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Digital quantum simulation of Floquet 
symmetry-protected topological phases

Xu Zhang1,11, Wenjie Jiang2,11, Jinfeng Deng1,11, Ke Wang1, Jiachen Chen1, Pengfei Zhang1, 
Wenhui Ren1, Hang Dong1, Shibo Xu1, Yu Gao1, Feitong Jin1, Xuhao Zhu1, Qiujiang Guo1,3, 
Hekang Li1,3, Chao Song1,3, Alexey V. Gorshkov4, Thomas Iadecola5,6, Fangli Liu4,7, 
Zhe-Xuan Gong8,9, Zhen Wang1,3 ✉, Dong-Ling Deng2,10 ✉ & H. Wang1,3

Quantum many-body systems away from equilibrium host a rich variety of exotic 
phenomena that are forbidden by equilibrium thermodynamics. A prominent example 
is that of discrete time crystals1–8, in which time-translational symmetry is 
spontaneously broken in periodically driven systems. Pioneering experiments have 
observed signatures of time crystalline phases with trapped ions9,10, solid-state spin 
systems11–15, ultracold atoms16,17 and superconducting qubits18–20. Here we report the 
observation of a distinct type of non-equilibrium state of matter, Floquet symmetry- 
protected topological phases, which are implemented through digital quantum 
simulation with an array of programmable superconducting qubits. We observe robust 
long-lived temporal correlations and subharmonic temporal response for the edge 
spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 
26 qubits. We demonstrate that the subharmonic response is independent of the initial 
state, and experimentally map out a phase boundary between the Floquet symmetry- 
protected topological and thermal phases. Our results establish a versatile digital 
simulation approach to exploring exotic non-equilibrium phases of matter with 
current noisy intermediate-scale quantum processors21.

Symmetry-protected topological (SPT) phases are characterized by non- 
trivial edge states that are confined near the boundaries of the system  
and protected by global symmetries22–26. In a clean system without 
disorder, these edge states typically only occur for the ground states 
of systems with a bulk energy gap. At finite temperature, they are in 
general destroyed by mobile thermal excitations. However, adding 
strong disorder can make the system many-body localized (MBL)27–31, 
allowing for a sharply defined topological phase and stable edge states 
even at infinite temperature32–36. Strikingly, the topological phase and 
corresponding edge states can even survive external periodic driving, 
as long as the driving frequency is large enough so that the localiza-
tion persists37,38.

The interplay between symmetry, topology, localization and peri-
odic driving gives rise to various peculiar phases of matter that exist 
only out of equilibrium38. Understanding and categorizing these 
unconventional phases poses a well-known scientific challenge. On 
the theoretical side, topological classifications of periodically driven 
(Floquet) systems with4,39–42 and without43 interactions have already 
been obtained through a range of mathematical techniques (such as 
group cohomology), revealing a number of ‘Floquet SPT’ (FSPT) phases 
with no equilibrium counterparts38. Yet, we still lack powerful analytical 
tools or numerical algorithms to thoroughly address these phases and 

their transitions to other ones. On the experimental side, signatures 
of discrete time crystals (DTCs)1–8, which are paradigmatic examples 
of exotic phases beyond equilibrium44, have been reported in a wide 
range of systems9–20. However, none of these experiments encompass 
topology as a key ingredient. A recent experiment simulating an FSPT 
phase on a trapped-ion quantum computer found that the phase was 
short-lived owing to the presence of coherent errors in the device45. 
Realizing a long-lived FSPT phase, which demands a delicate concur-
rence of topology, localization and periodic driving, thus still remains 
a notable experimental challenge.

Here we report the observation of non-equilibrium FSPT phases with 
a programmable array of 26 superconducting qubits (Fig. 1) with high 
controllability and long coherence time. We successfully implement 
the dynamics of prototypical time-(quasi)periodic Hamiltonians with 

×2 2Z Z , 2Z , or no microscopic symmetries, and observe subharmonic 
temporal responses for the edge spins. In particular, we focus on a 
one-dimensional (1D) time-periodic Hamiltonian with three-body 
interactions and ×2 2Z Z  symmetry as an example. We digitally simulate 
this Hamiltonian through a large-depth quantum circuit obtained using 
a neuroevolution algorithm46. We then measure local spin magnetiza-
tions and their temporal correlations and demonstrate that both quan-
tities show a subharmonic response at the boundaries but not in the 
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bulk of the chain. This situation differs drastically from the case of 
DTCs, which exhibit subharmonic response everywhere in the bulk. 
This contrast stems from a fundamental distinction between DTC and 
FSPT phases: the former exhibit conventional long-range order in the 
bulk intertwined with the spontaneous breaking of discrete 
time-translational symmetry44,47,48 whereas the latter exhibit SPT order 
that can only be revealed through boundary effects or non-local ‘string 
operators’ in the bulk39,41,49. The observed boundary subharmonic 
response persists over an extended range of parameters and is robust 
to various experimental imperfections, independent of the initial 
states. We further explore the FSPT phase experimentally from the 
perspectives of entanglement dynamics, the entanglement spectrum 
and the dynamics of stabilizer operators that underlies its topological 
nature. By measuring the variance of the subharmonic peak height in 
the Fourier spectrum, we experimentally map out the phase boundary 
between the FSPT and thermal phases.

