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We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-
Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting
power-law (1=rα) interactions. For all power-law exponents α between d and 2dþ 1, where d is the
dimension of the system, the protocol yields a polynomial speed-up for α > 2d and a superpolynomial
speed-up for α ≤ 2d, compared to the state of the art. For all α > d, the protocol saturates the Lieb-
Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and
the tightness of the bounds in this regime. The protocol has a wide range of applications, including in
quantum sensing, quantum computing, and preparation of topologically ordered states. In addition, the
protocol provides a lower bound on the gate count in digital simulations of power-law interacting systems.
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I. INTRODUCTION

Harnessing entanglement between many particles is key
to a quantum advantage in applications including sensing
and timekeeping [1,2], secure communication [3], and
quantum computing [4,5]. For example, encoding quantum
information into a multiqubit Greenberger-Horne-
Zeilinger-like (GHZ-like) state is particularly desirable
as a subroutine in many quantum applications, including
metrology [2], quantum computing [6,7], anonymous
quantum communication [8,9], and quantum secret
sharing [10].
The speed at which one can unitarily encode an unknown

qubit state aj0i þ bj1i into a GHZ-like state aj00…0i þ
bj11…1i of a large system is constrained by Lieb-
Robinson bounds [11–25] and depends on the nature of
the interactions in the system. In systems with finite-range
interactions and power-law interactions decaying with
distance r as 1=rα for all α ≥ 2dþ 1, where d is the
dimension of the system, the Lieb-Robinson bounds imply
a linear light cone for the propagation of quantum infor-
mation [23,25]. Consequently, in such systems, the linear
size of a GHZ-like state that can be prepared from

unentangled particles cannot grow faster than linearly with
time.
The Lieb-Robinson bounds become less stringent for

longer-range interactions, i.e., those with α < 2dþ 1. The
bounds theoretically allow quantum information to travel a
distance r in time t that scales sublinearly with r
[14–16,21,26]. However, no protocol in the present liter-
ature can saturate these bounds. In particular, existing
protocols for α ∈ ðd; 2d� are exponentially slower than
what is allowed by the corresponding bounds. Up until
now, the existence of this gap between the Lieb-Robinson
bounds and the achievable protocols has meant that at least
one of the two is not yet optimal, hinting at either a tighter
Lieb-Robinson bound or the possibility of speeding up
many quantum information processing tasks.
In this paper, we close the gap for all α ∈ ðd; 2dþ 1Þ in

d dimensions by designing a protocol for encoding an
arbitrary qubit into a multiqubit GHZ-like state and,
subsequently, transferring information at the limits imposed
by the Lieb-Robinson bounds. There are three key impli-
cations of the protocol. First, within these regimes of α, it
establishes the tightness of the Lieb-Robinson bounds, up
to subpolynomial corrections, and effectively puts an end to
the 15-year search for a tighter bound. Second, our protocol
implies optimal designs for future experiments on power-
law interacting systems, including trapped ions [27,28]
(α ∈ ½0; 3�) in one and two dimensions [29], ultracold
atoms in photonic crystals [32,33], van der Waals interact-
ing Rydberg atoms [34,35] (α ¼ 6) in three dimensions
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[36], as well as the very common case of dipolar inter-
actions in nitrogen-vacancy centers [37], polar molecules
[38], and dipole-dipole interacting Rydberg atoms [39]
(α ¼ 3) in two dimensions. Finally, our protocol implies a
lower bound on the gate count in simulating power-law
interacting systems on a quantum computer, providing a
benchmark for the performance of quantum simulation
algorithms.
The structure of the paper is as follows. In Sec. II, we

define our setting and introduce the main result: the optimal
state-transfer time in power-law interacting systems
[Eq. (3)]. In Sec. III, we describe the corresponding optimal
protocol for generating entanglement and subsequently
transferring quantum information. At the end of Sec. III,
we discuss the key ingredients that make the protocol
outperform previously known protocols. Readers who are
interested in the conceptual implications of the protocol
may also skip ahead to Sec. IV, where we establish the
tightness of existing Lieb-Robinson bounds and discuss
implications for other types of speed limits associated with
quantum information propagation.

