical setups [13–15]. Further-
more, experiments on strongly interacting Rydberg polari-
tons are already probing nonequilibrium many-body physics
[16–19], while cavity-quantum-electrodynamics experiments
can potentially explore dynamics under exotic many-body
Hamiltonians with glassy ground states [20–22]. The interplay
between dissipation, which is generically present in these
systems, and coherent dynamics leads to new, and inherently
nonequilibrium, phases. The fundamental question is then
how we should understand and classify these phases. Do
dissipative-driven systems give rise to new phases of matter?
What are the universal properties of the associated phase
transitions?

The sophisticated toolbox of equilibrium physics is not
immediately applicable to nonequilibrium problems. The
equivalents of equilibrium concepts such as temperature,
free energy, and partition function either have no obvious
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counterpart out of equilibrium, or often become intractably
complicated. In particular, the main goal of condensed matter
physics is to find properties of the ground state or, at finite
temperature, the thermal state of the system, while, out of
equilibrium, nontrivial many-body states emerge as steady
states under nonequilibrium dynamics. In the absence of a
powerful systematic approach, approximations such as mean-
field theory have been widely used [23–31], but are often
at odds with other analytical and numerical studies [32,33],
sometimes even in the limit of infinite dimensions [34] where
the equilibrium mean field is known to be exact; these
analytical and numerical studies are based on variational meth-
ods [32,33] and approximate rate equations [34]. In general,
numerical techniques are either limited to one dimension, e.g.,
t-DMRG [35], or to infinite dimensions such as nonequilibrium
dynamical mean-field theory [36,37], or cannot be applied to
nonequilibrium systems, e.g., path-integral Monte Carlo [38].
It is worth mentioning that there exist exact solutions, due to
integrability, for a very specific class of nonequilibrium models
where the system is driven only at the boundaries [39,40].

In principle, the Keldysh-Schwinger functional integral
formalism provides a general approach to nonequilibrium
physics. A notable example is the universal behavior of early
evolution of an initial state prepared far from equilibrium [41];
see also [42] for a review. This approach has been applied
to a number of driven-dissipative systems such as lossy
polariton condensates [43–45] and driven atomic ensembles
interacting with a cavity mode [46]. Indeed, a systematic
application of the Keldysh formalism to the wide variety of
driven-dissipative problems is far from complete. Surprisingly,
even the simplest many-body driven-dissipative spin models
have not been fully tackled with the Keldysh formalism; these
models should not be confused with spin-boson models where
a two-level system is coupled to a dissipative environment
in thermal equilibrium [47]. To be more precise, in contrast
to spin-boson models where spins are strongly coupled to a
thermal environment, driven-dissipative systems studied in this
paper deal with situations where coupling to the environment
is weak, but the system is driven out of thermal equilibrium by
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TABLE I. Summary of the results. We consider four driven-dissipative models with spin-1/2’s on a d-dimensional cubic lattice. In each
case, the Hamiltonian (H ) and the dissipation via the Lindblad operators (L) are defined. The mean-field theory prediction is described and
contrasted with the Keldysh field-theoretic treatment. Nearest-neighbor Ising, isotropic XY, and anisotropic XY interactions are considered in
different examples. In models A, B, and C, we take d = 2 or 3, while, in model D, we take d = 3. In the former three models, the dissipation is
an independent spontaneous emission on each site, whereas, in the latter model, pump and correlated dissipation on nearby sites are assumed
as well. The interplay of unitary and dissipative dynamics creates rich phase diagrams. Our analysis indicates that the mean-field predictions
are incomplete or even wrong for all four models, and should be supplemented with field theory via the Keldysh formalism.
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an external drive (for example, by a laser beam), or it may be
in contact with two different baths at different temperatures,
or may be coupled to a nonthermal bath.

In this paper, we consider a variety of nonequilibrium
models, mostly spin models on a d-dimensional cubic lattice,
and study their, inherently nonequilibrium, steady states. The
fact that we are interested in the near-critical (criticality
identified by a diverging time scale) long-distance behavior of
the models allows us to map the spin models to continuum
field theories, which we study via the Keldysh formalism
in great detail. For each model, we compare and contrast
the field-theoretic Keldysh approach to the mean-field theory
which is shown to miss some or most of the features of the
full field-theory treatment. A unified and systematic Keldysh
approach is applied to most of these models (Models A–C
in Table I): close to the mean-field phase transition, critical
and massive components of the field are identified, and the
latter is integrated out to find an effective action for the critical
field. While such a procedure for obtaining an effective action
is standard, the Keldysh formalism involves two different,
classical and quantum, fields which require special care.

We first provide a brief description of the tools used
throughout this paper in Sec. II, and then study four specific
driven-dissipative models in Sec. III. We generically find that
a driven-dissipative model behaves thermally, that is, an ef-
fective temperature emerges, and the phase transition between
different phases is described by well-known thermodynamic
paradigms and their universality classes. The emergence of an
effective equilibrium and a conventional thermal phase transi-
tion has been identified in many contexts [21,25,43,44,46,48–
53]. Furthermore, effects beyond mean field have been studied
in the context of driven-dissipative condensates [43–45].
Nevertheless, more generally, the determination of what pre-
cise thermodynamic phase corresponds to the nonequilibrium
steady state is often nontrivial and depends sensitively on
the type of dissipation and its competition with the coherent

dynamics. Systematic derivation of this correspondence for
each of the models under consideration constitutes the main
result of the present manuscript. What is universal in all
these models is the emergence of thermal phase transitions,
but they show generic, although model-dependent, effects of
fluctuations in driving phase transitions to a different order
(model A), removing mean-field artifacts (models B, C),
melting order (model C), or inducing symmetry breaking
(model D).

For the benefit of the reader, we summarize our results in
Table I, which introduces the four driven-dissipative models
under consideration and highlights the important differences
between the results obtained via mean-field theory and via the
Keldysh field-theoretic formalism.

II. GENERAL FRAMEWORK

In this section, we closely follow Refs. [23,43,44,46] to
introduce the general framework in which we define and study
driven-dissipative systems; see also the pioneering works in
Refs. [54–56]. To properly treat dissipation, we first introduce
a second-quantized master equation under which the density
matrix evolves with both unitary and dissipative dynamics.
We briefly sketch how the master equation is mapped to the
Keldysh path integral. We then consider a generic form of
the Keldysh action, and present a simple scaling argument that
constitutes the first step of the RG procedure. Finally, we show
that, under certain conditions, the Keldysh path integral maps
to a classical Langevin equation, and the resulting steady state
can be expressed as a classical partition function. While the
tools and methods discussed in this section are known and
have been utilized in the literature, we find it useful to present
them in an introductory section rather than an appendix as we
will use them frequently, and mostly in the context of models
to which they have not been directly applied. For a detailed
introduction to the Keldsyh formalism, we refer the reader
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to Refs. [57,58]. The application of the Keldysh formalism
to a number of driven-dissipative systems can be found in
Refs. [43,44,46], from which this work has greatly benefited.

Quantum master equation. To describe an open system, one
should include both the coherent and dissipative processes in
a master equation for the density matrix as (in units where
! = 1)

∂tρ = −i[H,ρ] + 1
2

∑

α

(2LαρL†
α − L†

αLαρ − ρL†
αLα).

(1)
The first term on the right-hand side gives the usual coherent
evolution via the Hamiltonian H . The dissipation is subsumed
in the second term (sometimes referred to as the linear
Liouville operator L[·] acting on ρ) characterized by the
so-called Lindblad operators Lα which describe an incoherent
process α. The master equation relies on the Born-Markov
approximation, which assumes that the reservoir has a short
correlation time and is large enough to be unaffected by
the coupling to the system [59]. In the so-called stochastic-
wave-function interpretation, the operator Lα acts as an
occasional, discontinuous, jump from one state to another as
a result of an incoherent process [60] [more precisely, the
first term in parentheses in Eq. (1) describes such a jump,
while the last two terms take dissipation into account between
the jumps]. Typical Lindblad operators are local operators
causing transitions between levels or decay of coherences, i.e.,
dephasing. Various examples of Hamiltonian dynamics and
Lindblad operators are discussed in Sec. III and summarized
in Table I.

