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Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT),
give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely
tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which
provides the potential for generating novel few-photon states. Recently it has been shown that Rydberg-EIT
is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In
this work, we study three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon
detunings. Our numerical simulations of the full three-body wave function and analytical estimates based
on Fermi’s golden rule strongly suggest that the observed features in the outgoing photonic correlations are
caused by the resonant enhancement of the three-body losses.
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Photons coherently coupled to highly excited atoms in
the form of dark-state Rydberg polaritons are a versatile
system for engineering strong interactions between pho-
tons. Recent experiments have shown single-photon non-
linearities [1–7], single-photon transistors [8–10], quantum
gates [11–14], as well as the observation of strongly
correlated photon states [15–17]. Depending on the con-
ditions used to generate the polaritons, the interactions can
be coherent or dissipative, with controllable inherent multi-
body character [18–24]. The study of few-body systems
with long-range interactions can help to engineer more
complex many-body quantum systems and understand their
properties and potential limitations due to loss,
decoherence, or recombination. Realizing precise and
reliable control of three-body effects opens the door to
rich phenomena, such as the universality of Efimov states
[25], the purification of a quantum gas [26], and the
emergence of strongly correlated photonic states [16,17],
including fractional quantum Hall states [27,28].
Dissipative interactions find applications in quantum com-
puting and state preparation [29,30], and in passive
quantum error correction [31–33]. In particular, three-body
dissipative interactions enable preparation of strongly
correlated [34] and topological phases [35].
Three-body effects between Rydberg polaritons can be

strong [16,17,21–23], distinguishing them from the usually
weak three-body forces [36] observed with ultracold atoms
and molecules near their ground state [34,37–39]. The
three-body Rydberg polariton system has been explored
experimentally in the dispersive regime [16,17]. However,
to our knowledge, there is no theoretical or experimental

work studying dissipative three-body interactions and their
tunability to date.
Here, we analyze tunable three-body loss of Rydberg

polaritons at high optical density, where nonperturbative
effects are strong. We study experimentally and theoreti-
cally, the tunability of the relative strength of three-body
loss versus two-body loss, which is indirectly probed by
measuring two- and three-photon correlation functions.
Figure 1(a) shows the atomic-level configuration for

Rydberg EIT. The ground state jGi of an ensemble of atoms
is coupled to an intermediate state jPi by a quantum probe
light with a collective coupling strength g. A classical
control field with Rabi frequency Ωc couples jPi to a
Rydberg state jSi. The Hamiltonian describing the propa-
gation of a single excitation is [19,40]

H ¼

0
B@

cq g 0

g −Δ − δs Ωc=2

0 Ωc=2 −Δs

1
CA; ð1Þ

in the basis of fE; P; Sg, where E, P, and S are the wave
functions of the photonic component, intermediate-, and
Rydberg-state collective spin excitations, respectively [40]
(ℏ ¼ 1). The complex detunings Δ ¼ δþ iΓ=2 and Δs ¼
δs þ iγs=2 take into account the decay rates of the excited
states, cq corresponds to the kinetic energy of the photon in
the rotating frame (such that the incoming probe photons
have zero energy), where c is the speed of light, and q is the
probe photon momentum. Diagonalization of Eq. (1) gives
rise to three polariton eigenstates. For small δs, the photons
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propagate through the medium as dark-state polaritons: a
hybrid photon-atom excitation with a negligible admixture
of the lossy intermediate state [41]. This coupling maps the
strong Rydberg interaction onto the photons [18,42].
Figure 1(c) depicts the energies of the dark D, bright

lower L, and bright upperU, polaritons [depicted byωDðqÞ,
ωLðqÞ, and ωUðqÞ, respectively]. The middle branch D is
continuously connected to the dark state; however, for large
momenta |q|, it becomes lossy.
For small jδsj ≪ ωc ≡Ω2

c=4jΔj, two-body scattering
processes where one or both of the incoming dark polar-
itons become lossy are strongly suppressed [19], see
Fig. 1(d) illustrating the DD → DU suppression. This
suppression comes from the fact that, for δs ¼ 0, incoming
q ¼ 0 polaritons are not allowed to scatter to any bright
channel due to energy and momentum conservation.

