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Feedback-stabilized dynamical steady states in the Bose-Hubbard model

Jeremy T. Young ,1,2,* Alexey V. Gorshkov ,3,4 and I. B. Spielman 3,†

1JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
2Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

3Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
4Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA

(Received 23 June 2021; accepted 20 September 2021; published 27 October 2021)

The implementation of a combination of continuous weak measurement and classical feedback provides a
powerful tool for controlling the evolution of quantum systems. In this paper, we investigate the potential of this
approach from three perspectives. First, we consider a double-well system in the classical large-atom-number
limit, deriving the exact equations of motion in the presence of feedback. Second, we consider the same system
in the limit of small atom number, revealing the effect that quantum fluctuations have on the feedback scheme.
Finally, we explore the behavior of modest-sized Hubbard chains using exact numerics, demonstrating the near-
deterministic preparation of number states, a tradeoff between local and nonlocal feedback for state preparation,
and evidence of a feedback-driven symmetry-breaking phase transition.
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Equilibrium is a concept central to many-body physics,
both classical and quantum. It is not surprising then, that
understanding new kinds of equilibrium and discovering
breakdowns to equilibration are driving significant progress
in physics. Recent examples include many-body states in
driven-dissipative quantum systems [1–12] and the gener-
alized Gibbs ensemble describing the limited equilibration
possible for integrable quantum systems [13–21], while quan-
tum glasses exhibit extremely long relaxation times [22,23]
and many-body localized systems never equilibrate [24–33].
Here we focus instead on many-body quantum systems main-
tained in the dynamical steady state—a kind of generalized
equilibrium—stabilized by the interplay of unitary dynamics,
minimally destructive quantum measurement, and classical
feedback [34–49].

Statistical mechanical equilibrium is based on the straight-
forward observation that a system’s eigenstates are prob-
abilistically occupied according to the thermal Boltzmann
distribution, subject to any relevant constraints. The resulting
density operator affords a time-independent description of the
system as a thermal-equilibrium steady state. Conversely, any
system described by a time-independent density operator may
be associated with thermal equilibrium for an effective Hamil-
tonian proportional to the logarithm of that density operator,
although detailed balance may not necessarily be satisfied. In
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this sense then, is it possible to identify and explore systems
maintained in low-entropy steady states associated with ex-
otic effective Hamiltonians with highly nonlocal or N-body
interactions? Optical pumping [50] and laser cooling [51]—
both described by the physics of open quantum systems—are
iconic examples where large ensembles of atoms enter low-
entropy steady states well described by single-atom physics
with little correlation between atoms.

In contrast, quantum error correction (QEC) codes
are highly specialized and sophisticated examples of
measurement-feedback systems that can dynamically stabi-
lize strongly entangled arrays of qubits [52,53]. A digital
quantum computation device consists of an interconnected
collection of qubits, and QEC utilizes multiqubit syndrome
measurements, often realized via ancilla qubits that are first
coupled to the error-prone qubits and then measured. The
coupling and measurement are designed to be sensitive to
select errors, but not to the quantum state involved in compu-
tation. In some forms of QEC [54], the classical information
resulting from measuring the ancilla can inform subsequent
error-correcting feedback stages, thereby maintaining the
quantum computation device in a type of dynamical steady
state.

Quantum state preparation is closely related to QEC: both
attempt to drive a system toward a particular state. In the case
of QEC, this is the state prior to an error; in the case of state
preparation, it is a particular state of interest. State preparation
is particularly important in the field of metrology [55,56].
By preparing highly entangled states, such as squeezed states
[35,36,57–61], it becomes possible to make measurements
that are far more accurate than in an unentangled classical sys-
tem. While a variety of sophisticated techniques have resulted
in experimental measurements with incredible accuracy, in-
coherent effects often provide a fundamental limitation. Like
with typical QEC for quantum computation, measurement
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and feedback may provide a means of reducing the problems
introduced by incoherent processes [62–72].

Here, we study this problem from three perspectives
progressively increasing in complexity. (1) We begin by con-
sidering a minimal two-site system in the large-atom-number
classical limit—a type of nonlinear top—and derive the exact
equations of motion including feedback. This model predicts
what types of feedback can drive the system into different
fixed points, providing guidance for what type of quan-
tum states will appear. (2) We then consider a stochastic
Schrödinger equation description of the same double well.
By investigating both the classical large-atom limit and the
quantum small-atom limit, we connect the classical fixed
points to their associated quantum dynamical steady states.
(3) We conclude with the numerically exact time dynamics
for modest-sized Hubbard chains in the quantum low-density
limit (see Refs. [40] and [41] for investigations in the more
classical high-density limit) and show that nearly arbitrary
distributions of number states can be near-deterministically
prepared and that nonlocal feedback algorithms can both im-
prove fidelity and accelerate state preparation. Moreover, we
show that the corresponding feedback can be modified in a
simple way to realize a symmetry-breaking transition.

From a broader perspective, this paper shows that straight-
forward feedback derived from highly idealized continuous
quantum measurements can stabilize low-entropy dynamical
steady states. It is the task of future work to expand upon the
impact of increasingly realistic experimental parameters.

I. MODEL

Here we focus on the idealized 1D Bose-Hubbard model
subjected to continuous weak measurement [73,74] to il-
lustrate the possible dynamical steady states in many-body
quantum systems. As depicted in Fig. 1, this model consists
of a 1D Bose-Hubbard chain (the system) dispersedly coupled
to a transverse laser field (reservoir), measured via phase
contrast imaging (optical homodyne detection), and with local
tunneling strengths and on-site potentials that are dynamically
adjusted based upon the measurement outcome (feedback). At
time t , the Bose-Hubbard chain is governed by the system
Hamiltonian

ĤS =
∑

j

−Jj
(
â†

j+1â j + H.c.
) + Vjn̂ j + U

2
n̂ j (n̂ j − 1)

expressed in terms of the bosonic field operators â†
j describing

the creation of an atom at site j and n̂ j = a†
j a j the number

operator at site j, with positive real-valued tunneling strength
Jj (t ) between sites j and j + 1, on-site energy Vj (t ), and
interaction strength U . The chemical potential is absent in this
microcanonical ensemble study.

A. Measurement model

The system is coupled to the reservoir by the system-
reservoir Hamiltonian

ĤSR = h̄g
∑

j

â†
j â j ⊗ b̂†

j b̂ j

that describes a dispersive off-resonance interaction of light
with two-level atoms detected by homodyne measurement

FIG. 1. System and measurement schematic. An ensemble of
locally interacting (with strength U ) neutral atoms described by the
bosonic field operators â j are confined in a lattice potential with
tunneling strength Jj between sites j and j + 1. These atoms interact
with independent modes of an optical field described by bosonic
field operators b̂ j . After interacting, the optical modes are imaged
via phase contrast imaging, implementing a spatially resolved op-
tical homodyne detection providing a measurement sensitive to the
quadrature field operator X̂ j = (b̂ j + b̂†

j )/2. This idealized measure-
ment assumes that the incident laser field is only forward scattered,
essentially making the paraxial approximation.

