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Here we provide more details on the theory of the Floquet symmetry-protected topological phase (Sec. I),
on our numerical simulations (Sec. II), and on our experimental setup (Sec. III). We also provide additional
experimental data (Sec. VI).

I. THEORETICAL UNDERSTANDING

A. Introduction to Floquet time crystals

In order to obtain a better intuitive understanding of the Flo-
quet symmetry-protected topological (FSPT) phase, we first
introduce the basic concepts behind Floquet time crystals and
present a prototypical model as a concrete example.

Spontaneous symmetry breaking is an important concept in
modern physics. It occurs when the steady state of a physical
system does not respect the symmetries of the Hamiltonian
governing this system. An important example that manifests
spontaneous symmetry breaking is an ordinary crystal, which
breaks the continuous spatial translation symmetry. More pre-
cisely, in a crystal, the state of the system, unlike its Hamil-
tonian, is not invariant under continuous translation opera-
tors. Analogously, systems that spontaneously break time-
translation symmetry are named time crystals [S1, S2]. Al-
though there is a no-go theorem for continuous time crys-
tals at equilibrium [S3, S4], Floquet time crystals mani-
fest themselves in many physical systems. There are two
equivalent definitions of Floquet time crystals in Ref. [S5],
which characterize this concept from the perspective of the
expectation value of an operator and from the perspective
of the eigenstates of the Floquet evolution unitary, respec-
tively. The first definition states that time-translation symme-
try breaking occurs if, for every short-range correlated state
|ψ(t)〉 at arbitrary time t, there exists an operator O sat-
isfying 〈ψ(t+ T )|O |ψ(t+ T )〉 6= 〈ψ(t)|O |ψ(t)〉, where
|ψ(t+ T )〉 = UF (T ) |ψ(t)〉, with UF (T ) the Floquet evo-
lution unitary corresponding to one period T . This defini-
tion implies how to observe time crystals experimentally and
is used in our paper. The second definition states that time-

translation symmetry breaking occurs if all eigenstates of the
Floquet evolution unitary are long-range correlated. This con-
cept is used in our theoretical analysis.

To be more concrete, we introduce the following pro-
totypical time-dependent Hamiltonian previously studied in
Refs. [S5, S6] as an example of a Floquet time crystal:

HF (t) =

 H1 = π/2
∑
k σ̂

x
k , 0 ≤ t < T ′,

H2 =
∑
k Jkσ̂

z
kσ̂

z
k+1 + hzkσ̂

z
k, T ′ ≤ t < T,

(S1)
where Jk and hzk are uniformly chosen from the following
intervals: Jk ∈ [J/2, 3J/2] and hzk ∈ [0, hz]. We set T =
2T ′ = 2. The Floquet evolution operator for one period can
then be written as UF = exp(−iH2) exp(−iπ/2

∑
k σ̂

x
k).

We consider eigenstates of H2, which are product states
in the computational z basis: |Θ〉 = |{sk}〉 with sk = ±1.
Such states are easy to prepare experimentally. Since UF
has the effect, up to a global phase, of flipping all spins, the
state |Θ〉 is related to another state |−Θ〉 = |{−sk}〉, which
is also an eigenstate of H2. Defining E+(Θ) and E−(Θ)
via

∑
k Jkσ̂

z
kσ̂

z
k+1 |Θ〉 = E+(Θ) |Θ〉 and

∑
k h

z
kσ̂

z
k |Θ〉 =

E−(Θ) |Θ〉, we have

UF |Θ〉 = exp[−i(E+(Θ)− E−(Θ))] |−Θ〉 , (S2)

UF |−Θ〉 = exp[−i(E+(Θ) + E−(Θ))] |Θ〉 . (S3)

Therefore, in the subspace formed by |±Θ〉,UF has the matrix
form

UF =

 0 e−i(E
+(Θ)−E−(Θ))

e−i(E
+(Θ)+E−(Θ)) 0

 . (S4)
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Diagonalizing this matrix gives eigenvalues
± exp(−iE+(Θ)) and eigenstates |Θ〉±exp [iE−(Θ)] |−Θ〉.
The eigenstates of UF are thus paired cat states with long-
range correlations. Thus, this model satisfies the second
definition of a Floquet time crystal in Ref. [S5], so discrete
time-translation symmetry breaking occurs in this system.
(Note that, in order for these correlations to be stable to
perturbations, disorder in the couplings Jk and hzk that is
sufficiently strong to render UF many-body localized is re-
quired.) Futhermore, as the Floquet operator has eigenvalues
± exp(−iE+(Θ)), if we diagonalize the effective Hamilto-
nian of the Floquet operator, we will get two eigenvalues with
quasi-energy difference π. This model therefore corresponds
to the π-spin-glass phase introduced in Ref. [S7].

B. Our model: the FSPT phase

Unlike Floquet time crystals introduced above, the Floquet
SPT phase breaks discrete time-translation symmetry only
at the boundaries. To be specific, our model of the Flo-
quet SPT phase exhibits subharmonic response at frequency
2π/2T only at the edges but not in the bulk of the system.
Here T is the period of the Floquet driving. We will now
present additional theoretical analysis of our model.

1. Localized and SPT quantum states

Our FSPT phase has two distinct governing Hamiltonians
during different time intervals as shown in the main text. In
the first time interval, this governing Hamiltonian H1 is the
sum of one-body Pauli operators on different sites. In the sec-
ond time interval, the governing Hamiltonian H2 includes in-
teraction among neighboring sites, which introduces the sub-
tle many-body properties in this system.

Let us begin by studying the static Hamiltonian H2 [S8],

H2 = −
∑
k

[
Jkσ̂

z
k−1σ̂

x
k σ̂

z
k+1 + Vkσ̂

x
k σ̂

x
k+1 + hkσ̂

x
k

]
, (S5)

where the parameters are chosen as in the main text. This
Hamiltonian has a Z2 × Z2 symmetry, corresponding to
σ̂z,yk −→ −σ̂z,yk independently on even- or odd-numbered
sites, i.e. [H2,

∏
k σ̂

x
2k] = 0 and [H2,

∏
k σ̂

x
2k+1] = 0. All

three-body terms Sk = σ̂zk−1σ̂
x
k σ̂

z
k+1 in H2 commute with

each other, i.e. [Sk, Sl] = 0, and are called stabilizers.
In the extreme case Vk = hk = 0, the eigenstates of

this Hamiltonian are the mutual eigenstates of all stabiliz-
ers and are called cluster states. They are SPT states with
Z2 × Z2 symmetry. The SPT phase manifests itself in the
open-boundary case: there is one effective free spin at each
end of the chain. The topological nature of the eigenstates is
encapsulated by the string-order parameter:

Ost(l, j) = 〈σ̂zl σ̂
y
l+1(

j−2∏
k=l+2

σ̂xk)σ̂yj−1σ̂
z
j 〉, (S6)

which takes random valuesOst(l, j) = ±1 for different eigen-
states and different disorder realizations. Thus, we can define
a non-local analogue of the Edwards-Anderson glass-order
parameter to characterize the FSPT phase: Osg = [[O2(l, j)]],
where [[]] denotes an average over sites, states, and random
realizations. The entanglement spectra of the eigenstates are
degenerate. This degeneracy can serve as another manifes-
tation of the topological nature of the phase. Furthermore,
in this limit, all energy levels are exactly four-fold degener-
ate. The corresponding degenerate eigenstates can be divided
into four groups: {|Ak〉 = |↑ ... ↑〉}, {|Bk〉 = |↓ ... ↑〉},
{|Ck〉 = |↑ ... ↓〉}, {|Dk〉 = |↓ ... ↓〉}. Here we are work-
ing in the σ̂z basis, and the two arrows represent the effective
boundary spins and the ... denotes the bulk spins. These states
are related by

∏
σ̂xodd |Ak〉 = |Bk〉,

∏
σ̂xeven |Ak〉 = |Ck〉,∏

σ̂xall |Ak〉 = |Dk〉, where
∏
σ̂xeven ≡

∏
k σ̂

x
2k,
∏
σ̂xodd ≡∏

k σ̂
x
2k+1, and

∏
σ̂xall ≡

∏
k σ̂

x
k .

When Vk, hk 6= 0, the one- and two-body terms make
the eigenstates of this Hamiltonian depart from cluster states.
However, if we keep the Hamiltonian deep in the topologi-
cal phase (the phase we are interested in), i.e. Jk � Vk, hk,
we can also interpret this model from a many-body localized
(MBL) perspective. Unlike the Vk = hk = 0 Hamiltonian
with strictly localized stabilizers as the integrals of motion,
in the MBL phase, the system posses a set of mutually com-
muting quasi-local integrals of motion. Similarly, for open
boundary conditions, there exists a quasi-local effective free
spin at each edge, which contains bulk components decaying
exponentially with the distance from the edge. In this case,
the string-order parameter and the degeneracy of the entan-
glement spectra can still manifest the topological nature of the
eigenstates. Moreover, while the energy spectrum is no longer
exactly four-fold degenerate in a finite system, it is still nearly
four-fold degenerate, and the corresponding eigenstates can
still be divided into the four groups introduced above.