However, for three photons, the scattering to lossy
branches is allowed by conservation laws. The interplay
of the shape of the interactions and the dispersion relation
can lead to resonant enhancement of three-body loss. Both
the interaction potential and the dispersion relation can be
tuned usingΩc; δ, and δs, which we explore experimentally
and theoretically.
We generate Rydberg polaritons in a cold, optically

trapped cloud of 87Rb atoms using the three states
jGi¼ j5S1=2;F¼2;mF¼2i, jPi¼ j5P3=2;F¼3;mF¼3i,
and jSi ¼ j82S1=2; mJ ¼ 1=2i (see Supplemental
Material [43]). The probe beam addressing the jGi-jPi
transition has a 3.3 μm-waist and coupling strength
g=ð2πÞ ≃ 103 MHz. The average incoming photon rate is
Rin ≃ 3 μs−1, so the likelihood of more than three photons
in the cloud is negligible. The control beam coupling
jPi-jSi is counterpropagating to the probe [Fig. 1(b)] with a
19 μm-waist andΩc=ð2πÞ ¼ 23.5� 1.5 MHz. The ensem-
ble with ≃105 atoms at 10 μK has an rms axial length of
σz ¼ 42� 4 μm. The optical depth is OD ¼ 37� 4, and
we measure the linewidths to be Γ=ð2πÞ ¼ 7� 1 and
γs=ð2πÞ ¼ 0.4� 0.1 MHz [47].
The impact of interactions among n polaritons can be

characterized by the n-photon correlation functions, gð2ÞðτÞ
and gð3Þðτ1; τ2Þ for n ¼ 2 and n ¼ 3, respectively. We
measure these correlations by detecting the relative tem-
poral delay τ of transmitted photons using three single-
photon avalanche photodetectors (SPAD) [see Fig. 1(b)].
To characterize the impact of three-body loss relative to
two-body effects at low photon rates, we use the connected
correlation [17,21]

η3ðτ1; τ2Þ ¼ gð2Þðτ1Þ þ gð2Þðτ2Þ
þ gð2Þðτ2 − τ1Þ − gð3Þðτ1; τ2Þ − 2: ð2Þ

For dominant two-body loss, one has η3ð0; 0Þ < 0, because
there is a high probability of absorbing at least one out of
two or three incoming photons so gð2Þð0Þ and gð3Þð0; 0Þ are
suppressed (strong two-body repulsion [7] has a similar
effect).
On the other hand, if two-body loss is small and

dispersive, so two-body interactions are weak or attractive
such that gð2Þð0Þ ≥ 1, while three-body loss is strong,
η3ð0; 0Þ > 0. Therefore, we use a positive value of
η3ð0; 0Þ as a signature of strong three-body losses.
Figure 2 shows the measured second-order, third-order,
and connected third-order correlation functions for
two parameter choices corresponding to η3ð0; 0Þ < 0
[Figs. 2(a)–2(c)] and η3ð0; 0Þ > 0 [Figs. 2(d)–2(f)].
Figures 3(a)–3(c) show the measured correlation func-

tions, gð2Þð0Þ, gð3Þð0; 0Þ, and η3ð0; 0Þ, as a function of δ and
δs, at fixedΩc. The region where η3ð0; 0Þ > 0 (indicative of
dominant three-body loss) occurs is a roughly linear band
in δ − δs space with a negative slope. Figures 3(d)–3(f)
show gð2Þð0Þ, gð3Þð0; 0Þ, and η3ð0; 0Þ obtained by

FIG. 1. (a) Atomic structure: A weak probe, with collectively
enhanced single-photon coupling g, and a classical field, with
Rabi frequency Ωc, couple the ground state, jGi ¼ j5S1=2;
F ¼ 2; mF ¼ 2i, to the Rydberg state jSi¼ j82S1=2;mJ ¼1=2i
via an intermediate state jPi ¼ j5P3=2; F ¼ 3; mF ¼ 3i. (b) Ex-
perimental setup: The probe and control beams are overlapped
along the propagation axis. After exiting the atomic medium, the
probe beam is sent to a generalized Hanbury Brown–Twiss setup
to measure the photon correlation functions. (c) Dispersion
of polaritons in the limit Γ ≪ jδj, with δ=ð2πÞ ¼ 25 MHz,
δs=ð2πÞ ¼ 0, Ωc=ð2πÞ ¼ 23.5 MHz, for a homogeneous
cloud of length L ¼ 4.2σz [15], with ωc ≡ Ω2