[75] or, equivalently, phase contrast imaging, shown in Fig. 1.
Here, the bosonic field operator b̂†

j describes the addition of
a photon into mode j associated with lattice site j (here we
focus on an idealized case with mode functions associated
one-to-one with lattice sites), g captures the strength of the
system-reservoir coupling, and the reservoir modes b̂ j are
each in the coherent state |α〉 prior to interacting with the
system. Physically, this operator describes rotations in the
X̂ j-P̂j quadrature plane for each reservoir mode, in propor-
tion to the local number of atoms. After interacting with the
system for a time tm, the reservoir modes are projectively
measured by optical homodyne measurement (in practice im-
plemented by phase contrast imaging), giving access to the
X̂ j = (b̂†

j + b̂ j )/2 quadrature observables.
A strong measurement on the reservoir in effect affords a

single weak measurement of the system observables n̂ j with
strength governed by g, the reservoir field amplitude α, and
the measurement time tm. A measurement outcome

n j (t ) = 〈n̂ j (t )〉 + δn j (1)

043075-2



FEEDBACK-STABILIZED DYNAMICAL STEADY STATES … PHYSICAL REVIEW RESEARCH 3, 043075 (2021)

at time t contains a contribution from the system observ-
able’s instantaneous expectation value 〈n̂ j (t )〉, along with a
noise contribution δnj = mj/ϕ from projectively measuring
the reservoir coherent state |α j〉. Here mj is a classical random
variable with zero mean mj = 0 and variance mjmj′ = δ j, j′/2.
We consider an optical mode function consisting of a trav-
eling pulse of light with extent ctm, where c is the speed
of light. Converting from the continuum mode functions to
this compact function introduces a factor of 1/(ctm) into the
definition of the generalized measurement strength parameter.
This leads to the generalized measurement strength param-
eter ϕ2 = g2|α|2tm/c, defining the measurement noise δn2

j =
�n2 = 1/2ϕ2 and the backaction of this measurement on the
system as described by the Kraus operator [76],

K̂ (n j ) = exp

[
−

∑
j

ϕ2(n̂ j − n j )2

2

]
, (2)

conditioned on the measurement outcomes n j . Given an initial
state |ψ〉 and a measurement outcome nj , the postmeasure-
ment state of the system is given by K̂ (n j )|ψ〉. As one might
intuitively expect from a simple classical measurement, this
gives a distribution of measurement outcomes with a width
∝ 1/ϕ that decreases linearly with the system-reservoir cou-
pling g but as the square root of the measurement time tm and
intensity of the probe field |α|2. In the following analysis, we
consider the continuous limit of many such weak measure-
ments, taking the time between subsequent measurements to
be tm and applying measurements with a strength associated
with a measurement time tm.

B. Feedback model

For sufficiently weak measurements, the quantum projec-
tion noise δn j present in any individual measurement can
greatly exceed the contribution of the instantaneous expec-
tation value 〈n̂ j (t )〉. As a result, we borrow from classical
control theory [77] and derive an error signal ε(t ) from a
temporal low-pass filter,

τ ε̇ j (t ) + ε j (t ) = n j (t ), (3)

applied to the direct measurement outcomes. This consists
of an integrator with a low-frequency gain limit, with time
constant τ . This filter retains the low-frequency � 1/τ com-
ponents of nj (t ) (containing contributions from both system
dynamics and projection noise), but rejects the high-frequency
components (dominated by projection noise). Here we assume
that the measurement time tm � τ , implicitly making Eq. (3)
a stochastic differential equation, see Ref. [41] for a more
detailed discussion. The resulting error signal ε j (t ) thus ap-
proximates the continuous measurement limit of a sequence
of weak measurements of n j (t ) with measurement times τ re-
gardless of the physical measurement time tm � τ . Note that
because this filter is applied in real time, ε j (t ) will lag behind
n j (t ) by τ , and we take ε j (0) = 0 in our simulations. Because
the goal is neither to perform quantum state estimation nor
to drive the system into a predefined state, we do not employ
Kalman filter techniques [78].

Here we focus on possible dynamical steady states when
this classical information is then fed back into the Hamiltonian

in one of two ways. We shift either the on-site energy

Vj (t ) = V0 + δVj (t ) = V0 + GV ε j (t ) (4)

in proportion to the local feedback signal (with gain GV ), or
the tunneling

Jj (t ) = J0 + δJj (t ) = J0 + GJ [ε j (t )−ε j+1(t )]2 (5)

based on the difference along that link (with gain GJ ). These
two forms of feedback are the most simple physically realistic
options: the potential Vj (t ) simply shifts in proportion to the
error signal; however, because negative tunneling is difficult
to achieve, quadratic feedback is the most simple realistic
feedback to the tunneling term. Both of these can be realized
using quantum gas microscopes [79,80] where a digital mirror
device can locally control both the intensity of the lattice light
(increasing or decreasing tunneling [81]) as well as changing
the intensity on the lattice sites (altering the on-site potential
[30]).

II. TWO-SITE LATTICE

The two-site Bose-Hubbard model with N atoms can
be recast as an f = N/2 angular momentum system with
mappings n̂1 − n̂0 → 2F̂z, â†

1â0 + â†
0â1 → 2F̂x, and â†

1â0 −
â†

0â1 → 2iF̂y, that obey a dimensionless angular momentum
commutation relation [F̂i, F̂j] = iεi jkF̂k . This gives the Hamil-
tonian

ĤS = −2JF̂x + �F̂z + UF̂ 2
z , (6)

where we have absorbed constant terms into an overall shift in
the zero of energy and defined � = V1 − V0. This also results
in the single filter equation

τ ε̇(t ) + ε(t ) = 2 fz(t ) (7)

for ε(t ) ≡ ε1(t ) − ε0(t ) and feedback equations

�(t ) = �0 + GV ε(t ) and J (t ) = J0 + GJε(t )2, (8)

which are slightly adjusted with an additional factor of 2 on
the right-hand side of the filter equation, resulting from the
details of the angular momentum mapping.

The on-site measurement outcomes at time t can be reex-
pressed as

fz(t ) = 〈F̂z(t )〉 + m/(
√

2ϕ), (9)

with contribution [82] from the instantaneous expectation
value 〈F̂z(t )〉. As before, the noise is defined by a classical
random variable m with zero average m = 0 and variance
m2 = 1/2. Backaction is described by the Kraus operator:

K̂ ( fz ) = exp[−ϕ2(F̂z − fz )2]. (10)

Taken together, these expressions provide an equivalent for-
mulation of the two-site system in the language of angular
momentum.

A. Classical limit

The Heisenberg equations of motion in the large-N limit
(i.e., ignoring quantum fluctuations and thus measurement
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uncertainty) reduce to the classical equations of motion,

Ḟ =
⎛
⎝ 0 −(� + 2UFz ) 0

(� + 2UFz ) 0 2J
0 −2J 0

⎞
⎠ · F, (11)

where F ≈ (〈F̂x〉, 〈F̂y〉, 〈F̂z〉) denotes the classical angular mo-
mentum vector, ignoring quantum fluctuations. Note that
because the interaction U enters via a quartic term in the
Hamiltonian, it enters the classical equations of motion non-
linearly. Thus, to properly compare systems with different f ,
we keep U f fixed to a constant value. Similarly, since the
potential and tunneling feedback terms behave like effective
fourth- and sixth-order terms in the Hamiltonian, respectively,
we must also keep f GV and f 2GJ fixed to constant values.