Model Hamiltonian and its implementation
We mainly consider a 1D spin- 1

2
 chain governed by the following 

time-periodic Hamiltonian (Fig. 1b):
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where δ denotes the drive perturbation;  σ̂ k
x z,  is the Pauli matrix acting 

on the kth spin; Jk, Vk and hk are random parameters drawn indepen-
dently from uniform distributions over [ J − ΔJ, J + ΔJ], [V −  ΔV, V + ΔV] 

and [h − Δh, h + Δh], respectively. For simplicity, we fix T = 2T′ = 2, which 
roughly corresponds to 0.3 μs for running the corresponding quantum 
circuit in our experiment. We note that H(t) has a Z Z×2 2 symmetry. 
For a suitable parameter regime, it has been shown that H2 can be in an 
MBL phase, in which topological edge states can survive as coherent 
degrees of freedom at arbitrarily high energies34. The localization  
and edge states carry over to the case of periodic driving with the  
Hamiltonian H(t), giving rise to an FSPT phase. In this FSPT phase, the 
time-translational symmetry only breaks at the boundary but not in 
the bulk. The Floquet unitary that fully characterizes the FSPT phase 
reads UF = U2U1, where U = e H

1
−i 1 and U = e H

2
−i 2 are the unitary operators 

generated by the Hamiltonians H1 and H2, respectively. The quasi-energy 
spectrum of UF reveals that every eigenstate is two-fold degenerate 
and has a cousin eigenstate separated by the quasi-energy π (Fig. 1c). 
The degenerate eigenstates also exhibit long-range mutual information 
between the boundary spins; this is essential for the robustness of the 
subharmonic response of the edge spins against local perturbations, 
including finite δ and Vk, that respect the Z Z×2 2 symmetry (Methods 
and Supplementary Information  I).

To implement H(t) with superconducting qubits, the three-body term 
in H2, which is crucial for the SPT phase at high energy, poses an appar-
ent challenge because no three-body interaction appears naturally in 
the superconducting system. We thus use the idea of digital quantum 
simulation50 to implement H(t) with quantum circuits (Fig. 1d). For 
Vk = hk = 0, we find optimal circuits in an analytical fashion that can 
implement H(t) with arbitrary Jk and δ, whereas for non-vanishing Vk 
and hk we use a neuroevolution algorithm46 to design suitable quantum 
circuits (Methods). With the obtained quantum circuits, we perform 
our experiment on a flip-chip superconducting quantum processor 
(Fig. 1e) with a chain of L = 26 transmon qubits denoted as Q1 to QL 
(Fig. 1a). See Methods and Supplementary Information for the details 
of the experimental setup, and for experimental results from another 
processor with a chain of 14 qubits.
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Fig. 1 | FSPT phase and schematics of the experimental setup. a, The 26 qubits 
used in our experiment are coupled to their neighbours with capacitive couplers. 
b, A chain of spins is periodically driven with the time-periodic Hamiltonian H(t), 
giving rise to an FSPT phase characterized by time-translational symmetry 
breaking at the boundaries. c, The quasi-energy spectrum of the Floquet unitary 
UF, which is the time evolution operator over one period. For the FSPT phase, 
every eigenstate with quasi-energy ε is two-fold degenerate and has a cousin 
(denoted by the same colour) separated from it by quasi-energy π. Here, 
↑ ↑⟩± ↓ ↓⟩⋯ ⋯  and ↓ ↑⟩± ↑ ↓⟩⋯ ⋯  denote the eigenstates of UF with δ = Vk = hk = 0 

(Supplementary Information I.B). d, A schematic illustration of the experimental 
circuits used to implement the time dynamics governed by H(t). We randomly 
sample the Hamiltonians and prepare the initial states as random product states 
or random static SPT states. After running a sequence of quantum gates, we 
measure the local magnetization or stabilizer operators at discrete time points. 
e, Illustration of the quantum processor, with the 26 qubits used in the 
experiment highlighted in green. Yellow circles are functional qubits, but not 
used owing to limited gate fidelity. The remaining lattice sites (denoted as red 
circles) are non-functional qubits.
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Symmetry breaking at boundaries
The characteristic signature of an FSPT phase is the breaking of the 
discrete time-translational symmetry at the boundaries of the chain 
but not in the bulk. This can be manifested by the persistent oscillation 
with period 2T of local magnetizations at the boundaries. In Fig. 2, we 
plot the time evolution of the disorder-averaged local magnetizations 

σ t⟨ ( )⟩j
z  for different phases. From Fig. 2a, it is evident that in the FSPT 

phase, the disorder-averaged magnetizations at the two ends of the 
chain, namely σ t⟨ ( )⟩z

1  and σ t⟨ ( )⟩L
z , oscillate with a 2T periodicity, for up 

to 40 driving cycles. In stark contrast, the local magnetizations in the 
bulk of the chain ( σ t⟨ ( )⟩j

z  with j L2 ≤ ≤ − 1) decay quickly to zero and do 
not show period-doubled oscillations. This unconventional behaviour 
is independent of disorder averaging. Even for a single random  
disorder instance the magnetizations exhibit similar dynamical fea-
tures, as shown in Fig. 2b. The distinction between the dynamics of 
boundary and bulk magnetizations can also be clearly seen by examin-
ing σ t⟨ ( )⟩j

z  in the frequency domain. As shown in Fig. 2d, the edge spins 
lock to the subharmonic frequency of the drive period ω/ω0 = 1/2, 
whereas the bulk spins show no such peak. We stress that the subhar-
monic response for the edge spins obtained in our experiment is nota-
bly robust to various perturbations (including non-zero δ) and 
experimental imperfections (see Supplementary Information I.B for 
a more in-depth discussion). For comparison, we also experimentally 
measure the dynamics of the magnetizations in the thermal phase. Our 
results are shown in Fig. 2c,e, where we see that the magnetizations for 
both the edge and bulk spins decay quickly to zero and no subharmonic 
response appears at all.

