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Qubits strongly coupled to a photonic crystal give rise to qubit-photon dressed bound states. These
bound states, comprising the qubits and spatially localized photonic modes induced around the qubits, are
the basis for many exotic physical scenarios. The localization of these states changes with qubit detuning
from the photonic crystal band edge, offering an avenue of in situ control of bound-state interaction. Here,
we present experimental results from a device with two transmon qubits coupled to a superconducting
microwave photonic crystal and realize tunable on-site and interbound state interactions. We observe a
fourth-order two-photon virtual process between bound states indicating strong coupling between the
photonic crystal and transmon qubits. Because of their localization-dependent interaction, these states offer
the ability to realize one-dimensional chains of bound states with tunable and potentially long-range
interactions that preserve the qubits’ spatial organization. The widely tunable, strong, and robust
interactions demonstrated with this system are promising benchmarks towards realizing larger, more
complex systems that use bound states to build and study quantum spin models.
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In the strong-coupling domain, a qubit coupled to a
photonic band edge forms an exponentially localized
photonic mode at the qubit position, which together with
the qubit forms a qubit-photon dressed bound state [1–7].
Photonic crystals are natural avenues to realize these bound
states due to their intrinsically tailorable band structure, and
characteristic Bloch mode electric field distribution [8]
which enables access to strong coupling with qubits [9–13].
Bound states in multiqubit photonic crystal devices are an
ideal platform to study many-body quantum optics in one-
dimensional systems [6,7,14–19]. Unlike many qubits
coupled to a common cavity mode but similar to the case

of some optical multimode cavities [20,21], coupling to a
band edge creates bound states that intrinsically preserve the
spatial organization of qubits, offering the ability to create
one-dimensional chains of bound states with tunable and
potentially long-range interactions. The promise of engineer-
ing interaction profiles beyond the intrinsic flip-flop with
additionalmicrowave drive tones further opens the possibility
of simulating a wide range of quantum spin models in future
devices [17]. In this paper, we demonstrate and characterize
the underlying, fundamental tunable on-site and interbound-
state interactions in a superconducting microwave photonic
crystal device coupled to two transmon qubits.
A single dressed bound state, seeded by a single qubit in a

crystal, is itself a unique avenue of study. Liu et al. first
directly detected such a bound state in a stepped-impedance
microwave crystal coupled to a single transmon qubit [13].
That work characterized the dependence of localization
length on detuning between the transmon qubit and the band
edge and further confirmed the existence of the localized
state in the band gap when the bare transmon qubit is in the
passband—an unmistakable signature of non-Markovianity,
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as seen in Figs. 1(e), 1(f), and Appendix D. We note that the
transmission dip observed in Figs. 1(e) and 1(f) is due to the
reflection from the transmon qubit [22–24]. State localiza-
tion is tunable in situ with frequency through a range
determined by device parameters, including transmon
qubit-waveguide coupling and band curvature. Compared
with previous work, we attain increased localization in this
device [Fig. 1(b)] due mainly to a flatter band dispersion,
realized by tailoring the unit cell of the photonic crystal (see
Appendix A for a detailed discussion of the experimental
parameters of our system). The bound-state localization
length in this device is still widely tunable, which is critical
for realizing strong, tunable interaction between spatially
separated bound states. As the different coupling regimes
translate to dramatically altered system behavior [7], it is
important to determinewhich domain our system falls under.
In systems such as the one presented here, qubit emission
into the waveguide being larger than the other decay rates
(coherent atom-photon interaction rates larger than decay
rates) is the minimal coupling criterion, upon which the
dressed bound statewithin the gap can be spectrally resolved
[7]. The strong coupling criterion corresponds to the
situation where a bare qubit resonant with the band edge
gives rise to a bound state that is shifted from the band edge

bymore than the bound state’s linewidth [7,13]. In our finite
system, we observe an approximately 250-MHz separation
between the bound state and the band edgewith bound-state
linewidth of 4 MHz when a qubit is resonant with the band
edge, thus firmly reaching the strong coupling condition [see
Figs. 1(b), 1(e), and 1(f)]. By fabricating two transmon
qubits in the photonic crystal [see Fig. 1(a) and Appendix B
for a discussion on coupling transmons to photonic crystals],
we realize multiple, spectrally resolvable bound states and
can study interbound-state interaction.
The nature of interbound-state interaction makes this

platform intrinsically well suited for investigating one-
dimensional chains of bound states [see Fig. 1(c)]. Realizing
sizable chains is possible by increasing the number of unit
cells—a property that does not impact the Bloch mode
distribution or band dispersion. Thus, qubits can be in
separate unit cells but realize nearly identical coupling to
the band edge. As the strength of interbound-state interaction
depends on the spatial overlap of the photonicwave functions
with the qubits, the distance separating qubits (set by device
design) is directlymapped into the interactions of the system,
maintaining the chainlike interaction pattern. Furthermore,
in the investigation of bound states, the finite size of the
crystal is a practical advantage: the overlaps of bound states

(b)

QQ

Q Q QQQ Q

(c)

(d)

Bound state frequency (GHz)

Li
ne

w
id

th
 (

M
H

z)

Experiment

(a)

Q
ub

it 
fr

eq
ue

nc
y 

(G
H

z)

Frequency (GHz)

Q
ub

it 
fr

eq
ue

nc
y 

(G
H

z)

Simulation

(e)

(f)

Experiment

Frequency (GHz)

Frequency (GHz)

S
21

 (
dB

)

Transfer matrix
Experiment

Simulation

-30

-10

-50
7.5 7.97.7 8.1

1

3

5

7

9

7.3 7.4 7.5 7.6 7.7

FIG. 1. A platform for interacting dressed bound states.—(a) A 16-site microwave photonic crystal is realized by alternating sections
of high and low impedance coplanar waveguide. Two transmon qubits (multilevel, anharmonic energy ladder) are in neighboring unit
cells in the middle of the device, centered in the high impedance sections for maximal coupling to the band edge at 7.8 GHz [all values
presented in units of ð2πÞ Hz, i.e., ωBE ¼ 7.8 ð2πÞ GHz]. For this experiment, the passband (band gap) refers to states above (below) the
band-edge frequency. Each transmon is individually tunable in frequency via a local flux bias line. (b) Bound-state linewidth, an indirect
measure of localization, varies with bare transmon qubit frequency. The wide range over which photon localization can be tuned
indicates the feasibility of realizing a chain of strongly interacting bound states. Experimentally measured and simulated linewidths are
shown in red and black, respectively. Inset: Overlay of simulated S21 from the transfer matrix method (blue) and measured high-power
S21 (black) shows good agreement in bare crystal characteristics. (c) The interaction between bound states will be determined by overlap
of their localized photonic envelopes with the qubits. (d) One can couple more qubits to the band edge by adding them to other cells of
the photonic crystal. In such a system, the localization-length-dependent interaction of the bound states would preserve the spatial
organization of qubits across the crystal, and determine the many-body structure of the interactions. (e) Experimental data and
(f) hopping model simulation for S21 vs single-qubit frequency and probe frequency. The bare band edge is at 7.797 GHz. The bright
peak in the band gap is the dressed qubit-photon bound state. The bound state always exists within the band gap for qubit frequencies
(the other qubit is far detuned and has negligible effect) both above and below the band edge—a clear signature of non-Markovianity.
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with ends of the crystal lead to only quasi-bound states,
allowing for detection through transmission measurements
(see Appendix C 2 for a proof). Direct detection of such a
state in this way was first demonstrated in Liu et al. [13].
Controlling photon-mediated interaction between super-

conducting qubits has been demonstrated in other one-
dimensional systems—such as two qubits in a cavity [25,26]
or in a linear waveguide [27]. However, in these cases the
distance between the qubits was effectively eliminated (i.e.,
standing-wave interaction in a cavity) or otherwise reduced
(modulo wavelength in a linear dispersion waveguide).
Thus, photonic crystals and tunable bound states offer a
fundamentally distinct form of interaction.
In addition to determining localization length, the

frequency of the bound state also determines on-site
interaction strength. In Figs. 2(a) and 2(b), we characterize
the dependence of the transition frequencies between the
three lowest levels of the bound state on bare transmon
qubit frequency, and observe the steady reduction in bound-
state anharmonicity from over 350 MHz to 0 MHz as the
transmon qubit is tuned from deep in the band gap to
the passband. Here, we have defined the bound-state
anharmonicity as Δ̃ ¼ 2ω̃01 − ω̃12, where ω̃01 and ω̃12 are

the dressed bound-state frequencies [see level diagram in
Fig. 2(a)]. This is dramatically more than the approximately
10% modification of transmon qubit anharmonicity with
frequency expected when a transmon qubit is strongly
coupled to a cavity mode [28].
Therefore, while we may treat the one-excitation and

two-excitation bound states as first (j1̃i) and second (j2̃i)
excited states of a new effective anharmonic transmon qubit
[13], it is important to note that this effective transmon
qubit differs in frequency and anharmonicity from the bare
multilevel transmon qubit. Defining the three lowest bare
transmon qubit levels as j0i, j1i, and j2i, here the two-
excitation bound state is largely due to the coupling of the
second transmon qubit transition (j1i ↔ j2i) with the band
edge rather than other multiphoton effects [7,15] (see
Appendix F 1).
Numerical simulations, modeling the photonic crystal as a

coupled cavity array with free parameters fit to match the
band curvature from the dispersion relation [7,29] (see
Appendix C for details), show similar dependence of
anharmonicity on detuning [see Fig. 2(a) inset and Fig. 2(b)].
Unlike the transfermatrixmethod [30–32], this approach can
extend beyond the single-excitation manifold to capture
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FIG. 2. Probing the bound-state energy levels.—(a) The anharmonicity of the bound state Δ̃ is dependent on bare transmon qubit
frequency ω01, demonstrating a tunable on-site interaction strength. In blue (red), the first (second) transition of the bound state is
measured across a range of bare qubit frequencies (inset: simulation). Upper left corner: level diagram of the bare transmon and dressed
transmon. (b) Decreasing anharmonicity with increasing bound-state frequency shown in red for experimental data and black for
simulation. (c) Power spectrum of a resonantly driven bound state for increasing drive amplitude. Sidebands are linearly displaced from
the central peak with increasing drive amplitude, characteristic of the Mollow triplet. Inset: second-order autocorrelation measurement
for drive amplitude ¼ 0.2 is consistent with single photon, antibunched transport. (d) Emission spectrum of a resonantly driven
(≈7.59 GHz) bound state (induced by a qubit at 7.9 GHz, which is above the band edge located at 7.8 GHz) as a function of drive power.
At low drive power, only the Mollow triplet is observed. With increasing power we see four additional sidebands, two on either side of
the original Rabi sidebands, which together are the transitions between the three lowest levels of the anharmonic bound state (j0i, j1i,
j2i). The white crosses are from numerical simulations (see Appendix E). We have included five transmon qubit levels in our simulation.
See text for the discussion of the seventh sideband around 7.25 GHz.
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the higher levels of the bound state, as well as the Lamb shift
of the qubit frequency, observed when including next-
nearest-neighbor hopping between coupled cavities. Each
transmon qubit is modeled as a three-level ladder (unless
otherwisementioned)with negative anharmonicity, and with
the j0i ↔ j1i and j1i ↔ j2i transitions coupled with ampli-
tudes g and g