c=4jΔj and
kc ≡ ωc=vg ≈ g2=cjΔj. The black curve is the dark-state branch
(D), while the blue and green curves are the bright states (U and
L). The diagram depicts the allowed three-body loss process for
three polaritons initially near the EIT resonance at ωj ¼ qj ¼ 0
(j ¼ 1, 2, 3 labels the three polaritons). ωþ is the energy where
ωD and ωU become approximately flat. (d) Allowed final
momenta q1 and q2 for the three-body loss with q3¼−q1−q2.
Only the process depicted in (c) is relevant for δs ≈ 0. For the
plotted momenta, there is no two-body loss process allowed
because there are no final states with q1 ¼ 0 or q2 ¼ 0.
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numerically solving the Schrödinger equation for the two-
and three-polariton wave functions propagating through the
Rydberg-EIT medium using parameters similar to the
experimental values [48]. We find good qualitative agree-
ment between the numerical calculation and experiment:
we reproduce the antibunching to bunching behavior in
gð2Þð0Þ and gð3Þð0; 0Þ, and the resonantlike feature of three-
body loss in η3ð0; 0Þ. We note that limitations from our
numerical description arise from using a hard-sphere
approximation for the interaction potential, possibly con-
tributing to the discrepancy between experimental and
numerical results. Other possible sources of discrepancy
include experimental drifts and the presence of contaminant
states [49]. The latter causes a bunching feature for long
times in the correlation functions [50]. Including a micro-
scopic description of the contaminants would greatly
increase the complexity of the numerical and theoretical
model [51].
Rydberg atoms interact via the van der Waals potential

VðrÞ ¼ C6=r6. The effective interaction between two dark-
state polaritons (after integrating out bright-state polar-
itons) is [19]

Veðω; rÞ ¼
VðrÞ

1 − χ̄ðωÞVðrÞ : ð3Þ

Here, ω is the total energy of the incoming polaritons and χ̄
characterizes the saturation of the potential at distances less
than the blockade radius rb ¼ ðC6jχ̄jÞ1=6 [19] and is given
by

χ̄ðωÞ ¼ −Ω2
c þ 4Δ̃2 þ 6Δ̃νþ 2ν2

2ðΔ̃þ νÞðνð2Δ̃þ νÞ −Ω2
cÞ

ð4Þ

with ν ¼ ωþ 2Δs and Δ̃ ¼ δþ iΓ=2 − iγs=2. Since
γs ≪ Γ, we neglect the difference between Δ̃ and
Δ ¼ δþ iΓ=2. In our experiment, rb ranges from 7 to
10 μm. Note that with decreasing δ, the effect on gð2Þð0Þ of
the two-body dissipation in Ve (coming from Γ via χ̄)
becomes stronger, leading—in combination with compet-
ing attractive dispersive interactions—to the decrease of
gð2Þð0Þ, see Figs, 3(a),3(d).
Using Ve, we analyze the three-body scattering rate β,

for incoming dark-state polaritons near EIT resonance due
to processes like the one indicated in Fig. 1(c). We perform

FIG. 3. (a)–(c) Experimental data of the second-order gð2Þð0Þ,
third-order gð3Þð0; 0Þ, and connected η3ð0; 0Þ correlation func-
tions with Ωc=ð2πÞ ¼ 23.5� 1.5 MHz, for a cloud with OD ¼
37� 4 and σz ¼ 42� 4 μm. (d)–(f) Numerical simulations for
the same correlation functions. Parameters used for the simu-
lations are OD ¼ 37, Ωc=2π ¼ 25 MHz, Γ=2π ¼ 7 MHz,
γ=2π ¼ 0.3 MHz, and σz ¼ 40 μm. Regions with η3ð0; 0Þ > 0
indicate excess of three-body loss with respect to two-body loss.
The dashed lines indicate enhanced three-body loss predicted by
Fermi’s golden rule calculation (see text).

FIG. 2. (a)–(c) Measured (a) gð2ÞðτÞ, (b) gð3Þðτ1; τ2Þ, and
(c) η3ðτ1; τ2Þ for the experimental parameters indicated in the
text with δ=ð2πÞ ¼ 15 and δs=ð2πÞ ¼ −2 MHz, where
η3ð0; 0Þ < 0. (d)–(f) Measured (d) gð2ÞðτÞ, (e), gð3Þðτ1; τ2Þ, and
(f) η3ðτ1; τ2Þ for δ=ð2πÞ ¼ 22.5 and δs=ð2πÞ ¼ 2 MHz, where
η3ð0; 0Þ > 0.
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our analysis in the limit of zero dissipation and then
analytically continue to finite Γ and γs.
The lowest-order diagrams contributing to β are second

