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In this Supplemental Material, we provide details of calcu-
lations referenced in the main text. Section S.I focuses on an-
alytical results of the nearest-neighbor transverse-field Ising
model (TFIM), deriving Eqs. (4) and (6) and Fig. 2 of the
main text and discussing the finite-size and finite-time scal-
ing properties of the derivative of the nearest-neighbor corre-
lator. In Sec. S.II, we provide details of the self-consistent
mean-field calculations, which were used in the main text to
estimate the location of the critical point in the TFIM with
next-nearest-neighbor interactions. In Sec. S.III, we remark
briefly on the scaling properties in the presence of integrabil-
ity breaking to explain the scaling collapse in Fig. 3 of the
main text. In Sec. S.IV, we describe the numerical method we
used for time evolution. Finally, in Sec. S.V, we show that the
dynamical critical point analyzed in Sec. S.I exists for a wide
class of initial states.

S.I. ANALYTICAL CALCULATION DETAILS FOR
NEAREST-NEIGHBOR TFIM

In this section, we provide details for the analytical re-
sults of the nearest-neighbor transverse field Ising model. In
Secs. S.I A and S.I B, we review the well known method of di-
agonalizing the Hamiltonian and representing the initial state.
In Sec. S.I C, we calculate the analytical formula for the time
dependence of the nearest-neighbor correlator, G(t). Finally,
in Sec. S.I D, we compare the finite-time and finite-size scal-
ing of the derivative, ∂Gav(t)

∂B .

A. Diagonalizing the Hamiltonian

The Jordan-Wigner transformation from spins to free
fermions is defined as follows:

σxi =
(
ai + a†i

)
eiπ

∑
j<i a

†
jaj , (S1)

σyi = i
(
ai − a†i

)
eiπ

∑
j<i a

†
jaj , (S2)

σzi = 2a†iai − 1. (S3)

Under the Jordan-Wigner transformation, the nearest-
neighbor transverse-field Ising model with periodic boundary
conditions [Eq. (1) with ∆ = 0] transforms to a free fermion

model,

Hη =J

L−1∑
i=1

(
ai − a†i

)(
ai+1 + a†i+1

)
+B

L∑
i=1

(2a†iai − 1) + η
(
aL − a†L

)(
a1 + a†1

)
.

(S4)

Here, η = exp
(
iπ
∑
j a
†
jaj

)
is the parity of the fermion

number, with η = 1 for an even number of fermions and
η = −1 for an odd number of fermions. We can now
take advantage of the translation symmetry in Hη by using a
Fourier transformation, bqη = 1√

L

∑L
j=1 aje

iqηj where qη =
π
L

[
2m+ 1

2 (η − 1)
]

with m ∈
{
−L2 + 1, · · · 0, 1, · · · , L2

}
.

This gives us

Hη = 2J
∑
qη>0

b†
(

B
J − cos qη i sin qη
−i sin qη −BJ + cos qη

)
b, (S5)

with b =
(
bqη b†−qη

)T
. This can now be diagonalized using

a Bogoliubov transformation, γqη = uqηbqη + ivqηb
†
−qη , with

uqη = cos θqη , vqη = sin θqη , and tan 2θqη =
J sin qη

B−J cos qη
. In

this basis we obtain the diagonal Hamiltonian

Hη =
∑
qη>0

ωqη

(
γ†qηγqη + γ†−qηγ−qη − 1

)
, (S6)

with ωqη = 2J
√

B2

J2 − 2BJ cos qη + 1. The ground state is

|φ0〉 ≡ 1

|vqη |
∏
qη>0 γqηγ−qη |0〉, where |0〉 ≡ |↓ · · · ↓〉 is the

vacuum state of the ai operators. All excited states can be
written down as a set of excitations with momenta denoted by
{Qη}:

|φn〉 =
∏

qη∈{Qη}

γ†qη |φ0〉 =
∏
qη

|pn,qηpn,−qη 〉, (S7)

where pn,qη = 〈φn|Îqη |φn〉 = 0 or 1, denoting the occupation
of the mode with momentum qη .

