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Abstract

A major application for atomic ensembles consists of a quantum memory for light, in which an optical
state can be reversibly converted to a collective atomic excitation on demand. There exists a well-
known fundamental bound on the storage error, when the ensemble is describable by a continuous
medium governed by the Maxwell-Bloch equations. However, these equations are semi-phenomen-
ological, as they treat emission of the atoms into other directions other than the mode of interest as
being independent. On the other hand, in systems such as dense, ordered atomic arrays, atoms interact
with each other strongly and spatial interference of the emitted light might be exploited to suppress
emission into unwanted directions, thereby enabling improved error bounds. Here, we develop a
general formalism that fully accounts for spatial interference, and which finds the maximum storage
efficiency for a single photon with known spatial input mode into a collection of atoms with discrete,
known positions. As an example, we apply this technique to study a finite two-dimensional square
array of atoms. We show that such a system enables a storage error that scales with atom number N,
like ~(log N, )? /NZ, and that, remarkably, an array of just 4 x 4 atoms in principle allows for an error
of less than 1%, which is comparable to a disordered ensemble with an optical depth of around 600.

Atomic ensembles constitute an important platform for quantum light-matter interfaces [ 1], enabling applications
from quantum memories [2—5] and few-photon nonlinear optics [6—11] to metrology [12—15]. In typical experiments,
ensembles consist of disordered atomic clouds, with the propagation of light through them modeled
phenomenologically by the Maxwell-Bloch equations [16, 17]. Within this description, the atoms are treated as a
smooth density and the discreteness of atomic positions is ignored. In addition, spatial interference that can arise from
light scattering is neglected, and the emission into directions other than the mode of interest is treated as an independent
atomic process. Within this formalism, one can derive standard limits of fidelity for applications of interest—for
example, the storage error of a quantum memory scales inversely with the optical depth (D) of the ensemble [ 18].

Recently, novel experimental platforms have emerged where it is possible to produce small ordered arrays of
atoms [19-23]. Intuitively, one expects that strong interference in light emission can emerge, which renders
inoperable the typical theoretical approaches to modeling light—atom interfaces. Theoretically there has been
growing interest in novel quantum optical effects in arrays, such as subradiance [24-30], topological effects
[31,32], and complete reflection of light [33—35]. Indeed, it has already been shown numerically that an ordered
one-dimensional array of atoms coupled to a nanofiber allows for a storage error exponentially smaller than the
previously known bound [29]. In this work, the exponential scaling was observed by considering a fixed, spatial
waveform for the optical pulse. However, two interesting questions that arise are (i) whether it is possible to
develop a theoretical technique to bound the error, which takes fully into account the atomic positions and the
interference of emission in all directions, and (ii) whether an improved scaling is possible for atoms in free space,
as opposed to coupled to a photonic structure. These questions are affirmatively answered in our work.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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In particular, we provide a construction that enables the maximum storage efficiency to be found, given the
atomic positions and the desired spatial mode of light. This procedure is based upon solving the dynamics of a
‘spin model’, which encodes the multiple scattering and interference of light as it interacts with atoms, and then
calculating the light emitted into the desired mode by an input—output equation. We show that the maximum
efficiency is given by the maximum eigenvalue of a Hermitian matrix, whose elements are derived from the
atomic positions and optical mode. While this technique is completely general, we apply it specifically to the case
of a two-dimensional square array of atoms. In particular, it has recently been shown that an infinite array can in
principle form a 100% reflector for light [33—35], when the lattice constant d is smaller than the resonant
wavelength A\. While a mirror constitutes a ‘passive’ optical system, it is natural to ask whether this implies a
100% success probability, if the system were functionalized into a quantum memory. For a finite array, we show
that the minimum error decreases like ¢ ~ (log N,)? /N2 for storage from a Gaussian-like mode, and
remarkably, thata4 x 4 arrayin principle already enables an error below 1%.

1. The spin model

The full dynamics of light emission and re-scattering of an arbitrary collection of atoms in free space, specified
only by their discrete, fixed positions r;, can be related to an effective model containing only the atomic degrees
of freedom and the incident field [36—41]. We first review this formalism for two-level atoms with ground state
|¢) and excited state |e), with the dipolar transition |g) — |e) coupled with free space optical modes. Within the
Born—Markov approximation, these modes can be integrated out to yield effective dynamics for the atomic
density matrix p, which evolvesas p = —(i//%)[H, p] + L[p], where the Hamiltonian and Lindblad operators
read [36—42]

Ak ~ v o
H=H, — ,uode%gwgg Z d] : Re{GO(rjy I, Weg)} -d; U;‘g Ui“) (1a)
il
R 1 K - R P
L[p] = Euod@wﬁg > d; - Im{Go(rj, 11, Wee)} - dl(ZUdepajg — a?gcrfep — pa?gcrfe). (1b)
il