2. The emergence of the FSPT phase

Having reviewed the properties of the static Hamiltonian
H2, let us now consider the Floquet case, wherein we peri-
odically drive the above SPT Hamiltonian as discussed in the
main text:

H(t) =

{
H1, 0 ≤ t < T ′

H2, T ′ ≤ t < T
, (S7)

H1 ≡ (
π

2
− δ)

∑
k

σ̂xk , (S8)

H2 ≡ −
∑
k

[Jkσ̂
z
k−1σ̂

x
k σ̂

z
k+1 + Vkσ̂

x
k σ̂

x
k+1 + hkσ̂

x
k ],(S9)

where T = 2T ′ = 2.
Let us begin with the perfect case, where δ = 0 and Vk =

hk = 0. The energy spectrum ofH2 is then perfectly four-fold
degenerate. The eigenstates can be divided into four groups,
i.e. {|Ak〉 = |↑ ... ↑〉}, {|Bk〉 = |↓ ... ↑〉}, {|Ck〉 = |↑ ... ↓〉},
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FIG. S1. The evolution of the FSPT phase for system size L = 100,
computed using the time-evolving block decimation methods. Re-
sults shown here are averaged over 1000 random realizations, with
parameters J = 1, ∆J = 4, h = ∆h = V = ∆V = δ = 0.05. a.
Time evolution of disorder-averaged local observables. Here, the ex-
pectation values of σ̂z

k are multiplied by the signs of those of the ini-
tial states. For the edge spins, it is clear that 〈σz

1〉 and 〈σz
100〉 (which

are right on top of each other, so that k = 1 is not visible) display
persistent oscillations with 2T periodicity, manifesting the breaking
of discrete time-translation symmetry. In stark contrast, bulk spin
(averaged over all bulk sites) decays rapidly to zero and no symme-
try breaking is observed. This is the defining feature of the FSPT
phase: time-translation symmetry only breaks at the boundary, not in
the bulk. b. Fourier spectra of 〈σk〉. We find that σ1(ω) and σ100(ω)
(which are on top of each other, so that k = 1 is not visible) have a
peak at ω/ω0 = 1/2, where ω0 = 2π/T is the driving frequency.
This peak is robust and rigidly locked to ω0/2, a manifestation of the
robustness of the FSPT phase. For bulk spins, there is no such peak,
consistent with no symmetry breaking in the bulk. c. Logarithmic
entanglement entropy (abbreviated as “Ent. entropy”) growth. In the
FSPT phase, the system is many-body localized. We thus expect log-
arithmic entanglement growth, which is shown in this figure. A linear
fit of the entanglement entropy after t/T = 10 as a function of log t
is plotted as a dashed line: Ent. entropy = 0.0824 log t + 0.1104,
with the residual sum of squares equal to 0.0215 (accurate to 4 dec-
imal places). The entanglement has an initial quick rise until time
t ∼ 1/J . This initial rise corresponds to the expansion of wave
packets to a size on the order of the localization length.

{|Dk〉 = |↓ ... ↓〉} with EAk
= EBk

= ECk
= EDk

. There
exists a local effective free spin at each boundary. Since the
effect of U1 = e−iπ/2

∑
k σ̂

x
k is to perfectly flip the spins at all

sites, we obtain the following properties of the Floquet opera-
tor UF = exp (−iH2) exp (−iπ/2

∑
k σ̂

x
k):

UF |Ak〉 = exp(−iH2) |Dk〉 = exp(−iEDk
) |Dk〉 , (S10)

UF |Bk〉 = exp(−iH2) |Ck〉 = exp(−iECk
) |Ck〉 , (S11)

UF |Ck〉 = exp(−iH2) |Bk〉 = exp(−iEBk
) |Bk〉 , (S12)

UF |Dk〉 = exp(−iH2) |Ak〉 = exp(−iEAk
) |Ak〉 . (S13)

From this, we see that UF mixes the states |Ak〉 and |Dk〉 and
mixes the states |Bk〉 and |Ck〉. Within the subspace of |Ak〉
and |Dk〉, UF has matrix form 0 exp(−iEDk

)

exp(−iEAk
) 0

 . (S14)

Within the subspace of |Bk〉 and |Ck〉, UF has matrix form 0 exp(−iECk
)

exp(−iEBk
) 0

 . (S15)

Therefore, in the subspace formed by |Ak〉, |Bk〉, |Ck〉, and
|Dk〉, UF has eigenvalues ± exp[−i(EAk

+ EDk
)/2] and

± exp[−i(EBk
+ECk

)/2]. Thus, the Floquet effective Hamil-
tonian has eigen-energies (EAk

+ EDk
)/2, (EBk

+ ECk
)/2,

(EAk
+ EDk

)/2 + π, (EBk
+ ECk

)/2 + π mod 2π. As
the energy spectrum of H2 is four-fold degenerate (EAk

=
EBk

= ECk
= EDk

), the Floquet eigen-energies satisfy
(EAk

+ EDk
)/2 = (EBk

+ ECk
)/2, (EAk

+ EDk
)/2 +π =

(EBk
+ ECk

)/2 + π. Therefore, the original four-fold de-
generacy breaks into two-fold degeneracy in the presence of
the drive. This two-fold degeneracy is a remnant of the orig-
inal topological order. As for the Floquet eigenstates, they
are cat-like linear combinations of topological eigenstates:
|Ak〉 ± |Dk〉 and |Bk〉 ± |Ck〉. The mutual information be-
tween the two boundary spins is 2 log 2, indicating that there
are long-range correlations between the boundaries.

When we turn on the two-body terms and the one-body
terms in H2, but still keep the system deep in the topo-
logical phase (Jk � hk, Vk), H2 has four nearly de-
generate eigenstates related by the symmetry operations.
The effective free spin at each boundary becomes quasi-
local. Under Floquet driving, the near-four-fold degeneracy
breaks into near-two-fold degeneracy: (EAk

+ EDk
) /2 ≈

(EBk
+ ECk

) /2, (EAk
+ EDk

) /2+π ≈ (EBk
+ ECk

) /2+
π. Similarly, the eigenstates of the Floquet unitary are still
cat-like states, and thus time-translation symmetry breaking
can occur in this case. The stability of the FSPT phase will be
discussed in more detail in Sec. I B 4.

3. Dynamical properties of the FSPT phase

Next, we will consider the evolution of this system and ex-
plicitly demonstrate the behavior of the FSPT phase.

Let us start from a product state |ψ0〉 = |↓ ... ↑〉. Here
... denotes a product state of bulk spins. Because the sate of
the boundary spins corresponds to the group {|Bk〉}, we can
expand the initial state as |ψ0〉 =

∑
k bk |Bk〉. Under the time
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evolution UF for one driving period, we have

UF |ψ0〉 = exp(−iH2) exp(−iπ/2
∑
j

σ̂xj )
∑
k

bk |Bk〉

= exp(−iH2)
∑
k

bk |Ck〉

=
∑
k

bk exp(−iECk
) |Ck〉 , (S16)

where |Bk〉 = |↓ ... ↑〉, |Ck〉 = |↑ ... ↓〉. So, if we measure
the edge spins in the initial state, we have 〈ψ0| σ̂z1 |ψ0〉 =
−1, 〈ψ0| σ̂zN |ψ0〉 = 1. After one Floquet period, the
state becomes |ψ1〉 =

∑
k bk exp(−iECk

) |Ck〉. Because
|Ck〉 has definite boundary spin expectation values, we
will get 〈ψ1| σ̂z1 |ψ1〉 = 1, 〈ψ1| σ̂zN |ψ1〉 = −1. Simi-
larly, after two Floquet periods, the state becomes |ψ2〉 =∑
k bk exp(−iECk

− iEBk
) |Bk〉, and 〈ψ2| σ̂z1 |ψ2〉 = −1,

〈ψ2| σ̂zN |ψ2〉 = 1. Thus, we see the the edge spins exhibit
breaking of the time-translation symmetry.

As for bulk spins, assume that one bulk spin σ̂zj has
the following expectation value in the initial product state:
〈ψ0| σ̂zj |ψ0〉 = 1. Writing |ψ0〉 in the |Bk〉 basis, we have

〈ψ0| σ̂zj |ψ0〉 =
∑
k,k′

bkb
∗
k′
〈Bk′ | σ̂

z
j |Bk〉 = 1. (S17)

Since the spins of |Ck〉 are opposite to the spins of |Bk〉 at all
sites, we immediately have that∑

k,k′

bkb
∗
k′
〈Ck′ | σ̂

z
j |Ck〉 = −1. (S18)

However, the expectation value of σ̂zj in state |ψ1〉 can be ex-
pressed as

〈ψ1| σ̂zj |ψ1〉 =
∑
k,k′

bkb
∗
k′

exp(−iECk
+iEC

k
′ ) 〈Ck′ | σ̂

z
j |Ck〉 .

(S19)
Comparing the last two equations, we see that, because of the
extra phase factor exp

(
−iECk

+ iECk′

)
before each compo-

nent, the σ̂zj will not have definite value after the Floquet time
evolution and will decay to zero quickly after random aver-
aging. Thus, bulk spins do not exhibit breaking of the time-
translation symmetry.

The above derivations tell that, for our model, the edge
spins exhibit discrete time-translation symmetry breaking,
while bulk spins relax very fast. Thus, the time-translation
symmetry breaking only occurs at the boundaries as showing
in Fig. S1a. We stress the importance of topology here. It
protects the edge spins, ensuring the robustness of the edge
spins against local perturbations that respect the underlying
symmetry.