II. SETUP AND RESULTS

We first describe the setting of the problem and the
main result in this section. For simplicity, we consider a
d-dimensional hypercubic lattice Λ and a two-level system
located at every site of the lattice. Our protocol generalizes
straightforwardly to all regular lattices. Without loss of
generality, we assume that the lattice spacing is one. We
consider a power-law interacting Hamiltonian HðtÞ ¼P

i;j∈Λ hijðtÞ, where hijðtÞ is a Hamiltonian supported on
sites i, j such that, at all times t and for all i ≠ j, we have
khijk ≤ 1=distði; jÞα, where distði; jÞ is the distance between
i, j, k · k is the operator norm, andα ≥ 0 is a constant.We use
jGHZða; bÞiS to denote the GHZ-like state over sites in
S ⊆ Λ:

jGHZða; bÞiS ≡ aj0̄iS þ bj1̄iS; ð1Þ

where jx̄iS≡ ⊗j∈S jxij (x ¼ 0, 1) are product states over all
sites in S and a, b are complex numbers such that
jaj2 þ jbj2 ¼ 1. In particular, we use jGHZi to denote the
symmetric state a ¼ b ¼ 1=

ffiffiffi
2

p
.

Given a d-dimensional hypercube C ⊆ Λ of length
r ≥ 1, we consider the task of encoding a possibly
unknown state aj0i þ bj1i of a site c ∈ C into the
GHZ-like state jGHZða; bÞiC over C, assuming that all
sites in C, except for c, are initially in the state j0i.
Specifically, we construct a time-dependent, power-law
interacting Hamiltonian HðtÞ that generates UðtÞ ¼
T exp½−i R t

0 dsHðsÞ� satisfying

UðtÞðaj0i þ bj1iÞcj0̄iCnc ¼ aj0̄iC þ bj1̄iC ð2Þ

at time

tðrÞ ≤ Kα ×

8>><
>>:

logκαr if d < α < 2d

eγ
ffiffiffiffiffiffiffi
log r

p
if α ¼ 2d

rα−2d if 2d < α ≤ 2dþ 1:

ð3Þ

Here, γ ¼ 3
ffiffiffi
d

p
, κα, and Kα are constants independent of t

and r. Additionally, by reversing the unitary in Eq. (2) to
“concentrate” the information in jGHZða; bÞi onto a differ-
ent site in C, we can transfer a quantum state from c ∈ C to
any other site c0 ∈ C in time 2t.

III. OPTIMAL PROTOCOL

The key idea of our protocol (Fig. 1) is to recursively
build the GHZ-like state in a large hypercube from the
GHZ-like states of smaller hypercubes. For the base case,
we note that hypercubes of finite lengths, i.e., r ≤ r0 for
some fixed r0, can always be generated in times that satisfy
Eq. (3) for some suitably large (but constant) prefactor Kα.
Assuming that we can encode information into a GHZ-like
state in hypercubes of length r1 in time t1 satisfying Eq. (3),
the following subroutine encodes information into a GHZ-
like state in an arbitrary hypercube C of length r ¼ mr1
containing c—the site initially holding the phase information
a, b. Here m is an α-dependent number to be chosen later.
Step 1.—We divide the hypercube C into md smaller

hypercubes C1;…; Cmd , each of length r1. Without loss of
generality, let C1 be the hypercube that contains c. Let V ¼
rd1 be the number of sites in each Cj. In this step, we
simultaneously encode a, b into jGHZða; bÞiC1

and prepare
jGHZiCj

for all j ¼ 2;…; md, which, by our assumption,
takes time:

t1 ≤ Kα ×

8>><
>>:

logκαr1 if d < α < 2d

eγ
ffiffiffiffiffiffiffiffi
log r1

p
if α ¼ 2d

rα−2d1 if 2d < α ≤ 2dþ 1:

