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Supplemental Material for
“Out-of-time-order correlators in finite open systems”

Master equations for the density matrix in an open system

Off-diagonal elements. For a system with non-degenerate energy levels weakly coupled to a dissipative environment,
with the Hamiltonian given by Eq. (2), the off-diagonal entries ρmn of the density matrix satisfy Bloch-Redfield master
equations (see, e.g., Ref. 16)

∂tρmn = i(Emn + iΓmn)ρmn, (S1)

where Emn = Em − En is the frequency of coherent oscillations for an isolated system, and the complex quantity

Γmn = −i
∫
dω

2π

∑
k

(
S(ω)|Vmk|2

ω − Emk − i0
+
S(−ω)|Vnk|2

ω − Ekn − i0

)
+ iVmmVnn

∫
dω

2π

S(ω) + S(−ω)

ω − i0
(S2)

accounts for the effects of the environment, where S(ω) is the Fourier-transform of the correlation function S(t− t′) =
〈X̂(t)X̂(t′)〉env =

∫
dω
2π e
−iω(t−t′)S(ω) of the environment degree of freedom X̂(t).

The quantity Γmn, given by Eq. (S2), may be decomposed as

Γmn =
1

2

∑
k 6=m

Γrelm→k +
1

2

∑
k 6=n

Γreln→k − iδEm + iδEn + Γdephmn , (S3)

where

Γreln→k = |Vnk|2S(En − Ek) (S4)

is the rate of environment-induced transitions (relaxation) from level n to level k,

Γdephmn =
1

2
(Vnn − Vmm)2S(0) (S5)

is the pure dephasing rate, and

δEm =
∑
k 6=m

|Vmk|2
∫
dω

2π

S(ω)

Em − Ek − ω
(S6)

is the shift of the energy of the m-th level due to the interaction with environment (Lamb shift). The relaxation rate
between two levels n and k, Eq. (S4), is determined by the environment spectrum S(ω) at frequency ω = Enk equal
to the energy gap between these levels, while the dephasing rate (S5) is determined by the low-frequency properties
of the environment.

Diagonal elements. The dynamics of the diagonal elements of the density matrix is described by the equations

∂tρnn = −ρnn
∑
k

Γreln→k +
∑
k

ρkkΓrelk→n, (S7)

where the transition rates Γn→k are given by Eq. (S4).
Lindblad form. Eqs. (S1) and (S7) for the evolution of the density matrix can be rewritten in the Lindblad form

∂tρ̂ = −i[Ĥeff, ρ̂]− 1

2

∑
i,j

(
L̂†ijL̂ij ρ̂+ ρ̂L̂†ijL̂ij − 2L̂†ij ρ̂L̂ij

)
, (S8)

where the summation runs over all pairs of indices i = 1, . . . , N and j = 1, . . . , N in an N -level system; the effective
Hamiltonian of coherent evolution is given by

Ĥeff =
∑
i

|i〉 〈i| (Ei + δEi), (S9)

and the Lindblad operators

L̂ij = (1− δij)
√

Γrelj→i |i〉 〈j|+ δij
√
S(0)/N

∑
l

Vll |l〉 〈l| (S10)

account for the effects of dephasing and dissipation.
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Master equations for OTOCs

In what follows we derive microscopically the Bloch-Redfield-type master equations for the out-of-time-order cor-
relator (1), following a procedure similar to the derivation (see, e.g., Ref. [16]) of the master equations for the density
matrix. Due to the weakness of the system-environment coupling, the OTOCs decay on long times significantly
exceeding the characteristic correlation time of the environment.

It follows directly from Eq. (1) that

∂tKm1m2,n1n2
= i
〈[
Ĥ0 + Ĥcoupl(t), |n1〉 〈m1| (t)

]
B̂(0) |n2〉 〈m2| (t)D̂(0)

〉
+i
〈
|n1〉 〈m1| (t)B̂(0)

[
Ĥ0 + Ĥcoupl(t), |n2〉 〈m2| (t)

]
D̂(0)

〉
, (S11)

where Ĥ0 is the Hamiltonian of the system (without the environment) and Ĥcoupl = X̂
∑
n,m Vnm |n〉 〈m| is the

coupling between the system and the environment. By expanding all Heisenberg operators in Eq. (S11) to the first
order in the perturbation Ĥcoupl and neglecting the change of the density matrix of the system during the characteristic
correlation time of the environment, we arrive at the equations for the evolution of the elements Km1m2,n1n2

in the
form

∂tKm1m2,n1n2 =i(En1 + En2 − Em1 − Em2)Km1m2,n1n2

−

〈 t∫
−∞

[
Ĥcoupl(t

′),
[
Ĥcoupl(t), |n1〉 〈m1| (t)