Here H;, is associated with the input field that drives the atoms (which need not be specified for our purposes),
deeand &j are the dipole matrix element and unit atomic polarization vector associated with the transition, and
%" = | B) (y| are atomic operators with { 3, 7} € {e, g}. Gy(T), 1), W) is the electromagnetic Green’s function
tensor in free space, which is the fundamental solution of the wave equation and fulfills

2
wE
V X V X Gy(r, ¥, wy) — C—j Go(r, ¥/, wy) = 6(r — 1), )

where the curl is taken with respect to r. The Green’s function explicitly takes the form [43]

b (3)

ikoR ikoR — 3 — 3ikoR — kg R?
GO(rjy I, Weg) =< : l[l + ikoR IJI o0 o RROR
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where R = [r; — rjand ky = w,y/cis the wavevector associated with the atomic transition frequency w,g, with ¢
being the speed of light. We note that the local term (i.e., Go(rj, 1), w,y)) is divergent. This term is responsible for
the Lamb shift and is incorporated into a renormalized resonance frequency w,,. Physically, equation (1a)
describes the coherent exchange of atomic excitations mediated by photons. On the other hand, equation (15)
describes the collective emission or dissipation of excited atoms, after integrating out the common reservoir of
electromagnetic modes with which they interact (within the Born—-Markov approximation).

Instead of solving the density matrix evolution as governed by the master equation, one can equivalently
work within the stochastic wave function or ‘quantum jump’ formalism [44]. In that case, the system is
described by a wave function, which deterministically evolves under an effective, non-Hermitian Hamiltonian

2 2 K e
Hest = Hin — 1oz > d; - Go(x), 11, wy) - dj o o, (4)
3l

This Hamiltonian captures both the coherent evolution of equation (1a) and the last two terms of the Lindblad
operator in equation (1b). In addition, one must also stochastically apply quantum jump operators to the wave
function, to capture the population recycling terms Ufge pagg of equation (1b). Formally, the jump operators of
our system will consist of superpositions of O'lge, i.e. atomic lowering operators, which physically encode the
emission of a photon. In the following, we will be interested in initial states with just a single excitation; thus, any
jump operator trivially takes the system to the ground state |¢)*, where it cannot further evolve or contribute to
observables of interest (e.g., the emission of a photon). Furthermore, the rate that jumps occur is exactly equal to
the rate of population loss of the wave function evolving under H.g. Thus, in our case, jumps are effectively
accounted for just by evolution under H.gralone. Any loss of population from the single-excitation manifold

2



10P Publishing

New J. Phys. 20 (2018) 083048 M T Manzoni et al

Figure 1. Schematic of a quantum memory using a two-dimensional atomic array. An excitation initially stored in the |s)-manifold is
retrieved as a photon by turning on the classical control field €2, (blue arrows), which then creates a Raman scattered photon from the
|g) — le) transition. The photon is detected in some given mode, illustrated here as a Gaussian beam.

implies that a corresponding population is building up in the manifold |g)*N | 1(r, t)), where all the atoms are in
the ground state and a single photon is emitted in some spatial-temporal pattern. We next discuss how the
photon-emission pattern and its overlap with a mode of interest can be calculated.

Given the evolution of the atomic state under H.¢, any observables associated with the total field operator
Eoui(r) can be derived from the input—output relation [37—41]

Eou(®) = Bin(r) + g degwl > Go(r, 1), wyp) - djo. (5)
j

Formally, this equation states that the total field is a superposition of the incoming field and the fields emitted by
the atoms, whose spatial pattern is contained in the Green’s function. Equation (5) enables the field to be
calculated at any point r, based upon the evaluation of an atomic correlation function ~Gy(r, 1j, weg) - flja]ge
weighted by the Green’s function. Evaluating the Green’s function at each r and the corresponding atomic
correlation function to construct the field everywhere can become tedious. However, in experiments one often
cares about the projection of the field into a specific spatial mode, such as a Gaussian (see figure 1). It can be
proven (see appendix A) that this projection depends only on the amplitudes of the mode of the classical field
Ege((r) at the positions of the dipoles. We can thus define the quantum operator associated with the detector as

R A ) [k o
Edet = Edet, in T ldeg ﬁ Z Ejet(rj) : djo'}ge’ (6)
0fdet

where Edet,in is the input field in the detection mode and Fje, = f
Z=C

—const d?r Ej(r) - Bge(r) is a normalization

factor. Here, the normalization is such that <I§j€t Eqe) represents the photon number per unit time emitted into
the mode.

