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Spin-wave quantum computing with atoms in a single-mode cavity

Kevin C. Cox ,1,* Przemyslaw Bienias ,2 David H. Meyer ,1 Donald P. Fahey ,1

Paul D. Kunz ,1 and Alexey V. Gorshkov 2

1DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA
2Joint Quantum Institute and Joint Center for Quantum Information and Computer Science,

NIST/University of Maryland, College Park, Maryland 20742, USA

(Received 30 September 2021; accepted 1 August 2022; published 26 August 2022)

We present a method for network-capable quantum computing that relies on holographic spin-wave excitations
stored collectively in ensembles of qubits. We construct an orthogonal basis of spin waves in a one-dimensional
array and show that high-fidelity universal linear controllability can be achieved using only phase shifts, applied
in both momentum and position space. Neither single-site addressability nor high single-qubit cooperativity
is required, and the spin waves can be read out with high efficiency into a single cavity mode for quantum
computing and networking applications. We describe how to establish linear quantum processing using a
lambda scheme in a rubidium-atom system and calculate the expected experimental operational fidelities due
to fundamental and technical errors. We derive efficient methods to achieve linear controllability in both a
single-ensemble and dual-ensemble configuration. Finally, we propose to use the spin-wave processor for
continuous-variable quantum information processing and present a scheme to generate large dual-rail cluster
states useful for deterministic computing.
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I. INTRODUCTION

Laser-cooled atoms in optical resonators are a building
block for many of the most exquisite demonstrations of quan-
tum electrodynamics. Atom-cavity systems are the basis for
state-of-the-art quantum simulators [1,2], quantum memories
[3], and entanglement-enhanced atomic clocks [4,5]. With
atom number N commonly between 103 and 106, an en-
semble’s intrinsic capacity to store quantum information is
enormous, with a state space of dimension 2N . Designing
quantum platforms that are able to access and process this
large amount of quantum information is a grand challenge in
atomic science. Here, we analyze a method to store quantum
information as collective spin-wave excitations and realize
universal quantum computation in a system where the spin
waves may be efficiently retrieved into a single optical cavity
mode.

Future quantum computers will likely be most useful when
connected together into a quantum network, much like classi-
cal computers. Quantum processors based on atoms, ions, and
superconducting qubits are advancing in their capability to
perform high-fidelity operations within a single science cham-
ber [6–8]. However, scaling up of these systems into a network
or heterogeneous computer is still a serious challenge, since
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qubits must be coupled to an optical communication channel
with high efficiency and fast demultiplexing. Spin-wave quan-
tum processors may address this difficulty, by using quantum
information stored as one-dimensional (1D) spin-wave holo-
grams in an ensemble of qubits, which can exhibit collectively
enhanced coupling to a single optical mode [9–11].

Recent experiments have introduced a path to use col-
lective ground-state spin-wave excitations to achieve high-
capacity quantum memories [11–15], but these experiments
have not introduced a method to achieve full linear controlla-
bility of spin-wave excitations, a prerequisite for a universal
quantum processor. Spin-wave quantum systems are being re-
alized in multiple physical platforms including atomic vapors
[11,13–15], solid-state crystals [16–18], and superconducting
circuits [19]. Proposals for spin-wave readout of atomic arrays
have also been developed [20–22]. However, demonstrating
platforms that simultaneously achieve universal quantum pro-
cessing, high capacity, and efficient optical readout is still an
ongoing challenge.

First, in Secs. II and III, we describe the spin-wave compu-
tation basis in a one-dimensional lattice and discuss a physical
apparatus consisting of two atomic ensembles coupled to a
single optical cavity mode. In Sec. III A, we describe a set of
operations that enable universal quantum computing within
the ensemble memory, specifically discussing the implemen-
tation of in situ linear-optical quantum computing with spin
waves. We first discuss a method using two distinct atomic
ensembles inside a single cavity mode. Although the two-
ensemble approach is experimentally attractive, in Sec. IV, we
show that linear controllability can also be achieved in a single
ensemble. In Sec. V, we evaluate the dominant fundamental
and technical performance limitations of linear operations and
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discuss initialization and readout. In Sec. VI, we present a
proposal for deterministic continuous-variable quantum com-
puting using spin-wave cluster states. We calculate that it may
be possible to achieve a continuous-variable cluster state with
thousands of modes and greater than 20 dB of squeezing per
mode, a significant computational resource for deterministic
continuous-variable processing [23–25]. We assert that our
proposal may be realized using current experimental tech-
niques, operating at performance levels already demonstrated
in laboratory settings.

This paper builds upon a significant body of recent work
in many-body cavity quantum electrodynamics [2,26–32] and
memory experiments showing that quantum information can
be stored as holographic spin waves in a large group of qubits
[9–11,33–36] that can be transferred to a readout bus for
retrieval [13,15,37,38]. Phase modulation of spin waves has
been used to observe interference between two holographic
profiles [39], but spatial phase shifts alone are not sufficient
to create arbitrary linear unitary operations, a condition we
refer to as linear controllability, which is required for universal
quantum processing [40]. Additional related works have the-
oretically investigated quantum information processing with
holographic spin waves in superconducting circuits [9] and
discussed how to implement spin-wave beam splitters using
modulation of transverse beams [35].

Much progress has been made, both experimentally and
theoretically, using single ground-state atoms, Rydberg atoms,
and Rydberg ensembles inside of optical cavities to real-
ize quantum operations with enhanced readout [27,41–43].
This proposal is complementary to these previous works and
may yield an easier route toward networkable scalability
to hundreds of modes without the need to access Rydberg
states.

Overall, spin-wave quantum information has a number of
promising advantages. Hundreds of ground-state spin-wave
excitations can be stored in a single ensemble [13]. Spin waves
can be used in the single-photon regime or the continuous-
variable regime that is amenable to powerful and efficient
quantum error correction [44]. Data are stored in ground
states with coherence times that can be driven up to the sec-
ond timescale [45]. Spin waves have collectively enhanced
qubit-light coupling that leads to efficient readout [11]. The
primary advance of this work is to combine spatial phase
gradients with cavity dressing to achieve linear controllability,
and therefore universal quantum computing, with capacities of
up to 1000 spin waves in a single cavity mode.