ð4Þ

By the end of this step, the hypercube C is in the state

ðaj0̄i þ bj1̄iÞC1
⊗
md

j¼2

j0̄iCj
þ j1̄iCjffiffiffi
2

p : ð5Þ

Step 2.—Next, we apply the following Hamiltonian to
the hypercube C:

H2 ¼
1

ðmr1
ffiffiffi
d

p Þα
Xmd

j¼2

X
μ∈C1

X
ν∈Cj

j1ih1jμ ⊗ j1ih1jν: ð6Þ

This Hamiltonian effectively generates the so-called con-
trolled-phase gate between the hypercubes, with C1 being
the control hypercube and C2;…; Cmd being the target
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hypercubes. We choose the interactions between qubits in
Eq. (6) to be identical for simplicity. If the interactions were
to vary between qubits, we would simply turn off the
interaction between C1 and Cj once the total phase accu-

mulated by Cj reaches π [40]. The prefactor 1=ðmr1
ffiffiffi
d

p Þα
ensures that this Hamiltonian satisfies the condition of a
power-law interacting Hamiltonian. It is straightforward to
verify that, under this evolution, the state of the hypercube C
rotates to

aj0̄iC1
⨂
md

j¼2

j0̄iCj
þ j1̄iCjffiffiffi
2

p þ bj1̄iC1
⨂
md

j¼2

j0̄iCj
− j1̄iCjffiffiffi
2

p ð7Þ

after time t2 ¼ πdα=2ðmr1Þα=V2.
The role of power-law interactions in our protocol can be

inferred from the value of t2. Intuitively, the speed of
simultaneously entangling hypercube C1 with hypercubes
C2;…; Cmd is enhanced by the V2 ¼ r2d1 couplings between
the hypercubes. However, the strength of each coupling,
proportional to 1=ðmr1Þα, is suppressed by the maximum
distance between the sites in C1 and those in C2;…; Cmd .

With a small enough α, the enhancement due to V2

overcomes the suppression of power-law interactions,
resulting in a small entanglement time t2. In particular,
when α < 2d, t2 actually decreases with r1, implying that
step 2 would be faster in later iterations if we were to keep
m constant.
To obtain the desired state jGHZða; bÞiC, it remains to

apply a Hadamard gate on the effective qubit fj0̄iCj
; j1̄iCj

g
for j ¼ 2;…; md. We do this in the following three steps by
first concentrating the information stored in hypercube Cj

onto a single site cj ∈ Cj (step 3), then applying a
Hadamard gate on cj (step 4), and then unfolding the
information back onto the full hypercube Cj (step 5).
Step 3.—By our assumption, for each hypercube Cj

(j ¼ 2;…; md) and given a designated site cj ∈ Cj, there
exists a (time-dependent) Hamiltonian Hj that generates a
unitary Uj such that

ðψ0j0i þ ψ1j1iÞcj j0̄iCjncj!
Uj
ψ0j0̄iCj

þ ψ1j1̄iCj
; ð8Þ

for all complex coefficients ψ0 and ψ1, in time t1 satisfying
Eq. (4). By linearity, this property applies even if Cj is
entangled with other hypercubes. Consequently, backward
time evolution under Hj generates U

†
j , which “undoes” the

GHZ-like state of the jth hypercube:

ψ0j0̄iCj
þ ψ1j1̄iCj

!
U†

j ðψ0j0i þ ψ1j1iÞcj j0̄iCjncj ; ð9Þ

for any ψ0, ψ1. In this step, we simultaneously apply U†
j to

Cj for all j ¼ 2;…; md. These unitaries rotate the state
of C to

aj0̄iC1
⨂
md

j¼2

jþicj j0̄iCjncj þ bj1̄iC1
⨂
md

j¼2

j−icj j0̄iCjncj ; ð10Þ

where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
.