Before discussing the specifics of the retrieval efficiency, we would like to briefly discuss the validity of the
Born—-Markov approximation, which allows one to trace out the photonic degrees of freedom and arrive at an
atomic master equation, as well as to write equations for the field operators that depend instantaneously on the
atomic operators. This approximation is valid whenever (1) the photon bath correlations decay much faster than
the atomic correlations and (2) retardation can be ignored. The first condition is obviously satisfied for atoms in
free space, as the vacuum’s Green’s function has a frequency spectrum that is much broader than the atomic
linewidth. Neglecting retardation in both the photon-mediated interactions between atoms and the field
produced by the atoms requires the characteristic length L of the atomic system to be much smaller than that ofa
spontaneously-emitted photon, which is ~c/Ijy < 1 m [45-48], where I = 1, w;:’g dezg / 3w/ is the single-atom
spontaneous emission rate in vacuum. It should also be pointed out that for at most a single atomic excitation,
the dynamics of atom-light interactions can readily be solved in an exact manner [46, 48—51]. In this regime of
linear optics, the dynamics can be analyzed for each frequency component in the Fourier domain, exploiting the
fact that different frequency components do not couple to one another. However, the spin model presented
above has a natural extension to the multi-excitation case (e.g., studying the storage of multiple photons and
their subsequent nonlinear interaction [52-54]), whereas exact solutions are only available in a limited number
of cases [47, 55, 56].
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2. The retrieval efficiency

The typical quantum memory scheme consists of an ensemble of three-level atoms where an additional
metastable state |s) is coupled to the excited state |e) by a classical control field with Rabi frequency Q.(r, ¢) and
detuning A from the transition frequency w;, (see figure 1) [18]. While the state |s) is typically associated with
another state in the ground state hyperfine manifold, in our case this would deleteriously reduce interference
effects in emission. For example, in storage where all atoms begin in |g), there is no interference pathway to
suppress spontaneous emission into |s) once an incident photon excites an atom to |e). Thus, we assume that our
atoms have no hyperfine structure and there is a unique ground state, as would be the case for bosonic Sr or Yb
atoms, and thatlevel |s) is along-lived, higher-lying excited state. Dipole—dipole interactions on the |e)—|s)
transition have no effect, as they require at least two total excitations in the system. In the main text, we will
furthermore take the conceptually simpler case where | e} is the unique excited state coupled to |g) (for
concreteness, with polarization &j = %). Amore realistic model with three excited states | ey ,, .), providing an
isotropic atomic response to light, is presented in appendix C, but the results qualitatively remain the same.
Instead of storage, it is mathematically more convenient to optimize the retrieval problem, in which an
initial collective spin excitation |1 (t = 0)) = > jSi(t =0) aj»g |g)*™ is emitted as an outgoing photon on the
|g) — |e) transition via a Raman process facilitated by the control field €2.. The initial state then evolves under the
total Hamiltonian H = H.s + H., where the Hamiltonian associated with the control field is
Ho=3% - Ao + ﬁQZ(l‘)(ajS + h.c.)and H;, = Oas thereis no external field driving the |g) — |e)
transition in retrieval. We take a spatially uniform, but possibly time-dependent, control field [/ (t) = Q.(£)],
although it is straightforward to generalize the following discussion to the case of a spatially varying control field.
Then, for a given detection mode and atomic spatial configuration, we want to find the initial spin amplitude
5,(0) that maximizes the retrieval efficiency. By time-reversal symmetry, the storage efficiency for an incoming
photon in the same mode and for the same atomic configuration is identical, when optimized over the temporal
shapes of the incoming photon and control field [ 18]. Writing the general state in time as
[V(1)) = Xie(1)oF + s5i(t)o¥) |g)®Ms, the state amplitudes obey

¢ = iAe; — iQ(t)s; + iy ) Mjey, 2
1

$i = —iQ(D)ej, ®)

where the matrix Mj = 37k, I(Alj< - Go(1j, 17, Weg) - &l. While we explicitly consider the model above, we note
thatitis straightforward to add a number of other effects (e.g., decay of the |s) state or dephasing) into the
analysis.

From equation (6), we can evaluate the expected total photon number 7 = j(‘) < dt <1§;€t (1) Eget ()) emitted
into the detection mode. Assuming that the control field is turned on for long enough, it is guaranteed that one
photon in total is emitted into all modes, and thus 7 also represents the retrieval efficiency. Evaluating the atomic
operators in equation (6), we find that

Sy L %
=20 S f dt ¢j(t)ef (1), )
4Fe¢ il 0

where we have defined the local scalar field E; = Eqe(1;) - cAlj< atthe atom positions, and S, = (3/2m) Alisthe
resonant atomic optical cross-section (\g = 27/k( being the resonant wavelength).