B. Initial state and expectation values

We choose the initial state to have all spins polarized along
the x direction:

|ψin〉 = |→x · · · →x〉 =
1

2L/2

(
1 + a†1

)
· · ·
(

1 + a†L

)
|0〉.
(S8)
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Note that the initial state |ψin〉 is a superposition of both even
(η = 1) and odd (η = −1) parity sectors. We can write the
initial state as an equal-weighted superposition of both parity
sectors, |ψin〉 = 1√

2

(
|ψη=1

in 〉+ |ψη=−1
in 〉

)
. We provide ana-

lytical expressions for the expectation values of various oper-
ators in this initial state projected to a given parity sector:〈

b†qηbqη

〉
in,η

=
1

2L
[L+ (L− 2) cos qη] , (S9)〈

b−qηb
†
−qη

〉
in,η

=
1

2L
[L− (L− 2) cos qη] , (S10)〈

b†qηb
†
−qη

〉
in,η

=
i (L− 2)

2L
sin qη, (S11)〈

b−qηbqη
〉

in,η
= − i (L− 2)

2L
sin qη, (S12)〈

γ†qηγqη

〉
in,η

=
1

2L

[
L− 2 (L− 2)

J −B cos qη
ωqη

]
,

(S13)〈
γqηγqη

〉
in,η

= − i (L− 2) sin qη
Lωqη

B, (S14)

where 〈· · · 〉in,η = 〈ψηin| · · · |ψηin〉, and |ψηin〉 is assumed to be
normalized.

C. Time dependence of G(t)

In this section, we obtain the time dependence of the cor-
relator analytically. The nearest-neighbor correlator was de-
fined in Eq. (3) in the main text. Using the Jordan-Wigner
transformation, we obtain an expression for the operator that
measures the nearest-neighbor correlator,

Ĝη = − 1

L

∑
qη>0

(−2 cos qη)
(
b†qηbqη − b−qηb

†
−qη

)
+ 2i sin qη

(
bqηb−qη + b†qηb

†
−qη

)
. (S15)

Note that this expression depends upon the fermion number
parity η through the definition of qη . The correlation operator
Ĝη does not change the parity of the state it acts on. Therefore
the expectation value of the time-dependent correlator can be
written as

G(t) =
1

2

[
〈ψη=1

in |Ĝ1(t)|ψη=1
in 〉+ 〈ψη=−1

in |Ĝ−1(t)|ψη=−1
in 〉

]
.

(S16)

Recall from the previous section that the expectation values
of the conserved densities, Iqη , in the initial state are only de-
pendent on the parity through qη , just like in Eq. (S15). There-
fore, the analytical expression for the contribution from both
sectors will be the same and we can drop the dependence on η
in qη in all expressions and evaluate the formula ofG(t) using
Eqs. (S9) to (S14). Going to the Bogoliubov basis, we can
exactly calculate the time dependence,

Ĝ (t) = Ĝ0 +
1

L

∑
q>0

4B sin q

ωq
i
(
γ−qγqe

−2iωqt + H.c.
)
,

(S17)
where the q sum is taken over values allowed for either parity,
and where

Ĝ0 =
∑
q

1− 2γ†qγq
ωq

[
−2 cos q (B − J cos q) + 2J sin2 q

]
.

(S18)
Taking an expectation value with respect to the initial state re-
covers the analytical expressions for Gav(t) and G∞av,arbitrary
in Eqs. (4) and (6) of the main text. Now, we can obtain an
analytical expression for the first derivative of Gav(t) with re-
spect to B:

∂Gav(t)

∂B
=

(L− 2)

L2

∑
q

16B sin2 q

ω4
q

[
2J (B cos q − J) +

+B (B − J cos q) cos (2tωq)

−
(
B2 +BJ cos q − 2J2

) sin (2tωq)

2tωq

]
. (S19)

In the main text, we use Eq. (S19) to obtain the time depen-
dence of the first derivative in Fig. 2.

D. Scaling of the derivative, ∂Gav(t)
∂B

1. Finite-time scaling

Let us consider the finite-time scaling of the first derivative
of the correlator defined in Eq. (S19). We are interested in
the behavior near the critical point. With this in mind, let
us consider an expansion around B = J + ε. Noting that
∂Gav(t)
∂B

∣∣∣
B=J

= − 1
2J , we expand around the critical point,

∂Gav(t)

∂B

∣∣∣∣
B=J+ε

≈− 1

2J

π∫
0

dq

2π

(
(1 + cos q)

[
2− cos(2ωqt)−

sin(2ωqt)

2ωqt

]

− ε
J

cot2
(q

2

)[
2 +

(
1 + sin2

(q
2

))
cos (2ωqt)−

(
64J2t2 sin4

(q
2

)
+ sin2

(q
2

)
+ 3
) sin (2ωqt)

2ωqt

])
,

(S20)
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where we have used ωq = 2J
√