Deep in the FSPT phase, the system represented by the
static many-body-localized Hamiltonian H2 has a complete
set of quasi-local integrals of motion [S9]. Therefore, spins
far away from each other can build significant entanglement

a b

t / T δ

VL

FIG. S2. The decay of boundary-spin magnetization and the phase
diagram of the system. a. The decay of the first-spin magnetization,
averaged over random disorder realizations. Here, the number of dis-
order realizations ranges from 3 × 104 (L = 6) to 103 (L = 14).
The omitted parameters are chosen as in Fig. S1. We see an initial
quick decay of 〈σz

1〉, followed by a plateau that extends up to a time
diverging exponentially with system size. The inset shows the expo-
nential scaling of τ∗ with system size, where τ∗ is the time when the
edge spin decays to 1/2. b. The phase diagram of the system as a
function of the parameter δ in the definition of H1 and the average
strength V of the two-body interactions. Here, we adapt the string
order parameter Osg (averaged over 100 random realizations) as the
indicator. It shows that when the imperfections are not very large, the
string order parameter is approximately equal to one, indicating the
topological phase. The other parameters are chosen as J = ∆J = 1,
h = ∆h = 0.01.

only after exponentially long evolution time [S10]. Thus, un-
der the Floquet time evolution, the entanglement entropy of
our system exhibits logarithmic growth, as shown in Fig. S1c,
and will eventually saturate to a value proportional to the sys-
tem size.

Furthermore, when system size is finite, even deep in the
topological phase, the Floquet time evolution will eventually
lead to the decay of the spin signal at the boundaries. Indeed,
the quasi-local effective free spins at the boundaries have tails
that decay exponentially into the bulk. When system size is
finite, these tails have an exponentially small overlap, which
leads to the relaxation of the two effective free spins, with the
lifetime diverging exponentially with system size. We demon-
strate this phenomenon numerically in Fig. S2a.

We note that the subharmonic response of the edge spins
cannot be observed by examining 〈σx1 (t)〉 or 〈σxL(t)〉 with ini-
tial states prepared as product states along the x direction. In
this case, 〈σx1 (t)〉 and 〈σxL(t)〉 will decay to zero quickly and
show no persistent oscillation. This can be understood by con-
sideringH2 in the idealized cluster-state limit (Vk = hk = 0).
Taking 〈σx1 (t)〉 as an example, the edge operators for the de-
coupled left edge mode (which behaves as a spin-1/2) read:
Σx1 = σx1σ

z
2 , Σy1 = σy1σ

z
2 , and Σz1 = σz1 . The x component

of the left edge mode in fact involves σz2 , which will result in
the decay of 〈σx1 〉. An alternative way to understand this is by
noting the fact that σx1 does not commute with H2, which is
different from the case of 〈σz1〉, where σz1 indeed commutes
with H2 in the cluster-state limit.
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4. The stability of the FSPT phase

The above considerations rely on the fact that, during each
period, we perfectly flip spins at all sites. To show that the
FSPT phase is indeed stable, we should make sure its defin-
ing properties hold even for an imperfect drive. We follow
arguments similar to those introduced in Ref. [S5].

We showed above that, in the perfect-drive case (δ = 0), the
eigenstates of the Floquet evolution operator are cat-like states∣∣ψAD± 〉

= |Ak〉 ± |Dk〉 and
∣∣ψBC± 〉

= |Bk〉 ± |Ck〉. We say
that an effective short-range correlated topological state sat-
isfies 〈ψ| σ̂1σ̂N |ψ〉 − 〈ψ| σ̂1 |ψ〉 〈ψ| σ̂N |ψ〉 → 0. Obviously,
|Ak〉 , |Bk〉 , |Ck〉 , |Dk〉 are short-range correlated topological
states, but the Floquet eigenstates

∣∣ψAD± 〉
and

∣∣ψBC± 〉
are all

long-range correlated, with different quasienergies. Then, any
experimentally prepared short-range correlated state (such as
a product state) can only be formed by taking a superposition
of those long-range-correlated Floquet eigenstates with differ-
ent quasienergies. Thus, after one period of Floquet evolution,
local observables at the edge will not be invariant, signaling a
breaking of discrete time-translation symmetry.

Now we add local Z2 × Z2-symmetric perturbations into
the system, such as an imperfect drive (δ 6= 0), two-body in-
teractions (Vk 6= 0), and single-body terms (hk 6= 0). As long
as the system is in an MBL phase, a local perturbation will
significantly affect only nearby sites. Thus, we expect that
the long-range correlations in the eigenstates of the Floquet
unitary will not disappear. In fact, there exists a quasi-local
Z2 × Z2-symmetric unitary operator U , which constructs the
perturbed Floquet eigenstates from the unperturbed Floquet
eigenstates. Since U is quasi-local and symmetric, it can-
not destroy the long-range boundary correlations of the unper-
turbed Floquet eigenstates. (Note, however, that perturbations
that break the protecting symmetry but maintain MBL can de-
stroy the FSPT phase, as discussed in Ref. [S11].) There-
fore, time-translation-symmetry breaking can also occur in the
locally perturbed system. To explicitly show that the FSPT
phase is indeed a phase, we use the string order parameterOsg
as the indicator to plot in Fig. S2b the phase diagram with re-
spect to the drive imperfection δ and the average strength V
of two-body interactions.

We mention that with large V and ∆V , there will be a triv-
ial MBL phase. It is also worthwhile to study the transition
between the trivial MBL phase and the thermal phase, and
the transition between the FSPT phase and the trivial MBL
phase. In the main text, we use the variance of the subhar-
monic spectral peak height to locate the transition point be-
tween the FSPT phase and the thermal phase. This method
cannot be used to distinguish the trivial MBL phase and the
thermal phase, since for both phases there is no breaking of
discrete time translational symmetry and hence no subhar-
monic spectral peak. One may use other quantities, such as
level statistics and entanglement entropy, to probe the tran-
sition between the trivial MBL phase and the thermal phase,
similar to the static scenarios without periodic driving [S12].

To distinguish the FSPT phase and the trivial MBL phase, one
can also exploit the above mentioned Edwards-Anderson-like
string order parameter [S13]. In this paper, we focus on distin-
guishing the FSPT phase and the thermal phase, while leaving
the study of other possible transitions for future investigation.

5. Mapping to free fermions when Vk = 0

In this section, we review the mapping of the time-periodic
Hamiltonian H(t) defined in Eq. (1) in the main text [equiv-
alently Eq. (S7)] to free fermions when the two-body interac-
tions Vk are set to zero. This is achieved by a Jordan-Wigner
transformation whereby a spin operator on site k is repre-
sented in terms of two Majorana operators, α̂k and β̂k. The
Majorana operators are defined via the nonlocal mapping

α̂k =

∏
j<k

σ̂xj

 σ̂zk, β̂k = i α̂kσ̂
x
k . (S20)

Under this transformation, we have

σ̂xk = −iα̂kβ̂k (S21a)

and

σ̂zk−1σ̂
x
k σ̂

z
k+1 = −iβ̂k−1α̂k+1. (S21b)

The mapping thus results in redefined Hamiltonians

H1 = −i(π
2
− δ)

∑
k

α̂kβ̂k (S22a)

and

H2 = i
∑
k

(
Jk β̂k−1α̂k+1 + hk α̂kβ̂k

)
. (S22b)

Note that H2 can be rewritten as

H2 = Hodd
2 +Heven

2

= i
∑
k odd

(
Jk+1 β̂kα̂k+2 + hk α̂kβ̂k

)
+ i

∑
k even

(
Jk+1 β̂kα̂k+2 + hk α̂kβ̂k

)
,

(S23)

which corresponds to two decoupled Kitaev chains [S14], one
on the odd and one on the even sublattice. The Z2 × Z2 sym-
metry of H(t) then manifests itself as the separate conserva-
tion of the two fermion parity operators

Podd (even) =
∏

k odd (even)

(iα̂kβ̂k), (S24)

with eigenvalues ±1.
When T ′ = 1 and δ = hk = 0, the time-dependent Hamil-

tonian H(t) maps onto two copies of the fixed-point model
for the nontrivial class D FSPT phase studied in Ref. [S15].
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To see this, note that, when δ = 0 and T ′ = 1, we have (up to
an unimportant overall phase factor)

exp (−iT ′H1) = PevenPodd. (S25)

Thus, we obtain the Floquet operator (setting T = 2T ′ = 2)

UF = Peven e
−iHeven

2 Podd e
−iHodd

2 . (S26)

If we additionally set hk = 0, this Floquet operator is just a
product of two decoupled copies of the class D model con-
sidered in Ref. [S15]. The model studied in this work is thus
expected to remain in this universality class for any small per-
turbations that respect the Z2 × Z2 symmetry of Eq. (S26),
including finite δ, hk, and Vk.

II. DETAILS OF THE TEBD METHOD

We numerically simulate the time evolution process of
the FSPT phase using the time-evolving block decimation
(TEBD) method. This method was proposed for the time evo-
lution of matrix product states (MPS) [S16, S17] and is a vari-
ant of the density matrix renormalization group (DMRG) al-
gorithm [S18, S19]. At the heart of the TEBD method lies the
Trotter-Suzuki decomposition of the time-evolution operator
U(∆t) of a short-range interacting system over a small time
interval ∆t. Usually, we can represent the operator U(∆t) in
the matrix-product-operator (MPO) form with small Trotter
error, and then repeatedly apply it on the MPS representing
the current state |ψ(t)〉 of the system to implement the time
evolution.