Equation (9) can be simplified by noting that Mj;in equation (7) is a symmetric complex matrix. Thus, if M
is diagonalizable (as we numerically verify in our cases of interest), its eigenvalues \¢ are complex and its
eigenmodes v are non-orthogonal in the quantum mechanical sense, but obey the orthogonality and
completeness conditions vg Vg = bggand 3o ve ® vg = I[37]. Projecting the equations of motion into this
basis results in N, decoupled pairs of equations:

éf = I(A + ].—‘0)\5)65 — iQC(t)Sg, (10)

55 = —ch(t)eg, (11)

where ec = 37 v jej, s¢ = 3, v, 5j- Provided that the atomic excitation has left the system as ¢ — 00, one can
derive that

00 i Ve vp
dt e(Def(t) = — 5 —2L ¢ (0)s25(0). 12
| e o oE 0L (12)
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Inserting this equality into equation (9), we readily find

S,

Z Sj(O)IQISl*(O), (13)

det j,l

’[7 =
where

EfEy

Kj =1 vevir, ﬁ’ (14)
&€ ¢~ A

and E¢ = ), V¢, mEsm. Importantly, Kisan N, x N, Hermitian matrix which depends only on the positions of
the atoms and the detection mode, but not on the specific time dependence of the control field (for example, one
could apply a 7 pulse that transfers all of the excitation from state |s) to |e) at time ¢ = 0). The maximum retrieval
efficiency is thus given by the initial configuration corresponding to the eigenvector of K with the largest
eigenvalue. We should note that while the efficiency 7 of retrieval is independent of the particular profile Q(¢),
the shape of the outgoing photon is completely determined by the control field. By time-reversal symmetry, if
one wants to store an incoming photon with maximum efficiency, one must first consider its time-reversed
shape (i.e., an outgoing photon), find the unique control field €2.(#) that generates such a shape in retrieval, and
then apply the time-reversed field (2 (¢) for storage.

Before proceeding further, we briefly comment on the classical and quantum optical aspects of the
calculation presented above. An equation analogous to equation (9) also applies if the atoms were replaced by
classical oscillating dipoles with amplitudes e,(#). Such an equation corresponds to the projection of the total
classical radiated field into a particular spatial mode. The equivalence between classical and quantum equations
is not surprising, given that both the propagation of classical and quantum fields are given by Maxwell’s
equations. In our particular problem of interest, the quantum nature of the field manifests itself by considering
field correlations. For example, using equation (6), one can calculate the second-order correlation function

T2 A2 . . . o . . L
<EJet Eg4..)- As the atomic state that we consider contains at most one excitation, this correlation function is
exactly zero, or perfectly ‘anti-bunched,’ reflecting the fact that only a single photon is emitted.

3.2D square array

While the formalism presented above is general to any ensemble of atoms with known positions, we now apply it
to a2D square array with lattice constant d. This case is particularly interesting, as an infinite array of two-level
atoms can act as a perfect mirror for incoming light at normal incidence when d is smaller than the atomic
resonant wavelength Aq [33—35]. Physically, the incoming field guarantees that all the induced atomic dipoles
oscillate with the same phase. While such a configuration can in principle emit into various diffraction orders,
ford < A, all of the orders except the one perpendicular to the plane become evanescent, and cannot radiate
away energy. With only two channels of emission possible (forward and backward), the scattered field of the
array perfectly interferes with an incident resonant photon in the forward direction, leading to complete
reflection of light. Likewise, when an excitation is stored uniformly in the infinite array with d < A, itis
‘selectively radiant’ [29], as interference guarantees that the retrieved photon is perfectly emitted into two plane
waves normal to the array (we assume that this symmetric emission can be recombined). While this simple
argument hints that a finite array can also be very efficient, what remains is to quantify the error. We thus analyze
the retrieval efficiency of an array made of N, = N x Natoms.

As far as the detection mode is concerned, a common mode to project into is a Gaussian beam. There is a
technicality, however, since a Gaussian beam is only an approximate (paraxial) solution to Maxwell’s equations.
While such an approximation usually suffices, here we anticipate that one can achieve nearly perfect storage and
retrieval efficiencies. Consequently, it is not obvious a priori that the small (actual) retrieval errors are not
overwhelmed by the error of the paraxial approximation itself. Thus, we consider an exact mode solution for
Maxwell’s equations (see appendix B for details), which approaches the Gaussian solution in the limit of large
beam waist w,.