Keldysh functional integral. The Keldysh formalism pro-
vides a general framework to study nonequilibrium problems
with functional integral techniques. Within this approach, the
action is defined on a closed time contour with a forward and a
backward branch. In performing the functional integration, one
should sum over all configurations with independent values of
the underlying fields on the two branches. To be concrete,
consider {a} as a shorthand for all the fields in a particular
model. The Keldysh path integral can be formally expressed
as

∫ ∏
σ=±

D[aσ (t,x)]eiSK [a+,a−], (2)

where σ = ± denotes the forward and backward branches,
respectively, while (t,x) are the time and spatial coordinates.
Evaluating the functional integral on a closed time contour
means that the values of a± should match at t = ∞ (at
t = −∞, the system is described by an initial state whose
precise form is unimportant for the steady state of the system
at long times [57], although the early evolution of the system
depends sensitively, and perhaps even universally, on the initial
state [41]). All the information in the, possibly time-dependent,
state and specifically all correlation functions can be computed
by inserting fields in the functional integration; for a general
operator Ô, one has

Tr[ρ(t)Ô] = ⟨O+(t)⟩, (3)

where the expectation value ⟨·⟩ is computed with respect to
the functional integral in Eq. (2). The subscript + on O on the
right-hand side of the above equation implies that all the fields

inside O are evaluated on the forward branch; one can equally
well arrange to have the observable on the backward branch,
but it is, in fact, often more convenient to work in a different
basis, which we shall define shortly [57,58].

Conveniently, the master equation (1) can be directly
mapped to a Keldysh action comprising both the coherent
(H ) and dissipative (D) terms as

SK = SH + SD. (4)

The coherent part of the action can be written in the coherent-
state representation (after normal ordering, and assuming that
a corresponds to a bosonic operator) of the path integral as

SH =
∑

σ=+,−
σ

[(∫

t,x
a∗

σ i∂t aσ

)
− H [aσ ,a∗

σ ]
]
. (5)

The relative sign of the forward and backward branches has
its origin in the minus sign in the commutator [H,ρ]. The
dissipative dynamics yields the Keldysh term

SD = −i
∑

α

∫

t,x
Lα,+L∗

α,− − 1
2

(L∗
α,+Lα,+ + L∗

α,−Lα,−),

(6)
with the Lindblad terms Lα and L∗

α given in terms of position-
and time-dependent fields aσ (see Ref. [44] for more details).
In general, operators acting on the density matrix ρ from the
left (right) give rise to a corresponding term on the σ = +
(σ = −) contour [44,46].

It is often more convenient to work in the Keldysh basis
defined as

acl = a+ + a−√
2

, aq = a+ − a−√
2

, (7)

where acl/q are the so-called classical and quantum fields;
typically, in an ordered phase ⟨acl⟩ = const, while ⟨aq⟩ = 0,
that is, the quantum field is purely fluctuating.

Scaling dimensions. We often encounter the Keldysh
action of the form

∫
t,x a∗

q (i∂t + ∇2 − i #′

2 )acl + i#|aq |2 at the
quadratic level, where # and #′ generally designate dissipation
rates in the model. To find the scaling dimension of the fields
as a first step of the RG procedure, we perform a simple
dimensional analysis; setting the scaling dimension of spatial
and time derivatives as [∇] = 1 and [∂t ] = z, we have z = 2 at
the quadratic order. We also choose dim[#] = 0. The scaling
dimensions of the classical and quantum fields are then [43,44]

[acl] = d − 2
2

, [aq] = d + 2
2

, (8)

with d the number of spatial dimensions. Notice that, with our
choice of renormalization, the term

∫
t,x |aq |2 is only marginally

relevant; any additional powers of acl/q or higher-order
derivatives in the integrand make it irrelevant.1 Therefore, the
quantum field aq appears at most quadratically, and without
any derivatives at the quadratic order, in the relevant part of the
action. We stress that our analysis based on power counting is
valid at or near criticality (criticality defined as #′ = 0).

1A simple dimensional analysis gives [acl] = 0 in d = 2 di-
mensions; however, the classical field acquires a nonzero scaling
dimension in the course of the RG.
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Langevin equation. In the models presented in this paper,
we often find a Keldysh path integral of the form

∫
D[acl/q (t,x)]eiSK [acl ,qq ] with

SK =
∫

t,x
a∗

q

[
iȧcl + δf [acl]

δa∗
cl

]
+ c.c. + i#|aq |2, (9)

where the quantum field appears at most at the quadratic level,
and f is assumed to be a complex-valued functional of acl ;
f may generically include gradients of the field as well as
interaction terms. By the virtue of a Hubbard-Stratonovich
transformation, one can cast the quadratic term in the quantum
field in terms of a “noise” field ξ (t,x). The fluctuations of the
classical field in the above path integral can be then cast exactly
in terms of a classical Langevin equation as [57]

i∂t acl(t,x) = −δf [acl]
δa∗

cl

+ ξ (t,x), (10)

where noise correlations satisfy

⟨ξ (t,x)ξ ∗(t ′,x′)⟩ = # δ(x − x′)δ(t − t ′). (11)

All correlations of the classical field can be computed either
via the Keldysh path integral, Eq. (9), or equivalently via the
Langevin equation (10). The latter, however, has the obvious
advantage of mapping to a classical stochastic equation. We
are often interested in finding the steady state of Eq. (10),
which, via a series of steps outlined above, is indeed equivalent
(for the purposes of probing the long-wavelength physics
near criticality) to the steady state of the quantum master
equation (1). The calculation of the steady state of Eq. (10)
is not trivial in general. However, for the special case—
encountered in Models A–C in Table I—where the function
f is purely imaginary,2 f [acl] = ifI [acl], the steady state is
given by the probability distribution

P [acl] ∼ exp
(

−fI [acl]
Teff

)
, (12)

which takes the form of a thermodynamic partition function
with the effective temperature Teff ≡ #/2, and fI as the
effective classical Hamiltonian of the system. The value of
the effective temperature is chosen such that the fluctuation-
dissipation condition, relating the fluctuations of the noise
to the dissipation in the effective model, holds. Computing
correlation functions weighted by Eq. (12) will produce all
the relevant information in the quantum steady state. We also
remark that Eq. (12) can be derived from the Fokker-Planck
equation that casts the Langevin equation (10) in the form of
an equation for the probability distribution [61].

We stress that driven-dissipative systems may not always
be described by a thermal-like probability distribution. In
particular, this description may fail if the system is not
invariant under a symmetry transformation that characterizes
the equilibrium condition [44,53].

Although the procedure and the steps outlined in this
section are rather standard, the key challenge lies in bringing
a many-body model of interest, e.g., a spin model, into the

2For a more general case, see Refs. [100,101].

form given by Eq. (9) or Eq. (10); in almost all the models
studied in this paper (Models A–C in Table I; Model D requires
a special treatment), we find that such a transformation is
nontrivial. Nevertheless, we show how to achieve this goal via
a systematic approach.

III. DRIVEN-DISSIPATIVE MODELS

Here, we consider a number of driven-dissipative models,
mostly spin systems on a cubic lattice, each defined by a
particular Hamiltonian and a particular form of dissipation.
In each subsection, we compare the results of the mean-field
analysis to those of the full field-theoretic treatment using
the Keldysh formalism. The mean-field analysis is shown to
partially or completely fail in all the models, while the Keldysh
approach provides a field-theoretic formalism to go beyond
mean field, best suited to study the vicinity of phase transitions.

The driven-dissipative spin models described below can be
implemented using a variety of experimental systems. The
Hamiltonians can be implemented using ions coupled via
motional modes [62–66], atoms in optical lattices coupled
via superexchange [67–69], atoms in optical cavities or along
waveguides coupled via optical modes [21,70,71], or polar
molecules [72–77], Rydberg atoms [78], magnetic atoms [79],
magnetic defects in solids [80], and Rydberg polaritons [81]
coupled via dipole-dipole or van der Waals interactions. The
Lindblad operators either arise in these models naturally via
processes like spontaneous emission or can be engineered via
optical pumping.