II. SETUP

The apparatus and atomic levels are diagramed in Figs. 1(a)
and 1(b). We first consider two ensembles, each with N laser-
cooled alkali atoms, approximated as three-level atoms with
long-lifetime states |g〉, |e〉 and optically excited state |i〉 with
linewidth �. While we focus on laser-cooled atoms in this
paper, the concepts of this proposal may be easily modified for
use with a variety of ensemble quantum memory platforms.
The atoms are confined in two 1D periodic potentials, each
with M sites, inside of a running-wave optical cavity. The two
arrays, labeled “A” and “B,” have the same cavity couplings
and experimental parameters. When discussing parameters

FIG. 1. Setup and level diagram using alkali atoms. (a) Two
ensembles are coupled to a single running-wave cavity, and opera-
tions are applied using potential gradients (green and orange) with
operators �̂A and �̂B and Raman dressing beams (red and violet)
with associated Hamiltonians Ĥ kA

0 and Ĥ kB
0 . (b) Level diagram. Ra-

man cavity coupling is controlled with the dressing beams (red and
violet). Optical gradients are applied with large detuning δac. The |e〉
states in ensembles A and B are drawn separately to delineate the
ensemble-specific beams.

and operators that specifically refer to one array or the
other, we will denote them with a corresponding superscript
A or B.

A running-wave cavity is required for this experiment in
order to distinguish between excitations with left- or right-
traveling photons. The arrays are optically interrogated using
Raman dressing beams (red and violet in Fig. 1) that stimu-
late two-photon Raman transitions. Potential gradients (green
and orange in Fig. 1), using laser beams with an intensity
variation, are applied perpendicular to the cavity axis. The
off-resonant optical fields are applied with detuning δac and
a spatially varying Rabi frequency �ac(x).

The optical cavity is described by its finesse f , full-width-
at-half-maximum (FWHM) linewidth κ , Jaynes-Cummings
coupling parameter g associated with the |g〉-to-|i〉 transition,
and single-atom cooperativity parameter C = 4g2/κ�. We
consider an apparatus with C near or less than 1, but large
collective cooperativity NC � 1. Atoms in |e〉 can be made
to interact with the cavity mode by applying Raman dressing
lasers (red and violet in Fig. 1) with Rabi frequency �d . The
Raman dressing lasers are detuned from the |g〉-to-|i〉 transi-
tion by a frequency δ1. The cavity is tuned near a two-photon
resonance with the Raman dressing lasers with a two-photon
detuning of δ2.
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FIG. 2. Three-level diagram and adiabatic elimination. The ex-
perimental three-level system is treated as a dynamic two-level
system with cavity coupling rate g2, excited state lifetime �2, and
atom-cavity detuning δ2.

With large detuning δ1 (|δ1| � |δ2|,
√

Ng, �d ) between
the cavity and the |g〉-to-|i〉 transition, the theoretical treatment
of Fig. 1(a) may be simplified by adiabatically eliminating |i〉,
creating an effective two-level system (Fig. 2) with dressed
excited state |e′〉 and two-photon scattering rate

�2(t ) = �
�2

d (t )

4δ2
1

, (1)

where �d (t ) is the Rabi frequency of the Raman dressing
laser. This results in a new two-photon Jaynes-Cummings
coupling parameter

g2(t ) = g�d (t )

2δ1
. (2)

In addition to the two-photon transition rates, the Raman
dressing laser gives rise to shifts in the cavity resonance fre-
quency and the two-photon transition frequency that must be
taken into account (see Sec. V E).

A diagram that defines the experimental parameters and
the relationship between the three-level system and the two-
level model is shown in Fig. 2. There are several important
advantages of this three-level scheme. Critically, the effective
cavity coupling g2(t ) and free-space scattering rate �2(t ) are
dynamic and may be turned on and off at high speed via the
dressing laser intensity, proportional to |�d (t )|2.

III. MOMENTUM BASIS WITH ALKALI
ATOMS IN CAVITY

We demonstrate linear controllability by defining a set
of orthogonal spin-wave modes in the momentum basis. We
first discuss how this proposal may be realized in a three-
level Raman system with two ensembles of laser-cooled and
trapped alkali atoms inside a single optical cavity mode. Then,
in Sec. IV, we show how to extend the proposal to using
only a single ensemble. Using cold atoms, two arrays may be
created via counterpropagating trap beams within the cavity,
or the single sites may be created by projecting an additional
trapping potential transverse to the cavity mode. The latter
scheme may be useful to precisely control the trap dimension
and spacing of the array sites.

FIG. 3. Momentum basis. (a) Spin-wave eigenstates are charac-
terized by an excitation amplitude bk (x) with spatially dependent
phase φ(x), bk (x) = 1√

M
eiφ(x) = 〈ggg · · ·| âxb̂†

k |ggg · · ·〉. (b) Momen-
tum eigenstates with M = 4 sites, labeled by momentum number k
ranging from k = 0 to k = 3 (blue, orange, green, and red, respec-
tively). Dashed lines are guides for the eye, with physical phases
represented by solid points. (c) Connectivity diagram. The momen-
tum shifts �̂ and cavity beam splitter ĤBS allow full connectivity for
spin waves. k is defined modulo M so that k = −1 is equivalent to
k = M − 1.

In general, the lowering operator that describes a collective
excitation at array site x is defined as

âx = 1√
n

n−1∑
l=0

|gl〉〈el |, (3)

where we sum over all atoms l at site x and |gl〉 and |el〉 are
the ground and excited states of the two-level atoms.

In this paper, we are interested in the corresponding mo-
mentum states, where excitations are stored in an equal
superposition of all the lattice sites, with spatially dependent
phase. The orthogonal set of momentum operators are defined
over the full set of M array sites:

b̂k = 1√
M

M−1∑
x=0

ei2πxk/Mâx. (4)

The integer index 0 � k � M − 1 delineates the orthogonal
basis of momentum operators. The zero-momentum excita-
tions, created by the b̂†

0 operator acting on the ground state
|ggg · · ·〉, are simply an equal superposition of all atoms,
with common phase (see Fig. 3). Working with (including
initializing and reading out) excitations in the b̂k modes is
experimentally advantageous because it relaxes the require-
ment for single-site addressability while retaining the full
M-mode Hilbert space. We will show that any mode b̂k can be
efficiently read out into the cavity mode by using a momentum
shift operation.

If the number of excitations at every site is small compared
with n, b̂k is equivalent to a canonical photon-lowering opera-
tor in mode k by the Holstein-Primakoff approximation [46].

033149-3



KEVIN C. COX et al. PHYSICAL REVIEW RESEARCH 4, 033149 (2022)

In this paper, we assume this approximation to be valid. Spin-
wave computing is also likely to be possible outside of the
linear regime, but this is beyond the scope of this initial work.
As such, the spin-wave operators b̂k define a set of M indepen-
dent bosonic modes, analogous to M optical channels. Unlike
an optical system, the spin-wave excitations are stationary,
stored as patterns in the large ensemble of atoms. We show
that linear optical quantum computing may be performed in
this M-mode system by describing how to perform arbitrary
linear unitary operations.