ffiffiffi
2

p
, respectively, to its local cavity site. It is

critical to include level j2i to accurately reproduce the two-
excitation manifold observed in experiment.
The tunable level structure also emerges in the emission

spectrum of a continuously driven bound state [Figs. 2(c)
and 2(d)], induced by a single qubit with bare frequency
above the band edge. At low drive amplitude or Rabi
frequency, transmission across the crystal via the bound
state exhibits antibunching [see Fig. 2(c), inset] [33],
consistent with single-photon transport of a two-level
system and resonant pump (see Appendix D 4) [34–36].
As Rabi frequency is increased, we see a Mollow triplet
emission spectrum [Fig. 2(c)], characteristic of a driven
two-level system. When the Rabi frequency is on the same
order as the anharmonicity, the bound state can no longer be
approximated as a two-level system. In this domain, the
steady state will be a mixture of the three eigenstates
obtained by diagonalizing the drive Hamiltonian in the
Hilbert space spanned by j0i, j1i, and j2i. Transitions
between all three eigenstates result in six sidebands [37].
These six sidebands are visible in Fig. 2(d), though emission
intensity varies greatly among them due to eigenstate
population. A seventh transition is evident in the data
[7.25 GHz in Fig. 2(d)]. This additional transition is due
to the fourth effective transmon qubit level (j3̃i) while its
curvature is reproduced by including a fifth effective trans-
mon qubit level (j4̃i) in our numerical simulations (see
Appendix E). Crucial to reproducing this transition in our
theoretical simulations is taking into account that the bound-
state level structure cannot be defined by a single anharmo-
nicity, i.e., given the anharmonicity Δ̃ ¼ ω̃12 − ω̃01 of the
bound state, the frequency of the fourth level of the bound
state is not simply given by 3ω̃01 − 3Δ̃ as is expected for a
transmon [38] [see transmon level diagram in Fig. 2(a)].
We observe the flip-flop interaction (by a flip-flop

interaction between two qubits with basis states j0i; j1i,
wemean aHamiltonian proportional to j01ih10j þ j10ih01j)
between the two spatially separated bound states by meas-
uring the avoided crossing in transmission when the bound
states are tuned into resonance. As these qubits (while we
really have a multilevel systems coupled to the photonic
crystal, we refer to themas qubitswhenone can ignore higher
levels) are a fixed distance apart (9 mm) and there is
negligible direct capacitive coupling, the strength of the
flip-flop interaction will be entirely determined by the
overlap of the localized photonic mode of one qubit with
the other qubit, controllable here via the qubit frequencies.
In Fig. 3(a), the frequency of one qubit is held constant

while the other is tuned through resonance. Measuring

transmission at the single-photon level reveals an avoided
crossing between the j0̃ 1̃i and j1̃ 0̃i levels of the coupled
dressed bound states. Transmission amplitude of a bound
state dims when the bound state and bare qubit are near
resonance [see Fig. 3(a) inset]. From this plot, we can
extract a resonant bound-state–bound-state interaction of
120 MHz for a 7.73-GHz bare qubit frequency. In com-
parison, Figs. 3(b)–3(d) show reduced interaction strength
when both qubits are further detuned from the band edge,
6.125 GHz, 6.75 GHz, and 7.625 GHz, respectively, for the
fixed qubit frequency.
To characterize this aspect of the two bound-state

interaction, we map the magnitude of the avoided crossing
as a function of detuning. In Fig. 3(g), the qubits are
maintained on resonance with one another while being
simultaneously tuned through the band gap. Theoretical
modeling [Figs. 3(g) and 8(e)] shows experimental data to
be consistent with localized photonic states and with
interaction via wave-function overlap. In the limit where
the qubit is deep in the gap, the Markovian approximation
holds as is evident in the probability that the bare qubits
are in the excited state (obtained from the hopping
model) in Fig. 3(g) [see Fig. 8(c) for the photonic
probability of the bound states]. Here, the localized mode
and flip-flop interaction both have the same distance
dependence e−x=L where L ¼ a

ffiffiffiffiffiffiffiffi
α=δ

p
is the localization

length, δ is the detuning between the bare qubit and the
band edge, a is the unit cell size, and the band-edge
dispersion is ωk ¼ ω0 þ αa2ðk − k0Þ2 (see Appendix D 2).
The corresponding flip-flop interaction Hamiltonian is
H ∝

P
j;l S

þ
i S

−
j ð−1Þjxi−xjj=ae−jxi−xjj=L. When the bare qubit

frequencies are near the band edge the probability that the
bare qubits are in the excited state decreases [Fig. 3(g)] and
we have non-Markovian behavior (see Appendix D 3 for a
detailed on the breakdown of Markovian behavior). While
our experiment studies steady states, in other settings,
where an initial state evolves in the absence of an input
field, non-Markovianity can lead to the preservation of
entanglement during time evolution [6,39–41]. It would be
interesting to study in future work whether there is also
entanglement in steady state and how to best measure it in
our system.
We now turn to the qubit nature of the bound states

when the bare qubit frequencies are resonant. The qubit part
of the wave function of these two bound states (obtained
from the effective Hamiltonian of the system) is (approx-
imately) either symmetric (j0ij1i þ j1ij0i) or antisymmet-
ric (j0ij1i − j1ij0i). We theoretically predict that the higher
(lower) frequency bound state at resonance in Fig. 3(a) is
symmetric (antisymmetric) (see Appendix D 2). This turns
out to affect transmission through the system. Intuitively,
the antisymmetric state is expected to be dimmed as the
exponential parts of the localized photonic states cancel
each other out; and hence the linewidth, which is propor-
tional to the wave function at the end of the photonic

NEEREJA M. SUNDARESAN et al. PHYS. REV. X 9, 011021 (2019)

011021-4



crystal, is smaller. However, because the band edge is not at
zero momentum in our system, it turns out the symmetric
state is actually dimmed and has a smaller linewidth, as we
prove in Appendix D 2. In Fig. 3(e), we see that the bound
states at the same transmission frequency (with different
bare qubit frequencies) have drastically different linewidths
with the higher-frequency bound state having a smaller
linewidth, consistent with our numerical simulations
[Figs. 3(f) and 8(d)]. This provides some indirect exper-
imental evidence that the qubit part of the higher (lower)
frequency bound-state wave function is indeed symmetric
(antisymmetric).
To further study tunable on-site interaction, we

probe the interacting bound states beyond the one-
excitation manifold using spectroscopic measurements
[see Fig. 4(a)]. Similar to spectroscopy of qubits in
cavities, we can use transmission at the band edge to help
detect bound-state transitions, a technique that provides
sharper contrast compared to transmission measurement

for the more highly localized bound states and allows
detection of higher-dressed transitions, such as the
transition between j0i and j2i driven by two photons
of frequency ω02=2.
With this technique we detect interaction between j02i,

j20i, and j11i of the coupled bound states, observed as
avoided level crossings. In addition to the single-photon
exchange interaction between j02i (j20i) and j11i [26],
remarkably we measure the two-photon virtual interaction
between j20i and j02i, despite the fact that this process is
fourth order in coupling g (see Appendix F 2). This two-
photon interaction shows consistent dependence on detun-
ing: increasing in strength (from 0MHz to over 10 MHz) as
the bound states shift towards the band edge and the states
become more delocalized [see inset of Fig. 4(a)].
Numerical simulations [Fig. 4(b)] are consistent with
experimental data and capture the relative magnitudes of
interaction between levels as well as frequency dependence
on coupling strengths. Observation of this small interaction
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FIG. 3. Interacting bound states.—Interaction between bound states is characterized by the avoided crossing (observed in S21
measurement) that arises while tuning one qubit (y axis) through resonance with the other (fixed). (a) An avoided crossing of 240 MHz is
observed when the fixed qubit is at 7.73 GHz. The two points where transmission amplitude of a bound state dims are understood as the
bound-state peak being resonant with the qubit frequency. (a), inset—Hopping model simulation of the one-excitation manifold is
consistent with experimental observation. The lamb shift in the hopping model originates from next-nearest-neighbor interaction
between coupled cavities. (b),(c),(d) Tunable bound-state interaction strength is illustrated in example bound-state avoided level
crossings for a fixed qubit whose bare frequency is circa 6.125, 6.75, and 7.625 GHz. As qubits are detuned further from the band edge,
bound states are more tightly localized, reducing overlap and thus reducing interaction. (e),(f) Transmission when the qubits are on
resonance across a range of qubit frequencies in the experiment and the simulation, respectively. The uneven linewidths of the two
bound states when they occur at the same frequency suggest they are symmetric (higher-frequency bound state) and antisymmetric
(lower-frequency bound state) states (see main text). (g) Bound-state avoided crossing and qubit population (from simulation) as a
function of average bound-state frequency. A steady reduction in interaction strength occurs with increasing detuning from the band
edge (moving deeper into the band gap) due to increasing localization of the bound states. Hopping model simulation (black) captures
this detuning-dependent behavior observed in experiment (red). Near the band edge, both bound states (blue and cyan) have a significant
photonic contribution.
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highlights the overall strength of interbound-state coupling
possible via overlap alone.
The widely tunable on-site and interbound-state inter-

actions demonstrated with this device and consistent
theoretical simulations are promising benchmarks towards
realizing larger, more complex systems of bound states.
Examples of these systems include spin models with both
local and long-range interactions, which arise when the
bare qubit frequencies are deep in the band gap [17], and
complicated multiqubit-photon bound states, which arise
when the bare qubit frequencies are in the passband (see,
e.g., Ref. [7]). Beyond stepped impedance coplanar wave-
guides, there are undoubtedly numerous ways to realize
superconducting microwave photonic crystals, including
lumped element or Josephson junction-based designs, that
are equally compatible with superconducting qubits.
Regardless of the platform, behavior of bound states due
to qubit-band edge coupling will mirror the behavior
characterized in this work—elevating this platform above
any single experimental design choice.
While the bound states were centered in neighboring unit