Step 4.—We then apply a Hadamard gate, i.e.,

1ffiffiffi
2

p
�
1 1

1 −1

�
; ð11Þ

to the site cj of each hypercube Cj, j ¼ 2;…; md. These
Hadamard gates can be implemented arbitrarily fast since
we do not assume any constraints on the single-site terms of
the Hamiltonian. The state of C by the end of this step is

aj0̄iC1
⨂
md

j¼2

j0icj j0̄iCjncj þ bj1̄iC1
⨂
md

j¼2

j1icj j0̄iCjncj : ð12Þ

Step 5.—Finally, we apply Uj again to each hypercube
Cj (j ¼ 2;…; md) to obtain the desired GHZ-like state:

FIG. 1. A demonstration of our protocol for encoding a qubit
into a GHZ-like state in a one-dimensional system C. Initially, the
unknown coefficients a, b are encoded in one qubit (red circle)
while the other qubits are each initialized in state j0i. The first
step of the protocol assumes the ability to encode information into
GHZ-like states in subsystems C1;…; C4 using, for example,
nearest-neighbor interactions. In step 2, we apply a generalized
controlled-phase gate [Eq. (6)] between the subsystems to
“merge” the GHZ-like states into an entangled state between
all sites. The last three steps rotate this entangled state into the
desired GHZ-like state by concentrating the entanglement in each
subsystem onto one qubit, applying single-qubit rotations, and
redistributing the entanglement to the rest of the system.
Repeatedly feeding the resulting GHZ-like state back into step
2 of the protocol yields larger and larger GHZ-like states.
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aj0̄iC1
⨂
md

j¼2

j0̄iCj
þ bj1̄iC1

⨂
md

j¼2

j1̄iCj
¼ jGHZða; bÞiC: ð13Þ

At the end of this routine, we have implemented the
unitary satisfying Eq. (2) in time:

t ¼ 3t1 þ t2 ¼ 3t1 þ πdα=2mαrα−2d1 : ð14Þ

We now consider three cases corresponding to different
ranges of α and show that if t1ðr1Þ satisfies Eq. (3), then
tðrÞ also satisfies Eq. (3).
For α ∈ ð2d; 2dþ 1�, we have t1 ≤ Kαrα−2d1 . Choosing

m > 1 to be a constant integer, we have

t ≤
�

3Kα

mα−2d þ πdα=2m2d

�
ðmr1Þα−2d ≤ Kαrα−2d; ð15Þ

where we require m > 31=ðα−2dÞ and choose

Kα ≥
πdα=2m2d

1 − 3
mα−2d

¼ πdα=2mα

mα−2d − 3
: ð16Þ

For α ∈ ðd; 2dÞ, we choose m to scale with r1 such that
rλ−11 < m ≤ 2rλ−11 , where λ ¼ 2d=α. The length of the
larger cube C is then r ¼ mr1 > rλ1 and, therefore, the
total time is

t ≤ 3Kα logκα r1 þ πð2
ffiffiffi
d

p
Þαrðλ−1Þαþα−2d

1 ð17Þ

≤
4Kα

λκα
logκαðrλ1Þ ≤ Kα logκα r; ð18Þ

where we choose κα ¼ log 4= logð2d=αÞ and assume
Kα logκα r1 ≥ πð2 ffiffiffi

d
p Þα to simplify the expression. We note

that the factor log 4 in the definition of κα can be made
arbitrarily close to log 3 by increasing Kα.
Finally, for α ¼ 2d, we choose m such that