A. Transverse-field Ising model (TFIM) with spontaneous
emission in the eigenbasis of the field

In this subsection, we consider a driven-dissipative model
described by the Hamiltonian (written in terms of Pauli
matrices σα

i )

H = −J
∑

⟨ij⟩
σ x

i σ x
j + "

∑

i

σ z
i , (13)

where the first term with J > 0,3 is the nearest-neighbor
interaction on a d-dimensional cubic lattice with d = 2 or 3,
and with the dissipation via the Lindblad operator at each
site Li =

√
#σ−

i =
√

#(σ x
i − iσ

y
i )/2, which is simply the

spontaneous emission from spin up |↑⟩ to spin down |↓⟩.
In the absence of dissipation, the ground state of Eq. (13)
is known to give rise to a quantum phase transition [1] from an
ordered phase (completely ordered at J/" ≫ 1), where theZ2
symmetry σx → −σx is broken and ⟨σx⟩ ̸= 0, to a disordered
phase (fully disordered at J/" ≪ 1), where the symmetry is
restored and ⟨σx⟩ = 0. For the dissipative system considered
here, Z2 is still a symmetry of the master equation. To see this,

3For J < 0, we can make the transformation σ x
i → (−)|i|σ x

i and
σ y → (−)|i|σ y

i , where |i| denotes the sum of the coordinates of the
site i, that is, we make a 180◦ rotation around the z axis on one of the
two checkerboard sublattices. The Lindblad operator Li → (−1)|i|Li ,
which, however, can be gauged away; see the following discussion in
the text.

014307-4



NONEQUILIBRIUM MANY-BODY STEADY STATES VIA . . . PHYSICAL REVIEW B 93, 014307 (2016)

consider the transformation

σx → −σx, σy → −σy, σz → σz, (14)

which respects the noncommutative algebra of Pauli operators,
and under which Li → −Li . Since the master equation is
bilinear in Li and L

†
i , the overall sign (or phase) of the

Lindblad operators is insignificant. One may then expect a
phase transition between an ordered and a disordered phase
even in the presence of dissipation. We will first briefly discuss
the mean-field (MF) prediction, and then compare and contrast
it with the more careful Keldysh field-theoretic treatment.

Mean field. For (zJ − ")" > 0 (with z = 2d the coordina-
tion number), as # is increased, the MF gives a continuous
transition from the ordered phase ⟨σ x

i ⟩ = const ̸= 0 to a
disordered phase ⟨σ x

i ⟩ = 0 (see Appendix A). Most qualitative
features of the MF are confirmed below by the field-theoretic
treatment with quantitative corrections. One qualitative dif-
ference, however, is that the second-order transition seems to
be replaced by a first-order transition for sufficiently strong
dissipation. Furthermore, the Keldysh formalism reveals that
the phase transition belongs to the universality class of the
classical Ising model with an effective temperature determined
by the microscopic parameters in the model. Interestingly, the
effective temperature remains finite even in the limit # → 0.

Field theory. For a proper field-theoretic treatment, we first
write the spin operators in terms of hard-core bosons

σ−
i = ai, σ+

i = a
†
i , σ z

i = 2a
†
i ai − 1. (15)

The hard-core constraint can be implemented via a large on-
site potential Ua

†
i a

†
i aiai with U → +∞. We are particularly

interested in taking the continuum limit via ai → a(x), where
the operator a(x) varies continuously in space. Since the MF
predicts uniform phases, our assumption should be justified as
a starting point for the field theory. However, as is typical with
the transition to the continuum, hard-core features become soft
in the continuum after coarse graining where short wavelength
modes are eliminated. For example, the (near-)critical behavior
of the classical Ising model with discrete values si = ±1 is
mapped to the φ4 field theory [1,82]. At long wavelengths, the
Ising spins can be coarse-grained to a continuous field φ, and
interact via a soft φ4 term which respects the original symmetry
of the problem [σ x

i → −σ x
i reflected by φ(x) → −φ(x)]; in

principle, one must also include higher-order terms (φ6, etc.)
that respect the symmetry, but such terms are less relevant
under RG and can be dropped. The quantum TFIM also enjoys
a similar mapping to the φ4 theory in the continuum albeit
in one higher dimension [1]. With this in mind, we shall
frequently use the mapping to the continuum, and add the
quartic term introduced above with a finite strength of the
interaction. The long-distance behavior of our model should
be insensitive to this assumption. This is especially the case
near the critical point where ⟨a⟩ and ⟨a†⟩ are small, and a
phenomenological expansion and truncation of the interaction
term—consistent with the underlying symmetries—at the
quartic order is further justified.

In the continuum, the first term in the Hamiltonian (13)
written in terms of the bosonic operators should be expanded
up to the second derivative in spatial coordinates; higher
derivatives can be ignored in the long wave-length limit.

Other terms in the Hamiltonian map to the continuum in a
straightforward way. The full Hamiltonian then reads

H =
∫

x
−J [a(x) + a†(x)]

(
d + 1

2
∇2

)
[a(x) + a†(x)]

+ 2"a†(x)a(x) + Ua†(x)a†(x)a(x)a(x), (16)

with the Lindblad operator Lx =
√

#a(x); the lattice spacing is
taken to be unity for simplicity. As we shall see, this continuum
model reproduces the MF equations for small dissipation
(cf. Appendix A) but indicates the failure of the mean field
for large dissipation.

Next we map the master equation to the Keldysh path
integral in terms of classical and quantum fields acl,q (t,x).
It is more convenient to work with the real and imaginary
parts of acl/q ≡ ccl/q + idcl/q . Equations (5) and (6) then yield
the Keldysh Lagrangian (cf. Ref. [44])

LK = 2(−ccl∂t dq + dcl∂t cq) + 4Jcq∇2ccl + J̃ cqccl

− "̃(cqccl + dcldq) + #(ccldq − cqdcl) + i#
(
c2
q + d2

q

)

−U
(
c2
cl + c2

q + d2
cl + d2

q

)
(cclcq + dcldq), (17)

where J̃ = 4zJ , "̃ = 4", and z = 2d is the coordination
number. Notice that there is no gradient term in the fields
dcl/q , which makes them purely local in spatial coordinates.
Furthermore, they are “gapped” due to the terms −"̃dcdq +
i#d2

q in the action (while ccl/q can be tuned near criticality),
but we cannot just drop the dcl/q dependence as there would
be no time derivative acting on ccl/q . We thus integrate out the
former, and find an effective action for the field ccl/q . Since
dcl/q are gapped, they can be integrated out at the level of
the quadratic terms in the first and second lines of Eq. (17);
the effective Lagrangian simply follows from the saddle-point
approximation as4

Leff = −4#

"̃
cq∂t ccl + 4Jcq∇2ccl +

(
J̃ − "̃ − #2

"̃

)
cqccl

+ i#

(
1 + #2

"̃2

)
c2
q − U

(
1 − #4

"̃4

)
c3
clcq

+O
(
cq∂

2
t ccl,i(∂t cq)2,cclc

3
q

)
, (18)

where O(·) contains irrelevant terms in the sense of RG due
to their higher-order time derivatives, or higher powers of
the quantum field (see Sec. II). We briefly remark that, in
the absence of dissipation, the linear time derivative vanishes,
and one should keep the second-order time derivative, which,
combined with the second-order spatial derivatives, gives
rise to the φ4 field theory in one higher dimension, and
the critical point corresponds to setting the mass term (the
coefficient of cclcq with # → 0) to zero. In the presence of
dissipation, the linear time derivative is more relevant, and
the quantum criticality is inaccessible. In this case, the critical
point obtained by setting the mass term to zero matches exactly
with the MF equation derived in Appendix A. However, we
will see shortly that there are important caveats indicating

4The saddle-point approximation including the (nonlinear) interac-
tion term gives corrections that are irrelevant in the sense of RG.
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the failure of the mean field, especially for sufficiently strong
dissipation.

