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We propose and analyze a generalization of the Kitaev chain for fermions with long-range p-wave
pairing, which decays with distance as a power law with exponent α. Using the integrability of the model,
we demonstrate the existence of two types of gapped regimes, where correlation functions decay
exponentially at short range and algebraically at long range (α > 1) or purely algebraically (α < 1). Most
interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for
sufficiently small α. This is accompanied by a violation of the area law for the entanglement entropy in
large parts of the phase diagram in the presence of a gap and can be detected via the dynamics of
entanglement following a quench. Some of these features may be relevant for current experiments with
cold atomic ions.
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The Kitaev chain describes the dynamics of one-
dimensional spinless fermions with superconducting
p-wave pairing [1]. Open Kitaev chains support unpaired
Majorana modes exponentially localized at each end [2],
implying the existence of a topological superconducting
phase [3]. Their probable recent observation in spin-orbit
coupled semiconductors [4,5] has sparked renewed interest
in novel properties of topological models, as well as in
experimental realizations. For example, Kitaev chains
with long-range (LR) hopping and pairing have recently
been proposed as models for helical Shiba chains, made of
magnetic impurities on an s-wave superconductor [6].
Intimately related to the Kitaev chain, Ising-type spin

chains with tunable LR interactions can now be realized
using trapped ions coupled to motional degrees of freedom
or, alternatively, using neutral atoms coupled to photonic
modes [7–11]. Very recently, theory and experiments have
provided evidence for novel static and dynamic phenomena
in these systems, such as, e.g., the nonlocal propagation
of correlations [8,9,12–14] or the possible violation of the
area law in one dimension [15]. While some of these
phenomena can be explained theoretically using approxi-
mate analytical and numerical methods [15,16], it remains a
fundamental challenge to determine basic properties of LR
interacting systems, where methods based on short-range
(SR) models may fail.
In this Letter, we introduce and analyze an exactly

solvable model for one-dimensional fermions with LR
pairing, decaying with distance r as ∼1=rα. We analyze
the phase diagram as a function of the power α of the
pairing, finding several novel features: (i) gapped phases
for α > 1 where the decay of correlation functions evolves
from exponential to algebraic from short to long distances
and (ii) a gapped phase with a purely algebraic decay of

correlations for α < 1. For the open chain, we find that
(iii) the localization of the edge modes, similar to the case
of correlations, varies from hybrid (exponential followed
by algebraic) for α > 1 to purely algebraic for α < 1, where
these modes become gapped. Throughout the phase dia-
gram, (iv) the entanglement entropy fails to capture some of
the main features of the energy spectrum and correlation
functions. However, it correctly predicts (v) an exotic
transition along one of the two critical lines induced by
LR pairing from an Ising-type theory for α > 3=2 to a
Luttinger-liquid-type theory for α < 3=2. This corresponds
to (vi) a breaking of conformal symmetry, which can also
be inferred by looking at the entanglement dynamics after a
quench. Finally, we discuss the relevance of these results to
Ising-type chains studied in trapped-ion experiments [8,9].
We consider the following fermionic Hamiltonian on a

lattice of length L (with unit lattice constant):

HL ¼ −t
XL

j¼1

ða†jajþ1 þ H:c:Þ − μ
XL

j¼1

!
nj −

1

2

"

þ Δ
2

XL

j¼1

XL−1

l¼1

d−αl ðajajþl þ a†jþla
†
jÞ: ð1Þ

a†j ðajÞ is a fermionic creation (annihilation) operator on
site j, nj ¼ a†jaj, t the tunneling rate, μ the chemical
potential, and Δ the strength of the p-wave pairing. For a
closed chain, we define dl ¼ l (dl ¼ L − l) if l < L=2
(l > L=2) and choose antiperiodic boundary conditions
[17]. For an open chain, dl ¼ l and we drop terms
containing aj>L. We set Δ ¼ 2t ¼ 1 [18].
Hamiltonian (1) has a rich phase diagram which, when

the pairing is between nearest neighbors only, coincides—
via the Jordan-Wigner transformation—with that of the
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XY model, a generalization of the SR Ising model [19],
belonging to its universality class [20] and sharing with it
gapped ferromagnetic (jμj < 1) and paramagnetic phases
(jμj > 1), separated by two critical points at μ ¼ %1 [21].
Furthermore, the unitary transformation ai → ð−1Þia†i
ensures that the phase diagram is identical for positive
and negative μ.
For the LR Ising model, recent numerical results have

