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The study of quantum phase transitions requires the preparation of a many-body system near its ground
state, a challenging task for many experimental systems. Themeasurement of quench dynamics, on the other
hand, is now a routine practice in most cold atom platforms. Here we show that quintessential ingredients of
quantum phase transitions can be probed directly with quench dynamics in integrable and nearly integrable
systems.As a paradigmatic example, we study global quench dynamics in a transverse-field Isingmodelwith
either short-range or long-range interactions. When the model is integrable, we discover a new dynamical
critical pointwith a nonanalytic signature in the short-range correlators. The location of the dynamical critical
point matches that of the quantum critical point and can be identified using a finite-time scaling method.
We extend this scaling picture to systems near integrability and demonstrate the continued existence of a
dynamical critical point detectable at prethermal timescales.We quantify the difference in the locations of the
dynamical and quantum critical points away from (but near) integrability. Thus, we demonstrate that this
method can be used to approximately locate the quantum critical point near integrability. The scalingmethod
is also relevant to experiments with finite time and system size, and our predictions are testable in near-term
experiments with trapped ions and Rydberg atoms.

DOI: 10.1103/PhysRevLett.123.115701

Introduction.—Experimental advances in isolating and
controlling nonequilibrium quantum systems have brought
within reach answers to many fundamental questions,
including those related to thermalization, prethermaliza-
tion, and many-body localization [1–6]. The exquisite
control of complex quantum systems has become common-
place as a result of progress in various platforms, such as
trapped ions [7,8], ultracold atoms [9,10], nitrogen-vacancy
centers [11], Rydberg atoms [12], and others.
Among other interesting topics in nonequilibrium quan-

tum many-body physics, phase transitions that emerge in
the dynamics of isolated quantum systems have attracted
significant theoretical and experimental interest [13–20].
There are two known types of dynamical phase transitions:
(i) when a global order parameter (such as the Loschmidt
echo) shows an abrupt change as a function of evolution
time or (ii) when a local order parameter measured after a
sufficiently long time becomes nonanalytic as a function
of some Hamiltonian parameter [14]. This latter type of
dynamical phase transition is closely related to quantum
phase transitions; the only difference is that the order
parameter is measured in the quenched state instead of the
ground state. It is thus natural to ask how this dynamical
phase transition is related to a quantum phase transition.
While difficult to answer, this question is not only of
fundamental importance, but also motivates the idea of

using dynamics to study quantum phase transitions. In fact,
in many of the abovementioned experimental platforms,
cooling a system to its ground state can be a formidable task
while performing a quench experiment is now a routine
practice.
In this Letter, we first establish a strong connection

between the quantum critical point and a new dynamical
critical point (DCP) in a general class of integrable models,
using the transverse-field Ising model (TFIM) as a para-
digm. We show analytically that these critical points are
identical and expect such behavior to generalize to other
systems consisting of noninteracting particles [21]. This
DCP has a nonanalytic signature in the long-time values
of short-range, two-point correlation functions. Much of
the previous work on the quench dynamics of the TFIM
has focused on the behavior of long-range correlations
[14,18,22–25], a common practice in studying equilibrium
phase transitions. However, these correlations vanish in the
thermodynamic limit for all nonzero field values due to the
absence of long-range order at long time. Thus, short-range
correlations, often ignored due to the dominance of long-
wavelength physics at low temperature, are important in
identifying dynamical criticality and revealing its connec-
tions to quantum phase transitions.
Second, we show that analogous to the finite-size scaling

analysis for identifying quantum critical points, one can
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perform a finite-time scaling analysis for obtaining the
DCP. Intuitively, this can be understood because the
evolution time controls the effective system size seen by
short-range correlations as a result of emergent light cones.
This finite-time scaling analysis is particularly favorable for
quantum simulation experiments, as one does not need to
create systems of different sizes or wait for a time much
longer than the coherence time, and, thus, allows for near-
term experimental demonstration [12,17].
Finally, we generalize our findings to systems that are

nonintegrable by adding weak interactions. We show that
the finite-time scaling predicts a DCP in the prethermal
timescale. In general, the dynamical critical point will no
longer coincide with the quantum critical point away from
integrability. But, as shown by our analysis of the TFIM
with next-nearest-neighbor and power-law decaying inter-
actions, we expect the two transition points to be close to
each other when interactions are weak. As perturbation
theory may not work for finding quantum critical points of
weakly interacting systems, our findings provide an alter-
native and experimental way of locating such critical
points.
We point out that some earlier works have considered