Neglecting the irrelevant terms, the quantum field cq

appears at most quadratically in the Keldysh action, and thus
an exact classical Langevin equation emerges for ccl (ccl → c):

−4#

"̃
∂t c = [−4J∇2 + r + uc2(t,x)]c(t,x) + ξ (t,x), (19)

with the parameters

r = −J̃ + "̃ + #2

"̃
, u = U

(
1 − #4

"̃4

)
, (20)

where the noise ξ is correlated as [57,61]

⟨ξ (t,x)ξ (t ′,x′)⟩ = 2#

(
1 + #2

"̃2

)
δ(x − x′)δ(t − t ′). (21)

Equation (19) describes dynamics that is mathematically
equivalent to the dynamics near the thermodynamic equilib-
rium of the field c. In this sense, the steady-state solution
to Eq. (19) is simply given by the thermal Gibbs ensemble
(normalizing u)

P [c(x)] ∼ exp
[
− 1

Teff

∫

x
2J (∇c)2 + r

2
c2 + uc4

]
, (22)

with

Teff = "̃

4

(
1 + #2

"̃2

)
, (23)

where Teff is obtained by imposing the fluctuation-dissipation
relation discussed following Eq. (12). We point out that the
effective temperature goes to a finite value even for # → 0.
Therefore, even with infinitesimal dissipation, the system,
contrary to what one might naively expect, does not get
arbitrarily close to the ground state of the effective Hamiltonian
in Eq. (22). At the same time, for infinitesimal dissipation, the
approach to the steady state will typically take a very long
time.

The partition function defined as the sum over all config-
urations of c weighted by the probability distribution (22),∫

D[c]P [c], is nothing but the φ4 theory, which describes the
universality class of the classical Ising model. The critical
point is given by r = 0, at which point we have J̃ = 4zJ =
"̃(1 + #2/"̃2). Comparing against Eq. (23), it becomes
evident that, at the critical point, J/Teff = 1/z. Interestingly,
the same relation also describes the mean-field solution for the
critical point of the classical Ising model H = −J

∑
⟨ij⟩ sisj

without the transverse field and dissipation. This implies that
the transverse field together with dissipation play the role
of thermal fluctuations, where even the value of the critical
temperature is matched (at, and most likely also beyond, the
mean field level) with the classical Ising model. This surprising
feature is most likely related to the fact that both the transverse
field and dissipation are defined in the σ z basis. Comparing
to Eq. (13), one can see that the effective result of dissipation
is simply to reduce the original Hamiltonian to one with only
the Ising term, which, however, should be regarded at a finite
effective temperature. On the other hand, in all other models
that we study in this paper, the final effective Hamiltonian and
the corresponding thermodynamic model bear no such obvious
relationship to the original dissipative-driven model.

For our field-theoretic treatment to be valid, the partition
function should be convergent, and specifically u > 0, i.e.,
# < 4". For # > 4", the sign of the quartic term is negative,
and the model described by Eq. (22) exhibits an instability to-
wards a phase where c → ±∞. Of course, the sum (trace) over
spins is always convergent (spin excitations will be saturated),
and thus there should be higher order terms such as c6 with a
positive coefficient in Eq. (22) making the functional-integral
fully convergent. In this case, one finds that the second-order
phase transition is replaced by a first-order phase transition
in a model described by the effective Hamiltonian density
H ∼ 2J (∇c)2 + (r/2)c2 + uc4 + vc6 where u < 0 and v > 0;
see p. 173 of [83].

Dynamics. The Langevin equation (19) clearly indicates
that the dynamics is diffusive, i.e., the dynamic exponent is
z = 2 at the mean-field level with corrections due to fluctu-
ations captured by loop diagrams. In short, we have reduced
the starting dissipative spin system to the dynamical Landau-
Ginzburg model where the dynamical field is not conserved.
The latter model falls under the so-called model A dynamics of
the Halperin-Hohenberg classification [84], where z is known
via epsilon expansion or numerical evaluation.

B. Isotropic XY model with coherent drive
and spontaneous emission

In this subsection, we consider the lattice Hamiltonian

H = −J
∑

⟨ij⟩
σ+

i σ−
j + H.c. + $

∑

i

σ x
i + "

∑

i

σ z
i , (24)

assuming nearest-neighbor interaction with J > 05 on a d-
dimensional cubic lattice with d = 2 or 3, together with the
dissipative process via the Lindblad operator at each site Li =√

#σ−
i . Without the coherent drive, $ = 0, the dissipation

drives the system to a “dark” state where all spins are in state
|↓⟩; this happens because this dark state is an eigenstate of the
Hamiltonian for $ = 0. To find a nontrivial steady state, we
consider a finite coherent drive $ ̸= 0.

Mean field. The phase diagram of this model, at the level
of MF, includes a region with a uniform (⟨σα

i ⟩ = const ̸= 0)
stable phase, and a bistable regime, in which two uniform
stable phases exist (see Appendix B). The MF predicts a
critical point at which a continuous transition occurs between
stable and bistable regions. While the full MF phase diagram
has more structure to it, we are particularly interested in this
criticality and closely investigate its vicinity. We show that the
continuous phase transition is similar to that of the Ising-type
liquid-gas phase transition, but find that bistability is an artifact
of the MF.

Field theory. We begin by writing the spin operators in terms
of hard-core bosons, Eq. (15), and implement the hard-core
constraint via an on-site quartic potential as in the previous
subsection. We remark that the parameters in the model can be
chosen such that ⟨a⟩ and ⟨a†⟩ are small near the critical point,

5If J < 0, we can still make the transformation σ x
i → (−)|i|σ x

i and
σ y → (−)|i|σ y

i . In this case, however, the coherent drive will oscillate
in space rendering it irrelevant, and presumably leading to a trivial
state |↓↓↓ · · · ⟩.
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which further justifies the truncation of the interaction at the
quartic order. In the anticipation of a uniform phase, we cast
the Hamiltonian in the continuum as

H =
∫

x
−Ja†(x)∇2a(x) + "̃a†(x)a(x)

+$(a(x) + a†(x)) + Ua†(x)a†(x)a(x)a(x), (25)

where "̃ = 2" − zJ with z the coordination number; we shall
drop the tilde for notational convenience, but always mean "̃
in the rest of this subsection. Similarly, the Lindblad operators
go to Li →

√
#a(x). The Keldysh action is then given by

SK =
∫

t,x
(a∗

cl a∗
q )

(
0 i∂t + J∇2 − " − i#

2
i∂t + J∇2 − " + i#

2 i#

)(
acl

aq

)
−

√
2$(aq + a∗

q ) − U

2
(|acl|2 + |aq |2)(acla

∗
q + c.c.).

(26)

Before going further, we compare the continuum description
in Eqs. (25) and (26) with the original lattice model. The
two descriptions yield almost identical MF equations with
a similar critical behavior and exhibit stable and bistable
regions (MF in the continuum will be discussed shortly);
however, for the corresponding regions to match exactly, U
is to be substituted in terms of the original parameters in the
lattice model. For the sake of clarity and to avoid confusion,
we shall regard the continuum description in Eqs. (25) and
(26) as our fundamental model and a starting point for
further investigation. In fact, closely related models arise
naturally in the context of interacting Rydberg polaritons in
free space [85,86]. However, we maintain that, at least for the
regions in the parameter space with small excitation density,
the continuum description should be a good approximation to
the lattice model.

We first embark on a detailed study of the vicinity of the
MF critical point. To this end, the mean-field solution is first
derived for the continuum model via δSK/δa∗

q = 0, yielding
(

−" + i
#

2

)
a0 −

√
2$ − 1

2
U |a0|2a0 = 0, (27)

where a0 = ⟨acl⟩ is the MF value of the classical field.
Depending on the parameters, this equation has either one
stable solution, or three solutions, only two of which are stable.
Near the critical point, these solutions are continuously con-
nected. To characterize this point, we first define ζ ≡ −"/U ,
γ ≡ #/U , o ≡ $/U , and n ≡ |a0|2/2 the excitation density

(the factor of 1/2 appears due to the definition of acl in terms
of the original fields). Equation (27) can then be cast as

[
(ζ − n)2 +

(
γ

2

)2]
n = o2. (28)

At the critical point, the above parameters are given by

γζ = 2ζ√
3
, oζ =

(
2ζ

3

)3/2

, (29)

which is easily verified by noting that the three roots of Eq. (27)
become degenerate and give the critical excitation density of

nζ = 2ζ

3
. (30)

As the next step, we expand the Keldysh action, Eq. (26),
around the MF solution in Eq. (27), i.e., acl → a0 + acl , and
find

SK =
∫

ω,k
A†(ω,k)

(
0 DA

2×2(ω,k)

DR
2×2(ω,k) DK

2×2

)

A(ω,k)

− U

2

∫

t,x

(
2a0|acl |2 + a∗

0a2
cl

)
a∗

q + c.c.