Our FSPT phase has two distinct Hamiltonian operators in
different time intervals as shown above. For the first time in-
terval, the corresponding Hamiltonian is the sum of one-body
operators on different sites. So the evolution operator is a di-
rect product of one-body evolution operators

U1(t) = e−itH1 = e−it(π/2−δ)σ̂
x
1 ⊗ ...⊗ e−it(π/2−δ)σ̂

x
k ⊗ ...,

(S27)
which can be represented as an MPO directly. To obtain the
corresponding expectation values of local observables at dif-
ferent times, we also decompose the time evolution operator
of an entire time interval T ′ into several small time intervals
∆t. We show the implementation of U1(∆t) in Fig. S3a.

For the second time interval, the Hamiltonian H2 con-
sists of multiple short-range interaction terms: H2 =
−
∑
k[Jkσ̂

z
k−1σ̂

x
k σ̂

z
k+1 + Vkσ̂

x
k σ̂

x
k+1 + hkσ̂

x
k ]. Thus, we can

approximate the time-evolution operator using Trotter-Suzuki
decomposition U2(t) ≈ [U2(∆t)]

t/∆t
=
[
e−i∆tH2

]t/∆t
with ∆t � t. To efficiently construct the MPO repre-
sentation of U2(∆t), we group together terms in H2 that
commute with each other. The three-body operators are all
stabilizer operators and commute with each other. For the
two-body terms, they also commute with each other. For
one-body terms, all of them are act on different sites and
thus commute with each other. For simplicity, we denote

a b

FIG. S3. Pictorial illustration of the implementation of the time-
evolution unitary, where a connected wire between different blocks
means contraction of indices. a. Implementation of U1(∆t). The
gray blocks represent the current state in MPS form, and the green
blocks represent the time evolution unitary consisting of one-body
operators (α = −(π/2 − δ)). b. Implementation of U2(∆t). The
gray blocks represent the current state in MPS form; the orange
blocks represent the time-evolution unitary consisting of three-body
operators arranged in three groups; the blue blocks represent the
time-evolution unitary consisting of two-body operators arranged in
two groups; and the green blocks represent the time evolution uni-
tary consisting of one-body operators (α = hk). These unitaries are
applied to the the current state layer by layer.

A = −
∑
k Jkσ̂

z
k−1σ̂

x
k σ̂

z
k+1, B = −

∑
k Vkσ̂

x
k σ̂

x
k+1, C =

−
∑
k hkσ̂

x
k and obtain

U2(∆t) =e−i∆t(A+B+C)

=e−i∆tCe−i∆t(B+A)e−i∆t
2[C,B+A]

+O(∆t3)

=e−i∆tCe−i∆tBe−i∆tA +O(∆t2). (S28)
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Thus, the time-evolution operator for H2 over time interval t
is approximated by

U(t) ≈ [U2(∆t)]
t/∆t

=
(
e−i∆tCe−i∆tBe−i∆tA

)t/∆t
+O(∆t). (S29)

Furthermore, to make the numerical simulation more efficient,
the implementation of three-body terms and the two-body
terms can be accomplished layer by layer, wherein each layer
only contains operators with no overlapping support, so that
they can be applied to the MPS in parallel. We emphasize
that, since the Trotter error is of order ∆t, the time interval
∆t should be small enough to avoid large TEBD error. The
implementation of U2(∆t) is showed in Fig. S3b.

III. EXPERIMENTAL DETAILS

A. Quantum circuit ansatz

Algorithm 1: Neuroevolution Method
Output: Quantum circuit ansatz approximating target

unitary.
Input: Elementary gate set S, evolution unitary Utarget

and threshold β.
G = Direct Graph(S);
C = Random Generation of Quantum Circuit(G);
L = Optimization(C, Utarget);
while min{L} > β do
C = Quantum Circuit Extension(C, G);
L = Optimization(C, Utarget);

end
return argminC{L};

X(θ)

CRZ(-

CRZ( )

Y(θ)

c

a b

)

 

CRZ(- )

CRZ(- )

CRZ(- )

CRZ(- )

CRZ(- )

CRZ( )

CRZ( )

CRZ( )

CRZ( )

CRZ( )

�

�

FIG. S4. Quantum circuit ansatzes used in our experiments. a. The
circuit ansatz for the time-evolution unitary over the first time in-
terval. b. The circuit ansatz for the time-evolution unitary over
the second time interval, where the system is deep in the topolog-
ical phase. c. The circuit ansatz for the time-evolution unitary
over the second time interval in the cluster limit (Vk = hk = 0),
where the system contains only three-body interactions: U2 =
exp (i

∑
k Jkσ̂

z
k−1σ̂

x
k σ̂

z
k+1).

Algorithm 2: Optimization for a quantum circuit
Output: Optimal parameters of the given quantum

circuit.
Input: A quantum circuit C, evolution unitary Utarget

and learning rate γ.
Randomly initialize θ;
Ucircuit(θ) = Unitary(C, θ);

L = 1− Tr
[
U†targetUcircuit(θ)

]
/d;

while L > 0.001 do
θ = θ − γ∇θL;
Ucircuit(θ) = Unitary(C, θ);

L = 1− Tr
[
U†targetUcircuit(θ)

]
/d;

end
return θ;

To observe the FSPT phase on a digital superconducting
quantum computer, we need to decompose the time-evolution
unitary into a quantum circuit consisting of a series of exper-
imentally implementable quantum gates. Due to the direct-
product structure of the evolution unitary U1(t) = e−itH1

in the first time interval, this unitary can be represented as
a quantum circuit using a layer of rotation gates along the x
axis. Thus, it can be constructed and implemented relatively
easily. As for the second time interval, the interaction among
different sites takes the time-evolution unitary far away from
a direct product form, making things a little different.
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FIG. S5. Circuit ansatz learning procedure. This figure shows the
learning procedure of approximating a six-qubit evolution unitary.
The indicator is the operator fidelity Tr

[
U†target Ucircuit (θ)

]
/d. The

final fidelity is larger than 0.999. The inset shows the learning proce-
dure of approximating a single σ̂z

1 σ̂
x
2 σ̂

z
3 term, where the final fidelity

is larger than 0.9999.

With the progress of research on variational quantum cir-
cuits, we are able to adapt this method to construct the quan-
tum circuit of the second-time-interval unitary. Variational
quantum circuits are a powerful tool that has been inten-
sively investigated in recent years. Algorithms based on
variational quantum circuits hold great potential in the noisy
intermediate-scale quantum era. There are many algorithms
based on variational parameterized quantum circuits, such as
the variational quantum eigen-solver [S20], the quantum neu-
ral network [S21], etc.. The major distinction between stan-
dard quantum circuits and variational quantum circuits is that
the gates composing a variational quantum circuit are not
fixed. They can be modified by tuning their parameters using
different parameter-updating algorithms. As these parameters
are updated, the unitary implemented by the variational circuit
is also updated. We terminate the updating procedure when a
satisfactory result is obtained.

Our target is to find a variational quantum circuit, with
some fine-tuned parameters, that approximates to high pre-
cision the evolution unitary U2(t) = e−itH2 in the second
time interval. We accomplish this target in two steps: find
an implementable variational quantum circuit ansatz that can
be used to represent the target unitary and keep updating the
parameters contained in this circuit ansatz to find a good ap-
proximation of the desired unitary.

We use the neuroevolution method [S22] to find a suit-
able variational circuit architecture. The elementary gates
used in our experiments are variable-angle single-qubit rota-
tion gates, X(θ), Y (θ), Z(θ) (θ is the variational parame-
ter), and a variable-angle control-rotation gate along the z axis
CRz(θ) (θ is the variational parameter). Each of these gates
contains a variational parameter, the rotation angle. These
gates can form various quantum circuit layers. i.e. quan-
tum circuits with depth equal to one. Using the method of
Ref. [S22], we construct out of these layers a directed graph,
so that a quantum circuit can be represented as a path in this
graph. To find the desired circuit, we follow the following
procedure: 1) Randomly generate several variational quan-

tum circuits of fixed depth based on the directed graph; 2)
Update parameters contained in those quantum circuits us-
ing a gradient-based algorithm to minimize the loss function
L(θ) = 1 − Tr

[
U†targetUcircuit(θ)

]
/d, where Utarget is the evo-

lution unitary over the second time intervalU2(∆t), Ucircuit(θ)
is the unitary represented by the current quantum circuit with
variational parameters θ, and d is the dimension of the corre-
sponding Hilbert space; 3) Chose quantum circuits with small
values of the loss function and extend them based on the di-
rected graph to generate new circuits; 4) Iterate processes 2)
and 3) until the loss function is below a desired threshold. The
circuit ansatz giving the smallest value of the loss function is
regarded as the optimal ansatz representing the evolution uni-
tary and is adapted in our experiments. We show the pseudo-
code of this algorithm in Algorithm 1.