exp½ðγ=2dÞ ffiffiffiffiffiffiffiffiffiffiffi
log r1

p � ≤ m ≤ 2 exp½ðγ=2dÞ ffiffiffiffiffiffiffiffiffiffiffi
log r1

p �, where
γ ¼ 3

ffiffiffi
d

p
. Substituting t1 ≤Kα expðγ

ffiffiffiffiffiffiffiffiffiffiffi
logr1

p Þ into Eq. (14),
we have

t ≤ ð3Kα þ 2απdα=2Þeγ
ffiffiffiffiffiffiffiffi
log r1

p
: ð19Þ

Assuming r1 ≥ expð8=dÞ, it is straightforward to prove that
γ

ffiffiffiffiffiffiffiffiffiffiffi
log r1

p
≤ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðmr1Þ

p
− 2. Applying this condition on

the above inequality, we have

t ≤
1

e2
ð3Kα þ 2απdα=2Þeγ

ffiffiffiffiffiffiffi
log r

p
≤ Kαe

γ
ffiffiffiffiffiffiffi
log r

p
; ð20Þ

where r ¼ mr1 is the length of the resulting GHZ-like state
and we chose Kα ≥ 2απdα=2=ðe2 − 3Þ. Equations (15),
(18), and (20) prove that t satisfies Eq. (3). Repeatedly

applying this routine yields larger and larger GHZ-like
states.
Before discussing the implications of our protocol, we

would like to explain intuitively the main sources of its
improvement relative to existing protocols. In our protocol,
we simultaneously encode the information into the GHZ-
like state overC1 and create the symmetric GHZ states over
other multiqubit subsystems C2;…; Cmd . As a result, the
implementation of the controlled operations in step 2
(Fig. 1) is enhanced quadratically by the volume of each
subsystem. In contrast, the protocol in Ref. [41] applies
controlled operations between a large subsystem and
individual remaining sites of the system, resulting in the
implementation time scaling only linearly with the volume
of the subsystem.
On the other hand, while the state transfer protocol in

Refs. [24,25] also applies controlled operations between
large subsystems and is, therefore, sped up quadratically by
the subsystem volume, it only uses qubits in small
neighborhoods around the source and the target of the
transfer. In our protocol, we maximize the size of the
resulting GHZ-like state at the end of each iteration by
allowing m to depend on α and on the size of the existing
GHZ-like states. When we use the protocol for state
transfer, this strategy results in most of the qubits between
the source and the target sites participating in the transfer,
significantly speeding up the protocol.

IV. DISCUSSION

We now discuss the performance and the implications of
our protocol (summarized in Table I). First, our protocol
allows for encoding an unknown qubit into a multiqubit
GHZ-like state and, subsequently, performing state transfer
at unprecedented speeds. For d < α < 2d, which applies,
for example, to dipole-dipole interactions (α ¼ 3) in two
dimensions and to the effective interactions between
trapped ions (α ∈ ½0; 3�) in one and two dimensions, our
protocol encodes information into GHZ-like states and
transfers information in polylogarithmic time, exponen-
tially faster than protocols available in the literature. Even
for the seemingly weakly long-range interactions with
α ¼ 2d, such as van der Waals interactions between
Rydberg atoms (α ¼ 6) in three dimensions, our protocol
still takes only subpolynomial time to entangle an entire
system and to transfer a quantum state. When applied to the
preparation of GHZ states, these speed-ups enable potential
improvements to quantum sensors built from nitrogen-
vacancy centers [42,43], Rydberg atoms [44,45], and polar
molecules [46], as well as to atomic clocks based on
trapped ions [47].
Optimal quantum information processing.—The opti-

mality of our protocol for α ∈ ðd; 2dþ 1Þ in d dimensions
also lays the foundation for optimal quantum information
processing in power-law interacting systems [48,49]. Using
quantum state transfer between auxiliary qubits and
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encoding qubits into large GHZ-like states as subroutines,
our protocol leads to optimal implementations of quantum
gates between distant qubits in large quantum computers.
In particular, the faster encoding of information into a
GHZ-like state of ancillary qubits speeds up [7] the
implementation of the quantum fan-out—a powerful multi-
qubit quantum gate [50]. At the same time, the faster state
transfer speeds up [41] the constructions of multiscale
entanglement renormalization ansatz (MERA) states, com-
monly used to represent highly entangled—including
topologically ordered [51]—states [52–54]. Specifically,
we can implement a fan-out gate [7] on qubits in a
hypercube of volume n and prepare a MERA state [41]

