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Out-of-time-order correlators in finite open systems
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We study out-of-time-order correlators (OTOCs) of the form 〈Â(t)B̂(0)Ĉ(t)D̂(0)〉 for a quantum system weakly
coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a
disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate
that for a system with discrete energy levels the OTOC saturates exponentially ∝∑

aie
−t/τi + const to a constant

value at t → ∞, in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focusing
on the case of a two-level system, we calculate microscopically the decay times τi and the value of the saturation
constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay
on two sets of parametrically different time scales related to inelastic transitions between the system levels and
to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can
be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.
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Quantum information spreading in a quantum system is
often described by out-of-time-order correlators (OTOCs) of
the form

K(t) = 〈Â(t)B̂(0)Ĉ(t)D̂(0)〉, (1)

where Â, B̂, Ĉ, and D̂ are Hermitian operators and 〈· · · 〉 is
the average with respect to the initial state of the system.
Correlators of such forms have been first introduced by Larkin
and Ovchinnikov [1] in the context of disordered conductors
where the correlator 〈[pz(t),pz(0)]2〉 of particle momenta pz

has been demonstrated to grow exponentially ∝e2λt on times
τ0 � t � tE where the exponent λ characterizes the rate of
divergence of two classical electron trajectories with slightly
different initial conditions, τ0 is the elastic scattering time, and
tE is the Ehrenfest time, characterizing the crossover between
classical and quantum dynamics [2].

The concept of OTOC has revived [3] recently in the
context of quantum information scrambling and black holes,
motivating further studies of such quantities (see, e.g.,
Refs. [4–8]). Despite not being measurable observables [9],
OTOCs (1) characterize the spreading of quantum information
and the sensitivity of the system to the change in the initial
conditions. At present, the exponential growth of commutators
of the form 〈[Ŵ (t),V̂ (0)]2〉 in a sufficiently long interval of
time is often used as a definition of quantum chaos (for a
discussion of alternative definitions see, e.g., Ref. [10]), and
the Lyapunov exponent λ serves as a measure of quantum
chaotic behavior in a system. It is also expected that OTOCs
may be used [5,11–14] to identify the many-body-localization
transition [15].

So far the studies of quantum chaos and information scram-
bling have been focusing on closed quantum systems. In reality,
however, each system is coupled to a noisy environment,
which leads to decoherence and affects information spreading.

Moreover, a sufficiently strongly disordered interacting system
may be separated into a small subsystem of the size of the
single-particle localization length or a region of quasilocalized
states coupled to the rest of the system considered as the
environment. In this Rapid Communication we analyze out-
of-time-order correlators in a quantum system weakly coupled
to a dissipative environment.

Summary of the results. We demonstrate that, for a sys-
tem with discrete nondegenerate levels En, correlator (1)
at long times t exponentially saturates to a constant value
of K(t) ∝ ∑

ane
iωnt e−t/τn + const, in contrast with chaotic

systems where OTOCs contain exponentially growing con-
tributions. The times τn describe the rates of information
scrambling in the system and are distinct from the dephasing
and decoherence times which describe the decay rates of the
density matrix. We calculate microscopically the value of the
saturation constant and the relaxation times τn as a function of
the environment’s spectral function and the matrix elements of
the system-environment coupling. Depending on the choice
of operators Â, B̂, Ĉ, and D̂, the saturation value may be finite
or zero. OTOCs relax due to both inelastic transitions between
the system’s levels and pure dephasing processes caused by
slow fluctuations of the energies En. Although some OTOCs
are immune to dephasing processes, a generic correlator has
components both sensitive and insensitive to dephasing and
thus decays on two sets of parametrically different scales
related to dephasing and relaxation, respectively, as shown in
Fig. 1.