The breaking of the discrete time-translational symmetry at the 
boundaries can also be detected by the disorder-averaged autocor-
relators defined as A σ t σ= ⟨Ψ | ( ) (0)|Ψ ⟩j j

z
j
z

0 0 . Our experimental measure-
ments of autocorrelators for up to 40 driving cycles are plotted in 
Fig. 2f, again showing the breaking of time-translational symmetry at 
the boundaries but not in the bulk. We mention that, in the FSPT phase, 
the local magnetizations for the edge spins exhibit a gradually decay-
ing envelope, which could be attributed to either external circuit errors 
(that is, experimental imperfections such as decoherence, pulse distor-
tions and cross-talk effects) or slow internal thermalization (namely, 
an intrinsic tendency towards thermalization in the model). To distin-
guish these two mechanisms, we carry out an additional experiment 
on the echo circuit U U U≡ ( )F

t
F
t

echo
† , the deviation of which from the 

identity operator measures the effect of circuit errors18. The square root 
of the output of Uecho (black solid lines shown in Fig. 2f) fits well with the 
decaying envelope of the results obtained by evolution under UF.  
This indicates that the decay of the envelope is due to circuit errors 
rather than thermalization, which corroborates that the system is 
indeed in the localized phase.

Localization-protected topological states
In the above discussion, the initial states are random product states.  
To establish the FSPT phase, additional experiments on other initial 
states and other local observables are necessary. In this section, we show 
that the stabilizers in the bulk do not break the discrete time-translational 
symmetry, but at the boundaries they do. To understand this, we consider 
the idealized cluster-state and spin-flip limit, that is, Vk = hk = 0 and δ = 0. 
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Fig. 2 | Observation of an FSPT phase with 26 programmable 
superconducting qubits. a, Time evolution of disorder-averaged local 
magnetizations deep in the FSPT phase (L = 26, J = ΔJ = 1, V = h = ΔV = Δh = 0 and 
δ = 0.01). The initial state is 0 L⊗ , and the data shown are averaged over  
20 random disorder instances. The error bars represent the standard error of the 
mean over disorder samples. Whereas the bulk magnetization decays quickly to 
zero, the edge spins oscillate with a stable subharmonic response for up to  
40 cycles. b, The evolution dynamics of local magnetizations for different 
random instances. Here each layer corresponds to a specific random instance.  
c, Magnetization dynamics deep in the thermal phase ( J = ΔJ = 1, V = h = ΔV = Δh = 0 

and δ = 0.8). d, Fourier transform of experimentally measured σ t⟨ ( )⟩j
z  in the FSPT 

phase. The edge spins lock to the subharmonic frequency, which is in sharp 
contrast to the bulk spins. e, Fourier spectra of σ t⟨ ( )⟩j

z  in the thermal phase.  
No robust subharmonic frequency peak appears for either edge spins or bulk spins 
in this case. f, Time dependence of the autocorrelator A σ t σ= ⟨Ψ | ( ) (0)|Ψ ⟩j 0 0j

z
j

z  for 
up to 40 cycles, obtained from averaging over 20 random instances deep in the 
FSPT phase, with the initial states prepared as random product states in the 
computational basis. The black solid lines show the results of ‘echo’ circuits for 
the two boundary qubits.
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In this limit, H2 reduces to a summation of stabilizers: H J S= −∑s k
L

k k=2
−1  with 

S σ σ σ≡ ˆ ˆ ˆk k
z

k
x

k
z

−1 +1. We choose the initial states to be random eigenstates  
of Hs and evolve the system with the time-periodic Hamiltonian H(t) to 
measure the time dependence of local stabilizers.

In Fig. 3a, we show a sketch of the quantum circuit used in our exper-
iment to prepare the desired random eigenstates of Hs. To manifest the 
topological nature of these eigenstates, we study their entanglement 
spectra51, which are widely used as a crucial diagnostic for universal 
topological properties of quantum phases51–54. To show that H(t)  
preserves the topological nature of the SPT states, we prepare random 
eigenstates of Hs with both open and periodic boundary conditions, 
evolve the system for one driving period with H(t) and then measure 
the reduced density matrix ρhalf of half of the system through 
quantum-state tomography. Figure 3b displays the entanglement spec-
tra (eigenvalues of ρ−ln( )half ) for open and periodic boundary condi-
tions, respectively. From this figure, a clear two-fold degeneracy for  
the low-lying Schmidt states is obtained for the open boundary condi-
tions. This degeneracy corresponds to an effectively decoupled 
spin-half degree of freedom at the boundary of the bipartition. For 
periodic boundary conditions, the spectrum is four-fold degenerate, 
corresponding to two effectively decoupled spins at the two bounda-
ries of the bipartition. The degeneracy of the entanglement spectrum 
and its dependence on boundary conditions marks a characteristic 

feature of the SPT state generated in our experiment. We note that the 
degeneracy disappears above the entanglement gap. This is due to 
finite-size effects and experimental imperfections.