similar ideas of studying quantum criticality via quench
dynamics. For example, Ref. [26] studies the appearance
of nonanalytic signatures in the periodically kicked Ising
model, Refs. [21] and [27] discuss signatures in the quench
dynamics for noninteracting topological phase transitions,
Ref. [28] studies nonanalytic behavior in longitudinal
magnetization, Ref. [29] studies energy absorption, and
Ref. [30] uses out-of-time-order correlators to identify
quantum phase transitions. However, our approach offers
three unique advantages. (i) The short-range correlations
are easy to measure experimentally, especially compared to
the out-of-time-order correlator (OTOC) (ii) Our approach
is not restricted to exactly integrable systems. (iii) The
finite-time scaling analysis we introduce provides a prac-
tical method to locate the dynamical critical point.
Model.—We consider two models for the quench

Hamiltonian of L spins in one dimension: a transverse-
field Ising model with next-nearest-neighbor or long-range
interactions,

HNNN ¼ −J
X
hi;ji

σxi σ
x
j − JΔ

X
⟪i;j⟫

σxi σ
x
j þ B

X
i

σzi ; ð1Þ

HLR ¼ −
X
i<j

JðαÞij σxi σ
x
j þ B

X
i

σzi ; ð2Þ

where fσx;y;zi g denote the Pauli matrices and h� � �i and
⟪ � � �⟫ denote nearest and next-nearest neighbors, respec-
tively. We will use periodic boundary conditions to
ensure translation invariance unless otherwise noted. In
the long-range Hamiltonian, the Ising coupling is defined

as JðαÞij ¼ Jð1=ji − jjα þ 1=jL − ði − jÞjαÞ, which accounts

for periodic boundary conditions [31]. We restrict our
study to the case of ferromagnetic interactions with J
and Δ > 0.
The quench and measurement protocol is shown sche-

matically in Fig. 1(a). We initialize the system in a product
state with all spins polarized in the Ising direction,
jψ ini ¼ j→ � � � →i. This state is one of two degenerate
ground states when B ¼ 0. We focus on the dynamics
under the quench Hamiltonian [see Eqs. (1) and (2)] of
the nearest-neighbor, equal-time correlation function
defined as

GðtÞ ¼ 1

L

X
hi;ji

hσxi ðtÞσxjðtÞiin; ð3Þ

where h� � �iin indicates the expectation value with respect to
the initial state jψ ini defined above, and the operators are
written in the Heisenberg picture, σxi ðtÞ ¼ eiHtσxi e

−iHt. We
note that the dynamics of two-point correlators at longer
distances independent of the system size (e.g., hσxi σxiþ2i)
will be similar to GðtÞ. However, calculating such longer-
range correlations would require a more complicated
analytical treatment.
Results at the integrable point.—Consider first the

nearest-neighbor TFIM [Δ ¼ 0 in Eq. (1) or α ¼ ∞ in
Eq. (2)]. In this case, the Hamiltonian is integrable and can
be mapped to free fermions via a Jordan-Wigner trans-
formation with the boundary condition determined by the
particle number parity [32]. The quasiparticle dispersion is
given by ωq ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 2BJ cos qþ J2

p
, where q denotes

momentum, and the Hamiltonian becomes H¼P
qωqγ

†
qγq,

where γq are the annihilation operators for the Bogoliubov
quasiparticles. The time evolution is governed by a set of
conserved densities of these quasiparticles, Iq ¼ γ†qγq. The
ground state of this model exhibits a second-order phase
transition with the critical point at B ¼ Bgs

c ≡ J.
We calculate the time-averaged correlator GavðtÞ≡

ð1=tÞ R t
0 dt̃Gðt̃Þ to be [22,32]

(a) (b)

FIG. 1. (a) Schematic picture of the quench. We evolve the
initial state jψ ini, which consists of all spins polarized in the Ising
direction, for a time t under the Hamiltonian defined in Eq. (1)
(shown) or Eq. (2). Then we measure the nearest-neighbor
correlator GðtÞ defined in Eq. (3). (b) The dependence of G∞

av
on B as given by Eq. (5).
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GavðtÞ¼
1