Tunneling causes the macroscopic spin vector to precess
around ex, a potential imbalance leads to precession around
ez, and the nonlinear interaction term effectively drives pre-
cession around ez with angular frequency in proportion to Fz.
Figure 2(a) plots the energy [from Eq. (6)] and trajectories
[from Eq. (11)] for � = 0 as a function of the polar angles
φ and θ with respect to an ex aligned spherical coordinate
system (φ = 0 in the ey direction). The displayed trajectories
illustrate the two classes of orbits: (1) Near Fx = f (i.e.,
θ = 0), the phase φ exhibits running solutions [83,84] orbit-
ing around ex: Josephson oscillations (JOs). (2) For larger θ ,
closed orbits around Fx = −J/U , Fy = 0, and F 2

z = f 2 − F 2
x

correspond to oscillations about a density imbalanced excited
state [85]: macroscopic self-trapping (MST), present only for
|J/U | < f . For |J/U | > f , the two MST solutions merge to
form a second stable JO fixed point at Fx = − f .

B. Linearized dynamics

The impact of feedback is most clearly understood by first
linearizing the dynamics around each of the stable fixed points
of the JO and MST orbits, in general, giving elliptical orbits.
The displacements δFx,y,z each obey second-order differential
equations such as

δ̈Fz + ω2δFz = 0 (12)

describing motion in an effective harmonic potential, with
angular frequencies

ω2
JO = 4J0(J0 ± U f ) and ω2

MST = 4(U 2 f 2 − J2)

for the JO and MST points, respectively. For τ = 0, the
feedback described by Eq. (8) becomes proportional to Fz

and shifts the location of the fixed points (potentially even
eliminating them entirely), as well as altering the frequency
and ellipticity of the orbits. Still, the form of the differential
equations is unchanged: no damping. In the above example,
conventional damping would arise from an additional friction
term ˙δFz/τ and, more generally, damping (or antidamping)
will occur only when odd and even derivatives are mixed. In
our case, ε(t ) mixes these derivatives when τ �= 0, changing
the relationship between ε(t ) and fz(t ) according to Eq. (7),
thus changing the effect of δFz on Eqs. (8) and (11). The effect
of feedback can be quantified in linear response about both the
JO and the MST fixed points, allowing us to derive a damping
rate � in each case, in the limit of weak damping ω� � 1,
where ω is the angular frequency of the relevant fixed point.

FIG. 2. Classical spin model computed for f = 32, U f = 2,
J0/(U f ) = 0.35, and � = 0. (a) Trajectories as a function of θ, φ

with respect to the ex axis. These orbits are separated by the red
curve into regions of Josephson oscillations (e.g., orange curve) and
oscillations around the macroscopically self trapping point (e.g., blue
and green curves). The color indicates energy, with black denoting
the lowest energy and white the largest. (b), (c) Orbits around both JO
and MST fixed points. Red curves denote the result of our numerical
simulation while the black dashed curves plot the result of linear
response theory. Panel (b) plots the case with no measurement or
feedback and panel (c) plots the case with feedback with τ = 1/2
and tm = 0.01. Feedback in V [bottom two plots in (c)] damps to
the JO and MST fixed points for f GV = −1 and 1/4, respectively.
Feedback in J [bottom plot in (c)] damps to the JO fixed point with
GJ = 2. Because the feedback is nonlinear, no linear response theory
is displayed in the bottom plot.
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In this limit, the damping rates are ω� = γωτ/(1 + τ 2ω2),
with the most effective damping when ωτ = 1, and where the
strength γ governs the system dependence of the feedback.
For feedback in the potential, the resulting strengths are

γJO = −2J0 f GV and γMST = 2
J2

0 GV

U + GV
,

showing that, depending on the sign of GV , the system can be
damped effectively. Focusing on the case of positive interac-
tions U > 0 and positive base tunneling J0 > 0, either only
the JO fixed point is stable (0 < −GV < U ), only the MST
fixed points are stable (0 < GV < U ), or both types of fixed
points are stable (−GV > U ).

In contrast, for feedback in the tunneling channel, the
quadratic response δJ = GJε(t )2 leads to very slow damping
as the density-balanced JO fixed point is approached, i.e., at
the JO fixed point, ε(t ) = 0, and the linear contribution to δJ
is zero. Thus, only the MST state has damping or antidamp-
ing in linear response, and for the physical sign of the gain
coefficient GJ > 0, this results in antidamping.

C. Fluctuations

Although the classical limit omits quantum fluctuations (by
assuming a spin-coherent state), it need not omit measurement
backaction. A prescription similar to that of Ref. [40] for
coherent states gives a final state conditioned on the random
variable m,

Fz|m = Fz +
√

2 f ϕm sin2 θz, (13)

for measurements of F̂z described by Eq. (9), where θz is
defined with respect to ez. This prescription takes an initial
spin coherent state, then applies the Kraus operator; because
the resulting state is not necessarily a spin-coherent state, we
find the coherent state with the largest overlap as the updated
state. The core message of this expression is that Fz is updated
as informed by the measurement outcome, but for initial states
nearly polarized along ez, the state is nearly unaltered. Phys-
ically, this is expected because we are working at fixed total
angular momentum f and a state already polarized along ez

cannot become more polarized.
Lastly, equating Eqs. (9) and (13) suggests an optimal mea-

surement strength for which the true value of Fz following the
measurement [Eq. (9)] is equal to the measurement outcome
[Eq. (13)], i.e., the measurement outcome accurately reflects
the new state of the system. This occurs only for an optimal
measurement strength ϕ2

opt = (2 f sin2 θz )−1 that would be se-
lected to yield optimal performance near the desired fixed
point. We also note that with Eqs. (9) and (13), this implies
that for the optimal measurement strength, the measurement
noise and backaction both scale like f −1/2, fractionally going
to zero in the f → ∞ limit as one would expect.

The low-pass filter from which we derive the error signal
has time-constant τ , which plays the role of an effective mea-
surement time. Assuming no delay between measurements,
this implies an individual-measurement coupling ϕ2

opt,0 �
(2 f sin2 θz )−1 × (tm/τ ), so the τ/tm measurements which take
place in the time interval τ give a single average outcome with
the optimal strength ϕopt.

FIG. 3. Comparison of classical (red) and quantum (blue) sim-
ulations with identical parameters. (a) Free evolution around the
JO fixed point for the same parameters as in Fig. 2, including τ =
0.5. (b) Evolution including measurement noise, backaction, and
feedback for the same parameters as in Fig. 2, as well as a mea-
surement strength f 1/2ϕ = t1/2

m with tm = 0.01. These trajectories
were averaged over 1024 realizations to show their average behavior.
(c) Evolution for N = 2, with parameters suitably scaled by f to
yield same classical dynamics as (b).