In the evolution procedure, we will repeatedly optimize the
current circuits to approximate the target unitary. This op-
timization is also required when we apply the found circuit
ansatz to approximate the evolution unitary of a particular dis-
order realization of H2. For a target unitary Utarget and a par-
ticular circuit ansatz, we begin with this ansatz containing ran-
domly generated variational parameters θ. Then, the gradient
of the loss function L(θ) with respect to those variational pa-
rameters is computed and is used to update the current param-
eters θ(n+1) = θ(n) − γ∇θ(n)L, where γ is a given learning
rate (we usually chose 0.001 ≤ γ ≤ 0.01). In our calcu-
lation, we iterate this optimization procedure until the oper-
ator fidelity [S23] satisfies Tr

[
U†targetUcircuit (θ)

]
/d ≥ 0.999

(L(θ) ≤ 0.001). We then take the quantum circuit with the fi-
nal parameters as the approximation of the target unitary. We
show the pseudo-code of this algorithm in Algorithm 2.

As an illustration, in Fig. S5, we show the learn-
ing procedure of a six-qubit unitary using algorithms
above. The target unitary is the evolution unitary of
the Hamiltonian in the second time interval: H =
−
∑
k

[
Jkσ̂

z
k−1σ̂

x
k σ̂

z
k+1 + Vkσ̂

x
k σ̂

x
k+1 + hkσ̂

x
k

]
, where Jk are

uniformly chosen from [0, 2], Vk are uniformly chosen from
[0, 0.02], and hk are uniformly chosen from [0, 0.02]. We first
construct the directed graph of six qubits, where each node
represents a specific layer of quantum gates and only layers
that can not be merged together are connected, e.g. the layer
of Rx gates is connected to the layer of Rz gates, but is not
connected to itself. Then, we randomly generate five initial
paths consisting of two connected nodes in this directed graph,
which represent circuits consisting of two layers of quantum
gates, as described in Algorithm 1. We then train those ini-
tial circuits to approximate the target unitary using Algorithm
2. Then, if the approximation results do not fulfill the prede-
fined threshold precision, we will randomly generate subse-
quent paths consisting of two connected nodes for each initial
path, where the first node in the subsequent path is connected
in the directed graph to the last node in the current path, and
extend the current paths by appending the subsequent paths.
We repeat Algorithm 2 again to approximate the target unitary.
The extension and optimization procedures are subsequently
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carried out until at least one of the circuits can approximate
the target unitary to a predefined precision. Using the same
method, we can also construct the circuit representation of a
single σ̂z1 σ̂

x
2 σ̂

z
3 term. We find that the final approximation pre-

cision can be very high (usually we can set the threshold pre-
cision to 0.9999). Using a straightforward simplification (re-
moving gates with small parameters, merging nearby quantum
gates, etc.), we can construct an exact representation of this
term. The learning procedure is shown in the inset of Fig. S5.

The quantum circuit ansatzes used in our experiments are
shown in Fig. S4. We notice that the quantum circuit for the
evolution unitary over the second time interval has a sand-
wich form U2(∆t) ≈ WD(θ)W †, where D(θ) is a layer of
single-qubit rotation gates with θ being the evolution-time-
dependent parameters. We note that the circuit structure in
Fig. S4 b has an appealing merit: imagining that we first
use this circuit to simulate the evolution of the system un-
der H2 for a small time interval ∆t, then for the subsequent
time interval ∆t the CRz(π) gates in the current circuit will
cancel with the CRz(−π) gates in the preceding circuit. Be-
sides, since the middle layer of this evolution circuit consists
of single-qubit rotation gates, they can merge with the follow-
ing single-qubit rotation gates. As a result, for 2∆t time evo-
lution the circuit maintains the same structure, and we only
need to double the angles for the single-qubit Y (θ) rotations
to simulate the evolution. Thus, for one driving period the
depth of the corresponding quantum circuit can be maintained
to be six. We mention that this merit carries over to the circuit
structure in Fig. S4 c as well.

We emphasize that this optimization procedure is suitable
for small systems. On the other hand, because of the expo-
nential growth of the dimension of the Hilbert space, the op-
timization for large systems is impractical. It is helpful that
the quantum circuit ansatz found using the neuroevolution
method can exactly represent the evolution unitary U2(t) =
e−itH2 when H2 has no two-body operators and no one-body
operators (as shown in Fig. S4c). This indicates that we can
analytically construct the corresponding quantum circuits for
arbitrarily many qubits when Vk = hk = 0, regardless of what
values Jk and δ have. In fact, in this case, we can find an exact
simple one-to-one mapping between Jk and the variational ro-
tation angles in Fig. S4c. In our simulations and experiments,
for systems of L ≤ 8, the two-body terms and one-body
terms are considered and the parameters in the correspond-
ing quantum circuits are obtained using the above-described
gradient-based optimization method. For 14-qubit systems,
we only consider the stabilizer terms in H2 and exactly con-
struct the corresponding quantum circuits.

B. Device overview and measurement setup

To illustrate the idea of the FSPT phase, we run the experi-
ments on two different superconducting quantum processors,
referred to as version α (Fig. S8) and version β (main text

Fig. 2). Both of them are flip-chip devices hosting an array of
6×6 qubits distributed in a square lattice. We select a chain of
up to L = 14 (26) qubits in processor α (β). To realize high-
fidelity controlled-Z (CZ) gates, we adopt the tunable-coupler
architecture [S24] to mediated nearest-neighbor qubit-qubit
interactions, i.e., individual couplers are inserted between
neighboring qubits with the qubit-coupler coupling strengths
designed to be around 130 MHz for qubits at 6.5 GHz. All
qubits (couplers) are of transmon type, with anharmonicities
around 250 (350) MHz and maximum resonance frequencies
around 7 (10.5) GHz. Each qubit has its own control line,
which takes microwave (XY) inputs for rotating the qubit state
around the x- or y-axis and flux-bias (Z) pulses for tuning the
qubit frequency and rotating the qubit state around the z-axis;
each coupler is frequency tunable via its own flux bias (Z)
line, which guarantees that the effective coupling strength be-
tween two neighboring qubits at 6.5 GHz can be dynamically
turned on, up to −25 MHz, or off, ≤ 0.25 MHz. Each qubit
capacitively couples to its own readout resonator, designed in
the frequency range around 4.3 GHz, for qubit state measure-
ment. 9 readout resonators share one readout transmission line
(TL) running across the processor chip, and 4 readout TLs can
cover all 36 qubits in the processor.

The processors were fabricated using the flip-chip recipe:
all qubits and couplers are located on the sapphire substrate
(top chip); most of the control/readout lines and readout res-
onators are located on the silicon substrate (bottom chip).
For processor α, these two chips have lithographically de-
fined base wirings, junction loops, and airbridges made of
aluminum, and are galvanically connected via indium bumps
with titanium under-bump metallization, as described else-
where [S25]. For processor β, aluminum was replaced by
tantalum for most structures except for junction loops and air-
bridges, and indium bumps were grown on tantalum without
under-bump metallization. The indium bumps were formed
by the lift-off method with 9 µm-thick indium deposited on
both chips, after which these two chips were aligned and
bonded together at room temperature to complete the flip-chip
device. The indium bumps in our processor are not only for
ground connectivity, but also for passing through control sig-
nals from the bottom chip to the top chip where the qubits are
located.

The processor was loaded into a multilayer printed circuit
board (PCB) enclosure, which was then mounted inside a di-
lution refrigerator (DR) with the base temperature down to 15
mK. Figure S6 shows the schematics of the control/readout
electronics and wiring setup. In this setup, the XY microwave
signals and fast Z pulses synthesized by digital-to-analog con-
verters (DACs) are first joined together at room temperature,
then attenuated and filtered at multiple cold stages of DR,
and later combined with the slow Z (DC) pulses via home-
made bias-tees at the mixing chamber stage of DR before be-
ing transmitted into the qubit control lines. The multiplexed
readout signals are also heavily attenuated and filtered be-
fore going into the readout TLs of the processor to retrieve
the qubit state information. To boost the signal-to-noise ratio
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FIG. S6. Electronics and wiring setup illustrating how to synthesize and transmit the control/readout signals. Each qubit has three control
channels: XY (microwave), fast Z (flux), and slow Z (flux). Each coupler has two control channels: fast Z and slow Z. Readout pulses are
generated similarly to the XY signals and are passed through the processor via the readout TLs. All control and readout lines are well-attenuated
and filtered for noise shielding and delicate control.

(SNR), output signals from TLs are sequentially amplified by
a Josephson parametric amplifier (JPA), a high electron mobil-
ity transistor (HEMT) amplifier, and room temperature (RT)
amplifiers before being demodulated by analog-to-digital con-
verters (ADCs) with 10-bit vertical resolution and 1.0 GS/s
sampling rate. An arbitrary microwave signal can be gener-
ated by mixing the DAC outputs with continuous microwave
using IQ mixer. DACs used to synthesize XY microwave sig-
nals and fast Z pulses in this experiment have 14-bit verti-
cal resolution and 300 MHz output bandwidth. Slow Z (DC)
pulses are generated by commercial 16-bit DACs with maxi-
mum outputs of ±2.5 V.