shown algebraic decay of correlation functions in the
gapped paramagnetic phase [15], in agreement with results
from other similar spin models [22–26]. For any finite α,
however, a Jordan-Wigner transformation does not connect
Hamiltonian (1) to the XY model, implying that their
respective phase diagrams can be different. Moreover, for
finite α, the transformation ai → ð−1Þia†i no longer con-
nects positive and negative μ, meaning that the phase
diagram may no longer be symmetric across the line μ ¼ 0.
In the following, we determine the phase diagram of (1) by
analyzing its energy spectrum, the entanglement entropy,
and the decay of correlation functions for the closed chain,
and then the edge modes for the open one.
The spectrum of excitations, obtained via a Bogoliubov

transformation, is

λαðknÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos kn þ μÞ2 þ f2kn;α

q
: ð2Þ

kn ¼ 2πðnþ 1=2Þ=L are the lattice (quasi)momenta
with 0 ≤ n < L and the functions fLk;α ≡

PL−1
l¼1 sinðklÞ=dαl.

These functions can also be evaluated in the thermo-
dynamic limit [27]. The ground state of (1) is jGSi ¼QL=2−1

n¼0 ðcos θkn − i sin θkna
†
kn
a†−knÞj0i, with tanð2θknÞ ¼

−fkn;α=ðcos kn þ μÞ.
As expected from the SR Kitaev model [1,21], Eq. (2)

is gapped for all α > 1, except for jμj ¼ 1. When α ≤ 1,
the situation changes, the most evident effect being the
fact that along the line μ ¼ −1 the model becomes massive,
as one can see from (2) for k ¼ 0. As a consequence,
by tuning α and μ, it is now possible to continuously
connect the paramagnetic and ferromagnetic phases of
the SR Kitaev model, without closing the gap. (Without
leaving the α → ∞ limit, such a gapped path can only
be achieved with two Kitaev wires [28].) In contrast, the
μ ¼ 1 critical line also survives for α ≤ 1, but the nature of
the phase transition changes drastically, as we argue below.
These features are summarized in the phase diagram of

Fig. 1(a). Using the method of [29],[40] we compute the
von Neumann entropy SðL=2Þ ¼ −trðρL=2 log ρL=2Þ, where
ρL=2 is the half-chain reduced density matrix. For one-
dimensional SR gapped systems, SðL=2Þ saturates to a cons-
tant value, a behavior known as the area law [30,31] and
associatedwith an exponential decay of correlation functions
[32]. On the other hand, in conformally invariant models,
SðL=2Þ scales according to SðL=2Þ ¼ ðc=3Þ logLþ b, with

b being a nonuniversal term and c the central charge [33,34].
In particular, c ¼ 1=2 for jμj ¼ 1 for the SR Kitaev chain.
Performing finite-size scaling (see the Supplemental

Material [35]), we find that for all α and μ, SðL=2Þ is
well approximated by SðL=2Þ ¼ ðceff=3Þ logLþ b, where
ceff is the effective central charge [plotted in Fig. 1(a)].
In particular, (i) for α > 1, ceff ¼ 0 almost everywhere in the
gapped region jμj ≠ 1. However, logarithmic deviations
are important close to the critical line μ ¼ −1 for α < 2
[see Fig. 1(a) and below], signaling aviolation of the area law.
(ii) For α < 1, ceff ≠ 0 within the gapped region. This effect
is particularly evident for jμj≲ 1, whileceff ¼ 0 for jμj → ∞.
In addition, most interestingly, (iii) along the critical line

μ ¼ 1 we observe an increase of ceff , obtained by SðL=2Þ,
from ceff ¼ 1=2 when α > 3=2 to ceff ¼ 1 when α ¼ 0
(see the Supplemental Material [35]). In a conformal field
theory (CFT), the latter would correspond to a Luttinger-
liquid-type theory. Indeed, we have verified numerically
that g2ðRÞ [see Fig. 2(b) and below] displays a strongly
dimerized behavior in this region, similar to that of a
charge-density wave. This peculiar behavior is further
corroborated by an exact analytical computation for α¼ 0
[35]. We demonstrate below that this behavior is linked to
the breaking of conformal symmetry for α ≤ 3=2.
The violations of the area law despite the presence of a

gap could be naively regarded as a failure of S to capture

(a)

(b) (c)