L

X
q

8B2

ω2
q

��
J
B
−cosq

�
2

þ j0ð2ωqtÞsin2q
�
; ð4Þ

where j0ðzÞ ¼ sinðzÞ=z is a spherical Bessel function of the
first kind. The second term in Eq. (4) decays at long times:
j0ð2ωqtÞ → 0 as t → ∞ (except when ωq ¼ 0, in which
case it is constant ∝ 1=L). This means that the first term
in Eq. (4) is the long-time stationary value. Taking the
thermodynamic limit, we obtain an analytic expression
for GavðtÞ:

G∞
av ≡ lim

L→∞
t→∞

1

t

Zt

0

dt̃Gðt̃Þ ¼
�
1 − B2

2J2 if B ≤ J
1
2

if B ≥ J;
ð5Þ

which has a nonanalyticity at B ¼ Bdy
c ≡ J. We refer to this

nonanalytic point as a dynamical critical point. Note that
the dynamical and ground-state critical points are identical,
Bdy
c ¼ Bgs

c . This is because the nonanalyticity can be traced
to the appearance of 1=ω2

q in the expression for GavðtÞ [see
Eq. (4)], which has a pole at B ¼ Bgs

c . In Fig. 1(b), we plot
the long-time value of the correlator G∞

av [Eq. (5)], which
exhibits a kink at B ¼ Bdy

c . Note that the expression for G∞
av

is identical to that obtained from the generalized Gibbs
ensemble (GGE) [38] for the TFIM.
The kink at the DCP is obtained after taking two limits in

either order: (i) the infinite-time limit and (ii) the thermo-
dynamic limit. In any realistic experiment, one can only
measure GavðtÞ at a finite time and a finite system size. In
this case, GavðtÞ is a smooth function of B, but we can
nevertheless locate the DCP in the following way: We
obtain the time-dependent derivative of GavðtÞ with respect
to B, i.e., ∂BGavðtÞ (see Ref. [32] for the explicit expres-
sion), and plot it in Fig. 2. We find the curves at different
times cross at the same point up to a small correction
∝ 1=L, thus revealing a DCP. In fact, all the curves can be
made to collapse into a single curve (shown in the inset) by
rescaling the field B by Jt. The expression for ∂BGavðtÞ
near the DCP takes the form of a universal scaling function,
∂BGavðtÞ ¼ ð1=JÞ f½ðB − Bdy

c Þt�. To lowest order in the
distance from the critical point (given by ϵ ¼ B − Bdy

c ), the
scaling function is fðϵtÞ ¼ − 1

2
þ ϵt [32]. Note that this

finite-time scaling function is very similar to the finite-size
scaling function of the long-time correlator near the critical
point, with t playing the role of L=ð3JÞ [32]. The finite-
time scaling analysis thus allows us to locate the position
of the DCP, and in this (integrable) case, also the quantum
critical point.
Let us discuss the generality of this result for different

initial states. For an arbitrary initial state, G∞
av is given by

G∞
av;arbitrary ¼

1

L

X
q

2ðJ − B cos qÞ
ωq

½1 − 2hIqiin�; ð6Þ

where hIqiin is the expectation value of the conserved
quasiparticle densities in the initial state. It is clear from this
expression that the nonanalyticity which results from a
gapless ωq will survive for arbitrary initial states unless the
form of ½1 − 2hIqiin� cancels off the 1=ωq singularity at
q ¼ 0. A generic pure initial state is thus expected to lead to
the same dynamical critical behavior. In the Supplemental
Material, we show explicitly the robustness of the dynami-
cal criticality to perturbations of the initial state, particu-
larly under realistic experimental conditions [32].
Interestingly, a thermal initial state given by the density
matrix ρth ¼ e−βH=tr½e−βH� is an exception. This is because
in this case, hIqiin ¼ tr½ρthIq� ¼ 1

2
½1 − tanhðβωq=2Þ� ≈

1
2
ð1 − β ωq=2Þ when ωq → 0, and thus G∞

av becomes an
analytic function of B. This is consistent with the well-
known fact that the 1D nearest-neighbor TFIM does
not have a thermal phase transition. We note that this
dynamical criticality is present in other noninteracting
Hamiltonians which have single-particle dispersion ∼ωq

and exhibit phase transitions.
Results away from integrability.—Now, let us consider

the TFIM with either an additional next-nearest-neighbor
interaction [Δ ≠ 0 in Eq. (1)] or long-range interactions
[any finite α in Eq. (2)]. Assuming the eigenstate thermal-
ization hypothesis (ETH) [3] holds, we expect local
observables, including GðtÞ, to thermalize at sufficiently
long times. For any finite value of Δ or α > 2, it has been
established that the TFIM does not exhibit a thermal phase
transition [39,40]. Thus, once the system fully thermalizes,
any measured observable has to be analytic and, thus, it