Before presenting the numerics, one can already intuitively argue the fundamental sources of error
associated with a finite array by considering the reflectance problem. If the beam waist wy is too large with
respect to the array dimensions, then part of the incoming light will not see the atoms and will be transmitted or
scattered in other directions by the edges of the array. If w; is too small, the incoming mode contains a broad
range of wavevectors with different propagation directions. Since different angles have maximum reflectance at
different detunings relative to the bare transition frequency w,, [35], the overall reflectance for a near-
monochromatic photon will be reduced. For a given array, an optimal beam waist thus maximizes the
reflectance of an incoming photon (at optimal detuning). The situation is analogous for the retrieval problem,
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Figure 2. Minimum retrieval error ¢ = 1 — nfrom asquare array of atoms into a Gaussian-like detection mode, as functions of (a)
Sare /Wi, with S,y = (Nd)? being the array area, and (b) log,,wy /Ao ford = 0.6\gand N = 10, 20, 30, 40, 50 (blue, red, yellow, violet,
green, respectively). The black dashed lines in (a) and (b) correspond, respectively, to € = 1 — Erf2(Nd /~/2wg)and € = C(X\g/wo)*.
(c) Left axis: value of €, for abeam waist W, obtained from numerical optimization (blue continuous line), and the approximate
analytical error of equation (16) (green dotted—dashed line). Right axis: ratio between the optimal beam waist , and the linear
dimension of the array Nd, as a function of N (red dashed line).

where the optimization over the photon frequency is replaced by an optimization over the initial spatial
distribution of the collective s-excitation.

To check this behavior, we numerically calculate the minimum retrieval error e = 1 — 7 varying the beam
waist wy, for several different atom numbers. In figure 2(a), the error is plotted as a function of the ratio between
thearrayarea S,;; = d?N, and wg. Here, we have taken the retrieval mode to consist of a symmetric
superposition of Gaussian beams emitted in opposite directions from the array, with the view that these beams
can in principle be recombined. For concreteness, we consider a lattice constant of d = 0.6\, although other
choicesd < )y do not affect the general scalings. As S, /wg grows, the error initially scales as
€ ~ 1 — Erf2(Nd/~/2 wy) (illustrated by the dashed curve), where Erf(z) is the error function. Physically, this
error corresponds to the fraction of the energy carried by the Gaussian beam beyond the array boundaries. In
figure 2(b) we plot (in log—log scale) € as a function of the ratio between wy and A, (for values larger than one),
again for different array sizes. Up to a point where the beam waist becomes comparable with the array
dimension, the error scales roughly as € ~ (\g/wp)* (dashed line). This error physically arises from the range of
wavevector components that make up the detection mode, which is inversely proportional to wy. An analysis of
the reflectance of a beam of finite waist from an infinite array in fact shows the same scaling, when considering
the fraction of light that is not reflected. Overall we have that the minimum error can be approximated by the
expression

e(N, d, wo) =~ C(d)(No/wo)* + 1 — Erf2(Nd/ /2 wy). (15)

The constant C can be obtained by fitting the error: ford = 0.6\ we find C =~ 2.4 x 1073,
One can use equation (15) to find the optimal beam waist. After optimizing w, we find that the leading term
for the error is given by

€opt = (logN,)? /(4ND). (16)

In figure 2(c) this approximate expression for the minimum retrieval error is compared with the value obtained
by numerical optimization. The associated optimum beam waist for the retrieval mode is also plotted for
completeness. Interestingly, evena4 x 4 array of atoms can in principle already enable a storage/retrieval
efficiency of above 99%. In comparison, an optical depth of nearly D ~ 600 is needed to obtain the same error in
aconventional ensemble [18]. In the case where the beam waist does not significantly diverge over the length of

6
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Figure 3. (a) Relative difference between the perfect array efficiency and efficiency of an array with ‘holes” as a function of
ZjedeflEjlz/leEdz. Each dot represents a random defect configuration ofa 10 x 10 array with fixedd = 0.6 \gand wy = 1.5\,. For
each number of holes from 1 to 20, 100 configurations are considered (only 20 are represented for visual clarity). The red line is a
linear fit. (b) Difference between the optimized maximum retrieval efficiency 7 and the mean retrieval efficiency 74;; obtained using
the same initial conditions and beam waist but with position disorder o in the atomic positions (log—log scale). The different colors

correspond to N = 6, 10, 20 (blue, red, yellow, respectively), with d = 0.6\,. For each value of o, 100 random configurations are
considered.

the ensemble, the optical depth is given by D ~ Sy N, /w; . For cold atoms, an atom number on the order of
N, ~ 10°-10” might be required to achieve a value of D ~ 600.