In Fig. 3c, we plot the time dependence of local stabilizers in the 
FSPT phase. We observe that the stabilizers at the boundaries oscil-
late with a 2T periodicity, indicating again the breaking of discrete 
time-translational symmetry at the boundaries. In the bulk, the stabi-
lizers oscillate with a T periodicity and are synchronized with the driving 
frequency, showing that no symmetry breaking occurs. This is in sharp 
contrast to the dynamics of bulk magnetizations, which decay rapidly 
to zero and exhibit no oscillation, as shown in Fig. 2a. In fact, in the FSPT 
phase, the system is MBL and there exist a set of local integrals of motion, 
which are the ‘dressed’ versions of the stabilizers with exponentially 
small tails34. The persistent oscillations of the bulk stabilizers observed 
in our experiment originate from these local integrals of motion and 
are a reflection of the fact that the system is indeed in an MBL phase.

Phase transition
We now turn to the phase transition between the FSPT phase and the 
trivial thermal phase. For simplicity and concreteness, we fix other 
parameters and vary the drive perturbation δ and the interaction 
strength V. Theoretically, the system is expected to exhibit an FSPT 
phase for small δ and V. With increasing δ and V, the strong interaction 
diminishes localization and eventually thermalizes the system. At some 
critical values of δ and V, a transition between these two phases occurs. 
In Fig. 4a, we plot the δ − V phase diagram obtained from numerical 
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Fig. 3 | Dynamics of stabilizers with random initial SPT states. a, Schematic 
of the experimental circuit for preparing random SPT states. To prepare the 
system in the ground state of the stabilizer Hamiltonian Hs, we apply a 
Hadamard gate (H) on each qubit and then run CZ gates in parallel on all 
neighbouring qubit pairs in two steps. Then we apply Z operators on random 
sites to create excitations, thus transferring the ground state to a highly excited 
eigenstate of Hs. This procedure enables the preparation of random SPT states 
at high energy. We then evolve these states with the Hamiltonian H(t) to study 
the dynamics of stabilizers. b, Entanglement spectrum of a random SPT state 
evolved by one driving period, with open (left) and periodic (right) boundary 
conditions. The ‘Energy value index’ labels the eigenvalues of ρ−ln( )half . The red 
triangles with error bars are the experimental (Exp.) results and the grey dots 
show the numerical simulations (Sim.) that take into account experimental 
imperfections (Supplementary Information IV). The two- and four-fold 
degeneracy (in the case of open and periodic boundary conditions, respectively) 
of the low-lying entanglement levels is a characteristic feature of the 
topological nature of these states. c, The time dependence of stabilizers in the 
FSPT phase, averaged over 20 random circuit instances. The parameters in b 
and c are chosen as L = 10, δ = 0.1, J = Δj = 1, h = Δh = 0.01 and V = ΔV = 0.01.
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simulations, in which the phase boundary, although not very sharp 
because of finite-size effects (for a small system size L = 8, the coupling 
between the two edge modes is not negligible and thus will decrease 
the central subharmonic peak height and result in a blurred boundary), 
can be located and visualized approximately.

To experimentally examine this phase transition, we further fix the 
interaction strength V = 0. We probe the transition point by measuring 
the variance of the subharmonic spectral peak height, that is, the ampli-
tude of the Fourier spectrum of σ t⟨ ( )⟩z

1  at ω = ω0/2 for the boundary 
spin. Figure 4b shows the subharmonic peak height as a function of the 
drive perturbation δ. At small δ, the system is in the FSPT phase, and 
the peak height remains at a value around 0.5. As we increase δ to a large 
value, the system transitions out of the topological phase and the peak 
height vanishes. This is consistent with the theoretical analysis above. 
The largest variance of the peak height corresponds to the phase tran-
sition point. The inset of Fig. 4b shows the measured standard deviation 
as a function of δ, indicating a phase transition point around δ ≈ 0.30, 
which is consistent with the numerically predicted value of 0.34. The 
small deviation between the numerical prediction and experimental 
result is mainly attributed to finite-size effects, experimental noise and 
the limited number of disorder instances implemented in the experiment.

Other non-equilibrium SPT phases
The digital simulation approach used in our experiment is generally 
applicable for quantum simulations of various exotic phases of matter. 
The model Hamiltonian in equation (1) possesses a Z Z×2 2 symmetry, 
which can also support robust edge modes in the static equilibrium set-
ting. For driven non-equilibrium systems, however, the edge modes may 
be stabilized by emergent dynamical symmetries. To demonstrate this 
and illustrate the general applicability of our approach, we also digitally 
simulate two other models with our quantum device, namely a periodi-
cally driven Ising chain with Z2 symmetry and a quasiperiodically driven 
model without any microscopic symmetry (Methods and Supplementary 
Information  VI). Our results are summarized in Extended Data Figs. 1 
and 2, in which robust subharmonic edge oscillations are also observed.