FIG. 2. Finite-time scaling for the integrable case. The first
derivative of the correlator, ∂BGavðtÞ, exhibits a sharper jump
across the transition (B ¼ Bdy

c ¼ J) at later times. The curves are
obtained by differentiating Eq. (4) with a system size L ¼ 100
[32]. The curves at different times cross at the same point, thus
revealing a DCP. The dotted line in black indicates the expected
discontinuity in the derivative in the thermodynamic limit
(L → ∞) and at long times (Jt → ∞). Inset: We extract the time
dependence by performing a scaling collapse after rescaling the
magnetic field B by t. The scaling function near the critical point
is linear, and is shown as a dashed red line.
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should no longer have a DCP. (The situation with α < 2 is
beyond the scope of this Letter due to the strong effects of
long-range interactions that could break the ETH [14].)
However, as recently shown by Refs. [18,19], it is

possible to still observe a dynamical phase transition when
local observables have not yet thermalized but instead have
reached prethermal values. This is the case here when Δ is
small or α is large, so that the Hamiltonian is nearly
integrable and prethermalization is expected to occur
[41,42]. The DCP in the prethermal regime is also relevant
for experiments in the near future, as the thermalization
timescale is likely to be far beyond the experimental
coherence time [8,9,43].
We now show that our finite-time scaling method can

also reveal DCPs in the prethermal regime of nearly
integrable systems. We calculate the dynamics of Eq. (1)
with Δ ≠ 0 and Eq. (2) with finite α numerically due to the
lack of analytic solutions. Using a split-operator decom-
position (using fourth-order Suzuki-Trotter expansion)
coupled with a Walsh-Hadamard transform, we calculate
dynamics for up to L ¼ 25 spins (see Ref. [32] for technical
details). In Figs. 3(a) and 3(b), we plot the time dependence
of the derivative of GavðtÞ for Δ ¼ 0.1 and α ¼ 6, respec-
tively. Remarkably, the curves at different times still cross
at one point, which we identify as the DCP Bdy

c . We note
that this DCP survives at intermediate timescales as a
consequence of prethermalization. These curves will also

collapse almost perfectly on top of each other using a
scaling function ∂BGavðtÞ ¼ ð1=JÞ f̃½ðB − Bdy

c Þt� [32].
While the scaling function depends on the model, we
expect the variables of the scaling function are universal
and independent of microscopic details.
In the integrable TFIM, we showed that the DCP Bdy

c

coincideswith the ground-state critical pointBgs
c . It is natural

to ask whether this is still the case for the above-calculated
models near integrability. To locate the quantum critical
point, we compute the Binder cumulant [44], Ugs

4 ¼
1 − hM4igs=3hM2i2gs (where M¼ð1=LÞPiσ

x
i and h� � �igs

denotes the ground-state expectation value) using a density
matrix renormalization group algorithm for a system with
open boundary conditions and sizes ranging fromL ¼ 30 to
L ¼ 140. We identify the quantum critical point using a
finite-size scaling method as shown in Figs. 3(c) and 3(d).
It is found that Bdy

c is close, but not identical, to Bgs
c at

both Δ ¼ 0.1 and α ¼ 6.
While we cannot make a conclusive statement about

whether Bdy
c agrees with Bgs

c in the thermodynamic limit
based on finite-size numerical calculations, we argue that
Bdy
c and Bgs

c should in general be different but close to each
other when near integrability. To support this argument, we
perform a self-consistent mean-field calculation [45] for
Eq. (1) with Δ ¼ 0.1 to identify both Bdy

c and Bgs
c in the

thermodynamic limit [32]. The next-nearest-neighbor spin
interaction translates to a perturbative two-particle inter-
action of the Jordan-Wigner fermions. The essence of the
self-consistent calculation is to approximate this interaction
by effective single-particle hoppings and on-site energies.
This makes the Hamiltonian noninteracting, with the
quench dynamics given by an effective GGE. The param-
eters of this effective Hamiltonian must be determined
self-consistently from the expectation values of different
correlation functions. These expectation values may be
considered in either the ground state or the effective GGE
corresponding to the quench from some initial state. While
the former determines the quantum critical point Bgs