A. Operations

The Raman dressing interrogation beams (red and violet)
and ac Stark shift gradient beams (green and orange) shown
in Fig. 1 define two Hamiltonians that may be applied to either
ensemble A or ensemble B (denoted by superscripts when
necessary). In this section, we present these Hamiltonians and
discuss how they lead to linear controllability.

First, the ac Stark shift gradient Hamiltonian in the Raman
system is

Ĥ� =
M−1∑
x=0

h̄�2
ac(x)

4δac
â†

xâx. (5)

With a choice of �2
ac(x) ∝ x, this Hamiltonian allows arbitrary

shifts in momentum kA and kB and has a corresponding unitary
that we denote �̂:

�̂ =
M−1∑
x=0

[
n∑

l=1

(|gl〉 〈gl | + e2π ix/M |el〉 〈el |)
]
. (6)

The behavior of �̂ is similar to other gradient quantum mem-
ories using collective ensembles [47,48].

In this proposal, atom-cavity interactions are governed by
the Raman dressing lasers. We assume that |δ2| � �2, so
that the collective atom-cavity interaction is dispersive, with
Hamiltonian

Ĥk
0 = − h̄�2

2

4δ2
b̂†

0b̂0, (7)

where �2 and δ2 are the effective coupling strength and detun-
ing for the two-photon transition [Eq. (2)]. The atom-cavity
Hamiltonian [Eq. (7)] is derived in the Appendix.

When the Raman dressing lasers, with Rabi frequencies
�A

2 and �B
2 , are applied simultaneously to ensemble A and

ensemble B, a spin-wave beam-splitter Hamiltonian results,

ĤBS = − h̄�2
2

4δ2

(
b̂†A

0 + b̂†B
0

)(
b̂A

0 + b̂B
0

)

= a

(
1 1

1 1

)
, (8)

for a ≡ −h̄�2
2/(4δ2), where the second line has been written

in the (|bA
0〉 , |bB

0 〉) basis. ĤBS can be verified as a beam-splitter
Hamiltonian by again calculating the unitary evolution 	̂ =
e−iĤBSt/h̄, which can be written as

	̂ = 1

2

(
1 + 1e−2ita −1 + 1e−2ita

−1 + 1e−2ita 1 + 1e−2ita

)
. (9)

B. Linear optical quantum computing

Most importantly, the two-mode beam splitters HBS, in
combination with the momentum displacement operators �̂

and spin-wave phase shifts Ĥk
0 , create a fully connected graph

of spin-wave modes [Fig. 3(c)], sufficient for linear control-
lability in the register of 2M modes [40]. This construction
of efficient linear controllability is one of the key results
of this work, since linear controllability and memory read-
out are precisely the two requirements for universal linear
optical quantum computing [49]. This approach has a fur-
ther advantage experimentally in that any of the M2 possible
beam splitters may be accomplished in constant (independent
of M) time, although there is a disadvantage that multiple
beam splitters cannot be run in parallel. Next, we discuss a
general proof of linear controllability that does not require
two separate ensembles and discuss alternative beam-splitter
constructions.

IV. QUANTUM PROCESSING WITH ONE ENSEMBLE

A. Controllability proof

So far in this paper, we have focused on using two atomic
ensembles and performing beam splitters between spin waves
in each. This is a simple experimental realization, but it is
not fundamentally necessary for linear controllability. We now
present a general proof that phase shifts alone are sufficient
for controllability, even with one ensemble. For the general
proof, we allow ourselves to utilize Hamiltonian generators
|ax〉 〈ax|, with x = 0, . . . , M − 1, and |b0〉 〈b0|, where |ax〉 =
â†

x |ggg · · · 〉 and |b0〉 = b̂†
0|ggg · · · 〉. These generators corre-

spond to the applications of phase shifts in position space and
momentum space.

A necessary and sufficient condition for controllability on
the underlying M-dimensional Hilbert space is that our M + 1
Hamiltonian terms generate the (M2 − 1)-dimensional Lie
algebra su(M ) [50,51]. Working in the |ax〉 basis, we first
construct all the M − 1 diagonal generators by taking linear
combinations of |ax〉 〈ax|. We construct half [i.e., M(M −
1)/2] of all the off-diagonal generators by considering, for
j 	= l ,

[[|b0〉 〈b0| , |a j〉 〈a j |], |al〉 〈al |]

∝ 1√
M

[|b0〉 〈al | − |al〉 〈b0| , |a j〉 〈a j |]

∝ − 1

M
(|al〉 〈a j | + |a j〉 〈al |). (10)

We construct the remaining M(M − 1)/2 off-diagonal gener-
ators by considering

1

M
[|al〉 〈a j | + |a j〉 〈al | , |al〉 〈al |]

= 1

M
(i |a j〉 〈al | − i |al〉 〈a j |). (11)

The generators synthesized in Eqs. (10) and (11) are precisely
the off-diagonal beam-splitter generators that are not typically
accessible in spin-wave quantum memories. Note that we have
only used the |b0〉 momentum-space phase shift. However, the
off-diagonal elements are reduced by a factor of 1/M. For
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this reason, although the Ĥk
0 ∼ |b0〉〈b0| phase shift generator

is sufficient for controllability, the beam-splitter interactions
become weaker as the system size M grows. Accomplishing
arbitrary unitary dynamics would require pulse sequences
that grow unfavorably with M. Next, we present a different
Hamiltonian generator that allows us to implement spin-wave
beam splitters in a single ensemble that alleviates this delete-
rious scaling, showing that arbitrary two-mode beam splitters
can be implemented in constant time, even in the large-M
limit.

B. Numerically optimized beam splitters

Since controllability is possible without two ensembles
in principle, it is worthwhile to describe a construction that
achieves efficient linear controllability in a single ensemble.
Unlike in the previous section, we will work here in the mo-
mentum basis |bk〉. A beam splitter between spin-wave modes
b̂ j and b̂l can be generated by the Hamiltonian

ĤBS
jl ∝ (|b j〉 + |bl〉)(〈b j | + 〈bl |), (12)

with j 	= l . Expanding out the state |b j〉 + |bl〉 shows that
this Hamiltonian corresponds to both phase modulation and
amplitude modulation across the spin wave:

|b j〉 + |bl〉 = 1√
M

M−1∑
x=0

(e2π i jx/M + e2π ilx/M ) |ax〉 (13)

due to the summation of the complex amplitudes at each site.
For this reason, we are not able to apply this Hamiltonian di-
rectly using only phase shifts. This is one reason that previous
experiments have not achieved complete controllability in a
spin-wave register.