Conclusions
In summary, we have experimentally observed signatures of non- 
equilibrium Floquet SPT phases with a programmable supercon-
ducting quantum processor. In contrast to previously reported con-
ventional time crystals, for our observed FSPT phases, the discrete 
time-translational symmetry only breaks at the boundaries and not in 
the bulk. We measured the persistent oscillations of edge spins with 
a subharmonic frequency and experimentally demonstrated that the 
FSPT phases are robust to symmetry-respecting perturbations in the 
drive and imperfections in the experiment. In addition, we also demon-
strated that the subharmonic response of boundary observables is inde-
pendent of the initial state. The digital quantum simulation approach 
explored in our experiment is generally applicable to the simulation 
of a wide range of non-equilibrium systems hosting unconventional 
topological phases, including those with multi-body interactions.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-022-04854-3.

1. Wilczek, F. Quantum time crystals. Phys. Rev. Lett. 109, 160401 (2012).
2. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).
3. Yao, N. Y., Potter, A. C., Potirniche, I.-D. & Vishwanath, A. Discrete time crystals: rigidity, 

criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017).

4. Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum 
systems. Phys. Rev. Lett. 116, 250401 (2016).

5. Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2017).
6. Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. 

Matter Phys. 11, 467–499 (2020).
7. Yao, N. Y. & Nayak, C. Time crystals in periodically driven systems. Phys. Today 71, 40 (2018).
8. Khemani, V., Moessner, R. & Sondhi, S. A brief history of time crystals. Preprint at https://

arxiv.org/abs/1910.10745 (2019).
9. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).
10. Kyprianidis, A. et al. Observation of a prethermal discrete time crystal. Science 372,  

1192–1196 (2021).
11. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar 

many-body system. Nature 543, 221–225 (2017).
12. O’Sullivan, J. et al. Signatures of discrete time crystalline order in dissipative spin 

ensembles. New J. Phys. 22, 085001 (2020).
13. Randall, J. et al. Many-body-localized discrete time crystal with a programmable 

spin-based quantum simulator. Science 374, 1474–1478 (2021).
14. Rovny, J., Blum, R. L. & Barrett, S. E. Observation of discrete-time-crystal signatures in an 

ordered dipolar many-body system. Phys. Rev. Lett. 120, 180603 (2018).
15. Pal, S., Nishad, N., Mahesh, T. S. & Sreejith, G. J. Temporal order in periodically driven 

spins in star-shaped clusters. Phys. Rev. Lett. 120, 180602 (2018).
16. Smits, J., Liao, L., Stoof, H. T. C. & van der Straten, P. Observation of a space-time crystal in 

a superfluid quantum gas. Phys. Rev. Lett. 121, 185301 (2018).
17. Autti, S., Eltsov, V. B. & Volovik, G. E. Observation of a time quasicrystal and its transition 

to a superfluid time crystal. Phys. Rev. Lett. 120, 215301 (2018).
18. Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601,  

531–536 (2022).
19. Ying, C. et al. Floquet prethermal phase protected by u(1) symmetry on a 

superconducting quantum processor. Phys. Rev. A 105, 012418 (2022).
20. Xu, H. et al. Realizing discrete time crystal in an one-dimensional superconducting qubit 

chain. Preprint at https://arxiv.org/abs/2108.00942 (2021).
21. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
22. Pollmann, F., Berg, E., Turner, A. M. & Oshikawa, M. Symmetry protection of topological 

phases in one-dimensional quantum spin systems. Phys. Rev. B 85, 075125 (2012).
23. Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological orders in 

interacting bosonic systems. Science 338, 1604–1606 (2012).
24. Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry protected topological orders and the 

group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013).
25. Senthil, T. Symmetry-protected topological phases of quantum matter. Annu. Rev. 

Condens. Matter Phys. 6, 299–324 (2015).
26. Chiu, C.-K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum 

matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).
27. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum 

statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).
28. Schreiber, M. et al. Observation of many-body localization of interacting fermions in a 

quasi-random optical lattice. Science 349, 842–845 (2015).
29. Smith, J. et al. Many-body localization in a quantum simulator with programmable 

random disorder. Nat. Physics 12, 907–911 (2016).
30. Xu, K. et al. Emulating many-body localization with a superconducting quantum 

processor. Phys. Rev. Lett. 120, 050507 (2018).
31. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, 

thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
32. Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected 

quantum order. Phys. Rev. B 88, 014206 (2013).
33. Chandran, A., Khemani, V., Laumann, C. R. & Sondhi, S. L. Many-body localization and 

symmetry-protected topological order. Phys. Rev. B 89, 144201 (2014).
34. Bahri, Y., Vosk, R., Altman, E. & Vishwanath, A. Localization and topology protected 

quantum coherence at the edge of hot matter. Nat. Commun. 6, 7341 (2015).
35. Parameswaran, S. A., Potter, A. C. & Vasseur, R. Eigenstate phase transitions and the 

emergence of universal dynamics in highly excited states. Ann. Phys. (Berl.) 529, 
1600302 (2017).

36. Parameswaran, S. A. & Vasseur, R. Many-body localization, symmetry and topology.  
Rep. Prog. Phys. 81, 082501 (2018).

37. Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically driven ergodic and 
many-body localized quantum systems. Ann. Phys. (N.Y.) 353, 196–204 (2015).

38. Harper, F., Roy, R., Rudner, M. S. & Sondhi, S. Topology and broken symmetry in floquet 
systems. Annu. Rev. Condens. Matter Phys. 11, 345–368 (2020).