cells in this device, this is not a limitation or requirement for
future experiments as the range of localization can be
accordingly set via the basic crystal parameters, as seen by
comparing bound-state linewidths measured here with
those reported previously [13]. Therefore, one can realize
a one-dimensional chain of bound states in a moderately
sized photonic crystal, where individual control over the

qubits would allow dialing up or down long-distance
interaction between sets of qubits.
In this work the interactions were in situ tunable via qubit

frequency (DC flux), a static quantity on the timescale of
the bound-state lifetime. Dynamically controllable inter-
actions would introduce an additional tool for designing
and manipulating spin Hamiltonians [17]. One method for
realizing this type of fast timescale control is flux pumping,
a technique involving microwave frequency modulation of
the qubit frequency along the flux bias line [42–45].
Another potential pathway would use an auxiliary micro-
wave field through the crystal itself. Here, the qubits could
be maintained on resonance deep in the band gap such that
there is minimal interaction via bound-state overlap. A
single rf control tone can be turned on to induce a transition
close to the passband, thus redressing the bound states into
new, effective bound states with interaction strength
depending on properties of the microwave drive. The
addition of several drives or precisely shaped microwave
pulses (made possible by commercial high-speed arbitrary
microwave waveform generators [46]) promise not only
changing interaction strength but also modifying the shape
of the interaction itself—from an exponential to a sum of
exponentials—leading to a wide range of possibilities
including power-law-decaying interactions [17]. These
supplementary forms of tunable control would expand
the ability of the qubit-photonic crystal platform to realize
a broader class of tunable spin models.
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APPENDIX A: MOTIVATION FOR USING
PHOTONIC CRYSTALS

In this Appendix, we discuss our motivation for using
photonic crystals and their advantages over other devices
that might realize bound states. To realize a dressed bound
state between a qubit and a band edge, we must couple a
qubit to a photonic band edge, where a band edge consists
of photonic states corresponding to the transition between a
stop band and a passband that are “slow light” due to
reduced group velocity. Band gaps and passbands are not
unique to photonic crystals—we come across them in
numerous other structures such as waveguides (near cutoff
frequency) or aperiodic filters.
To motivate the benefit of photonic crystals, let us

consider using an aperiodic filter instead. Filters are
ubiquitous in the microwave domain with many established
design methods that trade off optimizing various param-
eters such as roll-off or passband ripple. Stepped imped-
ance filters are a standard model for implementing filters,
where each impedance step is chosen precisely to meet
filter design constraints with no periodicity requirement
[30]. Because of this, aperiodic filters may also be more
sensitive to fabrication errors than periodic filters.
The next requirement is to couple a qubit. However, the

lack of periodicity transfers also to the electric field distri-
bution (no Bloch modes), and so we must numerically
calculate the optimal location to place the qubit and recalcu-
late for every modification of filter design. While this seems
feasible for a single qubit, the lack of Bloch modes is highly
problematic from a scalability standpoint as it is not guar-
anteed that we can couple multiple qubits (or even just two),
with near identical coupling strengths, to that band edge.
Furthermore, from a theoretical perspective, periodic

crystals are simpler, cleaner structures that are described in

the infinite limit by dispersion relations in momentum
space, providing useful insight for predicting system
behavior. Therefore, while it may be possible to realize
dressed bound states with a qubit in an aperiodic structure,
the benefits from using a periodic structure far outweigh the
likely larger device footprint.
A photonic crystal is an electromagnetic structure

formed by periodic modulation of the dielectric constant.
This results in dispersion relations characterized by energy
bands—alternating band gaps (“forbidden energies”) and
passbands (continuous density of states). The electric field
distribution is characterized by Bloch modes, allowing for
the position of qubits at locations that optimize coupling to
the band edge [8]. Engineering band edges via finite-size
photonic crystals has been demonstrated in many systems,
including nanophotonic structures [47,48] and supercon-
ducting microwave coplanar waveguides [13,49], and
tremendous progress towards integration with ultracold
atoms and superconducting qubits, respectively, has been
reported [12,13]. There are other ways to create super-
conducting microwave crystals, including using Josephson
junction arrays or lumped element circuits.
Our approach to creating an effective 1D microwave

photonic crystal is periodically alternating sections of high
and low impedance coplanar waveguides (CPWs). With
CPWs, the impedance can be easily changed via the center-
pin width and the center-pin to ground plane (the gap)
distance.
We define a unit cell as a high impedance section of length

Lhi and impedance Zhi sandwiched between two sections of
low impedance of lengths Llo=2 and impedances Zlo (for
symmetry purposes). With a periodic modulation, there are
naturally many gaps in the band structure.We chose to more
strongly couple the qubit to the second band edge, rather
than the first, because it has a smoother passband while still
having a steep roll-off.

1. Crystal simulation and parameters for
implementation

We can use the unit cell to calculate the band structure
or dispersion relation for an infinite crystal. While we can
never make an infinite crystal, calculating the dispersion
relation is a very useful starting point and gives us insight
into crystal parameters such as band curvature. To a
good approximation, the phase velocities in the high
and low impedance CPW sections are effectively equal
(vp;high ≈ vp;low ≈ vp ≈ 1.248 × 108 m=s). This yields

cos

�
ωkLlo

vp

�
cos

�
ωkLhi

vp

�

−
1

2

�
Zhi

Zlo
þ Zlo

Zhi

�
sin

�
ωkLlo

vp

�
sin

�
ωkLhi

vp

�

¼ cos½kðLlo þ LhiÞ�; ðA1Þ
where k is the momentum and ωk is the dispersion.
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We determine the band structure dependence on Llo and
Lhi for Zlo ≈ 25 Ω and Zhi ≈ 125 Ω. We look to optimizing
the trade-offs across four parameters: the frequency of the
band edge, the width of the band gap, the width of the
passband, and the curvature of the band. From these
simulations, we see that small changes in unit cell imped-
ances do not lead to significant changes in the band
dispersion.
For comparison, Figs. 5(a) and 5(b) show the simulated

dispersion for unit cell parameters in Liu et al. [13] and the
present paper, respectively. The unit cell for the present
paper was chosen to have a flatter band dispersion
(analogous to effective mass), α, so as to realize more
localized bound states.
While the dispersion relation assumes an infinite system,

crystals of small, finite length have been shown to realize
well-resolved gaps in dispersion where transmission is
suppressed and bands where transmission is unimpeded.
From an experimental perspective, we use transmission-
based measurements to probe the states.
Transfer matrices are a convenient and accurate method

for bare crystal simulation that incorporates both the exact
number of cells and boundary conditions [31]. A conven-
ient metric for comparison is transmission across the
device, S21. In Figs. 5(c) and 5(d), comparison of the

measured S21 of the bare crystal (taken at powers high
enough to saturate qubit effects) and the calculated S21
from transfer matrices shows agreement [13].

2. Realistic parameters and experimental aside

The device is fabricated on an approximately 430-μm-
thick c-plane sapphire substrate, on which we sputter
approximately 200 nm of niobium. The photonic crystal
is patterned using a direct-write laser writer, followed by a
dry SF6 reactive ion etch to transfer the pattern. To ensure
our waveguides are reasonably sized and can be reliably
fabricated using photolithography, we are limited to
impedances between approximately 25 and 125 Ω.
For this device, one unit cell consists of a high imped-

ance section (Zhi ¼ 124 Ω, Lhi ¼ 7.8 mm) and a low
impedance section (Zlo¼ 25Ω, Llo¼1.2mm). Impedance
estimates are obtained by fitting the measured spectrum
with transfer matrix simulations; the dispersion is robust to
small impedance deviations in the fabricated sample. We fit
16 unit cells on a 10 mm × 10 mm sapphire chip. While
more unit cells could fit on the chip, we see experimentally
that we must wire-bond extensively on-chip (to connect
ground planes) to create clean band gaps and passbands and
included this requirement into the design. By switching to
air or dielectric-supported bridges in the future we would be
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FIG. 5. First two bands of simulated dispersion for Zlo ¼ 25 Ω, Zhi ¼ 124 Ω and (a) Llo ¼ 0.45 mm, Lhi ¼ 8 mm (parameters from
[13]), and (b) Llo ¼ 1.2 mm, Lhi ¼ 7.8 mm (parameters from present paper). (c) Overlay of simulated S21 from the transfer matrix
method [blue; same parameters as (b)] and measured high-power S21 (black) shows good agreement in bare crystal characteristics.
(d) Overlay of simulated S21 from the transfer matrix method [blue; same parameters as (b)] and from the hopping model [red; with
κ ¼ 1 GHz and κ0 ¼ 4 MHz] and measured high-power S21 (black) near the band edge. Drop in transmission circa 8.3 GHz is due to
TWPA dispersion, not device defect.
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able to shrink the device footprint or include more unit cells
in the same-size device.
To integrate with the standard measurement setup

and qubit parameters, we choose unit cell lengths such
that the second band edge falls between 7 and 8 GHz. The
frequency of the band edge was designed to be at 7.8 GHz
to match with the traveling-wave parametric amplifier
(TWPA, dispersion feature around 8.3 GHz) to provide
good amplification for frequencies in the vicinity of the
band edge as well as deep in the band gap. The width of the
band gap is from 4.75 to 7.8 GHz and needs to be large
enough such that we have a wide range to tune the qubit
frequency over, which would in turn result in a wide range
of accessible localization lengths. Thewidth of the (second)
passband needs to be sufficiently large such that we can
ignore the third band edge and we can make the approxi-
mation that the curvature of the band (near the band edge) is
quadratic. Finally, as the curvature of the band plays a role
in determining the localization length, to make the states
more localized, we chose a shallower band curvature
[compare red plots in Figs. 5(a) and 5(b)].
In future iterations, one may consider altering boundary

conditions specific to the desired application. For example,
methods for impedance matching such as tapers or quarter-
wave transformers [30] are straightforward additions that
will modify impedance matching at specific frequencies
(such as at a band edge). These options were not pursued in
this work as we wanted to study bound-state properties
across a range of frequencies. If one were interested in only
specific frequencies or ranges, then this is a promising
improvement. The device is symmetric, so one end is
chosen arbitrarily to serve as the input. As detection of the
bound state is due to scattering, one may consider modi-
fying the symmetry of the device or detecting signal from
both ends of the crystal to improve collection efficiency.
We resort to two-tone spectroscopy over direct trans-

mission measurement to detect the bound state when the
qubit is deep in the band gap due to strong localization and
poor signal-to-noise ratio (SNR). Choosing a less shallow
band curvature will make it possible to see the bound state
all the way through the gap (see Liu et al. [13]); however,
this is a trade-off as the bound-state linewidths will increase
accordingly. Thus, choosing curvature and crystal param-
eters such that the linewidth remains as narrow as possible
without internal Q or loss effects is essential.