+ (|acl |2 + |aq |2)(acla
∗
q + c.c.), (31)

where A(ω,k) = (acl (ω,k) a∗
cl (−ω, − k) aq (ω,k) a∗

q (−ω, − k))T ,
and DR,A,K

2×2 are 2×2 matrices given by DK
2×2 = diag{i#, i#},

DA
2×2(ω,k) = [DR

2×2(ω,k)]†, and

DR
2×2(ω,k) =

(
ω + i#/2 − Jk2 − " − U |a0|2 −(U/2)a2

0

−(U/2)a∗
0

2 −ω − i#/2 − Jk2 − " − U |a0|2

)

. (32)

The second line of Eq. (31) includes cubic and quartic
terms in the action. To find the dissipative spectrum of
fluctuations, or, more precisely, the relaxation rate, we solve
det DR

2×2(ω,k) = 0 and find

ωk = −i
#

2
±

√
(" + U |a0|2 + Jk2)2 − (U/2)2|a0|4. (33)

It is easy to see that one of the two eigenvalues vanishes at the
critical point as expected. To approach the critical point, we
can fix n = nζ (or equivalently fix a0) and o = oζ according

to Eqs. (29) and (30), and take γ → γζ . For γ > γζ , there is
a unique solution to Eqs. (27) and (28), while, for γ < γζ ,
two stable solutions continuously emerge. Casting ω in units
of U , and working in the long wave-length limit, we find the
relaxation rates as

ωk ≈
{
−i

(
γ

2
− ζ√

3

)
− ik2, − i

(
γ

2
+ ζ√

3

)}
, (34)

where the coefficient of k2 in the first eigenvalue is proportional
to J but is normalized to unity (by rescaling space), while, in
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the second eigenvalue, the momentum dependence is entirely
neglected due to the dissipative gap. We are further interested
in finding a natural basis for DR

2×2(ω,k) in order to break the
fluctuations of the field into massless and massive components.
To this end, we first drop the k dependence in Eq. (32) as we
are interested in the long-wavelength limit; we will deal with
the k2 term later. (On similar grounds, we can also drop ω,
but it does not further simplify our task.) Also, to simplify
computations, we absorb the phase of a0 in the definition of
acl/q , thus a0,a

∗
0 → |a0| in the off-diagonal elements of the

matrix in Eq. (32) as well as the coefficient of the cubic term
in Eq. (31). The resulting matrix DR

2×2 takes the form (in units
of U )

DR
2×2(ω,k) →

(
ω + iγ /2 − ζ/3 −2ζ/3

−2ζ/3 −ω − iγ /2 − ζ/3

)
. (35)

To simplify the form of the action, we change the basis to

ccl/q (ω,k) = ∓[e±iπ/6acl/q (ω,k) + e∓iπ/6a∗
cl/q (−ω, − k)],

dcl/q (ω,k) = e∓iπ/6acl/q (ω,k) + e±iπ/6a∗
cl/q (−ω, − k),

(36)

which allows us to rewrite the quadratic part of the Keldysh
action as (for the moment, not including the k dependence in
the kernel and the quadratic quantum-noise term)

L(2)
K ∼ cq(−ω,−k)ccl(ω,k)

[
iω − γ

2
+ ζ√

3

]

+ dq(−ω,−k)dcl(ω,k)
[
iω − γ

2
− ζ√

3

]
, (37)

where we have neglected a multiplicative constant. Equation
(37) clearly indicates that ccl/q can be tuned near criticality by
taking γ → γζ , while dcl/q are always gapped. Also notice that
it follows from Eq. (36) that the fields ccl/q (t,x) and dcl/q (t,x)
are real valued. Inverting the basis in Eq. (36), and casting it
in real space and time, we find

acl/q (t,x) = 1√
3

(∓e∓iπ/3ccl(t,x) + e±iπ/3dcl/q (t,x)). (38)

With this representation, we can now cast various terms in the
action in terms of the new fields. The gradient term a∗

q∇2acl +
c.c., i.e., the k2 term in the action, now takes the form (with a
normalized coefficient)

cq∇2ccl + · · · ,

where the ellipses denote dcl/q -dependent gradient terms,
which are ignored since dcl/q are gapped.6 Next we cast the
interaction terms in Eq. (31) in the new basis. We start with
the cubic interaction,

λ
[
c2
cldq + d2

clcq

]
.

The precise value of the coefficient λ will not be important.
Next, the quartic term expanded in terms of ccl/q and dcl/q

6There are also cross terms such as cq∇2dcl + dq∇2ccl which, upon
integrating out d , give rise to ∼(∇2cq )2 + cq (∇2)2ccl , and are thus
irrelevant in the RG sense.

generates many terms (with u > 0):

−u
(
c2
cl + c2

q + d2
cl + d2

q + ccldcl − cqdq

)

×(cclcq − dcldq + 2cqdcl − 2ccldq).

And finally the noise term (in units of U ) takes a simple form
in the new basis iγ |aq |2 ∼ iγ (c2

q + d2
q − cqdq). In writing the

full Keldsyh action, we note that the scaling dimension of the
fields renders terms with two or more powers of the quantum
field cq irrelevant (except the noise term), as explained in
Sec. II. We keep the relevant terms in the field ccl/q , but also
include some (not all) cross terms with dcl/q for reasons that
will become clear shortly. The Keldysh action then reads

LK ≈ cq(−∂t − r + ∇2)ccl − uc3
clcq + iγ c2

q

+ dq (−∂t − R)dcl + iγ d2
q

+ λ
(
c2
cldq + d2

clcq

)
− 2ucqd

3
cl + 3uc2

cldcldq + · · ·
− iγ cqdq, (39)

where

r = γ

2
− ζ√

3
, R = γ

2
+ ζ√

3
. (40)

We have organized Eq. (39) into (the first line) terms depending
on ccl/q only, (the second line) quadratic terms in dcl/q , and
(the third and fourth lines) various dcl/q -dependent nonlinear
and cross terms; the ellipses denote nonlinear terms not
written explicitly. Also we have not fully kept track of various
coefficients (except those of r and R) since they will be
inconsequential for our conclusions.

If we simply drop the dcl/q -dependent terms, we get for
the Keldysh action the first line of Eq. (39). By taking the
second step of writing the corresponding Langevin equation
and subsequently mapping to the partition function as outlined
in Sec. II (see also the previous subsection), we would find
the thermodynamic Landau-Ginzburg φ4 theory with the Z2
symmetry, and the associated second-order phase transition
as r → 0. Taking into account the fields dcl/q and their
fluctuations, we next show that the Z2 symmetry is spoiled,
but a continuous phase transition emerges akin to that of the
liquid-gas transition. To start with, let us consider the effect of
fluctuations to first order in λ; at this order, we find

λ
〈
d2

cl

〉
cq, (41)

generated by integrating out dcl in the cubic term. This term
acts like a “magnetic” field, and breaks the Z2 symmetry of
ccl,q → −ccl,q . However, it can be absorbed into the parameter
$ in the original model. In fact, fluctuations can modify the
position of the critical point, and thus the above equation can
be regarded as the correction to the MF position of the phase
transition. We thus consider the effect of fluctuations at higher
orders in λ and u. The nonlinear terms in (the third line of)
Eq. (39) expanded to second order generate various terms; of
particular interest to us is the term proportional to