C. Single- and Two-qubit gates

Single-qubit gates used in this experiment include X(θ),
Y(θ), and Z(θ), which rotate the qubit state by an arbitrary
angle θ around x-, y-, and z-axis, respectively. We real-
ize X(θ) and Y(θ) by controlling the amplitude and phase of
XY microwave pulses, and implement Z(θ) via the virtual Z
gate [S26]. Single-qubit gate errors are characterized by si-
multaneous randomized benchmarking, yielding an average
gate fidelity above 0.99 for both processors (see Tab. S1 and
Tab. S2). We note that in both tables, the notation is defined as
follows. ω0

j is the maximum frequency ofQj at zero flux bias.
ωj is the idle frequency where we initialize Qj in |0〉 and sub-
sequently apply single-qubit gates. ηj is Qj’s anharmonicity,
which is approximately a constant within the frequency range
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relevant to this experiment.
(
ωA (B)
j , ωA (B)

j+1

)
is a list of two

frequencies for two neighboring qubits in group A (group B),
chosen such that |11〉 and |02〉 in the two-qubit subspace have
nearly the same energy for a CZ gate; the CZ gates for qubit
pairs in the same group A (B) are implemented simultane-
ously when executing the multilayer quantum circuit to simu-
late the FSPT phase. ωm

j is the readout frequency ofQj where
we apply readout pulses to excite Qj’s readout resonator for
quantum state measurement. ωr

j is the resonant frequency of
Qj’s readout resonator. T1,j and T ∗2,j are the energy relaxation
time and Ramsey dephasing time of Qj , respectively. F0,j

and F1,j are the readout fidelity values for Qj prepared in |0〉
and |1〉, respectively; these fidelity values are used to correct
raw probabilities to eliminate readout errors as done previ-
ously [S27]. We note that F0,j and F1,j are actually the aver-
aged probability values obtained by repeating the same state
preparation and measurement sequence 3000 times, and the
associated statistical errors are typically around 0.0055 and
0.0095, respectively. esq lists the single-qubit gate errors ob-
tained by simultaneous randomized benchmarking. eA(B)

CZ list
the CZ gate errors obtained by both individual and simulta-
neous randomized benchmarking for qubit pairs in group A
(B). We note that the qubit parameters may slowly drift over
time [S28, S29].

The basic structure to implement the CZ gate consists of
two flux tunable qubits and one flux tunable coupler, which
are, respectively, denoted as Q1, Q2, and C here for clarity of
description. The effective coupling strength is composed of
a direct coupling strength between two qubits and a part me-
diated by the coupler, which can be continuously adjusted by
controlling the flux or frequency of the coupler. The Hamilto-
nian of this three body system is written as

H/~ =
∑

i=1,2,c

ωia
†
iai +

ηi
2
a†ia
†
iaiai

+
∑
i<j

gij

(
ai − a†i

)(
aj − a†j

)
,

(S30)

where a†i and ai are raising and lowering operators, and gij is
the coupling strength between each pair in {Q1, Q2, C}. The
effective coupling strength between qubits is

g̃ = g1cg2c

(
ωc

ω2
1 − ω2

c

+
ωc

ω2
2 − ω2

c

)
+ g12. (S31)

In Fig. S7a, we plot the dynamic range of g̃ (bottom panel)
processed using the two-qubit swap dynamics after initial-
izing Q1-Q2 in |10〉, which shows that the effective cou-
pling strength is tunable in the range from −25 MHz to
≤ 0.25 MHz. Experimentally, we can apply single-qubit gates
while tuning the frequency of the coupler to around 10.5 GHz
to turn off g̃.

To realize the CZ gate, we apply a flux bias (fast Z) pulse
to steer the coupler’s frequency along the following trajec-
tory: 10.5→7.3→10.5 GHz. Meanwhile, we turn on the fast
Z pulses to bring a pair of qubits from their idle frequencies to

the pair of values
(
ω

A(B)
j , ω

A(B)
j+1

)
(see Tab. S1 for processor β

and Tab. S2 for processor α), chosen such that |11〉 and |02〉
in the two-qubit subspace have nearly the same energy. After
a finite period for this diabatic interaction, a unitary two-qubit
gate equivalent to a CZ gate up to trivial single-qubit phase
factors can be obtained as

1 0 0 0

0 eiφ1 0 0

0 0 eiφ2 0

0 0 0 eiφ3


. (S32)

A sine-decorated square pulse with the amplitude A = z0 ×[
1− r + r sin

(
π t
tgate

)]
is used for the coupler in order to

minimize state leakage. Experimentally, we fix r = 0.3
and only fine-tune the parameter z0. All pulses are digitally
smoothed by convolving them via a Gaussian window with
σ = 2 ns before applying our pulse calibration routines [S30].
The CZ gate pulse duration is 30 ns, and there are additional
5 ns padding times before and after the 30-ns gate in compen-
sation for the finite small tails of the smoothed pulse.

Individual CZ gates are calibrated following the procedure
below:

1. Optimize coupler Z bias amplitude for minimum state
leakage: We initialize Q1-Q2 in |11〉 and fix their fre-
quency detuning at ω1 − ω2 ≈ −2π × 250 MHz, fol-
lowing which we apply the sine-decorated square pulse
with a total length of 40 ns to the coupler. We search for
the optimized pulse amplitude z0 which maximizes the
|1〉-state population for Q1, i.e., minimum state leak-
age. In Fig. S7b, we plot the whole landscape of state
leakage as functions of the Z bias amplitudes of both
the coupler and Q1, where the black solid line indicates
how we sweep the coupler Z pulse amplitude.

2. Optimize phase factors: We fix the coupler Z pulse and
sweep Q1’s Z pulse amplitude using different initial
states to calculate the three phase factors in Eq. (S32),
aiming at the condition φ3 − φ2 − φ1 = π. The black
dashed line in Fig. S7b shows the routine of how we
sweep the qubit Z pulse amplitude. We apply virtual Z
gates to remove the trivial single-qubit phases.

3. Fine-tune gate parameters according to randomized
benchmarking: We choose the randomized benchmark-
ing sequence fidelity as a goal function to optimize rel-
evant gate parameters, including the Z pulse amplitudes
of both qubits and the coupler, and the single-qubit
phases. We use the Nelder-Mead method to speed up
the parameter optimization process.
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TABLE S1. Device parameters for processor β with 26 qubits.

Qubit Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

ω0
j/2π (GHz) 6.717 6.780 6.882 6.635 6.820 6.914 6.816 6.613 6.771 6.832 6.689 6.836 6.768 6.668

ωj/2π (GHz) 6.450 6.650 6.850 6.540 6.508 6.630 6.790 6.580 6.676 6.800 6.450 6.650 6.708 6.540

ηj/2π (GHz) 0.244 0.250 0.245 0.246 0.249 0.248 0.251 0.242 0.239 0.247 0.244 0.242 0.242 0.245(
ωA
j , ω

A
j+1

)
/2π (GHz) 6.439, 6.678 6.835 , 6.601 6.412 , 6.647 6.809 , 6.559 6.552 , 6.784 6.438 , 6.670 6.756 , 6.531(

ωB
j , ω

B
j+1

)
/2π (GHz) 6.627 , 6.858 6.488 , 6.251 6.563 , 6.806 6.482 , 6.721 6.741 , 6.511 6.520 , 6.750

ωm
j /2π (GHz) 6.466 6.273 6.600 6.170 6.520 6.640 6.815 6.580 6.676 6.750 6.452 6.610 6.670 6.540

ωr
j/2π (GHz) 4.433 4.266 4.496 4.364 4.413 4.314 4.335 4.440 4.297 4.500 4.385 4.514 4.522 4.317

T1,j (µs) 34 23 21 29 26 34 29 29 30 7 34 29 28 33

T2,j (µs) 2.2 1.7 2.7 4.1 2.5 1.4 2.5 4.4 3.0 2.2 2.1 2.0 3.2 3.0

F0,j 0.973 0.917 0.947 0.952 0.968 0.939 0.892 0.922 0.923 0.941 0.956 0.955 0.951 0.947

F1,j 0.930 0.872 0.910 0.907 0.887 0.904 0.878 0.850 0.860 0.871 0.919 0.898 0.861 0.935

esq (%) 0.33 0.55 1.28 0.44 0.77 0.69 1.32 0.38 1.07 1.37 0.85 0.36 0.55 0.34

eA
CZ (%) (Indiv.) 0.94 1.84 1.68 3.12 2.12 1.49 1.23

eB
CZ (%) (Indiv.) 1.56 2.39 5.13 2.70 2.17 2.62

eA
CZ (%) (Simu.) 1.28 1.98 1.86 2.94 2.20 1.30 0.91

eB
CZ (%) (Simu.) 1.08 1.08 4.46 2.44 2.49 1.86

Qubit Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26

ω0
j/2π (GHz) 6.893 6.744 6.853 6.771 6.727 6.941 6.897 6.738 6.722 6.737 6.732 6.784

ωj/2π (GHz) 6.605 6.650 6.708 6.430 6.330 6.630 6.600 6.540 6.482 6.650 6.508 6.630

ηj/2π (GHz) 0.249 0.246 0.253 0.260 0.246 0.241 0.248 0.250 0.250 0.242 0.246 0.243(
ωA
j , ω

A
j+1

)
/2π (GHz) 6.460 , 6.697 6.760 , 6.525 6.379 , 6.602 6.752 , 6.515 6.429 , 6.662 6.471 , 6.699(

ωB
j , ω

B
j+1

)
/2π (GHz) 6.386 , 6.618 6.522 , 6.761 6.467 , 6.231 6.700 , 6.478 6.571 , 6.335 6.627 , 6.403