2(1− cos q) and taken the
thermodynamic limit. Let us examine the above expansion
term by term. At O(ε0), the integrand contains terms ∝
cos(2ωqt) and sin(ωqt)

2ωqt
, which average out to zero as time in-

creases. This explains why the derivative is very weakly de-
pendent on time at the critical point (ε = 0). Going to the
next order at O(ε), we need to be careful around q → 0, since
the summand has terms ∝ 1

sin2(q/2)
∼ 1

q2 . Expanding this
term around q = 0, we obtain the following expression for the
derivative near the critical point,

∂Gav(t)

∂B
≈ − 1

2J
+
εt

J
F(Jt), (S21)

with

F(x) =
1

x

π∫
0

dq

2π

2

q2

(
2 + cos (4xq)− 3

sin (4xq)

4xq

)
.

(S22)
Note that in the limit of large x, F(x) approaches 1, and we
can expand ∂Gav(t)

∂B near B = J as

∂Gav(t)

∂B

∣∣∣∣
B=J+ε

=
1

J

(
−1

2
+ εt

)
. (S23)

This linear dependence is shown as a red dashed line in the
inset of Fig. 2 in the main text.

2. Finite-size scaling

Now let us discuss the comparison between finite-time scal-
ing and finite-size scaling. In order to isolate the scaling with
system size, we examine the infinite-time-averaged value of
the first derivative, ∂Gav(t→∞)

∂B . Utilizing the expression for
the derivative expanded around the critical point (but for fi-
nite system sizes), we obtain the following expression for the
infinite-time-averaged value of the derivative:

∂Gav(t→∞)

∂B

∣∣∣∣
B=J+ε

= − 1

2J
+

ε

J2L

∑
η,qη>0

4

q2
η

≈ 1

J

(
−1

2
+

ε

3J
L

)
. (S24)

Note that for the above expression, the different parity sectors
(η = ±1) contribute differently to the coefficient of ε. Com-
pared to Eq. (S23), we find that the time t plays the role of
L/(3J), where v = 3J can be regarded as a Lieb-Robinson
velocity. As a result, the finite-time scaling is in some sense
equivalent to the finite-size scaling.

S.II. SELF-CONSISTENT MEAN-FIELD CALCULATIONS FOR TFIM WITH NEXT-NEAREST-NEIGHBOR
INTERACTIONS

In this section, we provide details of the self-consistent mean-field calculations we performed to estimate the critical point
of the TFIM in the presence of next-nearest-neighbor interactions. In general, this model cannot be mapped to a free-fermion
model, and therefore we need to make some approximations to calculate its critical point analytically.

Before doing a self-consistent calculation, let us outline properties of a simpler, noninteracting Hamiltonian,

H̃ = J
∑
i

(
ai − a†i

)(
ai+1 + a†i+1

)
+ J∆

∑
i

(
ai − a†i

)(
ai+2 + a†i+2

)
+B

L∑
i=1

(
2a†iai − 1

)
. (S25)

Equation (S25) can be diagonalized in a straightforward manner after Fourier transformation to obtain the quasiparticle spectrum

ωq = 2J
√
g2 + 1 + ∆2 − 2g (cos q + ∆ cos 2q) + 2∆ cos q, (S26)

where we have defined g ≡ B/J . The quasiparticle annihilation operator is defined analogously as γq = cos θqηbq+i sin θqηb
†
−q ,

with tan 2θqη = sin q+∆ sin 2q
g−cos q−∆ cos 2q and bq = 1√

L

∑
j aje

iqj . The critical point is at g = 1 + ∆, where it is easy to verify that
ωq = 0 has a solution at q = 0. We can now calculate long-time (t→∞) values of different correlators for dynamics under the
Hamiltonian given by Eq. (S25):

O0 = − 1

L

∑
i

〈
2a†iai − 1

〉
in,t→∞

=
2J

L

∑
q

1− 2〈Iq〉in
ωq

(g − cos q −∆ cos 2q) , (S27)

O1 = − 1

L

∑
i

〈(
ai − a†i

)(
ai+1 + a†i+1

)〉
in,t→∞

=
2J

L

∑
q

1− 2 〈Iq〉in
ωq

[(∆− g) cos q + 1] , (S28)

O2 = − 1

L

∑
i

〈(
ai − a†i

)(
ai+2 + a†i+2

)〉
in,t→∞

=
2J

L

∑
q

1− 2 〈Iq〉in
ωq

[(∆− g cos 2q + cos q)] , (S29)
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where 〈· · · 〉in indicates expectation value with respect to the initial state, and Iq = γ†qγq is the quasiparticle density at momentum
q. Examining the functional dependence of the correlators, it is clear that starting from the initial state |→ · · · →〉, the long-time
values of the operators will exhibit a nonanalyticity at the critical point given by B/J = 1 + ∆.