]]
dt′ B̂(0) |n2〉 〈m2| (t) D̂(0)

〉

−

〈
|n1〉 〈m1| (t) B̂(0)

t∫
−∞

[
Ĥcoupl(t

′),
[
Ĥcoupl(t), |n2〉 〈m2| (t)

]]
dt′ D̂(0)

〉

−

〈[
Ĥcoupl(t), |n1〉 〈m1| (t)

]
B̂(0)

t∫
−∞

[
Ĥcoupl(t

′), |n2〉 〈m2| (t)
]
dt′ D̂(0)

〉

−

〈 t∫
−∞

[
Ĥcoupl(t

′), |n1〉 〈m1| (t)
]
dt′ B̂(0)

[
Ĥcoupl(t), |n2〉 〈m2| (t)

]
D̂(0)

〉
, (S12)

where only the terms up to the second order in the system-environment coupling have been kept and the lower time
integration limit has been extended to −∞ in view of the short correlation time of the environment degrees of freedom,
i.e. the correlation time between Ĥcoupl(t

′) ∝ X̂(t′) and Ĥcoupl(t) ∝ X̂(t). Using Eq. (S12), we derive below the
master equations for the evolution of the OTOCs in the form (4).

Due to the weakness of the system-environment coupling, the characteristic energy gaps between system levels
significantly exceed the decay rates of the OTOCs, which are determined by the last four lines in Eq. (S12); the
elements Km1m2,n1n2 quickly oscillate with frequencies En1 + En2 − Em1 − Em2 and decay with rates significantly
exceeded by these frequencies. Thus, the evolution of each element Km1m2,n1n2 depends only on other elements
corresponding to the same energy splitting En1

+En2
−Em1

−Em2
. Below we consider separately the cases of finite

and zero values of the splitting.

Finite energy splitting

For each combination of different m1, m2, n1 and n2 there are four elements K which correspond to the same energy
splitting and differ from each other by permutations of indices. We assume for simplicity that there is no additional
degeneracy of the quantities En1

+En2
−Em1

−Em2
when all of the indices m1, m2, n1 and n2 are different. Eq. (S12)
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in that case gives

∂tKm1m2,n1n2
=i(En1

+ δEn1
+ En2

+ δEn2
− Em1

− δEm1
− Em2

− δEm2
)Km1m2,n1n2

− 1

2

 ∑
k 6=m1

Γrelm1→k +
∑
k 6=n1

Γreln1→k +
∑
k 6=m2

Γrelm2→k +
∑
k 6=n2

Γreln2→k

Km1m2,n1n2

− Γreln2→n1
Km1m2,n2n1

− Γrelm1→m2
Km2m1,n1n2

− Γφm1n1,m2n2
Km1m2,n1n2

, (S13)

where the transition rates Γreli→j are given by Eq. (S4); δEi is the renormalisation of the i-th level by environment,
given by Eq. (S6); and

Γφm1n1,m2n2
=

1

2
(Vn1n1

+ Vn2n2
− Vm1m1

− Vm2m2
)2S(0) (S14)

is the dephasing rate in a compound system consisting of two copies of the original system coupled to the same bath.

Zero energy splitting

Elements Km1m2,n1n2 with zero splitting En1 + En2 − Em1 − Em2 have a greater degeneracy and require separate
analyses.

“Diagonal” elements. Let us first consider the elements with n1 = m1 and n2 = m2. These elements satisfy the
same equations of evolution as the diagonal elements of the density matrix of a compound system consisting of two
copies of the original system. For n1 = n2 = n 6= m = m1 = m2 we obtain from Eq. (S12)

∂tKnm,nm =−Knm,nm

∑
k 6=n

Γreln→k −Knm,nm

∑
k 6=m

Γrelm→k +
∑
k 6=n

Γrelk→nKkm,km +
∑
k 6=m

Γrelk→mKnk,nk

− Γrelm→nKnm,mn − Γreln→mKmn,nm. (S15)

In the case n = m Eq. (S12) gives

∂tKnn,nn =− 2Knn,nn

∑
k 6=n

Γreln→k +
∑
k 6=n

(
Γrelk→nKkn,kn + Γrelk→nKnk,nk

)
+
∑
k 6=n

(
Γrelk→nKnk,kn + Γreln→kKkn,nk

)
. (S16)

From Eqs. (S15) and (S16) it follows immediately that∑
m,n

Kmm,nn = const, (S17)

which is similar to the conservation of the sum of the diagonal elements of the density matrix of a compound system.
“Non-diagonal” elements. The other set of elements with zero energy splitting, different from the “diagonal”

elements, correspond to m1 = n2 and m2 = n1. Their evolution is described by the equations