ωm
j /2π (GHz) 6.575 6.650 6.695 6.430 6.115 6.634 6.600 6.470 6.120 6.656 6.502 6.680

ωr
j/2π (GHz) 4.430 4.357 4.568 4.280 4.454 4.376 4.493 4.520 4.410 4.427 4.375 4.414

T1,j (µs) 33 37 27 41 33 40 34 41 38 34 28 37

T2,j (µs) 2.4 4.7 3.3 2.7 2.7 2.9 1.6 3.9 2.1 4.3 2.9 2.4

F0,j 0.929 0.946 0.952 0.937 0.977 0.953 0.961 0.969 0.981 0.957 0.959 0.963

F1,j 0.908 0.894 0.909 0.880 0.926 0.911 0.905 0.900 0.890 0.908 0.919 0.895

esq (%) 0.67 0.36 0.46 0.43 0.44 0.55 0.57 0.55 0.59 0.38 0.70 0.40

eA
CZ (%) (Indiv.) 1.69 1.14 2.72 3.48 1.33 1.71

eB
CZ (%) (Indiv.) 1.67 1.74 1.81 3.38 1.21 1.43

eA
CZ (%) (Simu.) 1.57 1.09 2.05 2.51 1.18 1.22

eB
CZ (%) (Simu.) 1.49 1.18 2.02 3.74 1.31 0.97



13

TABLE S2. Device parameters for processor α with 14 qubits.

Qubit Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

ω0
j/2π (GHz) 7.021 6.970 7.000 6.864 6.840 7.028 6.819 6.879 6.770 6.854 6.818 6.962 6.925 6.970

ωj/2π (GHz) 6.450 6.730 6.890 6.651 6.565 6.750 6.676 6.600 6.520 6.620 6.721 6.893 6.838 6.960

ηj/2π (GHz) 0.230 0.248 0.248 0.242 0.255 0.239 0.288 0.247 0.251 0.246 0.241 0.250 0.247 0.252(
ωA
j , ω

A
j+1

)
/2π (GHz) 6.414, 6.656 6.893, 6.651 6.275, 6.516 6.632, 6.868 6.349, 6.585 6.717, 6.957 6.684, 6.920(

ωB
j , ω

B
j+1

)
/2π (GHz) 6.667, 6.898 6.651, 6.412 6.894, 6.657 6.766, 6.528 6.485, 6.722 6.910, 6.676

ωm
j /2π (GHz) 6.110 6.198 5.608 6.651 5.552 6.309 6.722 5.997 5.812 5.828 6.323 5.736 6.181 6.423

ωr
j/2π (GHz) 4.357 4.194 4.119 4.200 4.097 4.343 4.323 4.223 4.262 4.206 4.152 4.269 4.182 4.402

T1,j (µs) 25 22 28 36 11 27 27 30 22 33 25 37 13 29

T ∗2,j (µs) 1.0 1.7 4.5 2.5 3.8 2.2 1.2 1.6 0.8 2.1 3.1 2.8 5.8 14.0

F0,j 0.950 0.955 0.945 0.888 0.951 0.951 0.961 0.956 0.868 0.880 0.959 0.935 0.980 0.970

F1,j 0.876 0.862 0.834 0.888 0.886 0.942 0.859 0.900 0.890 0.905 0.900 0.898 0.919 0.937

esq (%) 0.49 0.45 1.26 0.72 0.38 0.69 0.66 0.47 0.84 0.60 0.33 0.55 0.55 0.45

eA
CZ (%) (Indiv.) 1.06 0.22 1.79 0.74 0.99 0.37 1.09

eB
CZ (%) (Indiv.) 0.29 1.24 0.59 1.77 0.78 1.68

eA
CZ (%) (Simu.) 3.46 0.99 3.00 0.76 2.03 0.79 1.33

eB
CZ (%) (Simu.) 0.76 0.51 0.81 2.29 0.97 2.05

D. Scalability of the digital simulation approach

In the main text, we have plotted the dynamics of the
disorder-averaged local magnetization obtained from the
quantum processor β in Fig. 2, with 26 qubits. As mentioned
above, we have also run the experiment on the processor α
with 14 qubits, and the result is plotted in Fig. S8. Here, we
measure

〈
σzj
〉

at different time steps within a period, so as
to see in more detail how this quantity evolves. This will in-
crease the experimental efforts and we thus only evolve the
system up to 20 cycles. From Fig. S8, it is clear that the edge
spins oscillate with a stable subharmonic response, whereas
the bulk magnetization decays quickly to zero. Comparing the
results shown in Fig. 2 in the main text with those in Fig. S8,
we find that they both demonstrate the theoretically predicted
behavior to the same level of accuracy, despite the fact that the
system size for Fig. 2 is almost twice as that for Fig. S8. This
shows the scalability of our digital simulation approach.

IV. NUMERICAL SIMULATIONS CONSIDERING
EXPERIMENTAL IMPERFECTIONS

Experimentally realized single- and two-qubit gates suffer
from experimental imperfections such as decoherence, pulse
distortions, and cross-talk effects, which need to be consid-

ered in our numerical simulations. As numerically taking into
account all experimental subtleties for a faithful comparison
with the experimental data is extremely hard and time con-
suming, we choose a simplified model of our experimental
imperfections that nevertheless captures our experimental data
reasonably well. In particular, when simulating the dynamics
of the FSPT and EDSPT phases, we apply a small amount
of random over/under rotations on the single-qubit gate ma-
trices, which introduces an average coherent error of r=0.005
that corresponds to the measured single-qubit gate fidelity on
average.

Experimental two-qubit gates have an average gate error
above 0.01. Since both qubit energy relaxation and pure de-
phasing times are typically more than 10 µs, which are signif-
icantly longer than the typical gate durations, the error contri-
bution due to decoherence is small (less than 0.003) [S31], and
for simplicity we numerically ignore its effect. We estimate
that state leakage outside of the qubit computational space of
{|0〉 , |1〉} is a major source of errors, since several factors can
contribute to state leakage errors, such as the short-timescale
and long-timescale pulse distortions in flux lines, the level
shifting due to dephasing of the flux sensitive qubits, the
cross-talk interaction between non-neighboring qubits, and
the |2〉 state interference [S32]. Here we numerically obtain
a quantum process χ matrix by slightly shifting the optimal
interacting frequencies of the qubits and the coupler, which
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FIG. S7. Two-qubit CZ gate. a, two-qubit swap dynamics showing the dynamical range of the effective coupling strength as tuned by the
coupler. b, |1〉-state population landscape for Q1 resulting from the |11〉 and |02〉 interaction after initializing Q1-Q2 in |11〉. The white star
marks the vicinity of the gate parameters used for the CZ gate, and lines indicate how we sweep Z parameters to approach this vicinity.

results in the state leakage error with a magnitude that cor-
responds to the experimentally measured infidelity. The χ
matrix has a fidelity of 0.987, which is used throughout our
numerical simulations. We emphasize that our numerical ap-
proach is not a faithful description of our experiments, but it
reproduces the experimental data reasonably well.

V. QUANTUM STATE TOMOGRAPHY

We use quantum state tomography (QST) to reconstruct
the reduced density matrix ρhalf, which takes 3N/2 operations
for an N -qubit system. More specifically, for N = 10, we
first generate the SPT state and then evolve the system un-
der H(t) for time t = nT (n = 0, 1, . . . ). Then we apply
243 combinations of the tomographic operations [I,X/2 =
X(π/2), Y/2 = Y (π/2)]⊗5 on one half of the chain, either
{Q1, Q2, Q3, Q4 and Q5} in ρA or {Q6, Q7, Q8, Q9 and
Q10} in ρB, before measuring these 5 qubits. We repeat each
tomographic operation and readout 90000 times to obtain the
25 = 32 raw binary probabilities for all 5 qubits, which are
corrected to eliminate readout errors [S27]. ρhalf can be re-
constructed via the least-squares optimization. Note that, with
our measurement setup, this procedure becomes notably time-
consuming as N increases above 5. Figure S9 shows the en-

tanglement spectra of the initial SPT state for open and pe-
riodic boundary conditions. The sharp contrast between the
two- and four-fold degeneracies for open and periodic bound-
ary conditions, respectively, highlights the topological nature
of the SPT state. A similar comparison between the two- and
four-fold degeneracies after one driving period can be found
in the main text Fig. 3b.