Now let us discuss the Ising model with next-nearest-neighbor interactions as defined in Eq. (1). Under the Jordan-Wigner
transformation, it becomes

HNNN = J
∑
i

(
ai − a†i

)(
ai+1 + a†i+1

)
+J∆

∑
i

(
ai − a†i

)(
1− 2a†i+1ai+1

)(
ai+2 + a†i+2

)
+B

L∑
i=1

(
2a†iai − 1

)
. (S30)

In order to do a self-consistent calculation, we approximate the four-fermion term with a ‘Hartree-Fock’ like expansion [S1].
While this is standard when considering the ground state of HNNN, we extend this approximation to the long-time quench
dynamics by taking the mean-field expectation values in the t→∞ limit with respect to the initial state |ψin〉:(
ai − a†i

)(
1− 2a†i+1ai+1

)(
ai+2 + a†i+2

)
≈
〈(
ai − a†i

)(
ai+2 + a†i+2

)〉
in,t→∞

(
1− 2a†i+1ai+1

)
+
〈(

1− 2a†i+1ai+1

)〉
in,t→∞

(
ai − a†i

)(
ai+2 + a†i+2

)
−
〈(
ai − a†i

)(
ai+1 + a†i+1

)〉
in,t→∞

(
ai+1 − a†i+1

)(
ai+2 + a†i+2

)
−
(
ai − a†i

)(
ai+1 + a†i+1

)〈(
ai+1 − a†i+1

)(
ai+2 + a†i+2

)〉
in,t→∞

,

(S31)

where we drop terms that can be ruled out by the symmetry of
the Hamiltonian and the initial state. Plugging this expansion
back into the Hamiltonian, we obtain an effective Hamiltonian
of the form given by H̃ in Eq. (S25) but with the following the
modified parameters:

J ′ = J + 2J∆O′1, (S32)
J ′∆′ = J∆O′0, (S33)
B′ = B + J∆O′2, (S34)

where O′i are computed using Eqs. (S27) to (S29) with the
replacement {J,∆, B} → {J ′,∆′, B′}. The critical point is
given by ∆′ = 1+g′, which coupled with the above equations
gives us the value of the field B at the critical point. In the
following, we will discuss two possible cases of solving these
self-consistent equations:

1. Ground state: For the ground state of Eq. (S30) after
the mean-field approximation, we have 〈Iq〉gs = 0. We
obtain the following system of equations for the critical
point:

J ′ = J (1 + 4∆I1) , (S35)
2J∆I1 = (g′ − 1) (J (1 + 4∆I1)− 2J∆I2) , (S36)

B = g′J ′ − 2J∆ (g′I2 − I1) , (S37)

with I1 = J ′
∫ π
−π

dq
2π

1
ω′
q

(− cos q + 1) and I2 =

J ′
∫ π
−π

dq
2π

1
ω′
q

(− cos 2q + 1), and where ω′q is given by
Eq. (S26) with {J,∆, B} → {J ′,∆′, B′}. When ∆ is
small, these self-consistent equations can be solved ana-
lytically to obtainB ≈ J+ 16

3πJ∆. For general ∆, these
equations can be solved numerically. For instance, at
∆ = 0.1, we obtain B/J = 1.16 as the critical point.

0.0 0.1 0.2 0.3

∆/J

1.0

1.1

1.2

1.3

1.4

1.5

B
c/
J

Dyn, Numerics
Dyn, Self-consistent Theory
GS, Numerics
GS, Self-consistent Theory

FIG. S1. Comparison between the self-consistent theory and exact
numerics. Blue points show the dynamical critical points obtained
from finite-time scaling as a function of the integrability breaking.
In comparison, the blue dashed line shows the prediction from the
mean-field approximation. Black points show the quantum critical
point obtained from the finite-size scaling of the Binder cumulant,
U4. The black dashed line shows the expected dependence from the
self-consistent mean-field approximation for the ground state.