4. Relevant imperfections

4.1. Analysis of disorder

In this section, we analyze the effects of various types of disorder in the array. One useful attribute of our
efficiency calculation is that it enables different spatial configurations to be studied. Thus, we can easily include
imperfections such as the absence of atoms (‘holes’) in the array, or classical position disorder. We first examine
the case of some number Ng.rof holes in the array. Intuitively, one expects that the relative decrease in efficiency,
(1 — Nyee) /1> Will be proportional to the ratio between the intensity of the detection mode hitting the empty
sites, to the total intensity over the array. Here, 774.rand 17 denote the maximum retrieval efficiency with and
without the holes, respectively, with the beam waist wy chosen to optimize . In figure 3(a) we plot the relative
loss as a function of Y el Eil? / >"|Ell?, where the sums of the field intensities in the numerator and
denominator run over sites of holes and all sites, respectively, sampling over 100 random configurations for
different densities of holes (Ng.¢/ N, up to 20%). One sees a clear statistical relation of the form

Z]Edef 7
ndf,'an_a7~ (17)
ef, { j} } :llEllz

The constant of proportionality «in equation (17) depends only on dand is about a =~ 1.25ford = 0.6 \,.
While here we have optimized the initial spin wave for each random configuration, which would be applicable if
an experiment could resolve the positions of the holes in a single shot [21], we expect a similar scaling even if the
positions of holes are unknown.

Classical disorder for the atomic positions consists in having the atoms displaced by random amounts
0; = (x> 0y,j) from their position in the perfect lattice. It is shown in [35] for the case of reflectance of an infinite
array that, when the §’s are extracted from a Gaussian distribution with standard deviation o, then the decrease
in reflectance introduced by the disorder scales as 02/d?. We find numerically the same result for the retrieval
error of the finite array. In particular, in figure 3(b) the error introduced by disorder is plotted as a function of &
for different array dimensions and fixed lattice constant. This error is defined as the difference between the
optimized maximum retrieval efficiency 1 of a perfect lattice, and the mean retrieval efficiency 74;s (sampled over
many configurations) with the same initial atomic wave function and beam waist but with disorder in the atomic
positions.
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Figure 4. Relative reduction in the retrieval efficiency 1 — 77, /n asa function of the detection time window T4 (lin-log scale) for an
arrayof 10 x 10atomswithd = 0.6\, and optimal beam waist.

4.2. Finite detection time
When calculating the retrieval efficiency, given by equation (9), we have implicitly assumed that the detection
time is infinite, such that all the energy emitted into the detection mode is collected. Practically, it might also be
relevant to consider the retrieval efficiency given a finite time window 0 < t < T for photon collection, such as
ifan experiment has other limiting time scales (i.e., atom trapping time, required fast readout, etc).

The efficiency detected for an arbitrary detection time window T4 is given by

e = Sulb
B 4R,

T
ST E'E fo dt ¢;(t)e (), (18)

il

where ¢(?) is obtained by integrating equations (7), (8). In general the temporal profile of the emitted field
depends on the control field amplitude 2 (f) and detuning A. If one wants to achieve a high efficiency in the
shortest time, then the optimal strategy is to essentially use the control field to apply an instantaneous m-pulse at
t = 0, thus instantly transferring the excitation stored in the metastable state |s) to the rapidly emitting excited
state |e). In an array, this collective excitation in |e) will emit a photon at a rate ~I"y comparable to the single-
atom emission rate, ensuring that the errors due to finite time window T4 become very small once Ty is on the
order ofafew ~I'; .

In figure 4, we plot the relative error 1 — 7, /i due to the finite detection time, where 7is the detection
efficiency for an infinite time window, for an array of 10 x 10 atoms with d = 0.6\, and optimal beam waist.
We notice that for a detection time Ty ~ 10/T} the error is of the order of 10>, The possibility of having a good
retrieval efficiency even for a short detection time is a consequence of the fact that, while the array can support
highly subradiant states [25, 29, 30, 34, 35], they form a negligible component of the optimized spin wave for
storage and retrieval. This makes intuitive sense, as to interface with light efficiently, one should use radiant or
‘selectively radiant’ atomic excitations rather than states that decouple from light.

5. Conclusions

In summary, we have introduced a prescription to calculate the maximum storage and retrieval efficiency of a
quantum memory, which fully accounts for re-scattering and interference of light emission in all directions. Our
approach is in principle applicable to any system where the positions of the emitters are known (or can be
reasonably modeled, such as assigning random positions) and the spatial and spectral response of the dielectric
environment (i.e., the Green’s function) is also known [2-5, 29, 37, 57—63]. As one particular application, we
have shown an improved scaling of errors for atoms in free space, compared to the result predicted by the one-
dimensional Maxwell-Bloch equations. We speculate that it is possible to obtain an exponential reduction of
errors versus atom number in free space, by using arrays that are not completely periodic. The question of how
to tailor the spatial positions will be left to future work.