VI. DYNAMICS OF ENTANGLEMENT

Unlike thermal phases without disorder or Anderson local-
ized phases without interaction, where entanglement grows
ballistically [S33–S35] or saturates to an area law at long
times, respectively, the entanglement entropy of an MBL sys-
tem grows logarithmically and saturates to a volume law in
the long-time limit [S10]. In our experiment, we also extract
the entanglement dynamics, through a full quantum state to-
mography of the reduced density matrix describing one half
of the system. In Fig. S10a, we plot the reduced density ma-
trix ρhalf for a single random instance of the Hamiltonian at
the end of one driving period. Using the tomographically ex-
tracted ρhalf at different times, we extract the desired infor-
mation about entanglement growth for the FSPT phase. Our
results are plotted in Fig. S10b. From this figure, it is clear
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FIG. S8. Observation of an FSPT phase in the processor α with L = 14 qubits. a, Time evolution of disorder-averaged local magneti-
zations under the Hamiltonian H(t) [see Eq. (1) in the main text] with J = ∆J = 1, V = h = ∆V = ∆h = 0, and δ = 0.01, and the
initial state |0〉⊗L. The data shown is averaged over 20 random disorder instances, and the error bars represent the standard error of the mean
over disorder samples. b, The dynamics of local magnetizations for different random instances, with each layer corresponding to a specific
random instance. c, Magnetization dynamics deep in the thermal phase (J = ∆J = 1, V = h = ∆V = ∆h = 0, and δ = 0.8). d, Fourier
transform of experimentally measured 〈σz

j (t)〉 shown in a. e, Fourier spectra of 〈σz
j (t)〉 shown in c. f, Time-dependence of the autocorrelator

Aj = 〈Ψ0|σz
j (t)σz

j (0)|Ψ0〉 for up to 40 cycles, obtained from averaging over 20 random instances deep in the FSPT phase. Here, the initial
states are random product states in the computational basis. The black solid lines show the results of “echo” circuits for the two boundary
qubits.

that, in the thermal phase, entanglement grows quickly and
saturates to a maximal volume law (∼ L

2 ln 2). In contrast, in
the FSPT phase, entanglement grows much slower. Numeri-
cal simulations with two-qubit gate errors agree well with the
experimental results. However we are not able to observe the
logarithmic growth of entanglement both because the system
size is too small and because the gate fidelities are not high
enough. We display the numerical simulation for the ideal
case (solid lines in Fig. S10b), which grows much slower than
the experimental results. Observation of logarithmic growth
demands not only a significant improvement of gate fidelities
and a substantial increase of the coherence time, but also a
more efficient and scalable approach to measure entanglement
for a many-body system.

VII. EXTENDED MODELS

To exhibit the general applicability of our methods, we also
implement other dynamical SPT phases in our devices using
similar strategies.

A. FSPT phase of a driven Ising chain

The first extended model is the driven Ising chain possess-
ing a Z2 Ising symmetry as described in Refs. [S7, S36]. We
implement in our devices an FSPT phase of this periodically
driven Ising chain with a time-periodic Hamitonian defined as
follows:

H(t) =

 Hsingle =
∑
k gkσ̂

x
k , 0 < t ≤ T ′,

HIsing =
∑
k Jkσ̂

z
kσ̂

z
k+1, T ′ < t ≤ T,

(S33)
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FIG. S10. Entanglement dynamics. a, Tomography of the reduced
density matrix for the second half of a six-qubit chain after one
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Here, we set T = 2T ′ = 2, and choose parameters gk, Jk
according to the target phase. As studied in Ref. [S7], this
model supports four dynamical phases determined by the
choice of parameters: the paramagnet (PM) phase, the 0-spin-
glass (0SG) phase, the π-spin-glass (πSG) phase, and the 0π-
paramagnet (0πPM) phase. We carry out the experiments on
a one-dimensional open chain, and set Jk = π

2 − 0.1 and uni-
formly choose gk from [π4 −

π
3 ,

π
4 + π

3 ]. This parameter region
corresponds to the 0πPM phase, which is also an FSPT phase.

Using the above parameters, the evolution unitary in the
first time interval [0, T ′] is a rotation about the x-axis for each
spin, and the evolution unitary in the second time interval
(T ′, T ] for an open chain with length L can be rewritten as:

UIsing = e−iHIsing ≈ σ̂z1

(
k=L−1∏
k=2

σ̂zkσ̂
z
k

)
σ̂zL = σ̂z1 σ̂

z
L. (S34)

Thus, the Floquet unitary is represented as UF ≈
σ̂z1 σ̂

z
LUsingle = σ̂z1 σ̂

z
Le
−i

∑
k gkσ̂

x
k . For an initial product state

in the x basis: 1) for the bulk sites, the Floquet evolution uni-
tary will not change their states except adding extra global
phases since [σ̂xk , UF ] ≈ 0 for k = 2, 3, ..., L − 1; 2) for the
edge sites 1 and L, the Floquet evolution unitary will flip the
states in the x basis since {σ̂xk , UF } ≈ 0 for k = 1, L. So,
the eigenstates of the whole system under this time-periodic
Hamiltonian are cat-like states with odd/even superpositions
of x spins at the boundaries. This Floquet phase also exhibits
time translational symmetry breaking at the boundaries. This
property can be intuitively understood: starting from prod-
uct states in the x basis, after one evolution period, the edge
states are flipped, while the bulk states are unchanged. So,
the edge spins return to their original states after two periods.
This gives the 2T periodicity of the edge states. From the
Heisenberg picture, this property can be exhibited explicitly:
σ̂xk(nT ) = (U†F )nσ̂xk(UF )n ≈ σ̂xk , for k = 2, 3, ..., L− 1, and
σ̂xk(nT ) = (U†F )nσ̂xk(UF )n ≈ (−1)nσ̂xk , for k = 1, L.

The 0πPM phase is a novel FSPT phase. With open bound-
ary conditions, this phase supports no bulk long-range order,
but maintains coherent edge states. In the fermion picture, the
eigenstates can be described as two Majorana modes at each
edge: one at quasienergy 0 and the other at quasienergy π
[S7]. Furthermore, in the equilibrium situation, one requires
at least a Z2 × Z2 symmetry to realize a static SPT phase.
In this driven Ising model, the governing Hamiltonian has a
Z2 symmetry but has no Z2 × Z2 symmetry. The Floquet
drive introduces another Z component coming from the dis-
crete time-transnational symmetry. The Z2 × Z symmetry of
the Floquet unitary shows that the 0πPM phase is an intrinsi-
cally non-equilibrium FSPT phase [S37–S39].

In our experiments, we implement 12 random realizations
of this model, and observe the dynamics of the spin chain
evolved under the Hamiltonian described above, with initial
states being random product states in the x basis. We mea-
sure the local magnetization σ̂xk at different evolution times
and show the results in Extended Data Fig. 5.
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B. Emergent dynamical SPT phase of a quasiperiodically
driven chain

The second extended model we implement in our devices
has no microscopic symmetry. It is a quasiperiodically driven
AKLT (Affleck-Kennedy-Lieb-Tasaki)-like chain within an
emergent dynamical SPT (EDSPT) phase. We adapt the theo-
retical analysis from Ref. [S40] and the experimental imple-
mentation from Ref. [S41]. The Hamiltonian of this model is
defined on a spin chain of length L:

Hx =
J

2

L/2∑
k=1

σ̂x2k−1σ̂
x
2k +

1

2

(L−2)/2∑
k=1

Kx
k σ̂

x
2kσ̂

x
2k+1 +

1

2

L∑
k=1

Bx
k · σ̂k, (S35)

Hz =
J

2

L/2∑
k=1

σ̂z2k−1σ̂
z
2k +

1

2

(L−2)/2∑
k=1

Kz
k σ̂

z
2kσ̂

z
2k+1 +

1

2

L∑
k=1

Bz
k · σ̂k, (S36)

where σ̂k = [σ̂xk , σ̂
y
k , σ̂

z
k], J is the pulse parameter, Kx

k and
Kz
k are coupling parameters uniformly chosen from [0, 4π],

and Bx
k and Bz

k are random fields whose norms are chosen
uniformly from [0, 0.3] and whose random directions are also
chosen uniformly. The corresponding evolution unitaries im-
plemented using quantum circuits are recursively defined as

U (1) = Ux = e−iHx , U (2) = UxUz = e−iHxe−iHz , (S37)

U (ν) = U (ν−2)U (ν−1), (S38)

where U (ν) represents the evolution unitary at Fibonacci time
tν = Fν , with Fν being the ν-th element of the Fibonacci
sequence.

At the solvable point J = π and Bx
k = Bz

k = 0,
the edge evolution of this quasiperiodic drive is a sequence
of spin flips:. . . (σ̂xσ̂zσ̂xσ̂xσ̂z) (σ̂xσ̂xσ̂z) (σ̂xσ̂z) (σ̂x). So,
the edge states in the x (z) basis will be flipped by z (x)
pulses respectively, leading to a three-fold periodicity of the
edge spins when the system is measured at Fibonacci times.
This non-trivial edge dynamics is stable to generic, local,
and quasiperiodic-in-time perturbations. When one chooses J
near π but not exactly equal to π, andBx

k , B
z
k 6= 0, the evolu-

tion unitary UN acquires a locally dressed Z2×Z2 symmetry
[S40, S41] at least in the short-time regime, despite the fact
that the random fields can break all microscopic symmetries
in this model. The details of the locally dressed symmetry are
determined by the parameters chosen for Hx and Hz , indicat-
ing it is a dynamical emergent symmetry. During the evolu-
tion, this emergent symmetry will protect a pair of coherent
edge modes for a long time, even when the non-topologically-
protected bulk modes have fully decohered. This can be ob-
served if one measures the edge spins at Fibonacci times, as
described above in the solvable limit.

In our experiments, we prepare the initial states by ran-

domly choosing product states in the x (z) basis. Then, we
evolve the states and measure the local magnetization σ̂xk (σ̂zk)
at Fibonacci times. We implement 12 random realizations of
this model, and evolve 10 random initial states in the x (z)
basis for each random realization in our experiments. The
measurement results are shown in Extended Data Fig. 6.
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