2. Quench from |→ · · · →〉: In this case, 〈Iq〉in = 1
2 −

J′

ω′
q

[1− (g′ −∆′) cos q]. Again, the critical point is
given by

(g′ − 1) (g′ + ∆) = ∆
2g′ − 1

2g′
, (S38)

B = J (g′ + ∆) . (S39)
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FIG. S2. Scaling collapse with parameters given by the respective
panels of Fig. 3 in the main text. The first column [panels (a) and
(c)] corresponds to the TFIM with next-nearest-neighbor interaction
∆ = 0.1 [Eq. (1)], while the second column [panels (b) and (d)] cor-
responds to the TFIM with long-range interaction α = 6 [Eq. (2)].
The top panels [(a) and (b)] show finite-time scaling of the time-
averaged nearest-neighbor correlator Gav(t), while the bottom pan-
els [(c) and (d)] show finite-size scaling of the ground-state Binder
cumulant Ugs

4 .

The above equations can be solved to first order in ∆,
which gives us the critical point at B ≈ J + 3

2J∆.

Note that in general, the self-consistent equations give dif-
ferent solutions for the critical point when using the ground-
state or the quench dynamics. In Fig. S1, we compare the
predictions for the critical points from the self-consistent the-
ory (both ground-state and quench) with the actual critical
points obtained from numerics. We locate the critical points
for different values of ∆ using the technique employed for
Figs. 3(a) and (c) of the main text. Figure S1 shows reason-
able agreement between the self-consistent theory and the nu-
merical values.

S.III. SCALING COLLAPSE FOR FIG. 3

In this section, we briefly remark on the scaling properties
in the presence of integrability breaking. In Fig. S2, we show
the scaling collapse under rescaling of the x axis of Fig. 3.
The important thing to note is the distinction between Fig. S2
panels (a) and (b) in comparison with (c) and (d). While
the dynamical data collapses to a universal function around
the dynamical critical point with ∂Gav(t)

∂B = f̃
(
(B −Bdy

c )t
)
,

the ground-state Binder cumulant collapses to a different uni-
versal function around the quantum critical point, Ugs

4 =
K((B −Bgs

c )L/J).

S.IV. NUMERICAL ALGORITHM FOR TIME
EVOLUTION

In this section, we present the numerical method we used
for performing time evolution. We assume a spin-half model
on N sites in which the Hamiltonian can be decomposed as

H = Hx +Hz, (S40)

withHx diagonal in the x basis andHz diagonal in the z basis.
The method takes advantage of the identityX = HZH, where
H = 1√

2

(
1 1
1 −1

)
is the Hadamard operator, and X and Z are

Pauli matrices. It relies on a fast Walsh-Hadamard transform
to apply H to all spins simultaneously. A similar method has
been discussed for simulating a kicked Ising model [S2].

Let us first consider the method using a first-order Trotter
decomposition,

e−iHτ = e−iHxτe−iHzτ +O(τ2). (S41)

We now consider implementing this operator, which approx-
imates evolution for a time τ , on a state vector |ψ〉 which is
represented in the z basis. The operator e−iHzτ can be applied
in O(2N ) time since it is diagonal in the z basis. It remains
to apply e−iHxτ . Note that the operator can be written in the
form

e−iHxτ = Halle
−iDτHall, (S42)

with D = HallHxHall diagonal in the z basis, and where
Hall =

∏
j Hj is the Hadamard operator applied to all sites

j. The operator Hall can be applied to a state in timeO(2NN)
and without memory overhead via the fast Walsh-Hadamard
transform, which is faster than the equivalent dense matrix
multiplication. In this way, the full Trotter time step can be
applied by performing two element-wise multiplications of
the state vector to implement the diagonal operators, along
with two Walsh-Hadamard transforms. The Walsh-Hadamard
transform can even be performed in parallel across many cores
or nodes in a cluster, e.g. as implemented in FFTW [S3]. If the
diagonal elements of Hx and Hz are computed on the fly, the
method results in zero memory overhead, unlike Krylov-space
methods.

In fact, we can improve the error due to the finite time step
by using a fourth-order Suzuki-Trotter decomposition [S4],

e−iHτ = U(τ1)U(τ1)U(τ3)U(τ1)U(τ1) +O(τ5), (S43)

where U(τi) = e−iHzτi/2e−iHxτie−iHzτi/2, τ1 = τ
4−41/3 ,

and τ3 = τ − 4τ1. (Note that τ3 is actually negative.) The
simulations within this paper were obtained by using such a
fourth-order decomposition with τ = 0.005. Benchmarking
against exact diagonalization suggests that this time step is
sufficiently small for the simulations in this paper.