Our results suggest, in particular, that a disordered system of
interacting particles cannot exhibit quantum chaotic behavior
if the typical single-particle level splitting δξ in a volume
of linear size ξ (single-particle localization length) exceeds
the dephasing rate and the rate of inelastic transitions due
to interactions and/or phonons. Thus, chaotic behavior in
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FIG. 1. Time dependence of the out-of-time-order correlator (1)
in a system with a significantly larger dephasing rate than relaxation.
τdeph and τrel are the (longest) characteristic times of dephasing and
inelastic relaxation.

a disordered interacting system requires a sufficiently long
single-particle localization length, strong interactions, or, e.g.,
a phonon bath, which would lead to the quasiparticle decay
rate exceeding the level spacing δξ .

For a classical environment, the evolution of an OTOC (1)
in an open system may be mapped onto the evolution of the
density matrix of two systems coupled to the same environ-
ment, which allows one to measure OTOCs by observing
the correlations between two systems in a noisy environ-
ment, such as spins in a random time-dependent magnetic
field.

Model. We consider a system with discrete nondegenerate
energy levels En coupled to a dissipative environment and
described by the Hamiltonian,

Ĥ = Ĥ0 + V̂ X̂ + Ĥbath(X̂), (2)

where Ĥ0 = ∑
n En |n〉 〈n| is the Hamiltonian of the system,

Ĥbath(X̂)—the Hamiltonian of the environment, and V̂ X̂ is the
coupling between the system and the environment where the
operator V̂ = ∑

n,m Vnm |n〉 〈m| acts on the system degrees of
freedom and X̂ is an environmental variable which commutes
with the system degrees of freedom.

To compute the OTOC (1) where operators Â, B̂, Ĉ, and D̂

act on the system variables, it is convenient to decompose it as
K = Km1m2,n1n2An1m1Cn2m2 (summation over repeated indices
implied), where An1m1 and Cn2m2 are the matrix elements of
operators Â and Ĉ and

Km1m2,n1n2 = 〈|n1〉 〈m1| (t)B̂(0) |n2〉 〈m2| (t)D̂(0)〉, (3)

where 〈· · · 〉 is the averaging with respect to both the system
and the environment’s states.

In the limit of a vanishing system-environment cou-
pling V̂ , the correlators (3) oscillate with time Km1m2,n1n2 ∝
ei(En1 +En2 −Em1 −Em2 )t . A finite coupling between the system and
the environment leads to dissipation and relaxation processes
and thus to the decay of the elements Km1m2,n1n2 . For a weak
coupling considered in this Rapid Communication, the char-
acteristic decay times of the OTOCs significantly exceed the
correlation time of the environment’s degrees of freedom, i.e.,
of the function S(t − t ′) = 〈X̂(t)X̂(t ′)〉env, and the evolution
of the elements is described by a system of Markovian Bloch-

Redfield [16] equations of the form [17]

∂tKm1m2,n1n2 = i(En1 + En2 − Em1 − Em2 )Km1m2,n1n2

−
∑

m′
1,m

′
2,n

′
1,n

′
2

�
m′

1m
′
2,n

′
1n

′
2

m1m2,n1n2 Km′
1m

′
2,n

′
1n

′
2
. (4)

From the definition of the elements (3) it follows that
∑
m,n

Knm,nm = 〈B̂(0)D̂(0)〉 = const. (5)

Equation (5) may also be derived from the microscopic
equations of evolution as we show in Ref. [17].

Due to the smallness of the decay rates �
m′

1m
′
2,n

′
1n

′
2

m1m2,n1n2 in
Eq. (4), the evolution of each element Km1m2,n1n2 is affected
only by the elements Km′

1m
′
2,n

′
1n

′
2

with the same oscillation
frequency En1 + En2 − Em1 − Em2 (secular approximation).
In this Rapid Communication we consider systems with
sufficiently nondegenerate energy spectra; if two elements
oscillate with the same frequency, they may be different only
by permutations of indices n1 and n2 and/or m1 and m2.

For a generic N -level system there are 2N2 − N ele-
ments (3) with zero energy gaps En1 + En2 − Em1 − Em2

(with m1 = n1, m2 = n2 and/or m1 = n2, m2 = n1). These
elements are immune to dephasing, i.e., to the accumulation
of random phases caused by slow fluctuations of energies Eni

.
Such vanishing of dephasing is similar to that in decoherence-
free subspaces [18,19] of multiple-qubit systems. We em-
phasize, however, that even dephasing-immune correlators in
general decay at long times due to the environment-induced
inelastic transitions between the levels (relaxation processes).