In order to overcome this challenge, we propose to imple-
ment a similar Hamiltonian that is generated using only phase
shifts but nonetheless yields efficient unitary controllability.
The modified Hamiltonian is

Ĥ ′
jl ∝ |b′〉 〈b′|, (14)

|b′〉 = 1√
M

M−1∑
x=0

exp[i arg(e2π i jx/M + e2π ilx/M )] |ax〉. (15)

Ĥ ′
jl only applies the phase component of the beam-splitter

Hamiltonian ĤBS
jl . This Hamiltonian may be constructed using

only phase shifts, by turning on the cavity coupling Hamil-
tonian Ĥk

0 [Eq. (7)] to a spin-wave state with the nontrivial
phase arg(e2π i jx/M + e2π ilx/M ), instead of the k = 0 mode.
Experimentally, this would be done in a two-step process,
first applying the phase modulation and then turning on the
cavity coupling. The modified beam-splitter Hamiltonian Ĥ ′

jl
does not generate an exact two-mode beam splitter on its
own. However, using Ĥ ′

jl in conjunction with the two other

available Hamiltonians Ĥj ∝ |b j〉 〈b j | and Ĥl ∝ |bl〉 〈bl | in a
multipulse sequence allows us to do so. Next, we present the
procedure to numerically and analytically generate a precise
two-mode beam splitter using Ĥ ′

jl .

The three operators Ĥ ′
jl , Ĥj , and Ĥl define a three-level

system with basis states |b j〉, |bl〉, and |b∗〉. |b∗〉 is defined

FIG. 4. Beam splitters with a single ensemble. (a) The off-
diagonal matrix element β is plotted for the optimized momentum-
space beam splitter Ĥ ′

jl . β remains large for all values of M,
indicating an effective beam splitter, and approaches a constant value
4/π 2 for large M (solid gray line). (b) β is plotted for M = 115 and
j = 0 vs l , indicating that beam splitters are possible for all values
of l − j. Slight variation in β is observed for values of l − j that are
multiples of a large divisor of M, evident in the plot for values of l
that are multiples of 5 and 23.

so that |b∗〉, |bl〉, and |b j〉 form an orthonormal basis of the
three-dimensional space spanned by |b′〉, |b j〉, and |bl〉. To
construct |b∗〉, we subtract from |b′〉 its projections on |b j〉
and |bl〉 and normalize the result.

Efficiently generating a beam splitter requires the gen-
erating Hamiltonian Ĥ ′

jl to have large off-diagonal element

β = 〈bl | Ĥ ′
jl |b j〉. We write Ĥ ′

jl in the basis (|b j〉 , |bl〉 , |b∗〉):

Ĥ ′
l j =

⎛
⎜⎝

α β∗ γ ∗

β ε ζ ∗

γ ζ θ

⎞
⎟⎠. (16)

The element β describes the beam-splitter strength. In
Fig. 4(a), we plot the magnitude of β for the Ĥ ′

jl Hamiltonian
(purple) as a function of M for j = 1 and l = 8. This plot
shows that Ĥ ′

jl can be used to generate an effective beam
splitter at large M, since β remains at a value of nearly 0.4.
Figure 4(b) displays the magnitude of β for M = 115 as a
function of l for j = 1. The exact values of the elements of Ĥ ′

jl
depend on j, l , and M, but critically, they remain large for all
values and approach the value of 4/π2 for large M, shown as
a solid dark line in Figs. 4(a) and 4(b). The resulting value of
4/π2 is derived by calculating 〈bl |b′〉 (or, equivalently, 〈b j |b′〉)
for large M. For values where l − j are a multiple of a large
divisor of M, departures from the nominal value β = 4/π2 are
observed. For example, small deviations at multiples of 5 and
23 can be observed in Fig. 4 for M = 115 where 23 and 5 are
the only nontrivial divisors of 115. In cases such as this, the
exact Hamiltonian that depends on l and j may be calculated
from Eqs. (12) and (13).
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TABLE I. Approximate numeric rotation angles for each unitary
of the optimized 50-50 beam splitter in Eq. (19).

i θi/2π

1 0.347136
2 0.222136
3 0.222136
4 0.125
5 0.652864
6 0.652864
7 0.777864

For large M, when the value of l − j is not related to a large
integer divisor of M, the Hamiltonian Ĥ ′

l j becomes

Ĥ ′
l j =

⎛
⎜⎜⎜⎜⎝

4/π2 4/π2
√

4
π2

(
1 − 8

π2

)
4/π2 4/π2

√
4
π2

(
1 − 8

π2

)
√

4
π2

(
1 − 8

π2

) √
4
π2

(
1 − 8

π2

)
1 − 8

π2

⎞
⎟⎟⎟⎟⎠.

(17)

Importantly, in the large-M limit, Ĥ ′
l j becomes independent of

l , j, and M.
To generate exact beam splitters, we numerically optimize

amplitudes in an interleaved pulse sequence. The desired 50-
50 beam-splitter unitary is

Û BS = 1√
2

⎛
⎜⎝

1 i 0

i 1 0

0 0
√

2

⎞
⎟⎠. (18)

For large M, we find that Û BS can be achieved in a seven-pulse
sequence of the form

Û BS = Û ′
l j (θ7) · Ûl (θ6) · Ûj (θ5)

· Û ′
l j (θ4) · Ûl (θ3) · Ûj (θ2) · Û ′

l j (θ1), (19)

where each unitary is derived from its respective Hamilto-
nian: Ûl (θ ) = e−iĤl θ , Ûj (θ ) = e−iĤ jθ , and Û ′

l j (θ ) = e−iĤ ′
l jθ .

The solutions for the rotation angles {θ1, . . . , θ7} are given
analytically in the Supplemental Material [52]. The approx-
imate numerical values are shown in Table I. For large M, this
solution is valid for arbitrary values of j and l as long as l − j
is not a multiple of a large integer divisor of M.

The key achievement of this construction is that exact
two-mode beam splitters may be achieved between any two
spin-wave modes in constant (independent of M) time, even
for large M. This type of connectivity is unique relative to
most optical setups where usually only two-mode beam split-
ters operating between adjacent modes are implemented. In
the future, other useful beam-splitter constructions may be ob-
tained by considering phase-modulation theory, using phase
modulation and single-mode phase shifts to create arbitrary
unitary operations. Investigations into other experimentally
convenient tools for linear control will remain an area for
further research.

V. OPERATIONAL FIDELITY

We now assess the operational fidelities of our proposal
due to various sources of error. First, we calculate the size
of fundamental sources of error present in the atomic spin-
wave processor. These errors, present for any implementation
using optical qubits in a cavity, arise from atomic saturation
and atomic emission into the cavity and into free space. Next,
in Sec. V B, we discuss additional technical sources of error
that will likely arise in the cold-atom implementation.