APPENDIX B: ADDING IN QUBITS

In this Appendix, we discuss the experimental details of
coupling the transmons to the photonic crystal. In this
device, we capacitively couple a transmon qubit to each of
the two central unit cells of the 16-cell crystal. A trans-
mon’s anharmonic level structure is due to the nonlinear
inductance of Josephson junctions and allows for selective
addressing of energy level transitions. However, it is
important to emphasize that our realization of a qubit does

have higher energy levels set by transmon geometry, unlike
the standard theoretical qubit which is synonymous with a
two-level system. These higher levels are also coupled to
the band edge and therefore accounting for these levels
becomes important when looking beyond the first excita-
tion sector.
Our qubits are fully patterned with a 125-kV e-beam

writer, with bridge-free junctions, and are made of evapo-
rated aluminum. The qubits are designed to have a target
charging energy (from electromagnetic simulation) of
approximately 450 MHz, and emphasis is placed on
maximizing coupling between the qubit and photonic
crystal without significantly altering the unit cell.
Finally, although identical in design, in reality the qubits
will differ due to fabrication variability. However, as
coupling to the waveguide is designed to be the dominant
decay channel for the qubits, bound states are robust to
small variation in other parameters.
We place qubits in adjacent unit cells (9-mm separation)

at the center of the crystal such that we can see significant
change in interaction strength with detuning. Each qubit
has a local flux bias line for independent control—DC cross
talk is corrected for through standard calibration. These
lines are low pass filtered; however, as the dominant decay
of the qubit is via the crystal, this is not expected to be a
limiting factor in coherence.
To determine where to place the qubits within the unit

cell such that they maximally couple to the desired band,
we must calculate the electric field distribution within the
unit cell, distribution determined by the Bloch modes for
the crystal [8].
For these crystal parameters, maximally coupling to the

second band edge (and minimally to the first band edge)
corresponds to placing the qubit in the center of long high-
impedance section. Other locations within a unit cell
change coupling to each band edge, which is a potentially
interesting regime for future experiments. However, here
we are interested in reducing the effect of the other band as
much as possible. We cannot completely eliminate this
coupling—experimentally we can still detect a drop in
transmission in the lower passband when the qubit is
resonant but this change is orders of magnitude smaller
than in the second band.

APPENDIX C: MODEL, TRANSMISSION, AND
FITTING OF PARAMETERS

In this Appendix, we introduce the effective Hamiltonian
for our system and discuss the fitting of various parameters
of the Hamiltonian in detail.

1. Hamiltonian

The Hamiltonian for the one-dimensional photonic
crystal is given by Hc ¼

P
k ωka

†
kak, where a†k creates a

bosonic excitation with momentum k, and ωk is the
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dispersion relation of the second band of the photonic
crystal, which is discussed in Sec. A 1. Here, we ignore
the other bands of the photonic crystal as the qubits
couple predominantly to the second band. Fourier trans-
forming (a†k ¼

ffiffiffiffiffiffiffiffiffi
a=L

p P
N
j¼1 a

†
je

ikxj , where L is the system
size, a is the unit cell size, N is the number of unit cells,
xj ¼ aj, and k ¼ ½ð2πÞ=L�n, where n is an integer) gives
a hopping model with periodic boundary conditions,
Hc ¼

P
i;jJi;ja

†
i aj, where

Ji;j ¼ Jji−jj ¼ lim
N→∞

1

N

X
k

eikðxi−xjÞωk

¼
Z

π

−π

dk̃
2π

eik̃ðxi−xjÞ=aωk̃=a: ðC1Þ

Here, k̃ is a dimensionless integration variable, and we use
the fact that Ji;j ¼ Jj;i since ωk ¼ ω−k. In Eq. (C1) we take
N → ∞, as we only know ωk in that limit (see Sec. A 1). To
model our finite system, which has open boundary con-
ditions and 16 unit cells, we use a 16-site hopping model
with open boundary conditions with hopping strengths
determined by Eq. (C1). Using the photonic crystal
parameters in Sec. A 2, we find (by numerical integration)
J0¼ 9.3272GHz, J1 ¼ 0.7288 GHz, J2 ¼ −0.0344 GHz,
J3¼0.0178GHz, J4¼−0.0034GHz, and J5¼0.0014GHz.
Unfortunately, we are unaware of an exact analytical
solution for Ji;j for our system. In our numerical simu-
lations, we keep hopping terms up to J5. We calculate the
hopping parameters for a given set of photonic crystal
parameters. A different choice of photonic crystal param-
eters would have given a different set of hopping param-
eters. As such, these parameters should only be understood
as estimates. We briefly comment on the change in theory
parameters that arises from using different photonic crystal
parameters at the end of this section.
The Hamiltonian for the isolated transmon qubits is

given by

Hq ¼
X
i¼1;2

X∞
n¼0

ω0n;ijniihnji: ðC2Þ

Here, i labels the transmon qubit, n labels the level of the
transmon qubit and ω0n;i are the bare energy levels of
the transmon qubits. In our simulation, the number of
transmon qubit levels is truncated at five (i.e., j0i through
j4i). For our experiment, ω00;i¼0, ω02;i¼2ω01;i−Δi,
ω03;i¼3ω01;i−3Δi, and ω04;i ¼ 4ω01;i − 6Δi, where Δi is
the bare anharmonicity of the ith transmon qubit.
We now turn to the coupling of the transmon qubits to the

photonic crystal. To an excellent approximation, the cou-
pling between the transmon qubit and the photonic crystal
takes place within a single unit cell (see Appendix D 2 for
justification of this statement). Thus, in the rotating-wave

approximation, we can write the coupling term of the
Hamiltonian as

Hqc ¼
X
i¼1;2

gia
†
ziðj0iih1ji þ

ffiffiffi
2

p
j1iih2ji þ

ffiffiffi
3

p
j2ii

× h3ji þ
ffiffiffi
4

p
j3iih4jiÞ þ H:c:; ðC3Þ

where zi labels the position of the two transmon qubits. In
our system, the transmon qubits are on neighboring unit
cells, i.e., z1 ¼ ðN=2Þ and z2 ¼ ðN=2Þ þ 1, and the cou-
pling for each transmon qubit, gi, is different due to small
experimental imperfections. The total Hamiltonian of the
system is then

Htot ¼ Hc þHq þHqc: ðC4Þ

Finally, we note that this Hamiltonian conserves total
excitation number.

2. Transmission methods

We now discuss the two theoretical methods we use to
calculate transmission in the linear drive regime. Neither
method relies on a weak coupling approximation between
the transmon qubits and the photonic crystal. The first
method involves treating the system as an open quantum
system, with loss on each site (that is site dependent),
subject to a weak drive on the first site. The largest loss
terms are at the ends of the one-dimensional photonic
crystal. The system can then be described by the following
effective non-Hermitian Hamiltonian (in the rotating frame)
with driving frequency ωd and strength ϵ,

Heff ¼
XN
i;j¼1

ðJi;j−ωdδi;j− iκ0δi;jÞa†i aj

þ
X
i¼1;2

ðω01;i−ωd− iκqÞj1iih1ji

þ
X
i¼1;2

giða†zi j0iih1jiþazi j1iih0jiÞ− iκða†1a1þa†NaNÞ

þ ϵða†1þa1Þ; ðC5Þ
where κq is the qubit half-width, κ0 is a uniform contri-
bution to photonic half-width, and κ is a decay rate on the
first and last sites. While there are certainly other forms of
loss (such as nonuniform loss on each site), our goal is to
reproduce the key features (e.g., the locations of the bound
state and of the transmission dip, as well as the linewidth of
the bound state) using as few parameters as possible. The
equations of motion for the quantum operators are

∂ay
∂t ¼−i

�X
j

ðJy;j−ωdδy;jÞajþ ϵδy;1þ
X
i¼1;2

δy;zigij0iih1ji
�

− ½κ0þ κðδy;1þδy;NÞ�ay; ðC6Þ
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∂ðj0iih1jiÞ
∂t ¼ ½−iðω01;i − ωdÞ − κq�j0ii

× h1ji − igiaziðj0iih0ji − j1iih1jiÞ: ðC7Þ

We omit vacuum Langevin noise from the equations of
motion as this noise does not affect our calculations.
Solving for the steady state of aN in the weak drive limit
(hj1iih1jiiss ¼ 0) yields the transmission. More specifi-
cally, S21 ∝ haNiss=ϵ.
The second method we use was introduced by Biondi

et al. [29]. Here, we treat the system (which is taken to be
the photonic crystal and qubits) as being connected to
waveguides with linear dispersions, with velocity vg, at the
ends of the photonic crystal. In this method, we take
κq ¼ κ0 ¼ κ ¼ 0, so that the single-excitation transmission
through the system can be expressed in terms of eigen-
values and eigenvectors of the system described by Htot
[Eq. (C4)] [29]. More explicitly, the transmission for a
given frequency ω is given by jTðωÞj2, where

TðwÞ ¼ −2iβ
ΓlΓr þ jβj2 ; Γl;r ¼ 1þ i

2vg

X
n

jVl;r
n j2

ω −Ωn
;

β ¼ 1

2vg

X
n

Vl
nðVr

nÞ�
ω −Ωn

: ðC8Þ

Here, Vl;r
n ¼ ffiffiffiffiffiffiffiffiffiffivggw

p h0ja1;N jni, Ωn, and jni are the eigen-
values and eigenvectors of Htot in the single-excitation
sector, and gw is the coupling between the waveguide and
the photonic crystal. Intuitively, transmission occurs when
the single-excitation eigenstates have the probability of the
photon being on both ends of the photonic crystal. Near the
bound-state energy E1B, we can write the transmission as

jTðωÞj2 ≈ 1

4v2g

V4

ðω − E1BÞ2 þ 1
v2g
V4

: ðC9Þ

Here, we have assumed that the wave function is sym-
metric, i.e., Vl

n ¼ Vr
n ¼ V. We see that the linewidth (in the

coherent limit) is proportional to the wave function at the
edge of the system V, as expected.