A generic OTOC (1) includes components both sensitive
and insensitive to dephasing as well as a component indepen-
dent of time, which exists due to the conservation law (5). For
an environment with a smooth spectral function on the scale of
the characteristic level splitting, the characteristic decay rate
of the dephasing-immune components may be estimated as
1/τrel ∼ V 2

⊥S(	E), whereV⊥ is the typical off-diagonal matrix
element of the perturbation V̂ and 	E is the characteristic
level spacing. The other components decay with the charac-
teristic rate of 1/τdeph + 1/τrel, where 1/τdeph ∼ V 2

‖ S(0) is the
characteristic dephasing rate, where V‖ is the typical diagonal
matrix element of the perturbation V̂ . As a result, the decay
of the OTOC consist of three stages, corresponding to these
characteristic times as illustrated in Fig. 1.

Two-level system. In order to illustrate the meaning of these
time scales and the related phenomena, we focus below on
the case of a two-level system, equivalent to a spin 1/2 in
a random magnetic field (we provide microscopic analysis of
OTOCs for a generic multilevel system in Ref. [17]), described
by the Hamiltonian,

Ĥ = 1

2
Bσ̂z + 1

2
σ̂nX̂ + Ĥbath(X̂), (6)

where σ̂ is a vector of Pauli matrices and n is a constant unit
vector, the direction of the fluctuations of the magnetic field.

The dissipative environment induces transitions |↑〉 → |↓〉
with the rate �↓ = 1

4 (n2
x + n2

y)S(B) as well as the opposite
transitions |↓〉 → |↑〉 with the rate �↑ = 1

4 (n2
x + n2

y)S(−B),
where S(ω) is the environment spectrum, the Fourier trans-
form of S(t − t ′) = 〈X̂(t)X̂(t ′)〉env. Weak fluctuations of the
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magnetic field in the longitudinal direction lead to dephasing
with the rate �φ = 1

2n2
zS(0). We focus below on the long-time

dynamics of the system and assume for simplicity that the rate
�φ of pure dephasing significantly exceeds the rates �↑ and
�↓ of inelastic transitions between the levels of the spin; in the
opposite case, all OTOC decay rates are on the same order of
magnitude.

The OTOCs K↑↑,↓↓ and K↓↓,↑↑ oscillate with frequencies
±2(E↓ − E↑) = ∓2B and have dephasing rate 4�φ , the same
as ±1-projection states of a spin 1 in magnetic-field B,

K↑↑,↓↓,K↓↓,↑↑ ∝ e∓2iBt e−4�φt , (7)

where we have neglected the small relaxation rates �↑,↓ � �φ .

There are eight elements (3) which correspond to three
spin indices pointing in one direction and one spin index
pointing in the opposite direction. These elements oscillate
with frequencies ±B and have the same dephasing rate as a
spin 1/2,

K↑↓,↓↓,K↓↑,↑↑,K↓↓,↑↓, . . . , ∝ e−�φt . (8)

The behavior of OTOCs at long-times t � 1/�φ is de-
termined by the components with a vanishing frequency
En1 + En2 − Em1 − Em2 of coherent oscillations because such
components are insensitive to dephasing. For a spin 1/2, their
evolution is described by the system of equations (as follows
from the generic master equations [17]):

∂t

⎛
⎜⎜⎜⎜⎜⎝

K↓↑,↑↓
K↑↓,↓↑
K↑↓,↑↓
K↓↑,↓↑
K↑↑,↑↑
K↓↓,↓↓

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−�↓ − �↑ 0 −�↓ −�↓ �↓ �↓
0 −�↓ − �↑ −�↑ −�↑ �↑ �↑

−�↑ −�↓ −�↓ − �↑ 0 �↓ �↑
−�↑ −�↓ 0 −�↓ − �↑ �↓ �↑
�↑ �↓ �↑ �↑ −2�↓ 0
�↑ �↓ �↓ �↓ 0 −2�↑