on these qubits in time t ∼ polylogðnÞ for α ∈ ðd; 2dÞ, t ∼
eðγ=

ffiffi
d

p Þ
ffiffiffiffiffiffiffi
log n

p
for α ¼ 2d—which are both exponential

speed-ups compared to the previous best—and t ∼
nðα−2dÞ=d for α ∈ ð2d; 2dþ 1Þ. The optimality of these
operations is again guaranteed (up to subpolynomial
corrections) by the matching lower limits imposed by
the Lieb-Robinson bounds [7,41].
In practice, using single-site Hamiltonians to implement

the echoing technique of Ref. [41], the controlled-phase
gate in step 2 of our protocol can be realized starting from
time-independent power-law interactions between all sites
of the system. The protocol therefore does not require
explicit time-dependent control of individual two-qubit
Hamiltonians, making it appealing for implementation
on available experimental platforms. However, because
the diameter of the GHZ-like state increases by more than

twofold in every iteration of the protocol, the scaling in
Eq. (3) may only be observed in large systems.
Information-propagation speed limits.—Conceptually,

since our protocol saturates (up to subpolynomial correc-
tions) the Lieb-Robinson bounds for d < α < 2dþ 1 for
all d, we demonstrate, for the first time, the tightness of
these fundamental bounds in these regimes. In particular,
the subpolynomial entanglement time for α ≤ 2d disproves
the conjecture in Refs. [55,56], where a gap in the under-
standing of the heating times and the effective generators of
dynamics in periodically driven, power-law interacting
systems had suggested the existence of a tighter Lieb-
Robinson bound with an algebraic light cone in this regime
of α. We discuss in more detail below what could have
resulted in this gap in our understanding.
Since the best-known generalizations of these bounds to

k-body, power-law interacting Hamiltonians—those
described byH ¼ P

X hX, where the sum is over all subsets
X ⊂ Λ of at most k sites and

P
X∋i;j khXk ≤ 1=distði; jÞα

for all i ≠ j—have the same scaling as the best-known two-
body bounds when d < α < 2dþ 1 [14] (see also Table I),
the scaling of our two-body protocol is also optimal even if
one allows for k-body interactions. In other words, in this
regime of α, allowing for k-body interactions cannot enable
a qualitative speed-up relative to two-body interactions.
Our protocol also generalizes straightforwardly from

two-level to arbitrary finite-level systems. Given a q-level
system at each site of the lattice, we can unitarily encode an
arbitrary state jψic ¼

Pq−1
l¼0 aljli of site c ∈ C, where al

TABLE I. A summary of known bounds and protocols in the regime α ∈ ðd; 2dþ 1Þ for several information-propagation tasks:
encoding an unknown qubit state into a GHZ-like state (row 1), preparing a known GHZ-like state (row 2), state transfer assuming we
can initialize intermediate qubits (row 3), and state transfer given intermediate qubits in arbitrary states (i.e., so-called universal state
transfer [24], row 4). The tasks of encoding information into GHZ-like states, preparing a known GHZ-like state, and quantum state
transfer with initialization are constrained by the Lieb-Robinson bounds. On the other hand, state transfer given intermediate qubits in
arbitrary states (i.e., universal state transfer) is more difficult than state transfer with initialized intermediate qubits and is bounded by the
more stringent Frobenius light cone [24]. The bounds on encoding information into GHZ-like states (except Ref. [23]) also apply to
general k-body interactions. All listed bounds also hold not just for qubits, but for all finite-level systems. For d < α < 2dþ 1, our
protocol saturates (up to subpolynomial corrections) the known bounds, thus proving the optimality of both the protocol and the bounds.