D. Quantum double well

With these basic insights from the classical model in mind,
we compare to a quantum-trajectories stochastic Schrödinger
equation simulation of this double-well problem, includ-
ing all effects of backaction resulting from measurement to
the classical spin model, including measurement noise and
backaction. Figure 3(a) shows the coherent evolution of a
spin coherent state with N = 64 or f = 32, according to
the classical spin model (red) and the quantum simulation
(blue), with nearly perfect overlap. The agreement continues
to improve with increasing N , as neglecting quantum fluc-
tuations becomes an increasingly good approximation. This
overlap persists in Fig. 3(b), which includes the effects of
measurement, backaction, and feedback, again showing good
correspondence between the classical and quantum models.
Lastly, as the number N is reduced from 64 to 2 (and U is cor-
respondingly increased by a factor of 64/2 to keep U f = 2),
neglecting fluctuations becomes a very poor approximation,
and the classical and quantum trajectories deviate.

The classical-limit modeling provided valuable insight in
guiding parameter selection even for quantum systems: (1)
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feedback can change the dynamical steady state by intro-
ducing effective potentials and (2) the optimal filter time τ

is inversely proportional to the dynamical timescale of ex-
citations in the measurement channel. A basic intuition for
the latter point comes from a continuously monitored classi-
cal harmonic oscillator. The measured position converts into
knowledge of momentum one-quarter period later, allowing
a time-delayed feedback force to reduce that known velocity.
In the present case, τ in the low-pass filter gives the same
outcome by introducing a phase shift for signals with angular
frequency �1/τ . We certainly expect that more complex fil-
ters, proportional-integral-differential or Kalman [78] filters,
for example, would give improved performance.

III. EXTENDED LATTICE

In this section, we extend our analysis to the case of small
one-dimensional Bose-Hubbard chains. Unlike the case of
two sites, there is no angular momentum map and the ap-
propriate mean-field description is a discrete Gross-Pitaevskii
equation, similar to that discussed in Refs. [40,41]. Here, we
focus on the quantum region by considering states with mean
densities of just a few particles per site and studying the
system’s behavior numerically using a quantum trajectories
approach [86–88]. Correspondingly, the fluctuations in all
figures are a result of sampling error. We will also consider
a range of target density distributions, in which the error
signal derives from the difference between the observation
and the target. Throughout, we will express everything in units
where the interaction strength U = 1. Recent closely related
work investigates preparing similar Mott-like states via global
measurements rather than the local measurements considered
here [39].

A. Feedback models

We consider two possible tunneling feedback schemes. The
first is the nearest-neighbor approach introduced in Eq. (5).
The second, the imbalance approach, uses highly nonlocal
information, and relies instead on imbalances between the left
and right sides of the system. For the double-well system con-
sidered earlier, these two schemes are identical. The tunneling
strengths are, respectively,

Jj (t ) = G
∣∣[ε j (t ) − ε j+1(t )] − [Nj − Nj+1]

∣∣2
, (14)

Jj (t ) = G
∣∣[ε j,L(t ) − ε j,R(t )] − [Nj,L − Nj,R]

∣∣2
, (15)

where

Nj,L =
∑
k� j

Nk, Nj,R =
∑
k> j

Nk,

ε j,L =
∑
k� j

εk, ε j,R =
∑
k> j

εk,
(16)

and Nj indicates the target occupation number of site j. Since
the tunneling strength without feedback is J0 = 0 and mea-
surement occurs in the number basis, this means that the target
state |N1N2 · · · 〉 will be an evolution-free fixed point in the
absence of feedback induced by noise from the measurements.
Given the structure of the imbalance approach, which entails

FIG. 4. Average overlap |〈ψ2|ψ (T )〉|2 for different values of G
and κ for the nearest-neighbor approach using 256 trajectories.

separating the system into left and right sides, we will consider
open boundary conditions when discussing state preparation.

The purpose of the imbalance approach is to take advantage
of the global knowledge of the target state, knowledge that
is not used in the nearest-neighbor approach. For example,
consider the scenario in which the target state is |43210〉 and
the system is in the state |04321〉. In this case, the nearest-
neighbor approach will only initially turn on the tunneling
between the first two sites and gradually turn on the other
tunneling terms from left to right as the bosons move to
the left. In contrast, the imbalance approach will turn on all
tunneling terms and begin to transfer atoms from the right side
of the system to the left. However, the use of this more global
knowledge comes at a cost to the feedback uncertainty. Since
ε j,L/R involves a sum of N different measurement records, the
resulting uncertainty will be enhanced by a factor of

√
N . As

a result, there is a trade-off between using global knowledge
and the uncertainty in the feedback. Finally, we will discuss
these two feedback approaches in terms of a continuous mea-
surement rate κ , where ϕ ≡ √

2κtm and we use tm = 0.01 in
our numerical simulations.

B. State preparation

We compare the performance of these two approaches for
three different target states: ψ1 = |11111〉, ψ2 = |20202〉, and
ψ3 = |30003〉. We fix the filter time τ = 0.3 and the evolution
time T = 10 + τ [89] in units of U −1 and examine the behav-
ior of the final target state overlap |〈ψi|ψ (T )〉|2 as a function
of κ and G. For each trajectory, we initialize the system in a
Haar random state. While we could consider the steady-state
behavior of this system, from the perspective of creating a
target state in a physical system, it is more useful to consider
the finite-time behavior.

Figure 4 illustrates the target state overlap for ψ2 at
different values of κ and G using the nearest-neighbor ap-
proach. The behavior for other target states and the imbalance
approach are qualitatively similar. For all values of the mea-
surement strength κ , we see that there is an optimal choice of
the gain G for which the overlap is maximized. This optimal
value of the gain represents a balance between the need to
direct the system to the desired target state quickly and the
fact that measurement uncertainty can lead to errors in the
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FIG. 5. Optimal behavior of the two feedback approaches using
2048 trajectories for each data point except for the nearest-neighbor
approach for ψ3, which uses 4096 trajectories. (a) Optimal gain Gopt

as a function of κ . (b) Optimal target state overlap as a function
of κ . The solid (dotted) lines correspond to the nearest-neighbor
(imbalance) approach. Blue, red, and tan lines correspond to ψT =
ψ1, ψ2, ψ3, respectively.

application of the feedback. We identify the optimal value of
the gain and the corresponding target state overlap for the
different target states and measurement strengths in Fig. 5.
Several trends can be identified in the optimal feedback be-
havior.

The first trend is that the optimal gain grows linearly with
the measurement strength. This reflects the fact that stronger
measurements correspond to more accurate knowledge of the
system’s state, so the system can be more strongly driven to
the target state without making errors due to the measurement
uncertainty. Additionally, the gain must increase with the
measurement strength to avoid quantum Zeno effects, i.e., the
dynamics due to the feedback must become sufficiently fast so
the repeated weak measurements do not effectively become a
strong measurement before the system can evolve coherently.

The second trend is that optimal gain is larger for the
nearest-neighbor approach than the imbalance approach. This
is most likely a result of the fact that the uncertainty is larger
for the imbalance approach. Since the imbalance approach
uses five measurements for each tunneling link while the
nearest-neighbor approach uses two, the relative uncertainties
in the tunneling strength differ by roughly a factor of 2.5 [90],
which is consistent with the observed behavior.