We note that given a maximum permissible error of ε
(as quantified by the trace distance), the number of Walsh-
Hadamard transforms required to simulate for time T is
at most O(T 5/4ε1/4) for such a fourth-order decomposi-
tion [S5]. (Here we assume that error from the Suzuki-
Trotter decomposition dominates and error from the Walsh-
Hadamard transform is negligible.) Recent evidence suggests
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that this rigorous error bound may not be tight (see, e.g.,
Ref. [S6]).

Finally, we note that generalizations of the Walsh-
Hadamard transform can be used to implement additional
terms in the Hamiltonian, e.g., a term Hy that is diagonal in
the y basis.

S.V. MORE GENERAL INITIAL STATES

In this section, we show that the dynamical critical point
analyzed in Sec. S.I exists for more general initial states than
the product state that is fully polarized in the x direction. We
show that the following three types of changes to this initial
state do not alter the dynamical critical behavior in any ma-
jor way: (i) any global rotation of the spins’ polarization in
the x – y plane, (ii) any small global rotation of the spins’
polarization away from the x – y plane, and (iii) any local
rotations of the spins. These situations cover realistic experi-
mental imperfections in preparing the x-polarized initial state.

We note that even having the initial state polarized in the z di-
rection will give rise to the same dynamical critical point, but
a different order parameter will be required (see Ref. [S7] for
details).

To show (i) and (ii), we generalize Eq. (S8) to consider an
arbitrary product initial state,

|ψin (β,θ)〉 =

L∏
i=1

(
sinβi + cosβie

iΘia†i

)
|0〉. (S44)

The angles {βi} and {Θi} characterize any arbitrary prod-
uct state with each spin pointing along some direction of the
Bloch sphere. For uniform global rotations, (βi,Θi) ≡ (β,Θ)
for all i.

Recall that the analyticity of the correlation function de-
pends on the occupation of the conserved densities in the
initial state, 〈Iq〉in. For a globally rotated state denoted by
|β,Θ〉 = |β,Θ〉η=1 + |β,Θ〉η=−1, it is straightforward to cal-
culate that in the limit L� 1,

〈b−qbq〉in,η =
−i
4
e2iθ (sin 2β)

2
L∑
j=1

[
(− cos 2β)

j−1 − η (− cos 2β)
L−j−1

]
sin qj, (S45)

〈
b†qbq

〉
in,η

=
1

2
(cosβ)

2
[
1− η (− cos 2β)

L−1
]

+
1

4
(sin 2β)

2
L∑
j=1

(− cos 2β)
j−1

[
1− η (− cos 2β)

L−2j
]

cos qj, (S46)

where we note a difference of a factor of 2 compared
with the notation in Sec. S.I B, which is due to the nor-
malization of the states of the even and odd parity sec-
tors. Now, it is obvious that for any initial state with all
spins in the x – y plane [i.e., β = π/4, corresponding
to case (i) above], the nonanalytic behavior survives, since
1− 2〈Iq〉in = 2

ωq

[
J −B cos q − J sin2 q (1− cos Θ)

]
. This

form preserves the nature of the nonanalyticity at the critical
point and can be verified in a straightforward manner. Away
from the x – y plane [i.e., β → π

4 + ε, corresponding to case
(ii)], the initial state will induce small corrections to the value
of the correlation function but will not remove the nonanalyt-
icity since it does not change the nature of the pole structure
of the integrand [see Eq. (6) in the main text].

To consider initial states of type (iii), we assign any lo-
cal rotations on the initial spin state to a local unitary oper-
ator U0. Note that by definition of a local operator, we as-
sume U0 is acting on a finite number of spins for a thermody-

namic system. Now consider the order parameter introduced
in Eq. (3) of the main text and the difference of its value in the
x-polarized initial state |ψin〉 and the state perturbed by U0,
itself denoted by |ψ′in〉 = U0|ψin〉:

|G(t)−G′(t)| ≤ ‖[ 1

L

∑
i

σxi (t)σxi+1(t), U0]‖, (S47)

where G′(t) is defined by Eq. (3) upon replacing the initial
state |ψin〉 by |ψ′in〉. Using the Lieb-Robinson bound [S8],
we can bound the norm of the commutator to a constant of
O(1/L) for t = O(L), because within the light cone terms in
the commutator decay exponentially in the separation between
site i and the sites that U0 is supported on, leading to a con-
vergent sum. As a result, the difference in the order parameter
up to t = O(L) (which is when the dynamical criticality be-
comes sharp) is vanishing in the thermodynamic limit, making
local perturbations on the initial state largely irrelevant.
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