39. von Keyserlingk, C. W. & Sondhi, S. L. Phase structure of one-dimensional interacting 
floquet systems. i. abelian symmetry-protected topological phases. Phys. Rev. B 93, 
245145 (2016).

40. Else, D. V. & Nayak, C. Classification of topological phases in periodically driven 
interacting systems. Phys. Rev. B 93, 201103 (2016).

41. Potter, A. C., Morimoto, T. & Vishwanath, A. Classification of interacting topological 
floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).

42. Potirniche, I.-D., Potter, A. C., Schleier-Smith, M., Vishwanath, A. & Yao, N. Y. Floquet 
Symmetry-Protected Topological Phases in Cold-Atom Systems. Phys. Rev. Lett. 119, 
123601 (2017).

43. Roy, R. & Harper, F. Periodic table for floquet topological insulators. Phys. Rev. B 96, 
155118 (2017).

44. Watanabe, H. & Oshikawa, M. Absence of quantum time crystals. Phys. Rev. Lett. 114, 
251603 (2015).

45. Dumitrescu, P. T. et al. Realizing a dynamical topological phase in a trapped-ion quantum 
simulator. Preprint at https://arxiv.org/abs/2107.09676 (2021).

46. Lu, Z., Shen, P.-X. & Deng, D.-L. Markovian quantum neuroevolution for machine learning. 
Phys. Rev. Appl. 16, 044039 (2021).

47. von Keyserlingk, C. W., Khemani, V. & Sondhi, S. L. Absolute stability and spatiotemporal 
long-range order in floquet systems. Phys. Rev. B 94, 085112 (2016).

https://doi.org/10.1038/s41586-022-04854-3
https://arxiv.org/abs/1910.10745
https://arxiv.org/abs/1910.10745
https://arxiv.org/abs/2108.00942
https://arxiv.org/abs/2107.09676


Nature | Vol 607 | 21 July 2022 | 473

48. Khemani, V., von Keyserlingk, C. W. & Sondhi, S. L. Defining time crystals via 
representation theory. Phys. Rev. B 96, 115127 (2017).

49. Kumar, A., Dumitrescu, P. T. & Potter, A. C. String order parameters for one-dimensional 
floquet symmetry protected topological phases. Phys. Rev. B 97, 224302 (2018).

50. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 
(2014).

51. Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement 
entropy: Identification of topological order in non-abelian fractional quantum hall effect 
states. Phys. Rev. Lett. 101, 010504 (2008).

52. Swingle, B. & Senthil, T. Geometric proof of the equality between entanglement and edge 
spectra. Phys. Rev. B 86, 045117 (2012).

53. Fidkowski, L. Entanglement spectrum of topological insulators and superconductors. 
Phys. Rev. Lett. 104, 130502 (2010).

54. Alba, V., Haque, M. & Läuchli, A. M. Boundary-locality and perturbative structure of 
entanglement spectra in gapped systems. Phys. Rev. Lett. 108, 227201 (2012).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons license and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/


Article
Methods

Characterization of the model Hamiltonian
To understand why time-translational symmetry breaks at the bound-
ary but not in the bulk, we consider the idealized ‘cluster-model’ limit 
(Vk = hk = 0) and set δ = 0. We suppose that the system is initially prepared 
in a random product state in the computational basis, and we use the 
dynamics of local magnetization as a diagnostic. In this simple scenario, 
the topologically non-trivial structure of the cluster states (eigenstates 
of U2) gives rise to edge modes that behave as free spins. At each driving 
period, the unitary operator U1 flips all spins. As a result, the edge spins 
are reversed after one period and return to their initial configuration 
after two, leading to the period-doubled dynamics of the local mag-
netization at the boundaries. For spins in the bulk, however, the unitary 
operator U2 plays a part and evolves the random product state to a state 
with vanishing magnetization, resulting in no period doubling. When 
Vk = 0, the Hamiltonian in equation (1) can be mapped to free Majorana 
fermions (Supplementary Information I.B and, for example, refs. 55,56). 
Further setting δ = hk = 0, we find that equation (1) maps onto two decou-
pled copies of the fixed-point model of a 2Z  FSPT phase considered in 
ref. 39. The robustness of the subharmonic responses of the topologically 
protected edge spins to perturbations respecting the Z Z×2 2 symmetry 
is discussed in depth in Supplementary Information I.B.

Logarithmic entanglement growth
For a MBL system, the entanglement entropy will feature a logarithmic 
growth57, which is in sharp contrast to the case of Anderson localiza-
tion without interactions. For the model Hamiltonian H(t) studied in 
this Article, we also expect a logarithmic growth of the entanglement 
entropy inside the FSPT phase with Vk ≠ 0. We numerically simulate 
the entanglement dynamics of the system deep in the FSPT phase 
with the time-evolving block decimation algorithm up to a system 
size L = 100 (Supplementary Information II). Our results clearly verify 
the logarithmic entanglement growth, which again implies that the 
FSPT phase is indeed MBL with non-vanishing Vk. In our experiment, 
we also study the entanglement dynamics for a small system size 
(L = 6) through quantum tomography (Supplementary Information V).  
We find that in the thermal phase the entanglement grows much faster 
than that in the FSPT phase. However, because of the small system size 
and experimental imperfections (such as decoherence, pulse distor-
tions and cross-talk effects), we are not able to observe the logarithmic 
entanglement growth (Supplementary Information  VI).