The third trend is that for the parameters and target states
considered, the imbalance approach performs much better
than the nearest-neighbor approach. The nearest-neighbor

FIG. 6. Average overlap |〈ψT|ψ (T )〉|2 for different values of G
when the initial states are close to the target state using 4096 tra-
jectories. The solid (dotted) lines correspond to the nearest-neighbor
(imbalance) approach. Blue, red, and tan lines correspond to ψT =
ψ1, ψ2, ψ3, respectively.

approach performs better the more homogeneous the tar-
get state is. However, this begins to change at lower values
of the measurement strength, where the target state overlap
sharply begins to fall. This is a consequence of the fact
that, at sufficiently small measurement strengths, the un-
certainty in the measurement—and therefore the feedback
signal—overwhelms the useful information. Since the imbal-
ance approach involves more measurements, this behavior
occurs earlier than for the nearest-neighbor approach.

C. Nearby state preparation

For larger systems, the effect of the increased uncertainty
that comes with the imbalance approach becomes far more
important. A natural approach to avoid this issue is to use
a more hierarchical approach to the application of feedback.
When the system starts initially far from the desired target
state, a more global approach to feedback should be used. As
the system gets closer to the target state, according to the mea-
surement record, then increasingly local feedback approaches
can be used.

While the systems we can consider numerically are too
small to apply such a hierarchical feedback approach, we can
explore how the performance of the two feedback approaches
can change if the system is already closer to the target state.
To do so, we consider initial states whose only difference
from the target state is that a single boson has been moved
one site away. Additionally, we allow the feedback to be
applied for only one unit of time after the initialization of
the measurement record (which requires time τ ), reflecting
the fact that the local feedback would be applied for a shorter
time in this hierarchical approach. The results of our numerics
are shown in Fig. 6 for κ = U , demonstrating that the nearest-
neighbor approach performs better when the system is already
close to the desired state due to the reduced uncertainty in
the feedback. Note that this is in spite of the fact that the
nearest-neighbor approach will initially turn on three coupling
terms while the imbalance approach will turn on only one in
the absence of measurement uncertainty.
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FIG. 7. Solid blue line shows tunneling feedback used for
symmetry-breaking transition as a function of δε j . Red dotted lines
correspond to the feedback used in the state preparation section,
with the left (right) curve corresponding to the target state |020202〉
(|202020〉).

D. Symmetry-breaking transition

The emergence of phase transitions via feedback has been
investigated in a variety of diverse contexts [41–49], and here
we explore a symmetry-breaking transition in an extended
Hubbard chain. To observe this, we will consider a six-site lat-
tice with periodic boundaries whose tunneling feedback drives
the system toward the states |202020〉 or |020202〉. Due to the
periodic boundary conditions and type of symmetry breaking,
the left-right imbalance approach is not applicable, so we
consider a generalization of the nearest-neighbor feedback. In
particular, the tunneling feedback is

Jj (t ) = G

16
(1 + 2e−δε2

j )(δε j − 2)2(δε j + 2)2, (17a)

δε j = [ε j (t ) − ε j+1(t )], (17b)

with ε7 ≡ ε1. This is essentially a product of the tunneling
feedback in Eq. (15) for Nj − Nj+1 = ±2. The Gaussian term
is included to increase the tunneling for ε j − ε j+1 ≈ 0 com-
pared to just the quartic potential so it is comparable to the
corresponding tunneling when only one of the two aforemen-
tioned states is a target state. This will serve as a barrier which
hinders the system from moving from |202020〉 to |020202〉
and vice versa (see Fig. 7).

An additional important feature to note for this choice of
feedback is that these are not the only two states which will
lead to small tunneling. States of the form |024200〉 can also
be relatively stable. While there is one pair of sites with large
tunneling, this pair of sites has no bosons, so the large hopping
is not sufficient on its own to change the state. However, there
are two factors that can make such states unfavorable. The
first is that the creation of these states requires four bosons on
a single site, which is energetically unfavorable. The second is
that once measurement-induced fluctuations cause one of the
bosons at sites with two bosons to move into an empty site,
the boson will quickly move to the next site.

To investigate the symmetry-breaking behavior of this
feedback, we consider the behavior of the steady-state density
matrix ρss for fixed κ as a function of G, which we obtain

FIG. 8. Twenty smallest effective energies of steady-state Hss as
a function of G. Eigenvalues are calculated after symmetrizing ρss

with respect to translations and reflections, leading to degeneracy
for states related through these symmetries; quantitatively similar
behavior emerges without symmetrization, although the eigenvalues
are no longer as degenerate. The orange dots are doubly degener-
ate and correspond approximately to |202020〉, |020202〉, with the
strongest overlap occurring for the larger gaps. For G < .5U , ρss

is averaged over 128 trajectories from t = 100U −1 to t = 400U −1.
For G � .5U , ρss is averaged over 32 trajectories from t = 20U −1

to t = 320U −1. The initial time delay for averaging ensures that the
system has relaxed to the steady state.

via a combination of ensemble and ergodic averaging. Addi-
tionally, we define an effective Hamiltonian Hss according to
e−Hss ≡ ρss. In analogy to equilibrium systems, a symmetry-
breaking phase will occur when the two lowest energy levels
of Hss become gapped from the rest of the spectrum. In terms
of ρss, the two corresponding states will have a much larger
probability than the rest of the eigenstates, and the gap in Hss

describes the exponential suppression in probability of these
other eigenstates. Hence, in the absence of a gap, no particular
configuration is favored, and the system appears disordered.

Figure 8 plots the eigenvalues of Hss as a function of G
for κ = 5U using the initial state ψ (0) = |111111〉, which
will prefer both symmetry-breaking states equally, although
we expect the same steady state for Haar random initial states.
We see that an effective gap opens for a range of G, with two
effective energies much smaller than the rest. As expected,
these two eigenvectors correspond approximately to |202020〉
and |020202〉, while the other possible stable states (e.g.,
|024200〉) are not strongly occupied. Additionally, as this gap
increases, the autocorrelation times increase, necessitating
more sampling for larger gaps. This corresponds to the fact
that when the system is in either of the two symmetry-broken
states, the feedback makes it difficult to leave this state, so
the system spends a long time in the same state, thus slowing
down the ergodic sampling of ρss. In the limit of large G, even
small fluctuations will drastically modify Jj (t ), preventing the
system from preferring any particular state and causing the
gap to close.

As G is increased, this gap eventually closes and does
not reopen. Physically, this is because in the limit of large
G, the hopping becomes very large, so small fluctuations in
the measurements lead to large fluctuations in the hopping,
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preventing the system from preferring any given state. This is
qualitatively similar to an infinite temperature limit in which
no particular state is energetically preferred. In the limit of
small G, the gap similarly closes because the measurement
strength overwhelms the feedback, causing the system to relax
to a random number state. The start of this closure can be
observed in Fig. 8, although due to the quantum Zeno effect,
identifying the steady state for smaller values of G becomes
numerically prohibitive as it requires increasingly long relax-
ation times.