More broadly, we expect that a significantly improved storage efficiency is possible whenever the excited
state emission is largely radiative and coherent, which includes not only atoms but solid-state emitters with large
zero-phonon line and Fourier-limited linewidths [63]. Techniques to reversibly map between photonic and
atomic excitations in arrays should find a variety of exciting applications. For example, it would allow for
photonic quantum gates, given some form of spin interactions in the array (such as between Rydberg levels [64]),
or would allow for exotic spin states (like subradiant [24—29] or topological excitations [31, 32]) to be detected
optically. It would also be interesting to investigate whether the spin state itself could be engineered to produce a
useful non-classical state of outgoing light. More broadly, the ability to formally map atom-light interactions to
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along-range open spin model could provide new insights into quantum optical phenomena with atomic
systems.
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Appendix A. Green’s function expansion in plane and evanescent waves

Here we derive equation (6) of the main text by using an expansion of the Green’s function in terms of plane and
evanescent waves. The Green’s function equation (3) can be written in the angular spectrum representation,
i.e. asanintegral over k. and k, in Fourier space, as [43]

Go(r, ¥/, wy) = #21%2 j: O:O j: O; %fky QF ik (=) ik, (y—y) ik G2 (A1)
where
k- k2 —kk,  Fhek,
Q= | —kk, ki -k TFhk, (A2)
Thek,  Fhkk, k2 — k2

and the + denoting the sign of z — z’. We can separate the integral in equation (A.1) into two separate integrals:
for values of k,, k, lying inside and outside the disk defined by k2 + kf = k¢. This decomposition separates the

plane waves from evanescent waves, i.e., we can write G*(r, 1/, Weg) = G:fl(r, ', W) + va(r, r', W, ), where

Goir, ¥y we) = —55 [ Ly i et it )ik =2), (A3)
8wk Jiirki<kd  k,
with k, = [k — k? — kyz,and
Ggf,(l‘, r, Weg) _ ; f M Q:l: eikx(xfx/)Jriky(y,y/)iikz(zfz/)’ (A.4)
8mw2kd Jizrkiskt  k,

with k, = i\/k} + k} — k.
The integral in the plane waves part can be rewritten in polar coordinates using
ko = ko(sin 6 cos ¢, sin 0 sin ¢, cos #), obtaining

: 2 /2
Gﬁ(l‘, 1.I’ Weg) — 12 f 7 d¢ fﬂ— dfsin 6 Qi eikg(sinG cosq‘)(xfx’)Jrsin()sinq&(yfy’)icos()(zfz’)). (A5)
871k Jo 0
It can be shown easily that, introducing the polarization vectors
élio = (sin ¢, —cos ¢, 0), (A.6)
élfo = (cos 0 cos ¢, cos sin ¢, —sin §), (A.7)
orthogonal to ky and between them, G;](r, r', w,y) can be expressed as
" , lk() 2 /2 . % ,
Gty 1y ) = 257 [ do [ d0sind w000k, 000, (A8)
8ms "~ Jo 0
where we have defined a plane wave basis
uk0,9,¢,a(r) — éi(yo efiko(sin 0 cos px+sin 0 sin py+cos ()z), (A.9)
with the normalization
2 * (27T)2 A /
dr Wy 9.6a(0) * Wi 0,0, 5(r) = S 00 — 0)6(p — ¢")bup (A.10)
z=const kO sin 0
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Similarly one has
_ ik ™ .
G(r, ¥/, wy) = — Z f do f df sinf uf0,9,¢)a(r) U, 0,6,0(F). (A.11)

An analogous expression can be found for the evanescent wave part. Here it is convenient to define the
vector kg = ko(cosh & cos ¢, cosh € sin ¢, isinh £):
2
G;E,(r, r, W) = L f i d¢ foo dE sinhf Qi eko(icosh & cos (x—x')+icosh £ sin ¢ (y—y) Fsinh § (z—2")) (A.12)
8 8k, Jo 0
With the polarization vectors defined by
éll(n = (sin ¢, —cos ¢, 0), (A.13)
= (—isinh £ cos ¢, —isinh € sin ¢, —cosh ) (A.14)

52
eg

orthogonal to l~<0 and between them, one can indeed write

GL(r, ¥y ) = —Z f quf de sinh & G ¢y oDk .,0(F), (A.15)
where
ﬁk 66 a(r) — é\[% e—ko(icoshé cos ¢x+icosh & sin ¢py—sinh £z) (A 16)
&, ) . .
Similarly one has
_ ko m 0 . ¥ -
Gev(r: l'/, weg) = a2 Z f d¢f dé' Sll’lhg ukg,f,(b,(y(r)ukg,f,d’,a(r/)' (A.17)
8= 7 Jo —o0

Now let us consider a detection mode that does not contain evanescent components for simplicity, so that it
can be expanded just in terms of monochromatic plane waves as

1 2w T .
%(r)zwg fo d¢ fo d6'sin 0 ¢, p,6,0Uk0,6,0(D). (A.18)