A. Fundamental beam-splitter errors

In this section, we briefly discuss the scale of fundamental
errors that arise in the beam-splitter operation ĤBS,

ĤBS = −h̄
�2

4δ

(
b̂†A

0 + b̂†B
0

)(
b̂A

0 + b̂B
0

)
. (20)

Three sources of error are considered: atomic saturation
(Sec. V A 1), free-space emission (Sec. V A 2), and cavity
emission (Sec. V A 3).

1. Atomic saturation

Atomic saturation induces error in a spin-wave beam split-
ter through the introduction of anharmonicity that leads to
deviations from a linear beam splitter. The scaling of this
error can be derived from the Holstein-Primakoff transforma-

tion [46], Ĵ+ = √
Nb̂†

0

√
1 − b̂†

0 b̂0

N , Ĵ− = √
N

√
1 − b̂†

0 b̂0

N b̂0. The
atom-cavity Hamiltonian of Eq. (7) can then be written as

Ĥk
0 ∝ b̂†

0b̂0 − b̂†
0b̂†

0b̂0b̂0

N
. (21)

If we assume that mode b̂0 is occupied by m excitations, the
relative size of the second term (the error) of this Hamilto-
nian scales as m/N . This Hamiltonian leads to the following
equation of motion describing b̂0:

˙̂b0 ∝ i

(
b̂0 − 2

N
b̂†

0b̂0b̂0

)
. (22)

The second (error) term in Eq. (22) leads to an erroneous
phase accumulation in b̂ of magnitude 2(m − 1)/N , which
leads to a beam-splitter error (1 minus fidelity) of EM ∼
(m − 1)2/N2. For the unitary beam splitters and phase shifts
we consider here, the loss in fidelity due to anharmonicity
always scales quadratically since the error is being expanded
around a minimum. For Fig. 5 (see Sec. V A 4), we assume the
worst-case scenario for the anharmonicity error, by assuming
that m scales linearly with the mode capacity M, m ∝ M.

In the future, it may be possible to devise a spin-wave
quantum computing scheme that can operate outside of the
linear regime and avoid this error. In this paper, we choose
to treat anharmonicity as an error that negatively affects the
figure of merit of the spin-wave processor in Fig. 5.

2. Free-space emission

We now consider errors due to free-space emission while
the atom-cavity coupling is turned on for the duration of
a beam-splitter operation. Atoms emit into free space with
probability P = �2T , where the beam splitter is applied for
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FIG. 5. Maximum processor capacity Mmax vs finesse f and total
atom number N . Mmax is defined as the maximal capacity M that
leads to a beam-splitter error of less than 10−3 for a single-atom
cooperativity of C = 10−4 f .

a time T ∼ δ/�2, leading to an error

EFS ∼ �δ

�2
. (23)

This error scales as the ratio of the loss rate � and the strength
of the Hamiltonian in Eq. (7). This error decreases for smaller
detunings δ.

3. Cavity emission error

Next, we calculate the error that results from atoms emit-
ting into the cavity mode during a beam-splitter operation. For
a far-detuned cavity, the emission rate �c into the cavity mode
is

�c ∼ κ
�2

δ2
, (24)

where κ is the cavity decay rate and �2

δ2 represents the intra-
cavity photon number. The resulting error Ec is of order �cT
with the beam splitter being applied for T ∼ δ/�2, leading to

Ec ∼ �cT ∼ κ

δ
. (25)

This error improves with larger detunings δ, which may be
increased up to the cavity free spectral range (FSR): δmax ∼
FSR. Therefore the smallest fractional error in a beam splitter
or collective phase shift reduces to Ec ∼ 1/ f for an optical
cavity with finesse f . However, the optimum detuning is one
that sets EFS and Ec equal. Optimal detunings such as this
are common in atom-cavity processes [53]. In this case, the
optimum is

δopt ∼ �

√
κ

�
=

√
NCκ. (26)

At the optimum detuning, the errors are

EFS ∼ Ec ∼ 1/
√

NC. (27)

These errors are summed to evaluate the maximum capacity
in Fig. 5.

4. Capacity limits due to fundamental errors

The beam-splitter errors are dependent on the total spin-
wave processor capacity M. We now calculate the maximum
capacity M that can be achieved while maintaining a single
beam-splitter error of less than 10−3.

The total error E = EM + EFS + Ec is optimized (min-
imized) at a detuning δopt = κ

√
NC, where EFS ∼ Ec ∼

1/
√

NC. In Fig. 5, we plot the maximum capacity Mmax at
which the total error E is less than 10−3 for a cavity with
single-atom cooperativity C = 10−4 f and finesse f . In the
white region of the plot, the error E is above 10−3 even for
M = 1. This region corresponds to 2/

√
NC > 10−3. Since the

maximum possible detuning is given by the free spectral range
(FSR) δ ∼ FSR = κ f , large finesse f > 103 is also required to
achieve E < 10−3. Importantly, for less-than-state-of-the-art
experimental values of N ∼ 5 × 105 and f ∼ 5 × 105, the
error is E < 10−3 even with a capacity of over M = 103. For
larger atom numbers, Mmax > 104 is possible. Current atom-
cavity experiments used to generate large amounts of atomic
spin squeezing [54,55] commonly operate with NC > 105, a
value that would already access errors below 1%.

B. Technical sources of error

1. Effect of momentum displacement errors

First we consider the effect of small-amplitude errors in
the momentum displacement operator �̂. This operator works
correctly when the amount of phase shift leads to an inte-
ger change in the momentum index. We consider the effect
of small imperfections ε in the amplitude of this operation,
which results in a noninteger momentum k → k + 1 + ε. The
error η� is calculated to be

η� = 1 − |〈bk+ε |bk〉|2

= 1 −
∣∣∣∣∣ 1

M

M∑
j=1

e2π iε j/M

∣∣∣∣∣
2

≈ π2ε2, (28)

in the limit of small ε and large M. The loss of quantum fi-
delity is second order in the error ε. However, nonetheless, the
�̂ operation will require good amplitude control. More com-
plex pulse sequences that are amplitude independent to higher
order—similar to those used in nonlinear magneto-optical
rotation (NMOR), pulsed spectroscopy, dynamic decoupling,
and optimal control [56–58]—may be useful to eliminate this
error in experimental settings.