IV. OUTLOOK

This paper combines concepts from many-body physics
with the techniques of quantum control and feedback to create
and characterize low-entropy many-body dynamical steady
states. Creating such a dynamical steady state in the laboratory
environment hinges on exploring the implication of experi-
mental realities, for example: What are the consequences of
imperfect detection? Of limited spatial resolution? What is the
impact of limited feedback bandwidth? Real implementation
must face these questions head-on.

From a foundational perspective, it remains to be seen if
there exist dynamical steady states which are forbidden in
associated thermal equilibrium systems. For example, non-
reciprocal couplings can be realized using feedback, which
can lead to rich nonequilibrium phenomena [91–94]. Alter-
natively, feedback that is nonlocal in time can be used to
engineer non-Markovian baths even though the measurements
themselves are Markovian. Similarly, even with local mea-
surements of density, nonlocal feedback can emulate aspects
of long-range potentials [37]. Stochastic descriptions such as
ours can be reframed in terms of the so-called feedback master
equation [95], in which the time delay introduced by the
low-pass filter introduces non-Markovian terms that cannot be
described in a Lindblad form. This at least provides the op-
portunity for creating dynamics and steady states that are not
achievable using realistic Lindblad terms. Moreover, even if
the steady state may look thermal, its linear response may still
violate the fluctuation-dissipation theorem [96,97], indicating
the persistence of nonequilibrium features. Additionally, new
types of dynamics are possible when the bosons include a
spin degree of freedom, such as quantum Zeno-like effects
which can emerge if one spin state is subjected to stronger
measurements than the other.

While we have demonstrated how the use of nonlocal feed-
back can be employed to prepare desired target states more
efficiently than local feedback, this was done for the relatively
simple case of Mott-like number states. An interesting next
direction, then, is to consider preparing more complex states,
such as superfluidlike states with long-range coherences. By
adding density modulations through the use of nonlocal feed-
back as we did for the number states, this opens the possibility
of preparing supersolid and supersolid-like states [98–101].
More broadly, this would provide further insight into how the
use of measurement and feedback affects the ability to realize
intrinsically quantum dynamics.

Although we have illustrated how a symmetry-breaking
phase transition may in principal emerge due to measure-
ment and feedback in a many-body quantum system, several

open questions remain. Here, our analysis has been restricted
to small 1D chains, so an important question is whether
this corresponds to a phase transition in the thermodynamic
limit. Even if it does not exist in 1D, an analogous transi-
tion may exist in higher-dimensional systems. Additionally,
understanding the behavior of critical phenomena in these
systems is another important direction, such as whether they
are equivalent to a quantum phase transition, a classical phase
transition, or something entirely different. In Ref. [46], it was
shown that in zero-dimensional systems, modifying the form
of non-Markovian feedback can lead to changes in the critical
exponents of the phase transition, so similar phenomena may
arise in a many-body context as well.

A natural direction to explore to investigate these questions
are measurement-induced phase transitions, which have been
the subject of intense theoretical research in recent years
and are defined by the scaling behavior of the entanglement
entropy [102–118] with recent initial experimental evidence
[119]. Aside from the key difference that these systems are
not subject to feedback, these often involve coherent evolution
defined by random unitary circuits and strong measurements,
although similar behavior has been shown to emerge for weak
measurements as well [114–118]. A natural question is how
these phase transitions can be modified through different ap-
plications of feedback: Will the phase transition only shift or
can qualitatively new physics emerge?

Another promising approach to exploring the above ques-
tions is to investigate the similarities that systems subject
to measurement and feedback have with driven-dissipative
systems, which are systems that are subjected to coherent
drive and incoherent dissipation that have been studied ex-
tensively in a variety of contexts [1–12,93,120–136]. From
an abstract standpoint, these two types of systems are very
similar, with dissipation playing a role analogous to contin-
uous measurements and drive playing a role analogous to
the feedback. As a result, insights or techniques from study-
ing one type of system can lead to insights in the other.
For example, phase transitions in driven-dissipative systems
have been studied extensively using a Keldysh-Schwinger and
functional integral formalism [93,122–131], so it is impor-
tant to explore how these same techniques can be applied to
systems subject to measurement and feedback. Similarly, ef-
fective classical equilibrium criticality is observed generically
in many driven-dissipative phase transitions [127–129], with
some important exceptions [93,130–132], so measurement-
feedback systems may provide new avenues to realize novel
forms of nonequilibrium criticality and quantum criticality.
Moreover, recent research indicates that dissipative phase
transitions and measurement-induced phase transitions need
not coincide [136], which means that measurement-feedback
phase transitions may similarly lead to distinctive forms of
criticality.
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of an Ensemble of Two-Level Atoms with Reduced Quantum
Uncertainty, Phys. Rev. Lett. 104, 073604 (2010).

[60] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Measurement noise 100 times lower than the
quantum-projection limit using entangled atoms, Nature
(London) 529, 505 (2016).

[61] K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson,
Deterministic Squeezed States with Collective Measurements
and Feedback, Phys. Rev. Lett. 116, 093602 (2016).

[62] A. N. Korotkov, Selective quantum evolution of a qubit state
due to continuous measurement, Phys. Rev. B 63, 115403
(2001).

[63] C. Ahn, A. C. Doherty, and A. J. Landahl, Continuous quan-
tum error correction via quantum feedback control, Phys. Rev.
A 65, 042301 (2002).

[64] M. Sarovar, C. Ahn, K. Jacobs, and G. J. Milburn, Practical
scheme for error control using feedback, Phys. Rev. A 69,
052324 (2004).

[65] W. Dür, M. Skotiniotis, F. Fröwis, and B. Kraus, Improved
Quantum Metrology Using Quantum Error Correction, Phys.
Rev. Lett. 112, 080801 (2014).

[66] E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D. Lukin,
Quantum Error Correction for Metrology, Phys. Rev. Lett. 112,
150802 (2014).

[67] G. Arrad, Y. Vinkler, D. Aharonov, and A. Retzker, Increasing
Sensing Resolution with Error Correction, Phys. Rev. Lett.
112, 150801 (2014).

[68] T. Unden, P. Balasubramanian, D. Louzon, Y. Vinkler, M. B.
Plenio, M. Markham, D. Twitchen, A. Stacey, I. Lovchinsky,
A. O. Sushkov, M. D. Lukin, A. Retzker, B. Naydenov, L. P.
McGuinness, and F. Jelezko, Quantum Metrology Enhanced
by Repetitive Quantum Error Correction, Phys. Rev. Lett. 116,
230502 (2016).