λu
[
c2
clcq

]
t,x

∫
dτ

{
2
〈
d3

cl(t)dq(t+τ )
〉
−3

〈
dcl(t)dq(t)d2

cl(t+τ )
〉}

∼ λu
[
c2
clcq

]
t,x

∫
dτ GR(τ )[GK (0) − GK (τ )], (42)
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with all the fields evaluated at the same spatial coordinates
since there is no gradient term in dcl/q . Also GR(τ ) =
−i⟨dcl(t)dq(t + τ )⟩ and GK (τ ) = −i⟨dcl(t)dcl(t + τ )⟩ are the
retarded and Keldysh Green’s functions, respectively, for the
fields dcl/q , which in Fourier space become GR(ω) ∼ (iω −
R)−1 and iGK (ω) ∼ GR(ω)γGR(ω)∗. These functions have a
nonzero support only for τ ! 1/R ∼ γ −1, which is why the
vertex in ccl/q in Eq. (42) is approximated to be local in time.
Due to the nonvanishing integral in this equation, fluctuations
will generate a term of the form v c2

clcq in the action with some
constant v. With the first- and cubic-order terms generated as
the result of fluctuations, there is no apparent Z2 symmetry;
the full partition function then takes the form (ccl → c)
∫

D[c(x)] exp
[
− 1

γ

∫

x
(∇c)2 + hc + rc2 + vc3 + uc4

]
, (43)

where the exact coefficients of various terms are disregarded.7

Similar steps to those outlined in Sec. II (see also Sec. III A)
are taken to obtain the partition function from the Keldysh
action and the resulting Langevin equation. Terms with odd
powers of c should be traced back to the fact that the full
action (31) as a function(al) of {ccl,q ,dcl,q} is not symmetric
under the simultaneous transformations ccl,q → −ccl,q and
dcl,q → −dcl,q . Despite this fact, we can absorb the linear
term in the parameter $, and shift the field c by a constant
(c → c0 + c) to eliminate the third-order term; the constant
term merely modifies the MF critical point around which
we have expanded the action. A similar scenario arises in
the liquid-gas phase transition, where there is no obvious
symmetry, however, one can choose parameters such as density
to eliminate odd terms. This phase transition, despite the
absence of symmetry, is of the Ising type [83]. We thus
conclude that the driven-dissipative model considered in this
subsection undergoes a continuous Ising-type phase transition.
We further remark that there is no true thermodynamic
bistability; the true steady state of the system is given by
the minimum of the exponent in the partition function (43),
which is unique for generic values of h and v. We stress that
our argument does not rely on a similar minimum criterion in
thermodynamics, but is simply derived in our nonequilibrium
model; in the thermodynamic limit, a minimum of the exponent
[in Eq. (43)], being extensive in the system size, is infinitely
more likely to occur than any other state including other local
minima of the exponent.

Similar models describing a dissipative gas of Rydberg
atoms have been studied in Refs. [28,31]. A notable difference
is that the interaction in Refs. [28,31] is a long-range interac-
tion of the Ising σ z

i σ z
j type (in contrast to the nearest-neighbor

flip-flop interaction in the present subsection). Nevertheless,
the corresponding MF analysis performed in Ref. [31] is almost
identical to the MF equation of this subsection. Therefore,
at least in uniform phases, the model in Ref. [31] might be

7Higher-order odd terms (fifth order and higher) become increas-
ingly more irrelevant under RG, and can be neglected. Nevertheless,
they will give corrections to the linear- and the third-order terms,
which can always be absorbed in the coefficients of the corresponding
terms.

amenable to a similar treatment. It would be interesting to
study the effect of fluctuations beyond the mean field; see
also the comparison with an approach based on a variational
principle for steady states [32]. Finally, we note that our
considerations here should be directly applicable to uniform
phases of driven-dissipative Bose-Hubbard models and their
critical behavior studied in Refs. [30,87].

C. Anisotropic XY model with spontaneous emission

In this subsection, we consider the Hamiltonian

H = J

2d

∑

⟨ij⟩
σ x

i σ x
j − σ

y
i σ

y
j = J

d

∑

⟨ij⟩
σ+

i σ+
j + σ−

i σ−
j , (44)

assuming nearest-neighbor interactions with J > 0 on a d-
dimensional cubic lattice with d = 2 or 3, together with
dissipation via the Lindblad operator at each site Li =

√
#σ−

i .
While spontaneous emission tends to create a state where
all spins point down, such a state is not an eigenstate of
the Hamiltonian. The interplay of the dissipation and the
effective drive in the Hamiltonian can give rise to nontrivial
steady states. An experimental realization of this model
using ultracold atoms in the ground electronic state weakly
dressed with highly excited Rydberg states is proposed in
Ref. [29].

Mean field. The MF is studied in Ref. [29] for the more
general XYZ model with Jx ̸= Jy ̸= Jz. For sufficiently weak
spontaneous emission in the model considered here, the MF
(see Appendix C) predicts a spontaneous symmetry breaking
that gives rise to a staggered XY steady state with spins
on neighboring sites pointing in different directions. For
larger values of spontaneous emission, one finds a disordered
paramagnetic state. Our field-theoretic treatment confirms this
picture in three dimensions; however, in two dimensions, we
show that the XY phase cannot be realized. This happens
because the effective temperature, emerging due to the dis-
sipation, is larger that the Kosterlitz-Thouless temperature
associated with the transition from short-range to algebraic
long-range order in two dimensions.

Field theory. As in the previous subsections, we first
map spins to hard-core bosons, and represent their hard-core
nature via a quartic term. This mapping is particularly good
close to the phase transition between the paramagnetic and
the XY phase because σ z ≈ −1 near the phase boundary.
In anticipation of the staggered XY phase, we recast the
Hamiltonian on two checkerboard sublattices A and B as

H = J̃

2

∑

⟨ij⟩
(b†i a

†
j + biaj )+U

∑

i∈A

a
†
i a

†
i aiai + U

∑

j∈B

b
†
i b

†
i bibi,

(45)

where J̃ ≡ 2J/d. Note that we have chosen the same coef-
ficient for the interaction terms on both sublattices to make
manifest the symmetry of the underlying spin model. The
Keldysh Lagrangian at the quadratic level, and in Fourier
space, can be written as (the integral over frequency is limited
to ω > 0)

L(2)
K = (a∗

cl a∗
q )

ω,k

(
0 ω − i #

2

ω + i #
2 i#

)(
acl

aq

)

ω,k
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+ (b∗
cl b∗

q)
ω,k

(
0 ω − i #

2

ω + i #
2 i#

)(
bcl

bq

)

ω,k

+ J̃ (k)[a∗
q (−ω, −k)b∗

cl(ω,k)

+ acl(−ω, −k)bq(ω,k) + c.c.], (46)

where we have defined J̃ (k) = J̃ [cos(kx) + cos(ky) + · · · ],
with dots standing for cos(kz) in the case of d = 3 dimensions.
A quadratic Keldysh action with the assumption that spins map
to soft-core bosons, and an ansatz of a uniform phase (i.e.,
by identifying a and b fields), has been first constructed in
Ref. [29]. The above quadratic action becomes diagonal in the
basis defined by

ccl/q (ω,k) = ∓[e±iπ/4bcl/q (ω,k) + e∓iπ/4a∗
cl/q (−ω,−k)],

dcl/q (ω,k) = e∓iπ/4bcl/q (ω,k) + e±iπ/4a∗
cl/q (−ω,−k), (47)

which casts the quadratic part of the Keldsyh Lagrangian into

L(2)
K = 1

2

{[
iω − #

2
+ J̃ (k)

]
c∗
q(ω,k)ccl(ω,k) + c.c.

+
[
iω − #

2
− J̃ (k)

]
d∗

q (ω,k)dcl(ω,k) + c.c.

+ i#(|cq(ω,k)|2 + |dq(ω,k)|2)
}
. (48)

At long wavelengths, k → 0, and J̃ (k) → J̃ (0) = 2J >
0. Therefore, the fields ccl/q can be tuned near critical-
ity with a vanishing gap characterized by r = #/2 − 2J ,
while dcl/q are massive with (the imaginary part of) the
gap R = #/2 + 2J , and can be integrated out; however,
we must not drop them before considering the (nonlinear)
interaction terms. Casting the quartic interaction terms in
the continuum and then in the Keldysh basis, we get
(−U/2)

∫
t,x (|acl|2 + |aq |2)(acla

∗
q + c.c.) plus a similar term

for bcl/q . To write the interaction in the new basis, we invert
the eigenbasis in Eq. (47) and cast it in space-time coordinates,

acl/q (t,x) = 1
2

[
∓ e∓iπ/4c∗

cl/q (t,x) + e±iπ/4d∗
cl/q (t,x)

]
,

(49)
bcl/q (t,x) = 1

2

[
∓ e∓iπ/4ccl/q (t,x) + e±iπ/4dcl/q (t,x)

]
.