c [45],
we claim that the latter captures the DCP Bdy

c . Therefore, it
is natural to expect a difference in the locations of the
dynamical and quantum critical points.
The self-consistent mean-field calculation should be

asymptotically exact as Δ → 0. We find that to first order
in Δ, Bdy

c ≈ Jð1þ 3
2
ΔÞ and Bgs

c ≈ Jð1þ 16
3πΔÞ [32]. For

Δ ¼ 0.1, these predict Bdy
c ≈ 1.15 and Bgs

c ≈ 1.168, agree-
ing very well with numerics in Figs. 3(a) and 3(c). We have
further confirmed the accuracy of these predictions forΔ up
to 0.3 [32]. For the larger values of Δ, it is clear that
Bdy
c ≠ Bgs

c , but they are close in magnitude when Δ ≈ 0.
Thus, near integrability, the dynamical critical field can be
used to approximately locate the quantum critical point.
Discussion.—Our results are relevant to experiments in

trapped ions [17] and Rydberg atoms [12], where dynamics

(a) (b)

(c) (d)

FIG. 3. Comparison between the finite-time scaling of the time-
averaged nearest-neighbor correlator GavðtÞ and the ground-state
Binder cumulant Ugs

4 . The first column [(a),(c)] corresponds to the
TFIM with next-nearest-neighbor interaction Δ ¼ 0.1 [Eq. (1)],
while the second column [(b),(d)] corresponds to the TFIM with
long-range interaction α ¼ 6 [Eq. (2)]. The finite-time scaling of
the quench dynamics is shown in the first row, and the finite-size
scaling for the ground state is shown in the second row. The DCPs
(Bdy

c ) identified in (a) and (b) using finite-time scaling are close
but different from the locations of the quantum critical points
(Bgs

c ) identified in (c) and (d). The ground-state simulations were
done using a density matrix renormalization group algorithm with
bond dimension χ ¼ 32.
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of the TFIM can be readily probed. As an example, we
numerically obtain the dynamics for the α ¼ 6 TFIM,
which models Rydberg atoms interacting via van der
Waals-type long-range interactions [46]. We find that the
numerically obtained DCP Bdy

c ≈ 1.028J shown in Fig. 3(b)
is very close to the ground-state critical point Bgs

c ≈ 1.03J
obtained from finite-size scaling shown in Fig. 3(d). We
emphasize that the DCP is identified by our finite-time
scaling method for a system size of only 25 spins and an
evolution time of only 9=J, which are well within the
current experimental record for the system size and
coherence time [12]. As a result, we believe our method
is a paradigmatic example of what near-term intermediate
scale quantum simulators can do: learn new physics that
cannot be obtained by classical simulation, yet without the
need for a very large number of qubits, very low error, and
very long coherence times.
Our work opens up several interesting questions for

future consideration. (i) How should one classify the
observed DCP? We note that the DCP identified using
GðtÞ as an “order parameter” does not represent a conven-
tional symmetry-breaking phase transition, because for
both B < Bdy

c and B > Bdy
c , the quenched state does not

spontaneously break the Ising symmetry and become
ferromagnetically ordered. (ii) Is finite-time scaling a
general method for identifying DCPs? We believe that
for generic, short-range interacting systems, finite-time
scaling serves the purpose of finite-size scaling for finding
the quantum critical point due to the emergence of linear
light cones [47]. However, when interactions become long-
range, the linear light cone may no longer exist [48,49] and
it remains unclear when the finite-time scaling method
fails. (iii) Could the link between dynamical and quantum
critical points established here be generalized to other
integrable and nearly integrable systems, such as systems
solvable by Bethe ansatz or many-body localized systems?
Here the link is provided by the single-particle spectrum
that governs both equilibrium and nonequilibrium physics,
but what happens when the single-particle spectrum is less
relevant? Is there evidence of this dynamical criticality in
nonintegrable models? (iv) Could there be similar links
between dynamical phase transitions and phase transitions
in excited eigenstates? This is particularly relevant in many-
body localized systems [50]. (v) Can the prethermal DCP
be predicted using other theoretical methods such as the
kinetic equations using time-dependent GGEs [51,52] or
Keldysh field theory?
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