043075-11

https://doi.org/10.1126/science.aao1401
https://doi.org/10.1038/s41567-020-1035-1
https://doi.org/10.1103/PhysRevA.62.012307
https://doi.org/10.1103/PhysRevA.65.061801
https://doi.org/10.1103/PhysRevLett.122.233602
https://doi.org/10.1103/PhysRevLett.111.020501
https://doi.org/10.1103/PhysRevLett.124.110503
http://arxiv.org/abs/arXiv:2106.03883
https://doi.org/10.1103/PhysRevA.99.053612
https://doi.org/10.1103/PhysRevResearch.2.043325
https://doi.org/10.1088/1367-2630/16/6/065004
https://doi.org/10.1088/1367-2630/17/1/013040
https://doi.org/10.1364/OPTICA.3.001213
https://doi.org/10.1103/PhysRevA.102.022610
https://doi.org/10.1103/PhysRevLett.124.010603
https://doi.org/10.1088/1367-2630/ab73cc
https://doi.org/10.1038/s41598-020-67280-3
https://doi.org/10.1103/PhysRevA.104.033719
https://doi.org/10.1103/RevModPhys.44.169
https://doi.org/10.1103/PhysRevLett.61.169
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1038/306141a0
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevLett.104.073604
https://doi.org/10.1038/nature16176
https://doi.org/10.1103/PhysRevLett.116.093602
https://doi.org/10.1103/PhysRevB.63.115403
https://doi.org/10.1103/PhysRevA.65.042301
https://doi.org/10.1103/PhysRevA.69.052324
https://doi.org/10.1103/PhysRevLett.112.080801
https://doi.org/10.1103/PhysRevLett.112.150802
https://doi.org/10.1103/PhysRevLett.112.150801
https://doi.org/10.1103/PhysRevLett.116.230502


YOUNG, GORSHKOV, AND SPIELMAN PHYSICAL REVIEW RESEARCH 3, 043075 (2021)

[69] P. Sekatski, M. Skotiniotis, J. Kołodyński, and W. Dür, Quan-
tum metrology with full and fast quantum control, Quantum 1,
27 (2017).

[70] F. Reiter, A. S. Sørensen, P. Zoller, and C. A. Muschik, Dis-
sipative quantum error correction and application to quantum
sensing with trapped ions, Nat. Commun. 8, 1822 (2017).

[71] S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Achieving the
Heisenberg limit in quantum metrology using quantum error
correction, Nat. Commun. 9, 78 (2018).

[72] D. Layden, S. Zhou, P. Cappellaro, and L. Jiang, Ancilla-Free
Quantum Error Correction Codes for Quantum Metrology,
Phys. Rev. Lett. 122, 040502 (2019).

[73] K. Jacobs and D. A. Steck, A straightforward introduction to
continuous quantum measurement, Contemp. Phys. 47, 279
(2006).

[74] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Introduction to quantum noise, measure-
ment, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

[75] M. R. Hush, S. S. Szigeti, A. R. R. Carvalho, and J. J. Hope,
Controlling spontaneous-emission noise in measurement-
based feedback cooling of a Bose–Einstein condensate, New
J. Phys. 15, 113060 (2013).

[76] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[77] J. Van de Vegte, Feedback Control Systems, 3rd ed., Prentice
Hall International Editions (Prentice Hall, New Jersey, USA,
1994).

[78] R. E. Kalman, A new approach to linear filtering and predic-
tion problems, Trans. ASME–J. Basic Eng. 82, 35 (1960).

[79] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
A quantum gas microscope for detecting single atoms in
a Hubbard-regime optical lattice, Nature (London) 462, 74
(2009).

[80] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Single-atom-resolved fluorescense imaging of an
atomic Mott insulator, Nature (London) 467, 68 (2010).

[81] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M.
Rispoli, and M. Greiner, Measuring entanglement entropy in a
quantum many-body system, Nature (London) 528, 77 (2015).

[82] The factor of
√

2 derives from combining two measurements
of density into a single measurement of Fz.

[83] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The
a.c. and d.c. Josephson effects in a Bose-Einstein condensate,
Nature (London) 449, 579 (2007).

[84] R. Gati and M. K. Oberthaler, A bosonic Josephson junction,
J. Phys. B 40, R61 (2007).

[85] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and
M. K. Oberthaler, Direct Observation of Tunneling and Non-
linear Self-Trapping in a Single Bosonic Josephson Junction,
Phys. Rev. Lett. 95, 010402 (2005).

[86] J. Dalibard, Y. Castin, and K. Mølmer, Wave-Function Ap-
proach to Dissipative Processes in Quantum Optics, Phys. Rev.
Lett. 68, 580 (1992).

[87] M. B. Plenio and P. L. Knight, The quantum-jump approach to
dissipative dynamics in quantum optics, Rev. Mod. Phys. 70,
101 (1998).

[88] R. Dum, P. Zoller, and H. Ritsch, Monte Carlo simulation of
the atomic master equation for spontaneous emission, Phys.
Rev. A 45, 4879 (1992).

[89] The extra time τ is to allow for an initialization of ε j before
the feedback starts being applied at t = τ .

[90] For white noise ξ with standard deviation σ , the mean and
standard deviation of ξ 2 are σ 2 and

√
2σ 2, respectively, hence

the factor of 2.5 rather than
√

2.5.
[91] A. Metelmann and A. A. Clerk, Nonreciprocal Photon Trans-

mission and Amplification Via Reservoir Engineering, Phys.
Rev. X 5, 021025 (2015).

[92] A. Metelmann and A. A. Clerk, Nonreciprocal quantum inter-
actions and devices via autonomous feedforward, Phys. Rev.
A 95, 013837 (2017).

[93] J. T. Young, A. V. Gorshkov, M. Foss-Feig, and M. F.
Maghrebi, Non-Equilibrium Fixed Points of Coupled Ising
Models, Phys. Rev. X 10, 011039 (2020).

[94] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, Non-
reciprocal phase transitions, Nature (London) 592, 363 (2021).

[95] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, UK, 2009).

[96] H. B. Callen and T. A. Welton, Irreversibility and generalized
noise, Phys. Rev. 83, 34 (1951).

[97] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog.
Phys. 29, 306 (1966).

[98] G. V. Chester, Speculations on Bose-Einstein condensation
and quantum crystals, Phys. Rev. A 2, 256 (1970).

[99] M. Boninsegni and N. V. Prokof’ev, Colloquium: Supersolids:
What and where are they? Rev. Mod. Phys. 84, 759 (2012).

[100] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T.
Donner, Supersolid formation in a quantum gas breaking a
continuous translational symmetry, Nature (London) 543, 87
(2017).

[101] J.-r. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç.
Top, A. O. Jamison, and W. Ketterle, A stripe phase with
supersolid properties in spin–orbit-coupled Bose–Einstein
condensates, Nature (London) 543, 91 (2017).

[102] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect
and the many-body entanglement transition, Phys. Rev. B 98,
205136 (2018).

[103] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven
entanglement transition in hybrid quantum circuits, Phys. Rev.
B 100, 134306 (2019).

[104] B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced
Phase Transitions in the Dynamics of Entanglement, Phys.
Rev. X 9, 031009 (2019).

[105] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,
Unitary-projective entanglement dynamics, Phys. Rev. B 99,
224307 (2019).

[106] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum Error Cor-
rection in Scrambling Dynamics and Measurement-Induced
Phase Transition, Phys. Rev. Lett. 125, 030505 (2020).

[107] C.-M. Jian, Y.-Z. You, R. Vasseur, and A. W. W. Ludwig,
Measurement-induced criticality in random quantum circuits,
Phys. Rev. B 101, 104302 (2020).

[108] X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-
induced criticality in (2 + 1)-dimensional hybrid quantum
circuits, Phys. Rev. B 102, 014315 (2020).