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

K↓↑,↑↓
K↑↓,↓↑
K↑↓,↑↓
K↓↑,↓↑
K↑↑,↑↑
K↓↓,↓↓

⎞
⎟⎟⎟⎟⎟⎠

. (9)

The rates of the long-time decay of OTOCs are given by the
eigenvalues of the matrix in Eq. (9) (with the minus sign) and
are shown (except for the zero eigenvalue) in Fig. 2. Such a
matrix always has a zero eigenvalue due to the conservation
law (5). The system also has a triply degenerate decay rate
of �↑ + �↓. The other two decay rates are given by 1

2 [3�↑ +
3�↓ ± (�2

↑ + 34�↑�↓ + �2
↓)1/2].

At long-times t → ∞ the correlator (1) saturates to a
constant value determined by the projection of the OTOC (1)
on the zero-decay-rate mode,

K(t → ∞) = 1√
2�2

↑ + 2�2
↓

(�↓A↑↓C↓↑ + �↑A↓↑C↑↓

+�↑A↑↑C↑↑ + �↓A↓↓C↓↓). (10)

Although we assumed a small inelastic relaxation rate in
comparison with the dephasing rate, we emphasize that the
result (10) for the saturation value of the OTOC holds for an
arbitrary ratio of dephasing and relaxation rates.

Mapping to the evolution of two systems for a classical
environment. The evolution of the OTOCs (3) is similar to that
of the density-matrix elements,

ρm1m2,n1n2 = 〈〈|m1〉 〈n1| (t)〉Sys1
〈|m2〉 〈n2| (t)〉Sys2

〉X, (11)

of a compound system consisting of two identical subsystems
(“Sys1” and “Sys2”) coupled to the same dissipative environ-
ment, where m1 and n1 and m2 and n2 in Eq. (11) are the states
of the first and the second subsystems, respectively, |mi〉 〈ni | (t)
is an operator in the interaction representation, and 〈· · · 〉X is
the averaging with respect to the environment’s degrees of
freedom. The Hamiltonian of such a compound system is given
by

Ĥ = Ĥ0 ⊗ 1 + 1 ⊗ Ĥ0 + (V̂ ⊗ 1 + 1 ⊗ V̂ )X̂ + Ĥbath(X̂),

(12)

where · · · ⊗ · · · is the product of the subsystem subspaces;
Ĥ0 and V̂ are the Hamiltonian of each subsystem and its
coupling to the environment, and the environment’s variable
X̂ commutes with all degrees of freedom of subsystems Sys1
and Sys2.

The evolution of the elements (3) and (11) is described
by similar Markovian master equations (see Ref. [17] for
a microscopic derivation). In particular, in the limit of a
classical environment [〈X̂(t)X̂(t ′)〉env = 〈X̂(t ′)X̂(t)〉env], the
evolution of OTOCs (3) can be mapped exactly onto that
of the density-matrix (11) of two systems coupled to this
environment as follows from the definitions of these quantities.
The conservation law (5) is mapped then onto the conservation
of the trace of the density matrix of a compound system
consisting of two subsystems.

In the limit of a classical environment, the spectral function
is even S(ω) = S(−ω), and the relaxation rate i → j for
each pair of levels i and j in a system matches the reverse
rate j → i. In particular, in the case of a two-level system,

FIG. 2. Nonzero rates (in units of �↓) of long-time decay of out-
of-time-order correlators in a two-level system as a function of the
ratio �↑/�↓ of the transition rates between the system levels.
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�↑ = �↓ = �, and the OTOC has three decay rates at

long-times t � �φ−1: �1 = 6�, �2 = 2� (triply degenerate),
and �3 = 0 (doubly degenerate), as shown in Fig. 2. Due to
the mapping, these rates match the decay rates of pairwise
correlators of observables in, e.g., an ensemble of spins in a
uniform random magnetic field and thus may be conveniently
measured in such ensembles.