3. Fitting of parameters

In this section, we discuss how we fit various parameters
of the total Hamiltonian. The unknown parameters include
gi and Δ, and, for the first method, also κ0, κq, and κ.
Furthermore, ω01;i is tunable but its value is unknown, and
the transmission dip (visible when the bare qubit frequency
is in the passband) does not, in general, occur at the bare
qubit frequency unless hopping amplitudes Ji;j beyond
nearest neighbor are negligible.
The first parameters we determine are κ and κ0 (using the

first transmission method). We turn off the coupling of the

qubits to the photonic crystal (in the experiment, this is
accomplished by saturating the qubits). We set κ0 and κq to
zero and fit κ. Given that the largest losses occur at the ends
of the photonic crystal, fitting κ first is reasonable. κ controls
the linewidth of the photonic modes and the transmission
amplitude difference between the transmission dips and
peaks in the passband.We find that a reasonable estimate for
κ [for the experimental data in Fig. 5(d)] is 1 GHz, although
any κ in the range of 0.5 to 1.5 GHz also gives a reasonable
fit. We then turn on κ0, which further reduces the trans-
mission amplitude difference between the transmission dips
and peaks in the passband and lowers the transmission peak
of the lowest photonic mode. We estimate that κ0 ¼ 4 MHz
(although any κ0 in the range of 3 to 5MHz also fits the data
well). Figure 5(d) shows that simulated transmission is in
good agreement with the experimental data. Given that there
are other losses in the system that we have not included,
these numbers should be understood as estimates.
We now turn to determining gi. While κq is set to zero for

now, we find that varying it or the other loss parameters does
not noticeably change the frequency of the bound state or
transmission dip, thus making our estimate of the coupling
strength independent of the decay parameters. To begin,
we detune the qubit at site N=2 far away from the passband
(in the experiment, the detuned qubit is at 4.5 GHz) and then
fix the other (i.e., second) bare qubit frequency [50].
Transmission is then calculated as a function of driving
frequency. We find that g2 ¼ 0.55 GHz and ω01;2 ¼
7.9875 GHz match the experimental data well when the
bound state is at 7.605GHz, as seen in Fig. 6(a). Calculating
transmission when the first qubit frequency is near the
passband and the second qubit frequency is detuned and
comparing it to experimental data, we find g1 ¼ 0.505 GHz
[50]. To make sure we have chosen suitable coupling
strengths, we tune the bare qubit frequency (the detuned
bare qubit frequency is kept fixed). If we have chosen the
correct parameters, we should accurately capture the loca-
tions of the bound state and the transmission dip for different
bare qubit frequencies, while keeping the other parameters
fixed. Indeed, as seen in Fig. 6(b), we find this is the case for
the chosen coupling strengths.
Our next goal is to obtain an estimate for κq. To do so, we

increase κq, which increases the linewidth of both the
transmission dip and the bound state, until the linewidth of
the bound state matches the experimental value well for a
fixed bare qubit frequency (we note increasing κ0 also
increases the linewidth of the bound state, however κ0 is
already fixed). We find that κq ¼ 0.5 MHz accomplishes
this task for ω01;2 ¼ 7.9875 GHz. To make sure we have
chosen a suitable qubit half-width, we again tune the
second bare qubit frequency (while keeping the detuned
bare qubit frequency fixed). If we have chosen a reasonable
qubit half-width, we should be able to accurately estimate
the linewidth of the bound state for different bare qubit
frequencies (while keeping all other parameters fixed).
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Figure 1(b) of the main text shows that our estimate of κq is
reasonable.
Before moving on, we briefly comment on the second

transmission method. Figure 6(c) shows theoretical data
from both simulations for g2 ¼ 0.55 GHz and ω01;2 ¼
7.9875 GHz. The locations of the bound state and trans-
mission dip occur at the same spot for bothmethods. The key
difference is that the second method does not accurately
predict themagnitude of the linewidth of the bound state as it
assumes κq ¼ κ0 ¼ κ ¼ 0 (but instead has coherent cou-
pling of the crystal to the waveguide). In these simulations,
we have taken gw ¼ 2 GHz, as that fits the data when the
qubits are saturatedwell (not shown).We note that any value
of gw in the range of 1.5 to 2.5GHz also gives a reasonable fit
to the saturated qubit data and that the frequencies of the
bound state and the transmission dip are not sensitive to gw.
Simulated transmission data presented in the main text is
from method one.
We now fit the last remaining parameters, Δ1 and Δ2,

which are the bare transmon anharmonicities. We first
diagonalize Htot in the two-excitation sector for fixed ω01;i

(with the qubit on site N=2 detuned far away). The
theoretical prediction for the dressed anharmonicity of
the qubit on site N=2þ 1 is found by taking the lowest
eigenvalue of Htot in the two-excitation sector and sub-
tracting two times the lowest single-excitation eigenvalue.
We vary Δ2 until the theoretically predicted dressed
anharmonicity of the second qubit matches the experimen-
tally measured dressed anharmonicity for a given bare qubit
frequency (we choose our bare qubit frequency such that
the single-particle bound state is at 7 GHz). In doing so, we
find, to a good approximation, that Δ2 ¼ 0.365 GHz. We

then vary the bare qubit frequency and make sure the
theoretically predicted dressed anharmonicity is still con-
sistent with the experimentally measured value for different
bare qubit frequencies. We find excellent agreement for
a wide range of bare qubit values as shown in Figs. 2(a)
and 2(b) in the main text. Finally, we choose the value ofΔ1

to give the best fit to the magnitude of the two-photon
avoided crossing [see inset of Fig. 4(a) in the main text]. In
doing so, we find that Δ1 ¼ 0.365 GHz fits the exper-
imental data reasonably well.
Before we close this section, we estimate errors in our

parameters. To begin, we estimate what change in hopping
parameters (we call these different hopping parameters J0)
we would get if we choose Zhigh ¼ 123.5 Ω instead of
124 Ω. Both of these choices fit the experimental data well
in transmission matrix simulations. This choice of Zhigh

gives J00¼9.331GHz, J01¼0.7308GHz, J02¼−0.0345GHz,
J03¼0.0179GHz, J04¼−0.0035GHz, and J05¼0.0014GHz.
We see that the ratio of these hopping parameters to the
previous set is not less than 0.97 for any term, so we expect
the other parameters in our model will not differ by more
than 5% from their given predictions. We also expect this to
hold true if one uses any reasonable set of photonic crystal
parameters. To test this, we estimate g2 and the range
of decay parameters for the second set of hopping param-
eters. We find g2 ¼ 0.555 GHz and that the same range of
decay parameters fit the data well, consistent with our
expectation.

APPENDIX D: BOUND-STATE FUNDAMENTALS

In this Appendix, we discuss the theory of bound
states. Strong light-matter interaction between atoms and
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data. We choose parameters of the Hamiltonian such that the bound-state frequency, the transmission dip frequency, and the linewidth of
the bound state match the experimental data. (b) Solid blue line is theoretical data for ω01;2 ¼ 7.941 GHz and blue dots are experimental
data. Solid red line is theoretical data for ω01;2 ¼ 8.038 GHz and red dots are experimental data. (c) Comparison of transmission
methods for ω01;2 ¼ 7.9875 GHz. The solid blue line is from method one, while the solid red line is from method two. The bound-state
and transmission dip occur at the same frequencies for both methods.
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slow-light structures, ones with vanishing or significantly
reduced group velocity such as photonic band edges in
photonic crystals, has been an area of ongoing interest both
in theory and recent experiment. The principal interest
behind this study is the localized bound photonic state that
forms around the atom. This bound state has an exponen-
tially decaying photonic envelope that tunes with detuning
of the qubit transition from the band edge (see Fig. 7).
While the bound state is always within the gap, the
frequency of the bound state changes with qubit frequency
[see Figs. 1(e)–1(f)]. Additionally, the state becomes less
localized as the bare qubit is tuned closer to the band edge
[see Figs. 7(a) and 7(b)].
In a finite-size system, these localized states overlap with

the ends of the crystal, thus facilitating single-photon
transport across the crystal at the bound-state frequency
and providing an avenue to probe these states. This tunable
photonic interaction mechanism provides a platform for
simulation of many-body quantum optics in one-dimen-
sional systems, distinct from cavity or waveguide quantum
electrodynamics [see Figs. 7(c) and 7(d)].
In Figs. 1(e) and 1(f), we measure (simulate) S21 at low

power to track the bound state as a function of qubit
frequency. The bound state shows up as a Lorentzian peak
in transmission. We detect the change in wave-function
overlap as a change in bound-state linewidth—where

linewidth increases with localization length [see Fig. 1(c)
in Ref. [13] ]. As discussed in Sec. A, the localization of the
photonic wave function is determined predominantly by the
strength of the coupling, properties of the band edge, and
the frequency detuning between the atom and the band
edge. The ability to tune the localization with small-sized
crystals shows the versatility of this platform.

1. Bound-state linewidth dependence on detuning

The linewidth of the bound state is set by the amplitude
of the exponentially decaying photonic wave function
at the ends of the crystal (ignoring other forms of loss).
The envelope amplitude decays as ∼e−x=L, where x is the
distance from the qubit location and L is the localization
length. For simplicity, we consider the case of a single qubit
at the center of the crystal (total length d) such that the
envelope is symmetric. This results in a linewidth propor-
tional to e−d=2L. Of course, this approximation is only valid
in the limit where e−d=2L ≪ 1, meaning the bound state is
sufficiently localized compared to the finite length of the
crystal.