[109] M. J. Gullans and D. A. Huse, Dynamical Purification Phase
Transition Induced by Quantum Measurements, Phys. Rev. X
10, 041020 (2020).

[110] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A.
Huse, and V. Khemani, Entanglement Phase Transitions in

043075-12

https://doi.org/10.22331/q-2017-09-06-27
https://doi.org/10.1038/s41467-017-01895-5
https://doi.org/10.1038/s41467-017-02510-3
https://doi.org/10.1103/PhysRevLett.122.040502
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1088/1367-2630/15/11/113060
https://doi.org/10.1115/1.3662552
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature06186
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/PhysRevA.45.4879
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1103/PhysRevA.95.013837
https://doi.org/10.1103/PhysRevX.10.011039
https://doi.org/10.1038/s41586-021-03375-9
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevA.2.256
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21431
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.1103/PhysRevX.10.041020


FEEDBACK-STABILIZED DYNAMICAL STEADY STATES … PHYSICAL REVIEW RESEARCH 3, 043075 (2021)

Measurement-Only Dynamics, Phys. Rev. X 11, 011030
(2021).

[111] A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-
induced topological entanglement transitions in symmetric
random quantum circuits, Nat. Phys. 17, 342 (2021).

[112] A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measurement
and entanglement phase transitions in all-to-all quantum cir-
cuits, on quantum trees, and in Landau-Ginsburg theory, PRX
Quantum 2, 010352 (2021).

[113] T. Minato, K. Sugimoto, T. Kuwahara, and K. Saito, Fate of
measurement-induced phase transition in long-range interac-
tions, arXiv:2104.09118.

[114] X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a
fermion chain under continuous monitoring, SciPost Phys. 7,
24 (2019).

[115] M. Szyniszewski, A. Romito, and H. Schomerus, Entangle-
ment transition from variable-strength weak measurements,
Phys. Rev. B 100, 064204 (2019).

[116] Y. Bao, S. Choi, and E. Altman, Theory of the phase transition
in random unitary circuits with measurements, Phys. Rev. B
101, 104301 (2020).

[117] S. Goto and I. Danshita, Measurement-induced transitions of
the entanglement scaling law in ultracold gases with control-
lable dissipation, Phys. Rev. A 102, 033316 (2020).

[118] O. Alberton, M. Buchhold, and S. Diehl, Entanglement Tran-
sition in a Monitored Free-Fermion Chain: From Extended
Criticality to Area Law, Phys. Rev. Lett. 126, 170602 (2021).

[119] C. Noel, P. Niroula, D. Zhu, A. Risinger, L. Egan, D. Biswas,
M. Cetina, A. V. Gorshkov, M. J. Gullans, D. A. Huse, and
C. Monroe, Observation of measurement-induced quantum
phases in a trapped-ion quantum computer, arXiv:2106.05881.

[120] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti, Spectral
theory of Liouvillians for dissipative phase transitions, Phys.
Rev. A 98, 042118 (2018).

[121] M. Soriente, T. Donner, R. Chitra, and O. Zilberberg,
Dissipation-Induced Anomalous Multicritical Phenomena,
Phys. Rev. Lett. 120, 183603 (2018).

[122] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman,
Quantum critical states and phase transitions in the presence
of non-equilibrium noise, Nat. Phys. 6, 806 (2010).

[123] S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Atom-light
crystallization of Bose-Einstein condensates in multimode
cavities: Nonequilibrium classical and quantum phase transi-

tions, emergent lattices, supersolidity, and frustration, Phys.
Rev. A 82, 043612 (2010).

[124] U. C. Täuber and S. Diehl, Perturbative Field-Theoretical
Renormalization Group Approach to Driven-Dissipative Bose-
Einstein Criticality, Phys. Rev. X 4, 021010 (2014).

[125] E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner,
Two-Dimensional Superfluidity of Exciton Polaritons Re-
quires Strong Anisotropy, Phys. Rev. X 5, 011017 (2015).

[126] L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field
theory for driven open quantum systems, Rep. Prog. Phys. 79,
096001 (2016).

[127] Emanuele G. Dalla Torre, S. Diehl, M. D. Lukin, S. Sachdev,
and P. Strack, Keldysh approach for nonequilibrium phase
transitions in quantum optics: Beyond the Dicke model in
optical cavities, Phys. Rev. A 87, 023831 (2013).

[128] M. F. Maghrebi and A. V. Gorshkov, Nonequilibrium many-
body steady states via Keldysh formalism, Phys. Rev. B 93,
014307 (2016).

[129] M. Foss-Feig, P. Niroula, J. T. Young, M. Hafezi, A. V.
Gorshkov, R. M. Wilson, and M. F. Maghrebi, Emergent equi-
librium in many-body optical bistability, Phys. Rev. A 95,
043826 (2017).

[130] J. Marino and S. Diehl, Driven Markovian Quantum Critical-
ity, Phys. Rev. Lett. 116, 070407 (2016).

[131] D. A. Paz and M. F. Maghrebi, Driven-dissipative Ising Model:
An exact field-theoretical analysis, Phys. Rev. A 104, 023713
(2021).

[132] R. Rota, F. Minganti, C. Ciuti, and V. Savona, Quantum Crit-
ical Regime in a Quadratically Driven Nonlinear Photonic
Lattice, Phys. Rev. Lett. 122, 110405 (2019).

[133] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M.
Dalmonte, and R. Fazio, Boundary Time Crystals, Phys. Rev.
Lett. 121, 035301 (2018).

[134] A. Nagy and V. Savona, Variational Quantum Monte Carlo
Method with a Neural-Network Ansatz for Open Quantum
Systems, Phys. Rev. Lett. 122, 250501 (2019).

[135] D. Roberts and A. A. Clerk, Driven-Dissipative Quantum Kerr
Resonators: New Exact Solutions, Photon Blockade and Quan-
tum Bistability, Phys. Rev. X 10, 021022 (2020).

[136] P. Sierant, G. Chiriacò, F. M. Surace, S. Sharma, X. Turkeshi,
M. Dalmonte, R. Fazio, and G. Pagano, Dissipative Floquet
dynamics: From steady state to measurement induced critical-
ity in trapped-ion chains, arXiv:2107.05669.

043075-13

https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PRXQuantum.2.010352
http://arxiv.org/abs/arXiv:2104.09118
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevB.101.104301
https://doi.org/10.1103/PhysRevA.102.033316
https://doi.org/10.1103/PhysRevLett.126.170602
http://arxiv.org/abs/arXiv:2106.05881
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevLett.120.183603
https://doi.org/10.1038/nphys1754
https://doi.org/10.1103/PhysRevA.82.043612
https://doi.org/10.1103/PhysRevX.4.021010
https://doi.org/10.1103/PhysRevX.5.011017
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1103/PhysRevA.87.023831
https://doi.org/10.1103/PhysRevB.93.014307
https://doi.org/10.1103/PhysRevA.95.043826
https://doi.org/10.1103/PhysRevLett.116.070407
https://doi.org/10.1103/PhysRevA.104.023713
https://doi.org/10.1103/PhysRevLett.122.110405
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevX.10.021022
http://arxiv.org/abs/arXiv:2107.05669

