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The Supplemental Material provides more mathematical details for the derivations of the error bound in the paper.
Specifically, Sec. S1 explains how we write the k-th order error δk into a commutator. Section S2 provides an upper
bound for a sum of different evolutions of δ. Finally, in Sec. S3, we show how we bound the norm of ∆k in Eq. (16).

S1. STRUCTURE OF δk

In this section, we present the proof of Lemma 1, which says that we can write δk into a sum of a commutator and
an operator of higher order. First, we need the following recursive relation between the δk operators.

Lemma S1. For k ≥ 2, we have the following recursive relation:

δk+1 = H1δk + δkH2 − [Hk, H2]. (S1)

Proof. We prove the lemma by expanding both Ut/r and U
(1)
t/rU

(2)
t/r in orders of t/r:
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where

Ak :=

k∑
j=0

(
k

j

)
Hj

1H
k−j
2 , Bk := Hk = (H1 +H2)k. (S4)

With these notations, we have the relation δk = Bk − Ak. It is also straightforward to verify the recursive relations
for Ak and Bk:

Ak+1 = H1Ak +AkH2, (S5)

Bk+1 = Hk+1 = HBk = (H1 +H2)(Ak + δk)

= H1Ak +H1δk +BkH2 − [Bk, H2]

= H1Ak +H1δk + (Ak + δk)H2 − [Bk, H2]

= (H1Ak +AkH2) +H1δk + δkH2 −
[
Hk, H2

]
= Ak+1 +H1δk + δkH2 −

[
Hk, H2

]
. (S6)

By definition, we have

δk+1 = Bk+1 −Ak+1 = H1δk + δkH2 −
[
Hk, H2

]
. (S7)

Therefore, the lemma follows.
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We now construct the operators Sk, Vk in Lemma 1 inductively on k. For k = 2, we have δ2 = [H,H2]. Thus
Lemma 1 is true for k = 2 with S2 = H2 and V2 = 0. Assume that Lemma 1 is true up to k, i.e. there exist Sk, Vk
such that δk = [H,Sk] + Vk, we shall prove that it is also true for k + 1. Using Lemma S1, we have

δk+1 = H1δk + δkH2 − [Hk, H2]

= [H1, δk] + δkH − [Hk, H2]

= [H1, [H,Sk] + Vk] + VkH + [H,Sk]H − [Hk, H2]. (S8)

We use the following commutator identities:

[H,Sk]H = [H,SkH], (S9)

[Hk, H2] = [H,

k−1∑
j=0

Hk−1−jH2H
j ]. (S10)

With some trivial manipulations, we can write δk+1 = [H,Sk+1] + Vk+1, where

Sk+1 = SkH −
k−1∑
j=0

Hk−1−jH2H
j , (S11)

Vk+1 = [H1, [H,Sk]] +H1Vk + VkH2. (S12)

Finally, we show that the operators Sk, Vk constructed using the above recursive relations satisfy the norm bounds
in Eqs. (10) to (12). We need the following lemma about the structure of Sk, Vk.

Lemma S2. For integer k ≥ 2, the operators Sk, Vk constructed from Eqs. (S11) and (S12) can be written as

Vk =

nk∑
i=1

vk,i, nk ≤ ξek−2nk−2, (S13)

Sk =

mk∑
i=1

sk,i, mk ≤
k(k − 1)

2
nk−1, (S14)

where ξ is a constant, vk,i, sk,i are operators supported on at most 2(k − 1) sites and

‖sk,i‖ ≤ 1, ‖vk,i‖ ≤ 1, (S15)

for all i.

Proof. Denote by supp (X) the support size of an operator X, i.e. the number of sites X acts nontrivially on. We
say that the number of terms in Vk is x if there exists a decomposition Vk =

∑x
j=1 vj such that ‖vj‖ ≤ 1 for all j.

For k = 2, the lemma is true by definition. Assume that the lemma is true up to some k ≥ 2, we shall prove that it
holds for k + 1.

First, we argue for the bounds on the number of terms mk+1, nk+1 in Sk+1, Vk+1 respectively. Since there are mk

terms in Sk, using Eq. (S11), it is straightforward to bound mk+1—the number of terms in Sk+1:

mk+1 ≤ mkn+ knk ≤ k(k − 1)

2
nk + knk =

k(k + 1)

2
nk. (S16)

To bound nk+1, the number of terms in Vk+1, we use Eq. (S12) and note that sk,i can non-commute with at most
2supp (sk,i) = 4(k − 1) terms from H. Therefore, the number of terms in [H,Sk] is at most 4(k − 1)mk. Each of
these terms has its support size increased by at most one (to 2k − 1) compared to the terms of Sk. Repeating the
argument for [H1, [H,Sk]], the number of terms in Vk+1 can be bounded as follow:

nk+1 ≤ 2(2k − 1)4(k − 1)mk + nnk (S17)

≤ 8k4nk−1 + ξek−2nk−1 (S18)

< 2ξek−2nk−1 < ξek−1nk−1, (S19)

where ξ = 2048
e2(e−1) and we have used the fact that 8k4 + ξek−2 < ξek−1 for all k ≥ 2. Therefore, the number of terms

nk+1,mk+1 are bounded according to Eqs. (S13) and (S14).
It is also apparent from this construction that each iteration in Eqs. (S11) and (S12) increases the support size of

the constituent terms in Sk, Vk by at most 2. Therefore, Lemma S2 follows.
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With Lemma S2, it is straightforward to show that the norms of Vk, Sk, [H,Sk] are upper bounded by the their
number of terms:

‖Vk‖ ≤ nk = O
(
ek−2nk−2

)
(S20)

‖Sk‖ ≤ mk = O
(
k2nk−1

)
, (S21)

‖[H,Sk]‖ ≤ 4(k − 1)mk = O
(
k3nk−1

)
. (S22)

These bounds complete the proof of Lemma 1.