2. Errors from variation in atom number

The goal of this apparatus will be to achieve an approxi-
mately constant atom number per site, N/M. However, some
variation will likely remain. We estimate the errors from this
variation. In the case of nonuniform atom number per site,
the cavity dressing interaction is rewritten using a nonuniform
projector |b′

0〉

Hk∗
0 = h̄�2

2

4δ2
|b′

0〉 〈b′
0|, (29)

|b′
0〉 =

M−1∑
j=0

√
n′

j

N
|a j〉, (30)

|a j〉 = 1√
n′

j

n′
j−1∑

l=0

|gl〉〈el |, (31)
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where n′
j = n(1 + ε j ) is the erroneous factor describing the

nonuniform atom number at site j and the errors ε j are as-
sumed to sum to zero. With atom-number variation, this cavity
coupling Hamiltonian is not equivalent to Hk

0 ∝ |b0〉〈b0|. The
cavity interaction leads to a phase shift in a new mode |b′

0〉,
a mode that is not trivially decomposable into the orthogonal
basis. Assuming that the orthogonal basis must be maintained
for the desired operations, this leads to an error of

ηN = 1 − |〈b0|b′
0〉|2 ≈ 1

M

M−1∑
j=0

ε2
j

4
(32)

for small errors ε j . ηN will likely be dominated by static
inhomogeneities in atom number and shot-to-shot fluctua-
tions. Well-designed atom loading techniques and real-time
feedback can be used to reduce atom-number fluctuations and
inhomogeneities below 1% [55], but dealing with nonuniform
ensembles may require additional work in the future.

Additional static errors may arise as well, for example, due
to the nonzero extent of each array site or inhomogeneous
coupling of the atoms to the cavity due to the radial and
axial extent. These errors follow the scaling of Eq. (32), and
initial estimates indicate that these errors will also be small.
Importantly, decoherence errors due to nonzero array site
width do not grow with capacity. However, overall, further
technical improvements will be needed to mitigate technical
sources of error as they are encountered. Static errors, such
as the ones mentioned in this section, may be corrected using
compensation techniques in the pulses or perhaps appropriate
redefinition of the basis.

C. Initialization time

Initialization of single-photon excitations in the spin-wave
memory may be achieved by several different methods. Here,
we consider probabilistically creating, in rapid succession,
single excitations in a large array of momentum eigenstates.
The level diagram for this write process is shown in the inset
of Fig. 6(b). The level scheme is the inverse of the diagram in
Fig. 1 and requires one additional longitudinal cavity mode,
which can easily be selected with the frequency of the ini-
tialization laser (also called the write laser). The initialization
laser must counterpropagate relative to the dressing laser to
maintain phase matching of both the read and write photons
into the cavity mode [37].

Memory initialization is accomplished using the standard
atomic memory heralded write process into the |b0〉 mode
[59], followed by a unit displacement �̂, repeated until a large
fraction of the spin-wave modes are initialized. It is important
to keep the probability of double excitation low, since such
errors are not detected by heralding. In atomic memories, the
double-excitation error η2 is proportional to the write prob-
ability p1, η2 ∝ p1, meaning that the write probability must
be kept small [60]. However, when excitations are initialized
within an M-mode register, the standard double-excitation
error η2 due to atomic emission into free space is amplified.
Normally, the full error from the write process ηw is of scale
η2 [60]. However, in an M-mode spin-wave register, each
mode gains an independent error of scale η2 for every write

FIG. 6. (a) Initialization sequence. Excitations are written into
ensemble A and transferred to ensemble B to prevent compounding
errors. (b) Approximate initialization time for 1000 single-photon
excitations in the ensemble for a 2-cm-length optical cavity. The
initialization time is limited by both the cavity lifetime [green dot-
dashed line, given by 1000/(ηwκ)] and atomic excited state lifetime
[blue dashed line, given by 1000/(ηw�)] with the total time shown
in orange (solid curve). The level diagram for memory initialization
is shown in the inset.

process, so that the total error in each mode compounds to a
larger value ηw ∼ Mη2.

In order to overcome this unfortunate scaling and recover
the original scaling ηw ∼ η2, we propose a modified heralded
initialization scheme that works in the two-ensemble configu-
ration. The pulse sequence is displayed in Fig. 6(a). By writing
excitations into a single ensemble (chosen to be mode b̂A

0
here), the excitation can be initialized and transferred with a
low-error beam-splitter operation into ensemble B. Ensemble
A can be cleared with a standard optical pumping pulse (la-
beled “clear”), before subsequent excitations are written. The
optical pumping prevents errors in the initial write procedure
from compounding in later steps.

In Fig. 6(b), we plot the approximate initialization time
required to initialize 1000 modes. The speed limits for
the memory write process are dictated by the excited state
linewidth � and the cavity linewidth κ . Using these rates, and
maintaining a single write error ηw ∼ η2 ∼ p1 of less than
0.001, we plot the estimated time T1000 required to create 1000
single excitations in Fig. 6 versus cavity finesse f :

T1000 ∼ 1000

ηw

(
1

�
+ 1

κ

)
. (33)

The cavity linewidth κ is related to finesse by κ = 2πc/(l f ),
where c is the speed of light and l is the round-trip cavity
length. We see that the cavity lifetime becomes the limiting
factor at a finesse of around 2000, for a cavity length of
2 cm, assuming ideal detection efficiency. Although the ini-
tialization time for 1000 excitations and f = 104 is still well
below the maximum atomic lifetimes observed in spin-wave
memories [45], this speed limit may be a significant concern
for future high-capacity memories in high-finesse cavities.
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Deterministic initialization methods involving single photon
sources or Rydberg excitations are also possible and elimi-
nate the speed bottleneck. Such schemes have already been
demonstrated in a laboratory setting [61,62].

D. Readout

Another important ingredient for the spin-wave quantum
processor is readout. Readout is required for almost all pho-
tonic processes and is necessary for linear optical quantum
computing. The readout process is not a focus of this pa-
per, because spin-wave readout has been studied in depth in
many previous quantum memory experiments [3,12,63]. In
particular, atom-cavity systems demonstrate the most efficient
readout of any type of quantum memory with intrinsic readout
probabilities of well over 90% possible [3]. Many effective
quantum networking protocols are stable to inefficiencies at
this level [60]. In scenarios when many spin-wave modes
need to be read out in succession, compounding errors may
arise, equivalently to the initialization process. In this case, a
readout transfer method, equivalent to that of Fig. 6(a), may
be used.

E. Technical challenges

Additional technical challenges will likely arise when
building an experiment to accomplish this proposal. The ap-
plication of the Raman dressing laser results in a shift in the
cavity resonance frequency by amount �ωc ≈ Ngg2/δ1 and a
shift in the two-photon resonance frequency ωeg by amount
�ωeg ≈ �2

d/δ1. These shifts will need to be taken into account
to achieve accurate dynamics in the two-photon system. To
achieve effective operations, the laser detunings may need to
be actively stabilized to account for these cavity and state
shifts, as has been done in recent entanglement-generation
experiments [54,55].