FIG. 1 (color online). (a) Effective central charge ceff obtained
by fitting SðL=2Þ. Two gapless conformal field theories with
c ¼ 1=2 are visible for μ ¼ 1 (α > 3=2) and μ ¼ −1 (α > 2).
White vertical dotted lines: gapless lines with broken conformal
symmetry. Horizontal dashed line separates two regions: corre-
lation functions display a hybrid exponential-algebraic (α > 1)
and purely algebraic decay (α < 1). (b) Time evolution of SðL=2Þ
after a quench from a product state with μ ≫ 1 to μ ¼ 1: α > 1,
SðL=2Þ grows linearly, α < 1, SðL=2Þ grows logarithmically.
(c) g2ðRÞ correlation function for μ ¼ 2 and α ¼ 10 (squares),
showing exponential behavior and α ¼ 7 (circles), showing an
exponential with an algebraic tail even in the gapped region.
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the physics of the model at small α. We recall that similar
behavior has previously been found for both massive
quasifree fermionic models and Ising chains [15]. Thus,
from a different perspective, we may argue that S (together
with the correlation functions which we will discuss
below) can capture a fundamental change in the nature
of the ground state, when moving towards very LR
interactions.
For small α, LR pairing becomes dominant, and its

presence shows up in the physical behavior of nonlocal
quantities, such as S and correlation functions, but cannot
be inferred simply from the structure of the spectrum [41].
On the line μ ¼ 1, this leads to a breakdown of conformal
invariance, even if the spectrum remains linear about
the Fermi momentum kF, as can be seen by looking at
finite-size corrections to the ground-state energy density
eðαÞ ¼ −

PL=2−1
n¼0 λαðknÞ=L. The latter can be computed

with the Euler-MacLaurin formula to give [42]

eðαÞ ¼ e∞ðαÞ þ π½λ0αðπÞ − λ0αð0Þ'=ð12L2Þ; ð3Þ

where e∞ðαÞ ¼ − 1
π

R π=2
0 λαð2xÞdx is the value of eðαÞ

in the thermodynamic limit. Exact calculations (see the
Supplemental Material [35]) show that, for all α > 3=2,
λ0αð0Þ ¼ 0, and thus one recovers the standard CFT result
eðαÞ ¼ e∞ðαÞ − πvFc=ð6L2Þ, where vF is the Fermi veloc-
ity and c ¼ 1=2, in agreement with the expected value of c
for the SR Ising model [20,43]. For α ¼ 1, however, λ01ð0Þ
does not vanish and results in a value ceff different from that
computed from SðL=2Þ ∼ ðceff=3Þ logL, and depends on
Δ. This nonuniversal behavior signals a breaking of CFT
and is also accompanied by the violation of the area law
close to the critical line found in (i) above. Breaking of CFT
is most evident for α < 3=2ð≠ 1Þ, where λ0αð0Þ is found to
diverge. A similar behavior arises at μ ¼ −1 for 1 < α < 2:
the scaling (3) fails since the contribution from λ0αð0Þ
diverges (see the Supplemental Material [35]).
Following the ideas of Ref. [13], conformal invariance

along μ ¼ 1 for α < 1 can also be tested by looking at the

time dependence of S after a quench from μ ≫ 1 to μ ¼ 1.
This is shown in Fig. 1(b), from which it is evident that S
grows linearly with time τ if α > 1, as predicted by CFT
[44], whereas it grows only logarithmically with τ when
α < 1. We note that a logarithmic growth of S has recently
been theoretically demonstrated in Ref. [13] for the LR
Ising chain [8,9]. We come back to this point below.
Correlation functions can be used to further clarify the

phase diagram. The one-body correlation g1ðji − jjÞ ¼
ha†i aji and the anomalous one ga1ðji − jjÞ ¼ ha†i a

†
ji can

be computed semianalytically for finite L, as well as in the
thermodynamic limit (see the Supplemental Material [35]).
The density-density correlation g2ðji − jjÞ ¼ hninji −
hniihnji ¼ ga1ðji − jjÞ2 − g1ðji − jjÞ2 is then immediately
obtained from Wick’s theorem. Examples of g2ðRÞ in the
regions α > 1 and α < 1 are shown in Figs. 1(c) and 2(b),
respectively. In particular, Fig. 1(c) illustrates the behavior
of g2ðRÞ in the gapped phase with μ ¼ 2 for α ¼ 7 and
α ¼ 10. While at α ¼ 10 the behavior seems purely
exponential, similar to SR gapped systems, the case
α ¼ 7 shows that the decay of g2ðRÞ varies from an initial
exponential one to an algebraic one for large R. This hybrid
exponential-algebraic decay is consistent with the recent
hybrid exponential-algebraic Lieb-Robinson bounds on the
propagation of information in systems with power-law
interactions [16]. We find numerically that in our system
this hybrid exponential-algebraic decay is characteristic
of all correlation functions for finite α > 1, and we obtain
for the general asymptotic behavior [see Fig. 2(a)]
g2ðRÞ ∼ 1=R2α, g1ðRÞ ∼ 1=Rαþ1, and ga1ðRÞ ∼ 1=Rα.
These results are confirmed analytically in the thermo-