S2. SUM OF EVOLUTIONS OF δ

In this section, we present the proof of Lemma 2, which provides an upper bound for the sum of evolution of an
operator with different times.

Proof. We denote by τ := t/r and

Σa(X) :=

a−1∑
j=0

Ujτ [H,X]U†jττ, (S23)

where X is an arbitrary time-independent operator, a is a positive integer, and Ut = exp(−iHt) as before.
First, we need to turn the sum Σa(X) into a sum of several integrals using the following lemma.

Lemma S3. Define

F [X] := −1

τ

∫ τ

0

ds

∫ s

0

dvUv [H,X]U†v , (S24)

It(X) :=

∫ t

0

Us [H,X]U†sds. (S25)

For all τ such that nτ < 1, where n is the number of sites in the system, we have

Σa(X) =

∞∑
k=0

Iaτ (F ◦k[X])), (S26)

where F ◦k the k-th iterate of a function F , i.e. the composition F ◦k[X] = F [F [. . . F [X] . . . ]], with F ◦0 being the
identity function.

Proof. To prove the claim, we note that

Iaτ (X) =

∫ aτ

0

Us [H,X]U†sds =

a−1∑
j=0

∫ (j+1)τ

jτ

Us [H,X]U†sds =

a−1∑
j=0

Ujτ

(∫ τ

0

Us [H,X]U†sds

)
U†jτ . (S27)

Therefore, we have

Σa(X)− Iaτ (X) =

a−1∑
j=0

Ujτ

(
[H,X] τ −

∫ τ

0

Us [H,X]U†sds

)
U†jτ

=

a−1∑
j=0

Ujτ

∫ τ

0

ds
(
[H,X]− Us [H,X]U†s

)
U†jτ

=

a−1∑
j=0

Ujτ

∫ τ

0

ds

∫ 0

s

dvUv [H, [H,X]]U†vU
†
jτ

=

a−1∑
j=0

Ujτ

[
H,

1

τ

∫ τ

0

ds

∫ 0

s

dvUv [H,X]U†v

]
U†jττ

= Σa(F [X])). (S28)

To get the second last line, we use the fact that H and Ut commute in order to move the integral inside the
commutator. Repeated applications of this recursive relation yields Eq. (S26). The condition nτ < 1 ensures that
the sum in Eq. (S26) converges (See Lemma S4).
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Lemma S4 below is a consequence of Lemma S3.

Lemma S4. If X is time-independent and µ := nt
r < 1, ‖Σa(X)‖ ≤ 2

1−µ ‖X‖.

Proof. To prove Lemma S4, we note that

‖F [X]‖ ≤ τ ‖H‖ ‖X‖ ≤ µ ‖X‖ . (S29)

Therefore,
∥∥F ◦k[X]

∥∥ ≤ µk ‖X‖. Note also that for the time-independent X,

Iaτ (X) =

∫ aτ

0

Us [H,X]U†sds = UaτXU
†
aτ −X, (S30)

and therefore ‖Iaτ (X)‖ ≤ 2 ‖X‖. Using Lemma S3, we have

‖Σa(X)‖ ≤
∞∑
k=0

∥∥Iaτ (F ◦k[X])
∥∥ ≤ 2

∞∑
k=0

∥∥F ◦k[X]
∥∥

≤ 2 ‖X‖
∞∑
k=0

µk =
2

1− µ
‖X‖

= O (‖X‖) , (S31)

where we have assumed µ = nt
r < 1 so that the sum converges. Therefore, the lemma follows.

To prove the Lemma 2, we write δ = [H,S] + V with S, V bounded by Eq. (14). We then use Lemma S4 with
X = S and the triangle inequality to get∥∥∥∥∥∥

a−1∑
j=0

Ujτδ U
†
jτ

∥∥∥∥∥∥ ≤
∥∥∥∥1

τ
Σa(S)

∥∥∥∥+

∥∥∥∥∥∥
a−1∑
j=0

UjτV U†jτ

∥∥∥∥∥∥ (S32)

= O

(
1

τ
‖S‖

)
+O (a ‖V ‖) (S33)

= O

(
nt

r

)
+O

(
a
nt3

r3

)
. (S34)

Thus, the lemma follows.

S3. UPPER BOUND ON ∆k

In this section, we show how we bound the norms of ∆k in Eq. (16). For that, we use Lemma 2 together with the
bound on ‖δ‖ [Eq. (13)]:

‖∆k‖ =

∥∥∥∥∥∥∥
r−k∑
i1=0

r−k−i1∑
i2=0

r−k−i1−i2∑
i3=0

· · ·
r−k−i1−i2−···−ik∑

ik=0

U i1t/rδU
i2
t/rδU

i3
t/rδ · · ·︸ ︷︷ ︸

δ appears k times

Ur−k−i1−i2−···−ikt/r

∥∥∥∥∥∥∥
≤

r−k∑
i1=0

r−k−i1∑
i2=0

r−k−i1−i2∑
i3=0

· · · ‖δ‖k−1
∥∥∥∥∥
r−k−i1−i2−···−ik∑

ik=0

U ikt/rδU
−ik
t/r

∥∥∥∥∥
≤ rk−1 ‖δ‖k−1O

(
nt

r
+
nt3

r2

)
. (S35)

Thus, Eq. (16) follows.
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