We emphasize that the mapping between an OTOC and
the evolution of two subsystems coupled to the same clas-
sical environment holds for an arbitrary system-environment
coupling but not only in the limit of the weak coupling con-
sidered in this Rapid Communication. This mapping suggests
a way for measuring OTOCs in generic systems in the pres-
ence of classical environments through observing correlators
〈〈Â(t)〉Sys1

〈Ĉ(t)〉Sys2
〉X of observables Â and Ĉ between two

systems.
Discussion. We computed OTOCs in a finite system weakly

coupled to a dissipative environment. The model of such a
finite open system may be used to understand OTOC behavior
in sufficiently strongly disordered interacting media (in the
presence or in the absence of a phonon bath).

A material with weak short-range interactions and strong
disorder, which leads to the localization of all single-particle
states, exhibits insulating behavior at low temperatures [15].
Local physical observables in such a system are strongly
correlated only on short length scales, and their properties
may be understood by considering a single “localizaton cell,”
particle states in a region of space of the size of order of the
(single-particle) localization length ξ , which may be assumed
weakly coupled to the rest of the system.

The energy spectrum of the localization cell may be probed
via response functions of local operators in the cell, e.g.,

the response function χ (ω) = ∑
α,β

(fα−fβ )|Qαβ |2
Eα−Eβ+ω+i0 of the charge

Q in a region inside the cell to the voltage in this region,
where Eα and Eβ are the energies of many-body states and
fα is their distribution function. For temperatures lower than
a critical value, quasiparticles in the system have a zero-decay
rate [20] (“superinsulating” regime [15]), and the system thus
responds only at a discrete set of frequencies ω = Ei − Ej ,
determined by the energy gaps between many-body states
as shown in Fig. 3. The OTOC (1) in this regime oscillates
K(t) ∝ ∑

n ane
iωnt with a discrete set of frequencies ωn =

Ein + Ei ′n − Ejn
− Ej ′

n
. In the limit of a very large number

of levels in a localization cell, the sum of such oscillating
contributions approaches a smooth function with exponentially
growing contributions describing the single-particle chaos of
Ref. [1], so long as dynamics on time scales shorter than the
Thouless scale tTh = ξ 2/D is neglected. However, the energy
levels remain discrete in the superinsulating regime.

When the temperature (or the interaction strength at a given
temperature) exceeds a critical value, the levels and response
functions get broadened (“metallic” phase [15]) as illustrated
in Fig. 3, becoming smoother with increasing temperature
and/or interactions. Near the superinsulator-metal transition
the characteristic level width � is significantly smaller than
the gaps between levels, and the localization cell may be
considered as an open system weakly coupled to a dissipative

FIG. 3. Response of a localization cell in an interacting system
for various temperatures T (or interaction strengths for T > 0). 	Ei’s
are the energy gaps between the many-body levels in the cell, and �

is the level width.

environment. The same model may be applied also to a
strongly disordered material with an external bath, such as a
system of phonons, which provide a finite level width � at
all finite temperatures. The local operators Â, B̂, Ĉ, and D̂ in
Eq. (1) do not necessarily act on states in one localization cell
but may involve states in several cells close to each other. These
cells may still be considered as a single quantum dot in a noisy
environment so long as the level spacing in the dot exceeds the
level width. Such a model of an open quantum dot may be also
realized directly, e.g., using superconducting qubits or trapped
cold atoms.

The results of this Rapid Communication suggest, in partic-
ular, that a strongly disordered system with the level spacing
δξ exceeding the effective dissipation rates � is nonchaotic.
Whereas our results apply to weakly conducting and insulating
materials for which the system-environment coupling may
be considered small, we leave it for a future study whether
nonchaotic behavior persists in systems strongly coupled to
the environment (corresponding to an effectively continuous
energy spectrum of a localization cell).

For a classical environment, the evolution of an OTOC
in an open system matches the evolution of the correlators
of observables between two identical systems coupled to the
same environment, which may be used for measuring OTOCs
in open systems in classical environments. The possibility
to develop a similar measurement method for the case of
a quantum environment is another question which deserves
further investigation.
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