∂tKmn,nm =−

∑
k 6=m

Γrelm→k +
∑
k 6=n

Γreln→k

Kmn,nm − (Kmn,mn +Knm,nm) Γrelm→n

+
∑
k 6=m

Kkn,nkΓrelm→k +
∑
k 6=n

Kmk,kmΓrelk→n. (S18)

Master equation for the density matrix for two copies of a system coupled to the same environment

The equations for the evolution of the elements Km1m2,n1n2 are similar to the equations of evolution of the density-
matrix elements ρm1m2,n1n2

= 〈|n1n2〉 〈m1m2| (t)〉 of a compound system consisting of two copies of the original system
coupled to the same environment, where ni and mi label the states of the i-th subsystem; i = 1, 2. The Hamiltonian
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of such a compound system is given by Eq. (12). To the second order in the system-environment coupling V̂ the
evolution of the density matrix elements is described by the equation

∂tρm1m2,n1n2
=i(En1

+ En2
− Em1

− Em2
)ρm1m2,n1n2

−

〈 t∫
−∞

[
X̂(t′)V̂ (t′)⊗ 1+ 1⊗ V̂ (t′)X̂(t′),

[
X̂(t)V̂ (t)⊗ 1+ 1⊗ V̂ (t)X̂(t), |n1n2〉 〈m1m2| (t)

]]
dt′

〉
,

(S19)

Eq. (S19) gives, for the coupling V̂ =
∑
n,m Vnm |n〉 〈m| and all indices n1, n2, m1 and m2 being different,

∂tρm1m2,n1n2
=i(En1

+ δEn1
+ En2

+ δEn2
− Em1

− δEm1
− Em2

− δEm2
)ρm1m2,n1n2

− 1

2

 ∑
k 6=m1

Γrelm1→k +
∑
k 6=n1

Γreln1→k +
∑
k 6=m2

Γrelm2→k +
∑
k 6=n2

Γreln2→k

 ρm1m2,n1n2

− 1

2

(
Γreln2→n1

+ Γreln1→n2
+ iEflipn1n2

)
ρm1m2,n2n1

− 1

2

(
Γrelm2→m1

+ Γrelm1→m2
− iEflipm1m2

)
ρm2m1,n1n2

− Γφm1n1,m2n2
ρm1m2,n1n2

, (S20)

where the quantity

Eflipn1n2
= |Vn1n2

|2
∫
dω

2π

S(ω)− S(−ω)

ω + En1n2

(S21)

gives the rate of the flip-flop processes, i.e. the rate of the coherent interchange n1 ↔ n2, and the dephasing rate
Γφm1n1,m2n2

is defined by Eq. (S14).
Lindblad form. The master equations for the evolution of the density matrix of two systems in the same environment

may may be also rewritten in the Lindblad form (S8) with the effective Hamiltonian

Ĥeff =
∑
i

|i〉 〈i| [(Ei + δEi)⊗ 1+ 1⊗ (Ei + δEi)] +
1

2

∑
i,j

Eflipij |i〉 〈j| ⊗ |j〉 〈i| (S22)

and the Lindblad operators

L̂ij = (1− δij)
√

Γrelj→i (|i〉 〈j| ⊗ 1+ 1⊗ |i〉 〈j|) + δij
√
S(0)/N

∑
l

Vll (|l〉 〈l| ⊗ 1+ 1⊗ |l〉 〈l|) . (S23)

Mapping between OTOCs and two-system density matrix. Eq. (S13), which described the evolution of OTOCs for
an open system in a dissipative environment, resembles Eq. (S20), which describes the evolution of the density matrix
elements for two copies of the system coupled to this environment. Indeed, both equations have the same diagonal
part, i.e. the part which relates the evolution of the element ρm1m2,n1n2 or Km1m2,n1n2 to itself. Both equations also
have terms with interchanged indices n1 ↔ n2 or m1 ↔ m2. While two systems coupled to an environment allow for
a coherent (“flip-flop”) as well as inelastic interchange, the respective processes for OTOCs are purely inelastic.

As discussed in the main text, in the limit of a classical environment the evolutions of the OTOC and two systems
coupled to this environment may be mapped onto each other. Classical environment corresponds to the even spectrum
S(ω) = S(−ω), which leads to the vanishing of the flip-flop rates (S21) and identical relaxation rates Γreln1→n2

= Γreln2→n1

of the transitions n1 → n2 and n2 → n1 for each pair of states n1 and n2. The equations (S13) and (S20) for the
evolution of the OTOC and the two systems become identical in this limit.