Quantum circuits for implementing H(t)
Direct implementation of the Floquet Hamiltonian H(t) with supercon-
ducting qubits faces a notable difficulty: the natural interactions hosted 
by the superconducting qubits are only two-body, so the three-body 
terms in H2 cannot emerge directly. Fortunately, programmable super-
conducting qubits are universal for quantum computation; thus we can 
explore the idea of digital quantum simulation to emulate the dynamics 
of H(t). However, because of inevitable experimental imperfections, 
the depth of the quantum circuits is limited. As a result, obtaining 
well-performing circuits with an optimal depth that can implement 
H(t) (or equivalently the Floquet unitary UF) is of crucial importance 
for the success of our experiment.

To find the desired quantum circuits, we use a neuroevolution method 
introduced in ref. 46, which outputs a near-optimal architecture for a 
family of variational quantum circuits that can implement H(t) with 
different random disorder instances. For a given instance of Jk, Vk and hk, 
we use the gradient decent method to tune the variational parameters 
of the ansatz circuits to minimize the distance between the unitary 
represented by the circuit and the unitary generated by H(t) within a 
small time interval. In the idealized ‘cluster-model’ limit (Vk = hk = 0), we 
can find a simple exact one-to-one correspondence between Jk and the 
variational parameters, independent of the system size and the values 

of Jk and δ. Thus, we are able to construct an analytical quantum circuit  
(see Supplementary Fig. 4c for an explicit illustration of the circuit for 
L = 6) that can implement H(t) precisely and, at the same time, in a way 
that is experimentally friendly and practical. The details of how to obtain 
the desired quantum circuits are given in  Supplementary Information III.

Experimental setup
Our experiment is performed on a flip-chip superconducting quantum 
processor designed to encapsulate a square array of 6 × 6 transmon 
qubits with adjustable nearest-neighbour couplings (Fig. 1e), on which 
a chain of up to L = 26 qubits, denoted as Q1 to QL, that alternate with L − 1 
couplers, denoted as C1 to CL − 1, are selected to observe the FSPT phase 
(Fig. 1a). All L qubits can be individually tuned in frequency with flux 
biases, excited by microwaves, and measured using on-chip readout 
resonators; all couplers are also of transmon type with characteristic 
transition frequencies higher than those of the qubits, which can be 
controlled with flux biases to tune the effective nearest-neighbour cou-
plings. During an experimental sequence (Fig. 1d), we first initialize each 
qubit, QJ, in 0⟩ at its idle frequency ωj, following which we alternate the 
single-qubit gates at ωj with the two-qubit controlled-π (CZ) gates real-
ized by biasing QJ and its neighbouring qubit to the pairwise frequencies 
of group A(B) listed in ω ω( , )j j

A(B)
+1

A(B)  for a fixed interaction time (Sup-
plementary Information III.C). Meanwhile, each coupler is dynamically 
switched between two frequencies58–63: one is to turn off the effective 
coupling where the neighbouring two qubits can be initialized and oper-
ated with single-qubit gates; the other one is to turn on the nearest- 
neighbour coupling to around 11 MHz for a CZ gate. After n layers of the 
alternating single- and two-qubit gates, we finally tune all qubits to their 
respective ω j

m (here, the superscript 'm' stands for 'measurement') for 
simultaneous quantum-state measurement. Qubit energy relaxation 
times measured around ωj are in the range of 7–41 μs, averaging above 
30 μs. More characteristic qubit parameters, including the above men-
tioned frequencies, anharmonicities and readout fidelities, can be found 
in Supplementary Table 1. The parameters for another processor with 
14 qubits used are displayed in the Supplementary Table 2.

We explore a quantum digital simulation scheme to implement the 
dynamics of the system under the driven Hamiltonian H(t). More spe-
cifically, we decompose the evolution operators into the experimentally 
feasible single-qubit gates (X(θ), Y(θ) and Z(θ)) and two-qubit gates 
(CRz(±π)), where X(θ), Y(θ) and Z(θ) are rotations around the x, y and  
z axes by the angle θ, respectively, and CRz(±π) are the z-axis rotations 
of the target qubit by ±π conditioned on the state of the control qubit 
(Fig. 1d and Supplementary Information III.A for the ansatz that gener-
ates the gate sequences). Here X(θ) and Y(θ) are realized by applying 
50-ns-long microwave pulses with a full-width half-maximum of 25 ns, 
for which the quadrature correction terms are optimized to minimize 
state leakages to higher levels64. Simultaneous randomized benchmark-
ings indicate that the single-qubit gates used in this experiment have 
reasonably high fidelities, averaging above 0.99 (Supplementary 
Table 1). Then Z(θ) is realized using the virtual-Z gate, which encodes 
the information θ in the rotation axes of all subsequent gates65, and is 
combined with CZ to assemble CRz(±π). Here we adopt the strategy 
reported elsewhere62,66 to realize the CZ gate, that is, we diabatically 
tune the coupler frequency while keeping 11⟩ and 02⟩ (or 20⟩) for the 
subspace of the two neighbouring qubits in near resonance. When 
simultaneously running the 40-ns-long CZ gates for multiple pairs of 
neighbouring qubits as required in the experimental sequence, the 
average CZ gate fidelities can be above 0.98, as obtained by simultane-
ous randomized benchmarking (Supplementary Table 1).