Rapidly addressing a large capacity of quantum bits or
modes is a ubiquitous challenge in nearly every experimental
quantum platform. Here, we achieve that end simply, using a
single optical cavity mode and an off-resonant light source.
One advantage of the proposal is that the �̂ operator can be
implemented with light that is at a frequency far from atomic
resonance, with no stringent wavelength or power require-
ments. We envision a fast electro-optic system operating in
the near infrared, which can operate with switching ranges of
well over 1 GHz.

Overall, we are optimistic that holographic spin-wave ex-
citations in a cavity-coupled ensemble may become a useful
platform for quantum information processing. The system
combines several attractive characteristics including efficient
readout into a single optical cavity mode, large capacity, and
universal processing capabilities able to achieve high fidelity.
In the long term, many quantum information processing de-
vices will likely require networked operation, and atom-cavity
systems will be an architecture to achieve this.

VI. SQUEEZING AND CONTINUOUS-VARIABLE
PROCESSING

Atom-cavity experiments have recently generated record
amounts of squeezing, entanglement useful for enhancing

quantum sensors [54,55]. Squeezing of 20 dB, or a fac-
tor 100 in variance, is now achievable in systems similar
to the one proposed here. Additionally, recent optical ex-
periments have shown how to use squeezing as a powerful
computational resource to create dual-rail cluster states [64].
Cluster states are particularly appealing for future quantum
processors because they are deterministic and are amenable
to powerful continuous-variable quantum error correction
schemes [25,65]. By creating an M-mode processor, we now
open the possibility to combine the cluster state concept
with large amounts of atomic spin squeezing to build a
continuous-variable atomic processor. Here, we describe how
to implement the optical dual-rail cluster state scheme in the
atom-cavity system. The cold-atom system leads to numerous
advantages relative to the photonic implementation since the
qubits are stationary and amenable to feedback and high-
fidelity processing with no losses.

There are several viable paths to create spin squeezing
in the spin-wave memory including one- and two-axis twist-
ing and quantum nondemolition (QND) measurements. For
example, the squeezing operation may be described by an
operator Ŝ(α) = exp[ 1

2 (αb̂2
0 − αb̂†2

0 )] that squeezes only the
k = 0 mode. In this case, the mode operators are transformed
as

b̂0 → Ŝ†(α)b̂0Ŝ(α) = b̂0 cosh(α) − b̂†
0 sinh(α), (34)

b̂k → Ŝ†(α)b̂k Ŝ(α) = b̂k (k 	= 0). (35)

Critically, the operator Ŝ does not affect modes b̂k with k 	= 0,
which are orthogonal to b̂0. This operation allows us to create
independently squeezed spin-wave modes. In the next sec-
tion, we present a description of how to create an M-mode
squeezed state where each k mode is spin squeezed. This
state, when passed through 2M − 1 beam splitters, transforms
into a dual-rail cluster state that may be used for universal
quantum computation. This method is a direct adaptation of
seminal results in the optical regime, creating continuous-
variable cluster states of light [66].

A. Cluster state generation

Spin-wave continuous-variable quantum computing can be
achieved using the same basis as linear optical spin-wave
computing. We consider a similar protocol to experiments in
the optical regime that have generated dual-rail cluster states
with over 10 000 nodes [66].

A continuous-variable cluster state is a large entangled
state defined by nullifiers, analogous to the stabilizers of a
discrete cluster state [23]. The nullifiers are joint operators
that describe noise projection of nearest-neighbor spin waves.
The nullifiers in our spin-wave case are

εx
k = X̂ A

k + X̂ B
k + X̂ A

k+1 − X̂ B
k+1, (36)

ε
p
k = P̂A

k + P̂B
k − P̂A

k+1 + P̂B
k+1, (37)

for any mode k (modulo M), where X̂ A
k and P̂A

k are the quadra-
ture operators for the b̂A

k spin wave. Optical experiments have
achieved entanglement, as detected by a reduction in |〈εx〉|2
and |〈ε p〉|2 below a value of 1/2. Current demonstrations
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FIG. 7. Cluster state generation scheme. (a) Optical diagram
for generating a spin-wave cluster state. QND measurements are
sequentially applied to squeeze each momentum state. Using two
beam splitters and a phase shift �̂A, a dual-rail cluster state is cre-
ated. Additional unshown momentum shift operators �̂A and �̂B are
necessary to transfer spin waves in and out of the k = 0 interac-
tion mode. (b) Example pulse sequence for generating a dual-rail
cluster state with M = 2. Pulse colors are set to match Fig. 1,
and the squeezing pulses are labeled with the affected initial value
of k.

have reached values of around −6 dB [66]. State-of-the-art
spin squeezing may be able to reduce these quadrature values
to −20 dB or smaller, potentially reaching the fault-tolerant
threshold for Gottesman-Kitaev-Preskill (GKP)-type quantum
error correction [25,67].

An experimental diagram is shown in Fig. 7. Two en-
sembles (labeled “A” and “B”) are loaded into the bow-tie
cavity, one on each side. The ensembles each provide a
basis of momentum states |bA

k 〉 and |bB
k 〉 for 0 � k < M.

The goal is to use collective cavity quantum nondemolition
(QND) measurement or another technique [54,55] to gen-
erate spin squeezing in each momentum mode, and then
use collective cavity interactions to emulate the beam split-
ters required to transform the squeezed modes into a cluster
state.

First, cavity QND measurements or other squeezing op-
erations Ŝ are performed on each individual spin wave to
create a stream of squeezed states. Spin waves are transferred
into and out of cavity coupling with the �̂A and �̂B opera-
tors. Using the well-known construction for creating dual-rail
cluster states [66], two-mode beam splitters ĤBS and phase
shifts �̂A and �̂B are sufficient for creation. Unlike optical
cluster states, the atomic dual-rail cluster state is stationary
with long coherence time, and hence amenable to real-time
computation.

In Figs. 8(a) and 8(b), we estimate the maximum capacity
M of the spin-wave processor for storing a large cluster state.
The amount of squeezing and the capacity will be limited by
several factors, including the beam-splitter errors and the abil-

FIG. 8. Capacity M of a spin-wave cluster that can achieve 20 dB
of spin squeezing simultaneously in each mode (SM = 100) as a
function of the atom number N and squeezing Rs, the quantum noise
reduction in each mode. M is optimized at Rs = eSM (pink line).

ity for the atom-cavity system to generate squeezing in the first
place. However, one fundamental and dominant limitation is
the capacity of the atomic system to store spin-squeezed states
without a subsequent reduction in coherence due to nonlin-
earity (i.e., curvature of the Bloch sphere leading to nonlinear
projections of the Bloch vector onto a 2D plane).