The interaction then takes the form (up to a multiplicative
constant)

U

∫

t,x
(|ccl|2 + |dcl|2 + |cq |2 + |dq |2)(−ccld

∗
q + dclc

∗
q + c.c.)

− (ccld
∗
cl + cqd

∗
q − c.c.)(cclc

∗
q + dcld

∗
q − c.c.). (50)

If we simply drop dcl/q , there will not be any nonlinear
terms. Instead we should find the new interaction vertices
generated via integrating out dcl/q . We thus expand the Keldysh
functional integral to the first few orders in the interaction. To
first order, the effective interaction vanishes once averaged by
the Gaussian functional integral due to Eq. (48) since all the
terms in Eq. (50) are odd in dcl/q . To second order, we generate

the vertex (up to a positive prefactor8)

U 2[|ccl|2cclc
∗
q]t,xiGK (0)

∫
dτ GR(τ ). (51)

Many terms contribute to this vertex, but its precise coefficient
is immaterial for our considerations. As in the previous sub-
section, the fields are evaluated at the same spatial coordinates
(the gradient term in dcl/q is ignored due to the dissipative
gap). Also the retarded and Keldysh Green’s functions GR/K

for the fields dcl/q are, similar to the expressions given
before, GR(ω) ∼ [iω − R]−1 and iGK (ω) ∼ GR(ω)#GR(ω)∗

with a nonzero support for τ ! #−1, hence the local form
of Eq. (51) in time t . In short, fluctuations will generate a
term of the form −u|ccl |2cclc

∗
q in the action; the facts that∫

dτ GR(τ ) = GR(ω = 0) ∼ −1/R < 0 and iGK (τ = 0) ∼
#/R > 0 ensure that u > 0. Various other terms generated by
integrating out dcl/q either give corrections to the existing terms
in the action, or produce irrelevant terms in the sense of RG.
Importantly, the effective action respects the U (1) symmetry
(c → c eiθ ) beyond the quadratic order. The final form of the
Keldysh Lagrangian, with the relevant terms only, becomes

LK = 1
2

{
c∗
q

(
−∂t + 1

2 J̃∇2 − r
)
ccl + c.c.

−u|ccl |2(cclc
∗
q + c.c.) + i#|cq |2

}
. (52)

The quantum vertex appears at most quadratically, leading to
a classical Langevin equation with a noise term which can
be interpreted as an effective temperature. The corresponding
steady state is then described by the thermodynamic partition
function (ccl → ψ)
∫

D[ψ(x)] exp
[
− 1

Teff

∫

x

1
2
J̃ |∇ψ |2 + r|ψ |2 + u|ψ |4

]
, (53)

where Teff = # + · · · with the ellipses being the corrections
due to renormalization; the effective temperature and its
precise coefficient (unity) are obtained using the fluctuation-
dissipation condition. The partition function (53) belongs to
the universality class of the classical XY model. One should
then expect off-diagonal order in d = 3 dimensions, and
a Kosterlitz-Thouless (KT) transition in d = 2 dimensions.
Nevertheless, we remark that a possible emergence of the
Kardar-Parisi-Zhang equation [88] similar to Ref. [45] may
invalidate the above analysis in two dimensions; however,
we show that, even in the absence of such mechanism,
the constraints on the Kosterlitz-Thouless temperature would
prevent the system from realizing the XY phase in two
dimensions. To see this, we should examine the condition
for the KT transition. Denoting ψ = |ψ |eiθ in the ordered
phase, the algebraic long-range order is realized when (J̃ = J

8Contraction of various terms within the second-order perturbation
theory in the expression (50) produces various terms. The coefficient
of the term c∗

qc
∗
clc

2
cl in the effective action is given by

1
i

(−iU )2
∫

dτ (iGK (0))(−48iGR(τ ) + 16iGA(τ )),

which produces Eq. (51) up to a factor of 32.
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in d = 2 dimensions) [61]

J |ψ |2

Teff
>

2
π

. (54)

Normally, at sufficiently low temperatures, this condition is
well satisfied; however, in this case, as Teff → 0, or equiva-
lently # → 0, we also find—from the mean-field analysis—
that ψ → 0 in the same limit. To see this, note that

ψ → c = eiπ/4a + e−iπ/4b† → 1√
2

(σ x + σ y). (55)

Therefore, |ψ |2 ≡ |⟨c⟩|2 = 2⟨σ x⟩2 where we have taken
⟨σ x⟩ = ⟨σ y⟩; the value of ⟨σ x⟩ is inserted from the mean-field
analysis in two dimensions,

⟨σ x⟩ =
√

4J# − #2

4J
. (56)

With these expressions, and Teff ≈ #, the condition (54) takes
the form

1
4

− 1
16j

>
1
π

, (57)

with j ≡ J/# being larger than 1/4 in the XY phase, a
condition that is never satisfied, and becomes even worse with
increasing J (or decreasing #). Of course, in evaluating the
above expressions, we have used mean-field expressions which
can be modified, and relied on our field theory description
away from phase boundaries. However, one should expect
that the algebraic long-range order in two dimensions will be
significantly diminished, if not completely disappear.

Dynamics. In d = 3 dimensions, the Langevin equation
corresponding to Eq. (53) indicates that the dynamics is
diffusive. The dynamical field is not conserved, and thus the
dynamics falls under Model A of the Hohenberg-Halperin
classification for the Landau-Ginzburg model with N = 2
components [84].

D. Isotropic XY model with incoherent pumping
and interaction-induced loss

In this subsection, we consider the Hamiltonian

H = −J
∑

⟨ij⟩
σ+

i σ−
j + H.c. + "

∑

i

σ z
i , (58)

with J > 0 on a three-dimensional cubic lattice.9 In all the
models in the previous subsections, we have chosen a simple
dissipative process where spins at different sites spontaneously
and independently decay from |↑⟩ to |↓⟩. In this subsection, in
addition to the spontaneous emission via Ll

i =
√

#σ−
i , we

also consider pumping defined via L
p
i =

√
#pσ+

i , and an
interaction-induced loss described by the Lindblad operator
LI

ij =
√

κσ+
j σ−

j σ−
i for nearest neighbors i and j . The latter

is an example of a more complicated type of dissipation that
depends on the correlation between nearby sites. In this case,
the jump operator LI checks if there are two excitations
on neighboring sites, and, if there are, kills one. This type
of operator is natural in systems where a particular laser
coupling scheme creates dark states, or pseudospin states,
as linear combinations of the microscopic energy levels;
however, interaction between neighboring pseudospin states
shifts them out of resonance, and can lead to the decay of one
of them [18,89,90].

Mean field. Without the interaction-based loss, this model
is rather trivial. For a fixed decay rate #, the excitation density
increases with increasing #p, but ⟨σ x⟩ = ⟨σ y⟩ = 0 since the
steady state can be easily seen to be a product of single-site
density matrices diagonal in the σz basis. Specifically, for
#p = #, the system is in an infinite-temperature state. At the
level of the MF, the same qualitative behavior persists even
in the presence of the interaction-induced loss, although it
changes quantitatively. More importantly, the phase predicted
by the MF does not break the U (1) symmetry of the
problem, i.e., ⟨σ x⟩ = ⟨σ y⟩ = 0; see Appendix D. However,
we shall see that the Keldysh path-integral approach gives a
continuous transition from the disordered phase to a phase
with spontaneous continuous symmetry breaking.