Further experiments on non-equilibrium SPT phases
The digital simulation strategies of our experiments are capable of sim-
ulating a wide range of models hosting unconventional non-equilibrium 
topological phases. To illustrate this, we also implement two other 
dynamical SPT phases with our superconducting quantum processor: 



an FSPT phase in a periodically driven random Ising chain4 and an emer-
gent dynamical SPT (EDSPT) phase in a quasiperiodically driven chain67.

The first model has a 2Z  (Ising) symmetry. For the FSPT phase (ref. 4 
and Supplementary Information VI.A), the evolution is realized by 
applying two unitaries in an alternating fashion (Extended Data Fig. 1a) 
to random initial states. For the parameters chosen in our experi-
ments, the corresponding Floquet unitary U = e eH H

F
−i −iIsing single, where 

H g σ= ∑ ˆk k k
x

single  and H J σ σ= ∑ ˆ ˆk k k
z

k
z

Ising +1  with gk and Jk being coupling 
parameters respectively, maintains a Z Z×2  symmetry (where Z 
describes discrete time-translation symmetry), despite the fact that 
the original static Hamiltonian only possesses a Z2 symmetry. This 
enlarged dynamical symmetry protects the edge modes of this phase, 
one at quasi-energy 0 and the other at quasi-energy π. This leads to 
unusual dynamics of the edge spins. If one applies this evolution to a 
product state in the x basis, the edge spins will return to their initial 
states only at even periods. In our experiments, we measure the random 
disorder-averaged local magnetization σ k

x  during the evolution 
(Extended Data Fig. 1b). Persistent subharmonic oscillations are 
observed for the edge spins, whereas the averaged magnetizaiton in 
the bulk is synchronized with the driving frequency and shows no break-
ing of the discrete time-translational symmetry.

The EDSPT model has no microscopic symmetry (see refs. 45,67 and 
Supplementary Information VI.B). The evolution of an initial state is 
realized by applying on it a sequence of evolution unitaries at Fibonacci 
times, U U t F= ( = )ν

ν ν
( ) , with Fv being the vth element of the Fibonacci 

sequence. Although the underlying Hamiltonian of this model includes 
random fields breaking all microscopic symmetries, the evolution unitary 
possesses a locally dressed Z Z×2 2 symmetry emergent from the quasi-
periodic drive45,67. The emergent symmetry hosts two non-trivial edge 
modes, which can be manifested by the distinct dynamics of the edge 
spins. In particular, the edge spins would exhibit 3v-periodic oscillations 
when measured at Fibonacci times tv = Fv, whereas the magnetization of 
the bulk spins will decay to zero rapidly. In our experiment, we prepare 
random initial states and use the circuits shown in Extended Data Fig. 1a,b 
to implement the quasiperiodic driving of the system. We measure the 
random disorder-averaged magnetizations σ⟨ ⟩j

z  and σ⟨ ⟩j
x  at Fibonacci 

times. Our experimental results are summarized in Extended Data Fig. 2c, 
in which persistent quasiperiodic oscillations for edge spins are indeed 
observed. The results shown in Extended Data Figs. 1 and  2 were obtained 
using 12 qubits on a third device with slightly improved performance. 
We note that an experimental implementation of the EDSPT model with 
ten trapped-ion qubits has recently also been reported45.

Data availability
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Extended Data Fig. 1 | FSPT phase protected by a 2Z  symmetry. a Schematic 
of the experimental circuits for the Floquet unitary, where the first layer 
represents the evolution under the one-body Hamiltonian Hsingle, and the 
following layers represents the evolution under the Ising Hamiltonian HIsing.  
b The dynamics of the edge and bulk magnetizations. Here, the expectation 
values of σ̂ j

x are multiplied by the signs of those of the random initial product 
states prepared in the σ̂ x basis. The edge magnetizations are averaged over  
12 random disorder realizations, and the bulk magnetizations are averaged 
over 12 random realizations and all bulk sites. The dashed lines show numerical 
simulations with experimental noises. Here, we set J = − 0.1k

π
2

, and choose gk 
uniformly from 


− , +π π π π

4 3 4 3
 (Supplementary Information VI.A).
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Extended Data Fig. 2 | EDSPT phase protected by emergent dynamical 
symmetry. a Schematic of the experimental circuits for implementing Ux and 
Uz respectively, which are the building blocks of the quasiperiodically-driven 
EDSPT model. b The circuit implementations of the evolution unitary 
U U U=ν ν ν( +1) ( −1) ( ) that defines the EDSPT model. c, d The dynamics of the edge 
and bulk magnetizations. Here, the expectation values of σ̂ j

z, σ̂ j
x are multiplied 

by the signs of those of the random initial states respectively. The edge 
magnetizations are averaged over 12 random disorder realizations and  

10 random initial states, and the bulk magnetizations are averaged over  
12 random disorder realizations, 10 random initial states, and all bulk sites.  
The dashed lines show numerical simulations taking into account experimental 
noise. The imperfect pulse is set as J = 0.99π. The coupling parameters K K,k

x
k
z  

are uniformly chosen from [0, 4π]. The norms of the fields BB BB,k
x

k
z  are uniformly 

chosen from [0, 0.3], and their random directions are also chosen uniformly 
(Supplementary Information VI.B).
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