dynamic limit, where, for example, g1ðRÞ reads

g1ðRÞ ¼ −
1

π
Re

Z
π

0
dkeikRCαðkÞ; ð4Þ

with CαðkÞ ¼ ðcos kþ μÞ=(2λαðkÞ). Integrating by parts,
one finds that the leading contribution to Eq. (4) decays as
1=Rnþ1, with n being the order of the first nonvanishing
odd derivative of CαðkÞ at k ¼ 0 [45]. When α > 1 is an odd
integer, n ¼ α. A similar reasoning applies to ga1ðRÞ, with
n ¼ α − 1. We finally note that the long-distance behavior
of g2ðRÞ is identical to that of the two-point correlation
function of the LR Ising chain, numerically found in [15].
Such a prediction and similar ones can be derived for this
model within the spin-wave approximation [46].
The most surprising behavior occurs for α ≤ 1, where the

correlation functions display purely algebraic decay at all
length scales, as illustrated for g2ðRÞ in Fig. 2(b). The fact
that the behavior of the system changes when α falls below
1 is further illustrated in Fig. 3(a). We plot the numerically
obtained exponent γ of the algebraic decay of g1ðRÞ ∼ R−γ

as a function of α at fixed μ: a discontinuity occurs at α ¼ 1
for all values of μ. Similarly, Fig. 3(b) shows that the
scaling exponent δ of g2ðRÞ ∼ R−δ becomes δ ¼ 2 for every

(a)

(b)

FIG. 2 (color online). (a) Long-distance behavior of g2ðRÞ for
α ¼ 7 and μ ¼ 2 in log-log scale, displaying algebraic decay.
Continuous line: analytic prediction ∼1=R14. [Figure 1(c) shows
the same data set on a log plot.] (Inset) Purely algebraic decay for
α ≤ 1. Here, μ ¼ 2 and α ¼ 0.5. (b) g2ðRÞ for μ ¼ 1 and α ¼ 0.5,
displaying algebraic decay with oscillating behavior.
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α ≤ 1. Apart from finite-size effects that might be relevant
close to α ¼ 1, the exponents γ and δ are found to be
independent of μ. Notably, the change of behavior at α ¼ 1
is not detected properly by S. Finally, for the case μ ¼ 1 and
α ≤ 3=2, integrals as in Eq. (4) receive contributions from
both momenta k ¼ 0 and k ¼ π, resulting in the observed
dimerized behavior of correlation functions [Fig. 2(b)]
(see the Supplemental Material [35]).
We note that, in the thermodynamic limit, we find a

divergent velocity of high-energy quasiparticles (at k ¼ 0)
for α < 3=2 and μ ≠ −1 and for α < 2 at μ ¼ −1 (see the
Supplemental Material [35]). While these do not contribute
to spectral properties such as the gap, they do affect the
behavior of quantities such as correlation functions,
entanglement entropy, and postquench evolution [47]. For
example, Fig. 3(a) shows that the exponent γ for g1ðRÞ
changes behavior for α≲ 2 with respect to the predicted
value γ ¼ αþ 1. Related effects are also at the origin of
the violation of the Lieb-Robinson bound [14,48] recently
observed in LR Ising-type models [8,9,12].
Open boundary conditions.—Majorana edge modes,

related to the Z2 symmetry of (1), arise for jμj < 1 if
α → ∞ [1]. At finite α, the Hamiltonian still exhibits this
symmetry, and the edge modes are again expected. For
α≳ 1, the decay of the square of the edge-mode wave
function jΨðjÞj2 (with j labeling the distance from an edge)
mirrors the hybrid decay of correlations discussed above
[Fig. 4(a)]. A numerical fit to the algebraic tail of jΨðjÞj2

yields jΨðjÞj2 ∼ j−2α for α≳ 1, implying that jΨðjÞj2 is nor-
malizable, as required for an edge mode [49]. We also note
that this algebraic decay of jΨðjÞj2 is in qualitative agreement
with recent calculations for helical Shiba chains [6]. The
mass MðLÞ of the edge modes for α ≳ 1 exhibits similar
hybrid exponential-algebraic behavior (see the Supplemental
Material [35]). On the other hand, for α≲ 1,MðLÞ becomes
nonzero in the limit L → ∞ [Fig. 4(b)].
Conclusions and outlook.—In this work, we have ana-

lyzed a fermionic integrable model with LR pairing, finding
gapped phases where correlation functions exhibit purely
algebraic or hybrid exponential-algebraic decay, a breaking
of the conformal symmetry along gapless lines (directly
detected in the dynamics of the von Neumann entropy
following a quench, as recently demonstrated numerically
in [13]) accompanied by a violation of the area law in
gapped phases. It is an exciting prospect to investigate
whether some of these results are common to other models
with LR interactions, such as Ising-type models, as is
currently realized in several labs [8,9].
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