order in Ve. The conservation of energy and momentum
puts additional restrictions on the available open scattering
channels. In Figs. 4(a)–4(b), we show the leading contri-
butions to β which involve scattering to DDU with D
gaining large q and becoming lossy. We neglect other
allowed processes, such as scattering to DUL due to the
weaker effective interactions involving these bright polar-
itons because of their small Rydberg amplitude.
The incoming polaritons have ωDðq0Þ ¼ 0. In general,

the incoming momentum q0 ≠ 0 for δs ≠ 0, but, for brevity,
we show the expressions for δs ¼ 0 and q0 ¼ 0. Within a
Fermi’s golden rule calculation, the diagrams in Figs. 4(a)
and 4(b) contribute, respectively, the first and second terms
inside the absolute value in the expression for β:

β ¼ 18

π

Z
dq1dq2jS0Dj6jSq1D j2jS−q1−q2D j2jSq2U j2

× jṼq2 ½0�Gss½−q2;−ωUðq2Þ�Ṽq1 ½−ωUðq2Þ�
þ Ṽq1þq2 ½0�Gss½q1 þ q2;−ωDð−q1 − q2Þ�
× Ṽq2 ½−ωDð−q1 − q2Þ�j2
× δ½ωUðq2Þ þ ωDðq1Þ þ ωDð−q1 − q2Þ�: ð5Þ

Here, Ṽq½ω� is the Fourier transform of Veðω; rÞ, Gss is the
single-body propagator projected onto the Rydberg state,
ωUðqÞ is the dispersion for the upper-bright branch, and Sqν
is the overlap of the Rydberg state with a polariton at
momentum q on branch ν ∈ fD;Ug (see Supplemental
Material [43]).
The behavior of Eq. (5) depends on the interaction

strength, which can be quantified by φ ¼ jrb=
ffiffiffiffiffiffiffiffiffi
χ̄=m

p j,
where m ¼ −2g4=ΔΩ2c2. For jδj ≫ Ωc=2, φ simplifies
to ODbΓ=4jΔj (which, up to a constant factor, is the phase a
stationary Rydberg excitation imprints on a passing polar-
iton [18]), where ODb ¼ ODrb=

ffiffiffiffiffiffi
2π

p
σz is the optical depth

per blockade radius corresponding to the maximal density

of a Gaussian cloud with rms σz. In our experiment, ODb is
< 4, thus for the detunings considered here φ < 0.3.
In our experimental regime, with moderately strong

interactions (φ < 1), we can simplify Eq. (5) by noting
that the dispersions for ωD and ωU saturate to ωþ (see
Ref. [43]) in the relevant range of the momentum transfer
∼1=rb being larger than the characteristic threshold
momentum kc ≡ ωc=vg, where vg is the group velocity
[see Figs. 1(c),1(d)].
Then, the second term in Eq. (5) vanishes because

Ṽq2 ½−ωDð−q1 − q2Þ� ≈ Ṽq2 ½2ωþ� → 0, so β simplifies to
[52]

18

π

Z
dq

1

vgð−2ωþÞ
jṼq½0�Gss½q2 → ∞;−ωþ�Ṽq½−ωþ�j2;

ð6Þ

which has a complicated dependence on the experimental
parameters. We concentrate on qualitative features of
Eq. (6) to understand the behavior of β. For Ωc ≪ jδj,
the scattering rate is reduced to β ∝ φr2bΩ2

c=δ. Here, β
increases with φ, but does not feature any resonances as a
function of δ.
In contrast, for Ωc ∼ δ, Eq. (6) could have resonant

behavior for two reasons. First, the density of outgoing
states, characterized by 1=vgð−2ωþÞ, could diverge as a
function of δ. Second, the interaction vertices Ṽq½0� or
Ṽq½−ωþ�, which are inversely proportional to χ̄ð0Þ and
χ̄ð−ωþÞ, could have a resonance due to the vanishing value
of χ̄. This divergence in the interaction vertices will be
smoothed out for finite Γ; γs, but will still have a significant
impact on β. We find that the divergence in the density of
states is nearly canceled by the simultaneous vanishing of
Ṽq½−ωþ� (see Supplemental Material [43]), so the density
of states does not contribute to the resonance.
The interaction vertices Ṽq½0� and Ṽq½−ωþ� diverge for δ

approaching specific respective detunings δ0 and δþ
where χ̄ð0Þ and χ̄ð−ωþÞ vanish, respectively. In the
experimentally relevant limit jδsj ≪ Ωc; jΔj, the expres-
sions for δ0 and δþ simplify to δ0 ¼ 1