Field theory. We start by assuming that κ ≫ #,#p. With
this assumption, the excitation density is rather small, and
one can safely represent the spins in terms of soft-core bosons
but with quartic interactions as in the previous subsections. We
then find the Lindblad operator LI

ij = a
†
j ajai . In the continuum

description, this operator can be cast as LI → a†(x)a2(x) plus
gradient terms which are less relevant.10 Some algebra yields
the Keldysh Lagrangian (with a normalized J )

LK = (a∗
cl a∗

q )

(
0 i∂t +J∇2+µ−i

#−#p

2

i∂t +J∇2+µ+i
#−#p

2 i(#+#p)

)(
acl

aq

)
− U |acl|2(acla

∗
q + c.c.) − i

κ

2
|acl|4(a∗

claq − c.c.), (59)

where we have introduced µ using the freedom (due to
the symmetry) in choosing a rotating frame with ⟨a⟩ ∼
exp(−iω0t). In writing the Lagrangian, we have ignored terms
at the quadratic or higher orders in the quantum field—except
the noise term i|aq |2—as they are irrelevant in the sense of
RG. Casting the Keldysh path integral as a Langevin equation,
we find (acl → ψ)

[
i∂t + J∇2 + µ + i

# − #p

2
− U |ψ |2 + i

κ

2
|ψ |4

]
ψ(t,x)

= ξ (t,x), (60)

with

⟨ξ (t,x)ξ ∗(t ′,x′)⟩ = (# + #p)δ(t − t ′)δ(x − x′). (61)

9The two-dimensional case requires a more careful treatment; see
Ref. [45].

10In general, noncommuting terms in the Lindblad operator require
special care in mapping to the Keldysh action. A more careful
treatment may give rise to one- and two-body loss terms, which
nevertheless would not change the conclusions of this subsection.
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Before considering fluctuations, we study the mean-field
solution at the level of the Keldysh action or the corresponding
Langevin equation (60). We shall see that even the mean field,
at the level of the path integral, improves upon the MF on the
lattice model. In the absence of fluctuations, a uniform phase
exists provided that #p > #,

ψ =
(

#p − #

κ

)1/4

eiθ , (62)

for a constant phase θ ; the real part of the bracket in
Eq. (60) vanishes by appropriately choosing the constant µ.
The solution in Eq. (62) explicitly breaks the U (1) symmetry.
In fact, a similar model was studied in Refs. [43,44], where the
authors concluded that the system becomes purely dissipative
under RG, and specifically the real part of the coefficients
of the gradient and nonlinear terms vanishes in the long
wavelength limit. Our model is slightly different because
the dissipative nonlinearity arises at the fifth, rather than the
third, order in Eq. (60); however, the RG procedure (and,
most intuitively, momentum-shell RG) creates all possible
terms consistent with symmetry. Therefore, our model flows
to the same universality class as the model in Refs. [43,44],
or, equivalently, that of Eq. (53) with r = (# − #p)/2 and
Teff = # + #p. Specifically, the gradient term, being purely
coherent at the level of the original Hamiltonian, becomes
dissipative in the course of RG.

Similar considerations apply to a different model described
by the Lindblad operator LI

ij ∼ σ−
j σ−

i , which kills both
excitations on neighboring sites. The lattice MF analysis again
fails to capture the full phase diagram. The field-theoretic
treatment in this case becomes almost identical to the model
in Refs. [43,44] which then predicts a phase with spontaneous
continuous symmetry breaking.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied nonequilibrium steady
states of a number of driven-dissipative systems exhibiting
a nontrivial competition between drive and dissipation. Mean-
field theory is often used to predict the many-body phases and
phase transitions of such systems. However, a more careful
field-theoretic treatment based on the Keldysh formalism may
invalidate certain predictions of mean-field analysis. We saw
that, for example, bistability is an artifact of the mean-field
theory (model in Sec. III B). Sufficiently strong dissipation
may also make certain phases inaccessible (model in Sec. III C
in d = 2 dimensions), or may turn a continuous transition
into a first-order phase transition (model in Sec. III A). More
generally, the path-integral approach and even its classical
(saddle-point) approximation produces better results than
mean-field theory not only in equilibrium [91], but also away
from equilibrium (model in Sec. III D).

In all cases, an effective temperature emerges as the
result of dissipation, and the universal behavior including the
dynamics near the steady state is generically described by
a thermodynamic universality class. The emergent thermal
character of driven-dissipative systems may be expected as
the quantum coherence is lost to dissipation. However, the
phase diagram and the nature of phase transitions, and the
precise equivalence with a particular thermal model is often

nontrivial, and requires a rather careful treatment based on
the Keldysh formalism. This paper offers such a systematic
study of four models in great detail and, therefore, illuminates
pathways for the beyond-mean-field study of a wide range of
other driven-dissipative systems.

We conclude by mentioning other examples of driven-
dissipative systems that should be amenable to a similar
treatment. Notable models, also of experimental relevance, are
systems with bosons, or photons, coupled to (pseudo-)spins on
a lattice. While the two species of fields make the field-theory
treatment more complicated, the photonic part is usually
quadratic and can be integrated out at the level of the Keldysh
action. The resultant effective model is also local due to the
dissipative gap of the typically lossy photons. Examples of
experimentally accessible systems of this kind include super-
conducting circuits [9], spin-boson networks [92], strongly
interacting Rydberg polaritons [16–19,81], and internal states
of ions coupled to their motion [93,94]. We also remark that
models closely related to that of Sec. III B arise when atoms
are coupled to the electromagnetic vacuum, and the latter is
eliminated in the Born-Markov approximation [95], a setup
that can also be accessed in reduced dimensions [96,97].
However, in certain spin-boson-coupled systems, the Born-
Markov approximation may not apply, but dissipation caused
by external baths may act directly on the bosons and/or the
spins. In this case too, the Keldysh formalism should apply.
It would also be interesting to explore the applicability of the
Keldysh formalism to situations involving dark states [24,98]
and situations involving transport, as particles or photons
continuously enter the system at a boundary [16,18,90,99].
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APPENDIX A: MEAN FIELD FOR MODEL III A

A uniform ansatz for the Model in Sec. III A yields the MF
equations

Ẋ = −"̂Y − #

2
X,

Ẏ = "̂X + ĴXZ − #

2
Y, (A1)

Ż = −ĴXY − #(1 + Z),

where X = ⟨σ x⟩, etc. We have defined "̂ ≡ 2", Ĵ ≡ 2zJ ,
and z ≡ 2d as the coordination number. The MF predicts a
continuous transition at

#2 − 4Ĵ "̂ + 4"̂2 = 0, (A2)

consistent with r = 0 in the same subsection.
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APPENDIX B: MEAN FIELD FOR MODEL III B

A uniform ansatz for the Model in Sec. III B yields the MF
equations

Ẋ = −"̂Y + Ĵ YZ − #

2
X,

Ẏ = "̂X − $̂Z − ĴXZ − #

2
Y, (B1)

Ż = $̂Y − #(1 + Z).

We have defined "̂ = 2", $̂ = 2$, and Ĵ = zJ . Casting in
terms of n = (1 + Z)/2, we find for the steady state

[4("̂ + Ĵ − 2Ĵ n)2 + 2$̂2 + #2]n = $2, (B2)

which is similar to the mean-field equation in the continuum,
Eq. (27). The MF equation above exhibits a continuous
transition from a stable uniform phase to a bistable region
with two stable uniform phases.

APPENDIX C: MEAN FIELD FOR MODEL III C

The MF for the model in Sec. III C is derived in Ref. [29].
A two-site ansatz on the checkerboard sublattices A and B
yields the mean-field equations

ẊA = −2JZAYB − #

2
XA,

ẎA = −2JZAXB − #

2
YA, (C1)

ŻA = 2J (YAXB − XAYB) − #(1 + ZA),

and a similar set of equations for A ↔ B. The MF predicts
a continuous phase transition from a paramagnetic state with
Z = −1 to a staggered XY phase where spins on the two
sublattices are at angles θ and −θ with respect to the x = y
line on the Bloch sphere, see Ref. [29] and the figure therein.
The phase transition occurs at

J = #

4
, (C2)

consistent with setting r = 0 in Sec. III C.

APPENDIX D: MEAN FIELD FOR MODEL III D

A uniform ansatz for the Model in Sec. III D yields the MF
equations [n = (1 + ⟨σ z⟩)/2]

Ẋ = −[Ĵ (2n − 1) + "̂]Y −
(

# + #p

2
+ κn

)
X,

Ẏ = [Ĵ (2n − 1) + "̂]X −
(

# + #p

2
+ κn

)
Y, (D1)

ṅ = −#n + #p(1 − n) − κn2,

where Ĵ = 2zJ and "̂ = 2". In the steady state, n varies
between 0 and 1 depending on decay rates; however, the MF
always gives X = Y = 0.
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