Tasks Known light cones Previous best protocols Our protocol

Encoding into
a GHZ-like state t≳

8<
:

log r α ∈ ðd; 2d�½14�
rα−2d α ∈ ð2d; 2dþ 1Þ ½23; 26�

t ∼
�
rα−d α ∈ ðd; dþ 1Þ ½41�
r α ∈ ½dþ 1; 2dþ 1Þ t ∼

8<
:

polylogðrÞ α ∈ ðd; 2dÞ
eγ

ffiffiffiffiffiffiffi
log r

p
α ¼ 2d

rα−2d α ∈ ð2d; 2dþ 1Þ
Preparing a
known GHZ-like
state

t≳
�
log r α ∈ ðd; 2d�½14; 57�
rα−2d α ∈ ð2d; 2dþ 1Þ½26; 57�

Same as encoding
into a GHZ-like state

Same as above

State transfer Same as encoding
into a GHZ-like state t ∼

�
rαðα−dÞ=ðαþdÞ α ∈ ðd; dþ 1� ½24�
rα=ð2dþ1Þ α ∈ ðdþ 1; 2dþ 1Þ ½24; 25� Same as above

State transfer
(no initialization)

t≳

8>><
>>:

rð2α−2dÞ=ð2α−dþ1Þ α ∈ ðd; 2d�½58�
rα−2d α ∈ ð2d; 2dþ 1Þ½26�
rα−1 α ∈ ð1; 2Þ; d ¼ 1½59�
r α ∈ ð2; 3Þ; d ¼ 1½59�

t ∼ r∀ α ∈ ðd; 2dþ 1Þ Not applicable
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are complex coefficients and C is a hypercube of linear size
r, into a multiqudit state,

jψicj0̄iCnc →
Xq−1
l¼0

aljl̄iC; ð21Þ

in time tðrÞ satisfying Eq. (3). This can be done by
replacing the Hamiltonian in Eq. (6) with

1

ðmr1
ffiffiffi
d

p Þα
Xmd

j¼2

X
μ∈C1

X
ν∈Cj

Xq−1
l;l0¼0

ll0jlihljμ ⊗ jl0ihl0jν ð22Þ

and replacing the single-qubit Hadamard gate in step 4 by a
q-by-q discrete Fourier transform matrix. Since the Lieb-
Robinson bounds have the same light cones for any finite-
level systems, our protocol also saturates these bounds for
α ∈ ðd; 2dþ 1Þ in d dimensions.
In our protocol, we assume that aj0i þ bj1i is a possibly

unknown state. Encoding such a state into the GHZ-like
state is at least as hard as generating a GHZ-like state with
known coefficients a, b. In fact, the latter task is not known
to be sufficient for state transfer and, therefore, is not
directly constrained by the Lieb-Robinson bounds. Instead,
one often indirectly obtains a speed limit for this task by
applying the Lieb-Robinson bounds on the growth of two-
point connected correlators [14,24,57]. Our protocol for
encoding into a GHZ-like state saturates (up to subpoly-
nomial corrections) the bounds on the growth of connected
correlators [14,26,57] when d < α ≤ 2dþ 1 (see Table I),
confirming that knowing the coefficients a, b does not
speed up the preparation of the GHZ-like state in this
regime.
We also note that our protocol violates the so-called

Frobenius light cone, initially derived in Ref. [24] for α >
3=2 in one dimension as part of a hierarchy of speed limits
for different types of information propagation in long-range
interacting systems and later extended to regimes of smaller
α in Ref. [58,59]. The Frobenius bound, which considers
information propagation from the operator-spreading per-
spective, constrains information-propagation tasks that are
more demanding than the tasks that saturate the Lieb-
Robinson bound, and therefore has a more stringent light
cone. For example, quantum state transfer given intermedi-
ate qubits in arbitrary initial states (i.e., universal state
transfer) is constrained by the Frobenius light cone,
whereas state transfer assuming initialized intermediate
qubits is constrained by the Lieb-Robinson bound and can
actually violate the Frobenius light cone [24] (see also
Table I). Determining which of the bounds tightly con-
strains a given task is still an active area of research. The
protocol in this paper proves for the first time that the task
of encoding information into GHZ-like state—which is at
least as hard as state transfer with initialization—is not