2
Ωc − ð3=2Þδs,

δþ ≈ 0.7Ωc − 0.8δs. Figure 3(f) shows these dependencies:
the gray-dotted line depicts δþ, whereas the white-dotted
line depicts δ0. The decay Γ leads to such significant
broadening of the two resonances that the two peaks are no
longer distinguishable, leading to a single, effective reso-
nant feature for β. In Fig. 3(f), the pink-dashed curve
depicts the value of δ for which jβj is maximal for a
fixed δs.
The maximal curve is closer to the δþ line because, for

our parameters, this resonance is stronger than the δ0
resonance. The resulting overall resonance is a three-body
effect because it predominantly comes from the δþ reso-
nance, which is not present for the two-body scattering. In
the vicinity of a divergent 1=χ̄, the interaction strength

FIG. 4. Lowest-order diagrams that contribute to three-body
loss. The black lines indicate polaritons in the dark branch, and
the blue lines indicate polaritons scattered to the upper-bright
branch. Dotted-wiggly lines indicate the effective pairwise
interactions. We use the full propagator for the S states in the
virtual state (black-arrowed line), which includes contributions
from all branches. Additionally, five similar diagrams (total of
six) for both (a)–(b) are obtained by permuting inputs and
outputs.
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could become large and negative, leading to a second
bound state, which would happen for φ ≈ 3 [19]. This
nonperturbative effect could hinder the applicability of
Fermi’s golden rule. However, since in our system φ < 0.3
(due to dissipation), we neglect the second bound state.
The measured three-body scattering probes nonpertur-

bative processes, even in the moderately interacting regime
for φ < 1. In this moderately interacting regime Fermi’s
golden rule calculation is approximate—it involves a
resummation strategy to perform perturbation theory in
the effective two-body interaction. This approximation
likely contributes to the discrepancy between our pertur-
bative analysis and numerical simulations. Similar to the
problem of describing Efimov bound states [25], non-
perturbative effects can be more accurately captured by
introducing an effective three-body interaction between
dark-state polaritons [16,21,22]. These N-body inter-
actions, however, are a momentum and frequency-
dependent quantity in free space, whose full description
requires the exact solution to the N-body problem. Steps
toward developing an approximate, consistent renormali-
zation group treatment of three-body forces have recently
been made by analyzing single-mode-cavity setups [53].
Summary and outlook.—We demonstrate the ability to

tune Rydberg-polariton interactions leading to resonantly
enhanced three-body losses. These interactions are ana-
lyzed using the few-body auto-correlation functions of the
outgoing field. Our numerical simulations reproduce the
observed features with good qualitative agreement. We
describe the tunable losses based on Fermi’s golden rule
treatment of the scattering process of three dark-state
polaritons to two lossy dark-state polaritons and a
bright-state polariton. One way of increasing the overall
strength of all involved interactions and three-body loss is
by increasing the optical depth per blockade radius. Also,
decreasing the dissipation from the decay of the inter-
mediate and Rydberg states would make the resonant
feature stronger and narrower since these decays lead to
the imaginary parts of the potentials broadening the
resonances. This can be achieved by simultaneously
increasing the Rabi frequency and the single-photon
detuning such that the resonance is still present, but
suppressing the dissipative part of the interactions as
Γ=jδj. However, the optical power needed to achieve strong
enough Rabi frequencies can be experimentally challeng-
ing. Furthermore, nonperturbative effects will be enhanced
(like the appearance of a second bound state), making the
theoretical analysis more complex. Pushing further into this
regime would enable the production of a novel three-
photon number filter.
Our work demonstrates the tunability of Rydberg sys-

tems, showing promising directions in the study and
control of few and many-body physics of strongly inter-
acting photons, with potential applications in quantum
information, quantum simulation, and exploration of exotic

phases of matter with controllable interactions. For exam-
ple, another bound state could emerge with a higher ODb
[19]; these additional bound states could be used as another
tuning knob to increase three-body forces. Extending the
system to three dimensions and altering the polariton
effective longitudinal and transverse mass and interactions,
could result in photonic Efimov trimers [23]. Another
exciting direction involves studying unconventional topo-
logical and spin-liquid phases with three-body forces,
especially in two dimensions [54].
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