2. Single-photon bound states: Exact solution

In this section, we discuss the theory of atom-photon
bound states in the single-excitation sector for an infinite

QQ

Q Q

Q

Q

Q

Q

Frequency

Passband
(a)

(b)

(c)

(d)

Band gap

FIG. 7. Visualizing bound states.—A qubit (pink circle) is coupled to one site of a 1D photonic crystal (gray line of alternating width).
Coupling a qubit and band edge produces a photonic envelope (blue and purple) that is spatially centered at the qubit location. (a),(b)
The localization of the photonic component is determined by the detuning of the qubit from the band edge. (a) is more localized than
(b) as the detuning is larger in the former. The overlap of the photonic wave function with the ends of the crystal (not shown) determines
the linewidth of the bound state measured in transmission. The strength of the interaction between the bound states, when qubits are
resonant with one another, can be understood in (c) and (d) as depending on the localization of the bound states.
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photonic crystal coupled to two qubits. While our system is
of course finite, these results provide an intuitive under-
standing of our system. We note that a similar calculation
for two qubitswas first done, to the best of our knowledge, in
Ref. [6] and then later in Ref. [7] for the case when the two
qubits have equal coupling strengths and equal qubit

frequencies. The results below generalize that work to
unequal coupling strengths and unequal qubit frequencies.
To begin, we first write the Fourier transformedHamiltonian
from a more microscopic point of view (ignoring decay and
ignoring terms that do not affect the single-excitation bound
states),

H ¼
X
k

ωka
†
kak þ

X
i¼1;2

ω01;ij1iih1ji þ
1ffiffiffiffi
N

p
X
i¼1;2

�X
k

gk;iða†kj0iih1ji þ g�k;iakj1iih0jiÞ
�
: ðD1Þ

To make analytical progress, we assume that the dispersion
relation is ωk ¼ ω0 þ αa2½k ∓ ðπ=aÞ�2, which is valid
around k ¼ �π=a. While we chose a quadratic dispersion,
these results are qualitatively similar for a cosine dispersion.
Here, we also restore the momentum dependence of the
coupling strength gk;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk=2ℏ

p
diukðriÞ, where di is the

dipole matrix element between j0i and j1i states for the ith
qubit and ukðriÞ is the spatial function for the kth mode
evaluated at the ith qubit position, ri (see Ref. [6]). As ω0 is
much larger than the bandwidth, we can approximate

ffiffiffiffiffiffi
ωk

p
as

ffiffiffiffiffiffi
ω0

p
. Furthermore, for our system, ukðriÞ for the second

band is nearly independent of momentum as shown in
Ref. [13]. Thus, to an excellent approximation, gk;i is
constant, which we define as gk;i ¼ gi, and hence the
coupling is local in real space. Finally, we note that
ukðriÞ for the first band vanishes when the qubit is in the
middle of the high-impedance section, thus we can ignore
coupling to the first band to an excellent approximation. The
most general single-excitation wave function is

jψ1Bi ¼ sinϕða1j1i1j0i2j0i þ a2j0i1j1i2j0iÞ
þ cosϕ

X
k

cka
†
kj0i1j0i2j0i: ðD2Þ

Here, the basis states are labeled as jqubit onei1
jqubit twoi2jphotoni, and the conditions, a21 þ a22 ¼ 1

and
P

k jckj2 ¼ 1, ensure the wave function is properly
normalized. Solving the eigenvalue equation Hjψ1Bi ¼
E1Bjψ1Bi yields the following coupled equations:

sinϕE1Ba1 ¼ sinϕω01;1a1þ cosϕ
g1ffiffiffiffi
N

p
X
k

cke−ikaz1 ; ðD3Þ

sinϕE1Ba2 ¼ sinϕω01;2a2þ cosϕ
g2ffiffiffiffi
N

p
X
k

cke−ikaz2 ; ðD4Þ

cosϕE1Bck ¼ cosϕωkck þ sinϕa1
g1ffiffiffiffi
N

p eikaz1

þ sinϕa2
g2ffiffiffiffi
N

p eikaz2 : ðD5Þ

Solving for ck from Eq. (D15) and inserting the result into
Eq. (D3) yields

E1Ba1 ¼ ω01;1a1 þ a1
g21
N

X
k

1

E1B − ωk

þ a2
g1g2
N

X
k

e−ikaðz1−z2Þ

E1B − ωk
: ðD6Þ

The sums are evaluated as follows:

1

N

X
k

1

E1B − ωk
¼ a

Z
π=a

0

dk
2π

1

E1B − ω0 − αa2ðk − π
aÞ2

þ a
Z

0

−π=a

dk
2π

1

E1B − ω0 − αa2ðkþ π
aÞ2

:

ðD7Þ
Shifting the integrals by π=a, making the integrals dimen-
sionless, and extending the limits to infinity gives

1

N

X
k

1

E1B − ωk
¼

Z
∞

−∞

dk̃
2π

1

E1B − ω0 − αk̃2

¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − E1BÞ

p : ðD8Þ

Here, we have assumed that E1B < ω0. Following the same
steps for the remaining integral gives

1

N

X
k

e−ikaðz1−z2Þ

E1B−ωk
¼−

cos½πðz1− z2Þ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0−E1BÞ

p e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
jz1−z2j:

ðD9Þ

Here, we use the fact that ðz1 − z2Þ is an integer. We then
have

E1Ba1¼ω01;1a1−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0−E1BÞ

p
×fa1g21þa2g1g2cos½πðz1−z2Þ�e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
jz1−z2jg:
ðD10Þ

Repeating these steps for a2 gives the following equation for
the bound-state energy,
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�
E1B − ω01;1 þ

g21
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − E1BÞ

p
�

×
�
E1B − ω01;2 þ

g22
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − E1BÞ

p
�

¼ g21g
2
2e

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
jz1−z2j

4αðω0 − E1BÞ
; ðD11Þ

where we use the fact that ðz1 − z2Þ is an integer again. We
note that when the qubits are infinitely far away from each
other, we recover the well-known bound-state energy for a
single qubit (see, e.g., Ref. [7] or Ref. [13]),

E1B − ω01 ¼ −
g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − E1BÞ

p : ðD12Þ

Generically, Eq. (D11) yields one or two bound states
depending on the coupling strength, qubit frequencies,
distance between qubits, and α [7].
To illustrate this point, we consider the case when g1 ¼

g2 ¼ g and ω01;1 ¼ ω01;2 ¼ ω01 [which is relevant to the
case in Fig. 3(g) of the main text]. While the coupling
strengths are not exactly equal in our experimental system,
it is a decent approximation to consider them equal. In
this case, we expect a symmetric and an antisymmetric
solution, i.e., ae1 ¼ ae2 or ao1 ¼ −ao2. The difference of the
bound-state energy and the energy of the band edge,
E1B − ω0 ¼ δE1B < 0, is then given by

½δE1B−ðω01−ω0Þ�¼Σ�ðδE1BÞ

¼−
g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αδE1B

p ½1�ð−1Þjz1−z2je−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−δE1BÞ=α

p
jz1−z2j�;

ðD13Þ
where þ is for the symmetric state and − is for the
antisymmetric state and Σ�ðδE1BÞ is the self-energy. The

condition for the presence of a bound state, as derived in
Ref. [7] is −ðω01 − ω0Þ > Σ�ð0Þ.
We explicitly consider the experimentally relevant

case when jz1 − z2j is odd. In this case, we have
Σþð0Þ ¼ −ðg2=2αÞjz1 − z2j and Σ−ð0Þ ¼ −∞. For the anti-
symmetric state, the condition is always satisfied,
while for the symmetric state, we only have a bound state
if g >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½2αðω01 − ω0Þ�=jz1 − z2j
p

. We now apply this for-
malism to our experimental system. For our experimental
system, α ¼ 1.155 GHz and jz1 − z2j ¼ 1.We also take g to
be the average of the two coupling strengths determined in
the previous section, i.e., g ¼ ðg1 þ g2Þ=2 ¼ 0.5275 GHz.
Using these numbers, we estimate that we have two bound
states for ω01 − ω0 < 120 MHz. We remind the reader that
this result is only an estimate, as our experimental system is
finite and has unequal coupling strengths.
Finally, we investigate the wave function. The ratio of

a1=a2, which we define to be η, is given by

a1
a2

¼ η¼−
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0−E1BÞ

p

×
g1g2 cos½πðz1− z2Þ�e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
jz1−z2j

E1B−ω01;1þ g2
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0−E1BÞ

p
: ðD14Þ

When g1 ¼ g2 and ω01;1 ¼ ω01;2, we have a1=a2 ¼ �1,
i.e., we have symmetric and antisymmetric qubit states.
Using the normalization condition, a21 þ a22 ¼ 1, we have
a21 ¼ 1=½1þ ð1=η2Þ�. The photonic part of the wave func-
tion is given by

ck ¼
tanϕffiffiffiffi

N
p a1g1eikaz1 þ a2g2eikaz2

E1B − ωk
: ðD15Þ

The condition that
P

k jckj2 ¼ 1 gives

1

tanϕ2
¼ a21

N

X
k

jg1eikaz1 þ 1
ηg2e

ikaz2 j2
ðE1B−ωkÞ2

¼ a21

� g21þ 1
η2
g22

4ðE1B−ω0Þ3=2
ffiffiffi
α

p þg1g2 cos½πðz1− z2Þ�
2ηðE1B−ω0Þ2α

e−jz1−z2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
½ðE1B−ω0Þjz1− z2jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞα

p
�
�
: ðD16Þ

Fourier transforming ck gives

cj ¼
1ffiffiffiffi
N

p
X
k

ckeikaj ¼
tanϕ
N

�
a1g1

Z
∞

−∞

dk
2π

eikaðj−z1Þ

E1B − ωk
þ a2g2

Z
∞

−∞

dk
2π

eiakðj−z2Þ

E1B − ωk

�

¼ − tanϕ

�
a1g1

cos½πðj − z1Þ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − E1BÞ

p e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
jj−z1j þ a2g2

cos½πðj − z2Þ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − E1BÞ

p e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−E1BÞ=α

p
jj−z2j

�
: ðD17Þ
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We see that the photon is exponentially localized around the
qubits with localization length a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α=ðω0 − E1BÞ

p
, as in the

case of a single qubit (see Fig. 7). We remind the reader that
we can have two different bound-state energies (one for the
symmetric bound state and one for the antisymmetric one),
thus two different localization lengths. In other words, the
linewidths of the bound states will, in general, be different,
with the bound state closer to the band edge having a larger
linewidth. In our system, the symmetric bound state,
whenever it exists, is closer to the band edge and thus has
a larger linewidth.
Finally,we remark thatwhen g1≈g2¼g andω01;1≈ω01;2¼

ω01, the symmetric and antisymmetric nature of the bound
states can affect transport. Consider the case when the qubits
are on the same lattice site. In this limit, the photonic
contribution of the antisymmetric wave function will vanish
and hence cannot be detected via transport [see Eq. (D17)].
When the qubits are not on the same site, therewill be reduced
transmission depending on the separation between the qubits
andwhether or not the state is symmetric or antisymmetric as
can be seen explicitly fromEq. (D17). The fact that this effect

depends on the separation between qubits can be traced back
to the fact that the band edge is at k ¼ �π (if the band edge
was atk ¼ 0, only transport for the antisymmetric statewould
be reduced). Toobtain an estimate for howmuch transmission
will be reduced for the symmetric state, we plot the ratio of
linewidths, i.e., jcþN j2=jc−N j2 [see Eq. (C9)], for experimen-
tally relevant parameters (jz1 − z2j ¼ 1, N − z1 ¼ 7, and
N − z2 ¼ 8) in Fig. 8(d). Indeed, we see that the symmetric
state has a much smaller linewidth and hence less trans-
mission. This is consistent with the experimental results
presented in Fig. 3(e).