State-of-the-art atom-cavity experiments can generate spin
squeezing with spectroscopic enhancement near a factor of
100 [54,55]. Spectroscopic enhancement, or the amount of
squeezing, is defined as the entanglement-generated improve-
ment in the sensor’s ability to resolve a quantum phase. For
a single spin wave, we write the spectroscopic enhancement
[53]

Ss = RsC2, (38)

where R−1
s = 2 Var(Ĵz )/N is the reduction in variance of the

expectation value of the collective spin operator Ĵ along a
particular axis (chosen as z here). We choose Rs to be the
inverse of noise reduction so that it scales proportionally to the
spectroscopic enhancement Ss. C is the spin coherence of the
ensemble defined as C = J/(N/2), where J ≡ 〈Ĵ〉 is the ex-
pectation value of the total projection of Ĵ . J can have values
between N/2 (full spin coherence) and 0 (no spin coherence).
Ss > 1 is both a witness for atomic entanglement as well as
a measure of the entanglement-generated improvement in the
quantum sensor.

B. Multimode squeezing capacity

We now consider simultaneous equal squeezing in all M
modes of an ensemble. In this case, we reduce the quantum
noise in all spin-wave modes by an equal amount Rs. Ss is
defined to be the squeezing that would be observed in a spin
wave, if no other modes were squeezed. However, when all
modes are squeezed at the same time, we observe a lower
amount of squeezing in each mode, which we denote SM .
To calculate SM , we must include the additional reduction
in total C due to Bloch sphere curvature, which leads to a
compounding reduction in squeezing in every mode. Then,
the observed squeezing of a single mode in the presence of
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squeezing in all other modes is

SM ≈ Rs

M−1∏
j=0

C2
j , (39)

where Cj is the spin coherence in each mode that additionally
limits the total squeezing. The coherence of each mode is
limited by quantum back action and the curvature of the Bloch
sphere [68]. Each spin wave has a root-mean-square (rms)
back action around the Bloch sphere of angle θrms = θSQL

√
Rs,

where θSQL = 1/
√

N is the standard quantum limit in radians
(see, for example, Ref. [55]). This leads to a fundamental
loss in coherence in each spin wave, due to Bloch sphere
curvature:

Cj ≈ e−θ2
rms/2 ≈ e−θ2

SQLRs/2. (40)

By combining Eqs. (40) and (39), the maximum M-mode
squeezing is found to be

SM ≈ Rse
−Mθ2

SQLRs . (41)

Quantum inefficiency and other decoherence sources that
would cause further loss of coherence are not considered.

In Fig. 8, we plot the value of M that is achieved for
SM = 100, that is, 20 dB of squeezing versus N and Rs. The
maximum capacity Mopt is found at Rs = eSM . The maximized
value is

Mopt = N

2eSM
. (42)

A processor reaching the levels of performance in Fig. 8
would be state of the art and likely useful for deterministic
quantum networking and entanglement distribution. Further-
more, 20 dB of squeezing in each mode would reach or nearly
reach the fault-tolerant threshold [25] for continuous-variable
quantum computing.

VII. CONCLUSION

Overall, deterministic continuous-variable quantum com-
puting has significantly better prospects for scalability than
linear optics with single-quanta excitations, because the lin-
ear optics scheme requires a significant resource overhead to
achieve deterministic processing [25]. However, in the near
term, small-scale linear optical processing inside of a multi-
plexed quantum memory may be a significant boon toward
realizing a quantum repeater with medium to high speed of
entanglement generation over long distances (over 100 km)
[11,69]. Multiplexing and high memory capacity constitute
one of the key attributes that will allow repeaters to overcome
the significant slowdown that results from the long path de-
lay between repeater stations. Access to linear controllability
within the memory will open up the possibility of small-scale
processing and more advanced error correction. In particular,
our results have shown that experiments with cavity finesse
near 105 and large atom number are likely to achieve reason-
ably high fidelity computing (F > 99%) with over 100 modes.

More work will be necessary, but initial calculations [70]
show that multiplexed spin-wave memories offer immense
promise for realistic, high-speed quantum communication.
Meanwhile, in the continuous-variable scheme, the creation
of spin-wave entangled states and the study of their uses for
quantum sensing and networking applications should be one
of the first experimental goals.

The multimode quantum processor presented here is also
ideal for certain classes of quantum sensing problems that
involve data distributed between multiple modes. The spin-
wave processor utilizes 2M independent modes within the
two N-atom ensembles, yielding enhanced capability for cer-
tain classes of measurements. Recent work has shown that
distributed quantum sensors enable new sets of applications
involving measurements of extended systems [71–74], and the
spin-wave processor may extend these protocols to sensing
and receiving data distributed into multiple spatial or temporal
modes.
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APPENDIX: ATOM-CAVITY HAMILTONIAN

In this Appendix, we derive the effective detuned atom-
cavity Hamiltonian. The atom-cavity system is governed by
the Tavis-Cummings Hamiltonian

Ĥc = h̄δĉ†ĉ + h̄g(ĉ† Ĵ− + ĉ Ĵ+), (A1)

where ĉ is the cavity field operator and Ĵ− = ∑N−1
i=0 |gi〉〈ei|

and Ĵ+ = ∑N−1
i=0 |ei〉〈gi| are the collective atomic lowering and

raising operators. The Hamiltonian is written in the rotating
frame of the atomic transition. The Heisenberg equations of
motion are

˙̂c = −iδc − igĴ−, (A2)

˙̂J− = −igNĉ. (A3)

In the limit of large detuning, |δ| � g
√

N , we adiabatically
eliminate the cavity to obtain

ĉ ≈ −g

δ
Ĵ−. (A4)

Inserting this into Eq. (A3), we obtain

˙̂J− = i
g2

δ
NĴ−, (A5)
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which can be generated by an effective Hamiltonian

Ĥk
0 = −h̄

g2

δ
Ĵ+Ĵ−. (A6)

If the number of excitations is low, the atomic raising and
lowering operators may be approximated as harmonic creation

and annihilation operators, giving rise to

Ĥk
0 = −h̄

�2

4δ
b̂†

0b̂0, (A7)

where b̂0 ≈ Ĵ−/
√

N and � = 2g
√

N is the vacuum Rabi
splitting.
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V. Vuletić, Any-to-any connected cavity-mediated architecture

for quantum computing with trapped ions or Rydberg arrays,
PRX Quantum 3, 010344 (2022).

[44] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an
oscillator, Phys. Rev. A 64, 012310 (2001).

[45] Y. O. Dudin, L. Li, and A. Kuzmich, Light storage on the time
scale of a minute, Phys. Rev. A 87, 031801(R) (2013).

[46] T. Holstein and H. Primakoff, Field Dependence of the Intrinsic
Domain Magnetization of a Ferromagnet, Phys. Rev. 58, 1098
(1940).

[47] M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C.
Buchler, Unconditional room-temperature quantum memory,
Nat. Phys. 7, 794 (2011).
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