The overlap between this mode and the field generated by a dipole is

<Edet|E0ut> = f dr Ejet(r) : Eout(r)

z=const

= idegkos 2 o " ; o I Yy,
= 2aan) fzzmw dr ;fo dgbj; do sm&fo dqu; d0'sin

X Cho 5,0 Wk 0 (O UE, g0 o1 J(E) Uk 7,0, 5(x) - Ao
id, k id, k n
=20 Z f do f dd sin 0 ¢y, 0, oauko 0.0 5(Xa) - dose = 2% OEﬁet(rd) - doge (A.19)
260 (2m)? 26

where we have used equation (5) (without input field) to express the field generated by the dipole through the
Green’s function and equations (A.8) and (A.11) for the Green’s function decomposition. Adding the input field
and normalizing the detection mode we finally obtain equation (6) of the main text.

Appendix B. Gaussian detection mode

Here we present the detection mode which we have chosen to study the retrieval efficiency of the 2D array. We
choose a solution oscillating with frequency e“=, and where the x-component of the electric field in
wavevector space is given by Ej (ky, k) o e~ (ki+kD)wi / 9k — kf — kyz), where O(x) is the Heaviside step
function. That s, E, has a Gaussian distribution for k2 + ky2 < k¢ whileit is zero for k? + ky2 > k¢, such that
the field does not contain evanescent components. In the y direction, we take the field to be identically zero. The
value of the z-component is then determined by Maxwell’s equations [65]. The real space profile of this mode
can be obtained by Fourier transformation:

1
E(icet (r) = E, j(; db b e—bzkquuz/4 eikgz\/l—b2 ]o(bkop), (B.1)

and
b2

—b2kgwd /4 aikozi1—b?
i e e Ji(bko p), (B.2)

P Y
Bia®) = —iFo > fo db
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Figure C1. (a) Comparison between the optimal retrieval error e (left axis, blue lines) and the corresponding optimal beam waist
(right axis, red lines) for the case of a single excited state discussed in the main text (continuous lines) and the case of three excited
states (dashed lines), as functions of the linear array dimension N. (b) Relative difference (¢qptiso — €opt, L) /€opt, 7. Detween the
retrieval errors of the isotropic and two-level atomic structures plotted in (a).

where (p, z) are the cylindrical coordinates for r, while ], and J; are Bessel functions. If evanescent components
were included, the field in real space would identically consist of a Gaussian in the z = 0 focal plane with beam
waist w,. The step function in wavevector space enforces in real space a diffraction limit, and distorts the beam to
prevent a focal spot smaller than ~ . For large w, the mode tends to the paraxial solution, i.e. Ej.; vanishesand
Ej. assumes the form of a fundamental Laguerre—Gauss mode [43].

Appendix C. Spin model for isotropic atoms

In the main text we have introduced a formalism to calculate the retrieval efficiency of an atomic ensemble of
three-level atoms, with an excitation initially stored in a metastable state |s) coupled to the excited state |e) by a
classical control field. Instead of a single excited state, a more realistic minimal model of an atom consists of

three excited states |e, ), where & = x, y, zdenotes the three possible orientations of the dipole transition d. The
effective Hamiltonian (4) generalizes to

2,2
Heff = I_Iin - Modegweg Z Z Gaﬂ(rj) I, Weg)o-iijo-gfp (Cl)
il aB

where the sum over cvand B are over x, y, z. Here, 0, = |g)i (¢s | is the lowering operator on atom /, which takes
the excited state |eg) to the ground state |g). It should be noted that in general, transitions with different
orientations can mix together (e.g., one atom could decay from |e,) and excite another atom from the ground
state to | e,)), as a photon emitted from a given dipole orientation does not have the same global polarization
everywhere in space.

In the case in which the state |s) is coupled only to one of the three excited states, for concreteness |e,), it is
straightforward to generalize the main result of the paper. Equation (13) indeed keeps the same form, but with
the matrix K generalized to

. E(Eg

Ky = 1) vgjvh VLA (C.2)
&8 £

where Ec = 3, e mEge, (r,,) and the sum over the index § of the eigenvectors has 3N, values. In figure C1(a) we
compare the minimum retrieval error foran N x Nsquare array of atoms versus N, for the cases of a single
excited state and for the three-fold degenerate excited states. We notice that, while the scaling of the error
remains the same, a small reduction of the efficiency is observable in the isotropic case, a consequence of the fact
that light polarized along y can be emitted from atoms in the state |e,) with a reduction of the overlap between
the output mode and detection mode. The increase of the error is better quantified in figure C1(b) where the
relative difference is plotted. We observe that for the range of array sizes considered here the error increases
between 50% and 90%. The value of the optimal beam waist is instead not particularly affected, as expected.
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