3. Single-photon bound states: Born-Markov solution

We now briefly compare these exact results to the
Born-Markov (BM) approximation. For simplicity, we
restrict ourselves to the case when the qubit frequencies
and coupling strengths are the same. Using a second-
order Schrieffer-Wolff transformation to eliminate the high-
energy subspace gives the following effective Hamiltonian
for the two qubits,

HBM ¼
�
ω01 þ

g2

N

X
k

1

ω01 − ωk

�
ðj1i1h1j1 þ j1i2h1j2Þ þ

g2

N

X
k

eikaðz1−z2Þ

ω01 − ωk
ðj0i1h1j1j1i2h0j2 þ j1i1h0j1j0i2h1j2Þ

¼
�
ω01 −

g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − ω01Þ

p
�
ðj1i1h1j1 þ j1i2h1j2Þ

−
g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − ω01Þ

p cos½πðz1 − z2Þ�e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−ω01Þ=α

p
jz1−z2jðj0i1h1j1j1i2h0j2 þ j1i1h0j1j0i2h1j2Þ: ðD18Þ

We stress that this formula is only valid for ω01 < ω0.
Diagonalizing HBM, we have the following eigenvalues,

E1 ¼ ω01 −
g2e−ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−ω01Þ=α

p
jz1−z2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðω0 − ω01Þ
p

× sinh

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 − ω01

α

r
jz1 − z2j

�
; ðD19Þ

E2 ¼ ω01 −
g2e−ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−ω01Þ=α

p
jz1−z2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðω0 − ω01Þ
p

× cosh

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 − ω01

α

r
jz1 − z2j

�
: ðD20Þ

In the limit where the qubits are infinitely far apart, we
recover the standard expression for the dressed qubit
frequency,

ω0
01 ¼ ω01 −

g2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0 − ω01Þ

p : ðD21Þ

In Fig. 8, we compare the results obtained in the
Born-Markov approximation to the exact analytical results.
Figure 8(a) shows these results for a single qubit andFig. 8(b)
shows these results for two qubits with jz1 − z2j ¼ 1. As
expected, the Born-Markov approximation is a good
approximation when the qubit frequency is away from the
band edge. Closer to the band edge, the Born-Markov
approximation fails, particularly for the lower-energy (i.e.,
antisymmetric) state. Furthermore, by comparing the blue
curve in Fig. 8(a) to the experimentallymeasured bound state
in Fig. 1(e), we clearly see that the experiment is not well
described by the Born-Markov approximation. We note
that the higher energy red line in Fig. 8(b) ends abruptly
at ω01 ≈ 7.920 GHz as there is only one bound state for
ω01 > ω0 þ 0.120 GHz.
We now analytically show that the Born-Markov

approximation is excellent for one of the dressed states
close to the band edge. We begin by expanding Eq. (D13)
(for the symmetric case, when jz1 − z2j ¼ 1) in the limit
that ω0 − E1B ≪ α, i.e., when the bound-state energy is
close the band edge. This gives
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E1B ¼ ω01 −
g2

2α

�
1þO

�
E1B − ω0

α

��
: ðD22Þ

Now comparing to the Born-Markov solution
for E1 in Eq. (D19) around ω0 ≈ ω01, we have
E1 ≈ ω01 − ðg2=2αÞ. We thus see that one of the dressed
states (the symmetric one) is well captured by the Born-
Markov approximation, while the other is not as seen in
Fig. 8(b).

4. Single-photon transport via the bound state

As discussed, a bound state mediates transport across
the crystal, at the otherwise forbidden frequencies
inside the band gap, via the overlap of the photonic
mode with the ends of the crystal. However, unlike a
cavity mode which accommodates many photons (of the
same frequency) due to its harmonic nature, the bound
state inherits an anharmonic level structure from the
qubit. This will result in single-photon, blockaded trans-
port. For a definitive confirmation, we measure the
second-order autocorrelation of the transmitted compo-
nent of a weak, resonant, continuous drive.
In Fig. 2(c), we plot the emission spectrum of the

resonantly driven bound state for low drive amplitudes.
Here, we see the familiar Mollow triplet structure

featuring sidebands that are linearly displaced from
the center peak with increasing drive amplitude. We
measure second-order autocorrelation [Fig. 2(c) inset] for
a drive amplitude below the threshold for incoherent
triplet emission such that the qubit is not saturated by the
drive. This measurement (see [36,51–54] for concept)
was made possible by a TWPA (MIT Lincoln Labs) to
improve SNR and a GPU (CUDA-Matlab) for significant
computational speed-up.

APPENDIX E: EMISSION THEORY

In this Appendix, we discuss the theoretical modeling
of the emission spectrum of a resonantly driven bound
state. Unfortunately, due to the large dimension of the
Hilbert space, we found that a direct approach of
calculating the emission spectrum using the master
equation for our sixteen-unit-cell system is not numeri-
cally feasible. Instead, we diagonalize the Hamiltonian
and investigate energy differences. While this approach
does not predict the widths and the driving-strength-
dependent intensities of the sidebands, it does predict
the frequencies of the sidebands. The Hamiltonian of a
single transmon qubit with a driving frequency ωd equal
to the bound-state frequency is given by (in the rotating
frame) [55]
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FIG. 8. Exact solution versus Born-Markov approximation. Here, the red lines are the exact solution while the blue lines are the Born-
Markov approximation. The dashed black lines mark the band edge and the thick black line is the bare qubit frequency. Here, we take
ω0 ¼ 7.8 GHz, α ¼ 1.155 GHz, and g ¼ 0.5275 GHz. (a) Single qubit. (b) Two qubits for jz1 − z2j ¼ 1. (c) Theoretical photon
population of the bound states. (d) Linewidth ratio of the two bound states as a function of bound-state energy. (e) Avoided crossing on
resonance versus bare qubit frequency. We see that the experimental data are well described by the Markovian solution only deep in
the gap.
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H ¼
X
i;j

ðJi;j − ωdδi;jÞa†i aj þ g2½a†z2ðj0ih1j þ
ffiffiffi
2

p
j1i

× h2j þ
ffiffiffi
3

p
j2ih3j þ

ffiffiffi
4

p
j3ih4jÞ þ H:c:�

þ
X4
n¼0

ðω0n − nωdÞjnihnj þ Ω½ðj0ih1j þ
ffiffiffi
2

p
j1i

× h2j þ
ffiffiffi
3

p
j2ih3j þ

ffiffiffi
4

p
j3ih4jÞ þ H:c:�; ðE1Þ

where Ω is the bare Rabi frequency of the drive and is
the only unknown parameter. We stress that ωd is not at
the bare qubit frequency but at the frequency of the
bound state. In the presence of a drive, the excitation
number is no longer conserved, and thus, to make
progress, one must implement a cut-off. In our numeri-
cal simulations, we have implemented a cut-off of five
transmon qubit levels and three photons. Diagonalizing
the system, we take the differences of the eigenvalues of
states corresponding to large occupation of atomic states
with no photons.
We now compare the results obtained by diagonalizing

Eq. (E1) to the results obtained by driving a dressed-
transmon qubit (without explicitly including the photonic
crystal). The latter approach was used in Ref. [13]. The
Hamiltonian for the dressed-transmon qubit is

H ¼
X4
n¼0

ðω̃0n − nωdÞjñihñj þ Ω̃ðj0̃ih1̃j þ
ffiffiffi
2

p
j1̃i

× h2̃j þ
ffiffiffi
3

p
j2̃ih3̃j þ

ffiffiffi
4

p
j3̃ih4̃j þ H:c:Þ: ðE2Þ

Here, ω̃0n are the dressed-transmon qubit frequencies,
ωd ¼ ω̃01, and Ω̃ is the Rabi frequency seen by the
dressed-transmon qubit. If the exact wave function for
the bound state is jψi ¼ cos θj1ij0i þ sin θ

P
kcka

†
kj0ij0i

with
P

k jckj2 ¼ 1 (here, our basis states are labeled as
jqubitijphotoni), we have Ω̃ ≈Ω cos θ, where θ is given by

tan2 θ ¼ g2

N

X
k

1

ðE1B − ωkÞ2
; ðE3Þ

which, for an infinite system, simplifies to

tan2 θ ¼ g2

4

1

ðE1B − ω0Þ3=2
ffiffiffi
α

p : ðE4Þ

When the bound state is approximately at 7.59 GHz, we
find cos θ ≈ 0.68 for our finite system. Figure 9 compares
the results obtained from Eqs. (E1) and (E2). We see that,
upon taking into account the reduction of the matrix
element due to the dressing, the two methods agree. We
also see [Fig. 9(b)] that, as expected, as the bare qubit
frequency moves deeper into the gap, θ approaches zero
and Ω̃ approaches Ω. In Fig. 9, we have used the
anharmonicity value predicted by theory. In Fig. 2(c) of
the main text, we use the experimental values of anharmo-
nicity, which is given by ω̃02 − 2ωd ¼ −0.11 GHz.
We assume that the feature around 7.22 GHz in Fig. 2(c)

of the main text is approximately ω̃23 (which gives
ω̃03 − 3ωd ¼ −0.48 GHz). This assumption is in decent
agreement (around 50 MHz off) with results obtained by

Frequency (GHz) Frequency (GHz)

P
um

p 
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w
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 (
dB

m
)

(a) (b)

FIG. 9. Theoretical simulations of the emission spectrum for different pump powers. Here, the blue squares are numerical results
obtained from the total Hamiltonian Eq. (E1), the green squares are from the dressed-transmon Hamiltonian Eq. (E2), and the red
squares are from Eq. (E2) but with cos θ ¼ 1. (a) Here, ω01 ¼ 7.97 GHz, and the bound-state frequency is 7.591 GHz. Using the
appropriately reduced matrix element (cos θ < 1, blue squares) is crucial in obtaining accurate results using Eq. (E2). (b) Here, the bare
qubit frequency of 7 GHz and the bound-state frequency of 6.847 GHz are both far from the band edge, so that cos θ ≈ 1 and the
reduction in the matrix element can be neglected, so all three data sets lie on top of each other.