constrained by the Frobenius light cone, but is instead
tightly constrained (up to subpolynomial corrections) by
the Lieb-Robinson bound. In particular, when d < α < 2d,
our protocol proves that state transfer with initialization can
be implemented exponentially faster than state transfer
without initialization, which is constrained by polynomial
light cones in this regime [24,58]. Furthermore, since our
protocol for encoding into a GHZ-like state can also be
used to prepare a known GHZ-like state, our protocol also
proves for the first time that preparing a known GHZ-like
state is not constrained by the Frobenius light cone.
An important open question is whether there exists a

time-independent power-law Hamiltonian that propagates
information at the same speed as our protocol does. Such a
Hamiltonian would enable observation of fast information
propagation in existing experimental platforms where
arbitrary time-dependent control is often not available.
On the other hand, the lack of such a Hamiltonian would
imply a more stringent speed limit for time-independent
Hamiltonians than the one given by the Lieb-Robinson
bound. Such a speed limit may in turn imply that the
effective time-independent Floquet Hamiltonians con-
structed in Refs. [55,56,60] for periodically driven,
power-law interacting systems would correctly generate
the dynamics of local observables even in the regime
d < α < 2d, closing the aforementioned gap in our under-
standing. These observations emphasize the need for
studies, in a similar spirit to Ref. [24], of fundamental
speed limits for time-independent Hamiltonians and, more
generally, systems under various physical constraints.
Another interesting open question is whether our optimal

protocol can be generalized to the regime 0 ≤ α ≤ d, where
there are still substantial gaps between the Lieb-Robinson
bounds and achievable protocols [17,41,61–63]. The
bounds suggest that, in addition to the distance, the
information-propagation time also depends on the total
number of sites on the lattice. Consequently, we would
expect an optimal protocol to make use of all sites on the
lattice, including those that are far from both the source and
the target of the propagation. We consider such a gener-
alization an important future direction.
Resource lower bound for quantum simulation.—Our

protocol also gives the first known example of a lower
bound on the gate count for simulating power-law systems
on a quantum computer: it takes ΩðnÞ elementary quantum
gates to simulate an n-qubit power-law system evolving for
time t ≥ t�, where

t� ¼

8>><
>>:

ΘðlogκαnÞ if d < α < 2d

Θ(eγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog nÞ=d

p
) if α ¼ 2d

Θðnα=d−2Þ if 2d < α ≤ 2dþ 1;

ð23Þ

to constant error. Indeed, if an algorithm could use fewer
than ΩðnÞ quantum gates to perform the simulation for
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times within t ¼ t� satisfying Eq. (23), we could use the
algorithm to simulate our protocol and prepare an n-qubit
GHZ state. However, since an n-qubit GHZ state must take
ΩðnÞ quantum gates to prepare, we would arrive at a
contradiction.
Lower bounds on the simulation gate count are valuable

benchmarks for the performance of quantum algorithms.
Reference [64] gives an algorithm for simulating the time
evolution of finite-range interacting Hamiltonians, the gate
count of which was shown to be optimal via a matching
lower bound. To date, despite progressively more efficient
quantum simulation algorithms [21,65] in recent literature,
no saturable lower bounds are known for power-law
systems. For example, the analysis of the Suzuki-Trotter
product formulas in Ref. [65] results in upper bounds,

gα ¼
�
O(n2þoð1Þt1þoð1Þ) if d < α ≤ 2d

O(ðntÞ1þd=ðα−dÞþoð1Þ) if α > 2d;
ð24Þ

for simulating an n-qubit power-law system for time t. At
t ¼ t� given in Eq. (23), the corresponding upper bounds
reduce to

gα ¼
�
O(n2þoð1Þ) if d < α ≤ 2d

O(nα=dþoð1Þ) if 2d < α ≤ 2dþ 1:
ð25Þ

The gap between this state-of-the-art upper bound and our
lower boundΩðnÞ hints at the possibility of a more efficient
algorithm for simulating power-law systems.
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