NEEREJA M. SUNDARESAN et al. PHYS. REV. X 9, 011021 (2019)

011021-18



diagonalizing the full system when the bound state is at
7.59 GHz. This 50-MHz disagreement can be traced back
to the 20-MHz disagreement in Δ̃, the dressed anharmo-
nicity, between theory and experiment when the bound
state is at 7.59 GHz (if Δ̃ is off by 20 MHz, level j3i is
expected to be off from its value by around 3 times this
amount as ω̃03 ≈ 3ω̃01 − 3Δ̃). Finally, we find that ω̃04 −
4ωd ¼ −1.78 GHz [this value is also consistent with
results obtained by diagonalizing Eq. (E1)] matches the
experimental data well as seen by overlaying the theoretical
data from the dressed qubit with the experiential data
[Fig. 2(c) of main text]. In particular, we have captured the
feature that appears around 7.22 GHz and −10 dB. The
unique bending of this feature can be traced back to the fact
that the level structure of the dressed qubit [Eq. (E2)] does
not behave like a normal transmon due to the strong
coupling to the photonic crystal.

APPENDIX F: MULTIPHOTON THEORY

1. Two-photon bound state

In this section, we discuss the two-photon bound state.
For a single transmon qubit, the most general two-excita-
tion wave function is

jψ2Bi ¼ bj2ij0i þ
X
i

dia
†
i j1ij0i þ

X
i>j

fi;ja
†
i a

†
j j0ij0i

þ
X
i

fi;i
ða†i Þ2ffiffiffi

2
p j0ij0i: ðF1Þ

Here, the basis states are labeled as jtransmonijphotoni.
For i < j, it is convenient to define fi;j ¼ fj;i. In Fig. 10,
we plot jdij2 and jfi;jj2, which are obtained via exact
diagonalization of the two-excitation sector for 16 sites
[56]. We observe that the photons are localized around the
qubit. In Fig. 10(c), we plot the populations of transmon
qubit levels in the two-excitation ground state of Htot,
which are given by

jh0jψ2Bij2 ¼ jbj2; jh1jψ2Bij2 ¼
X
i

jdij2;

jh2jψ2Bij2 ¼
X
i≥j

jfi;jj2; ðF2Þ

to illustrate which terms in Eq. (F1) are important for a
given bare qubit frequency. For example, when the bare
qubit frequency is deep in the gap, the ground state of the
two-excitation sector is mostly in the j2ij0i state as seen in
Fig. 10(c). Upon increasing the bare qubit frequency (while
still in the band gap), the population of j1i increases, while
the population of j0i stays relatively small. This is because
two photons must be exchanged to couple the dominate
j2ij0i state and any two-photon state and there are no terms
inHtot that directly exchange two photons, thus making it a
higher-order process. On the other hand, coupling j2ij0i
and a†i j1ij0i only requires exchanging one photon. When
the bare qubit frequency is at or near the band edge, each
transmon qubit level in Eq. (F1) contributes significantly to
the bound-state wave function.
Unfortunately, we are unaware of an exact solution

similar to the one in Sec. D 2. To make analytical progress,
we assume fi;j ¼ 0 which is a valid approximation

i

jd i
2

f ij
2

ω01 = 7.6 GHz 
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FIG. 10. Visualizing the two-photon bound state. Here, the transmon qubit is on site nine. (a) The blue dots are jdij2 versus position for
ω01 ¼ 7.6 GHz. The red dots are jdij2 for ω01 ¼ 8.15 GHz as a function of position. (b) Plot of jfi;jj2 as a function of i and j for
ω01 ¼ 8.15 GHz. (c) The population of transmon qubit levels in the two-excitation ground state of Htot as a function of bare qubit
frequency.
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when the bare qubit frequency is deep in the band gap [as
seen in Fig. 10(c)]. Solving the eigenvalue equation,
Hjψ̃2Bi ¼ E2Bjψ̃2Bi, for the following wave function
ansatz (in momentum space),

jψ̃2Bi ¼ b̃j2ij0i þ
X
k

d̃ka
†
kj1ij0i; ðF3Þ

yields the following equations:

b̃E2B ¼ ω02b̃þ
ffiffiffi
2

p
gffiffiffi
n

p
X
k

eikaz2 d̃k; ðF4Þ

d̃kE2B ¼ðωk þ ω01Þd̃k þ
ffiffiffi
2

p
gffiffiffiffi
N

p e−ikaz2 b̃: ðF5Þ

These are similar to equations for the single-photon case.
Thus, we have

E2B − ω02 ¼ −
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω0 þ ω01 − E2B
p ðF6Þ

and

dj∝
ffiffiffi
2

p
b̃

N

X
k

eikaðj−z2Þ

E2B−ω01−ωk

¼−
ffiffiffi
2

p
b̃cos½πðj−z2Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðω0þω01−E2BÞ

p e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0þω01−E2BÞ=α

p
jj−z2j: ðF7Þ

We see that the photon is localized around the transmon
qubit, consistent with the exact finite-size numerical results
seen in Fig. 10(a). We note this ansatz breaks down when
the bare qubit frequency is near the passband as the states
become more photonic, in which case we can no longer
neglect fi;j.

2. Two-photon avoided crossing

In this section, we discuss the two-photon avoided
crossing seen in Fig. 4 of the main text. We assume the
two transmon qubits have equal coupling strengths and
equal bare frequencies. To begin, we first write the total
Hamiltonian in the two-excitation sector (in the rotating
frame), using a different notation,

H2 ¼ H0x þH0y þH1x þH1y; ðF8Þ

where

H0x ¼
X
k

ðωk þ ω12Þðj0; 1; kih0; 1; kj þ j1; 0; kih1; 0; kjÞ;

ðF9Þ

H0y ¼
X
k;p

ðωk þ ωp − ω02Þj0; 0; k; pih0; 0; k; pj; ðF10Þ

H1x ¼
ffiffiffi
2

p
gffiffiffiffi
N

p
X
k

ðeikaz1 j1; 0; kih2; 0; 0j þ eikaz2 j0; 1; kih0; 2; 0j þ H:c:Þ; ðF11Þ

H1y ¼
gffiffiffiffi
N

p
X

k;p;k≠p
ðeipaz1 j0; 0; k; pih1; 0; kj þ eipaz2 j0; 0; k; pih0; 1; kj þ H:c:Þ

þ
ffiffiffi
2

p
gffiffiffiffi
N

p
X
k

ðeikaz1 j0; 0; k; kih1; 0; kj þ eikaz2 j0; 0; k; kih0; 1; kj þ H:c:Þ: ðF12Þ

Here, the basis states are labeled as jtransmo1; transmo2; photonic fieldi. To proceed, we neglect the second line in H1y as
there are many photonic modes, thus the probability of both photons going into the same mode is negligible. Using a unitary
Schrieffer-Wolff transformation, we find the fourth-order term in coupling strength g to be

H4 ¼
1

2
H1xH̃0ðH̃0H2

1x þH2
1xH̃0ÞH̃0H1x −H1xH̃0H1yH̃0H1yH̃0H1x; ðF13Þ

where H0 ¼ H0x þH0y and H̃0 ¼ H−1
0 (here, H−1

0 is taken to be zero outside the support of H0). We are only interested in
terms that involve interactions between the j0; 2; 0i and j2; 0; 0i states, i.e., terms like j2; 0; 0ih0; 2; 0j. Only the last term in
Eq. (F13) contributes such a term. Ignoring contributions of the last term that are diagonal in the fj0; 2; 0i; j2; 0; 0ig basis,
the effective interaction between the j2; 0i and the j0; 2i states is (after projecting out the photonic degrees of freedom),

Hj2;0i↔j0;2i ¼ −
4g4

N2
j2; 0ih0; 2j

X
k;p

eiðkþpÞaðz2−z1Þ

ðωk þ ωp − ω02Þðωk − ω12Þ
�

1

ωk − ω12

þ 1

ωp − ω12

�
þ H:c:

¼ −4g4j2; 0ih0; 2j
Z

∞

−∞

dp̃
2π

Z
∞

−∞

dk̃
2π

eiðk̃þp̃Þðz2−z1Þ

½αðk̃2 þ p̃2Þ − 2ω0 − ω02�ðαk̃2 þ ω0 − ω12Þ

×

�
1

αk̃2 þ ω0 − ω12

þ 1

αp̃2 þ ω0 − ω12

�
þ H:c: ðF14Þ
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The dimensionless p̃ integral can be evaluated exactly. Doing so, we have

Hj2;0i↔j0;2i ¼−2g4j2;0ih0;2j
Z

∞

−∞

dk̃
2π

eik̃ðz2−z1Þ
�
eð−jz2−z1j=

ffiffi
α

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0þαk̃2−ω02

p
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0þαk̃2−ω02

p 1

ðαk̃2þω0−ω12Þ2

−
1

ðαk̃2þω0−ω12Þ
1

ω0þω12−ω02þαk̃2

�
eðjz2−z1j=

ffiffi
α

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0þαk̃2−ω02

p
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0þαk̃2−ω02

p −
eð−jz2−z1j=

ffiffi
α

p Þ ffiffiffiffiffiffiffiffiffiffiffi
ω0−ω12

p
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0−ω12

p
��

þH:c: ðF15Þ

Here, we have assumed that 2ω0 > ω02 andω0 > ω12. These conditions are satisfied in the regime where we experimentally
observe the two-photon avoided crossing. We are interested in determining how the interaction decays as a function of
distance. Unfortunately, we are unaware of how to analytically evaluate the first two terms (the third term can be evaluated
exactly). However, the integrand decreases exponentially as a function of k for the first two terms. Thus, it is reasonable to
take the integrand to be a constant value (i.e., the integrand value at k ¼ 0) over a small window, δk, about k̃ ¼ 0 and zero
otherwise. This small window is taken to be the momentum value for which the argument in the exponential equals one, i.e.,

δk ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=jz2 − z1j2Þ − ½ð2ω0 − ω02Þ=α�

p
. Evaluating the remaining integral gives

Hj2;0i↔j0;2i ≈ −2g4
j2; 0ih0; 2j
ðω0 − ω12Þ

δk
2π

e−jz2−z1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ω0−ω02Þ=α

p
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 − ω02

p
�

1

ðω0 − ω12Þ
−

1

ω0 þ ω12 − ω02

�

þ g4j2; 0ih0; 2j 1ffiffiffi
α

p ðω02 − 2ω12Þ

0
@e−jz2−z1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0−ω12Þ=α

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 − ω12

p −
e−jz2−z1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0þω12−ω02Þ=α

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ ω12 − ω02

p
1
A e−ðjz2−z1j=

ffiffi
α

p Þ ffiffiffiffiffiffiffiffiffiffiffi
ω0−ω12

p
ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 − ω12

p þ H:c:

ðF16Þ

We see that every term decays exponentially as a function
of jz2 − z1j, thus the effective interaction between the j2; 0i
and the j0; 2i states decays exponentially as well.
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