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Due to the variety of tools available to control atomic, molecular, and optical

(AMO) systems, they provide a versatile platform for studying many-body physics,

quantum simulation, and quantum computation. Although extensive efforts are

employed to reduce coupling between the system and the environment, the effects

of the environment can never fully be avoided, so it is important to develop a

comprehensive understanding of open quantum systems. The system-environment

coupling often leads to loss via dissipation, which can be countered by a coherent

drive. Open quantum systems subject to dissipation and drive are known as driven-

dissipative systems, and they provide an excellent platform for studying many-body

nonequilibrium physics.

The first part of this dissertation will focus on driven-dissipative phase transi-

tions. Despite the nonequilibrium nature of these systems, the corresponding phase



transitions tend to exhibit emergent equilibrium behavior. However, we will show

that in the vicinity of a multicritical point where multiple phase transitions inter-

sect, genuinely nonequilibrium criticality can emerge, even though the individual

phase transitions on their own exhibit equilibrium criticality. These nonequilibrium

multicritical points can exhibit a variety of exotic phenomena not possible for their

equilibrium counterparts, including the emergence of complex critical exponents,

which lead to discrete scale invariance and spiraling phase boundaries. Furthermore,

the Liouvillian gap can take on complex values, and the fluctuation-dissipation the-

orem is violated, corresponding to an effective temperature which gets “hotter” and

“hotter” at longer and longer wavelengths.

The second part of this dissertation will focus on Rydberg atoms. In particular,

we study how the spontaneous generation of contaminant Rydberg states drastically

modifies the behavior of a driven-dissipative Rydberg system due to the resultant

dipole-dipole interactions. These interactions lead to a complicated competition

of both blockade and anti-blockade effects, leading to strongly enhanced Rydberg

populations for far-detuned drive and reduced Rydberg populations for resonant

drive.
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Chapter 1: Introduction

1.1 Motivation

In the past few decades, the fields of atomic, molecular, and optical (AMO)

physics have undergone dramatic changes. These changes have been driven by rapid

improvements in the ability to both prepare many-body systems, control the un-

derlying physics governing their behavior, and to measure the resultant physics

that emerges. These platforms include ultracold atoms in optical lattices [1, 2] or

optical tweezers [3–5], trapped molecules [6–8], trapped ions [9, 10], and cavity ar-

rays [11–13]. Collectively, these platforms have provided new avenues into exploring

various forms of many-body quantum physics, a pursuit which had been previously

confined primarily to condensed matter systems. These include new methods for

studying quantum criticality [14,15], topological phases of matter [16–19], quantum

magnetism [20–22], and a variety of other types of many-body quantum systems [23].

Important new directions include long-range interactions [24–26] as well as the re-

alization of photonic interactions and phases [13, 27]. As these systems provide

an excellent platform for quantum simulation, it is natural that they also provide

excellent platforms for quantum computation. Neutral atoms and trapped ions in

particular are two of the most viable candidates for the creation of scalable quantum

1



computers [28–30], both of which have demonstrated high fidelity entangling gates

experimentally [31–35].

Although extensive efforts are used to isolate AMO systems, in general there is

usually some form of coupling to the environment. Thus when studying many-body

physics in these systems, it is important to take into account the fact that these

are open quantum systems. For example, if a quantum computation entails exciting

atoms to their excited states, spontaneous emission can lead to errors in the final

output. However, although the open nature of AMO systems is often viewed as a

detrimental feature which tends to destroy interesting quantum effects, it can often

lead to incredibly rich forms of nonequilibrium physics, which can provide new tools

for quantum computation, quantum state generation, and the realization of novel

quantum phases [36–40]. The aim of this dissertation will be to understand the

types of novel nonequilibrium many-body physics which can arise in a particular

type of open quantum system: driven-dissipative systems.

The remainder of this chapter will be structured as follows. The next three sec-

tions will provide introductory discussions of several key topics which are discussed in

this dissertation: driven-dissipative systems, critical behavior, and Rydberg atoms.

The final section will provide an outline for the following chapters.

1.2 Driven-Dissipative Systems

Driven-dissipative systems are systems which are defined by a competition of

coherent drive and incoherent dissipation [36]. As a result of these two processes,

2



these systems generally will exhibit nonequilibrium dynamics which cannot be easily

captured by the powerful tools developed for equilibrium systems, such as thermo-

dynamic ensembles. Instead, these systems are best understood in terms of the

master equation, which takes the general form

∂tρ = −i[H, ρ] +D[ρ], (1.1)

where ρ is the density matrix of the system [41, 42]. There are two parts to the

master equation. The first term describes the evolution of the system due to the

Hamiltonian H. In the absence of the second term, the master equation simply

describes the familiar unitary evolution associated with quantum mechanics. The

second term, then, corresponds to the effects of incoherent processes which cannot

be described by H, such as dissipation, which destroy the unitary evolution of the

system.

In general, there are often two important assumptions that can be made about

the environment which gives rise to D. The first is that the correlation time τc of

the environment is much smaller than any relevant dynamics of the system, i.e. the

evolution is Markovian. This was implicitly assumed in Eq. 1.1, where the evolution

of ρ depends only on the current state of the system. The second is that the

environment is much larger than the system, so the effect of the system on the

environment itself is small. Together, these two assumptions constitute the Born-

Markov approximation [41, 42]. Under this approximation, D takes the Lindblad

form

D[ρ] =
∑
n,m

Dnm

(
dnρd

†
m −

1

2
{d†mdn, ρ}

)
, (1.2)

3



where Dnm is a positive semidefinite Hermitian matrix, {dn} defines an orthonormal

basis which spans the Hilbert space of the system, and {A,B} = AB + BA is the

anticommutator [42]. In the most familiar case of dissipation, the second of these

two terms corresponds to loss of population and coherence, while the first of these

two terms captures the population gain due to these loss processes, thus preserving

the trace Trρ = 1. In driven-dissipative systems, these Lindblad terms will typically

describe single site loss processes. As a simple example, let us consider dissipation

at a rate γ from the excited state |e〉 to the ground state |g〉 of a two-level system.

The corresponding Lindblad evolution takes the form

ρ̇ = γ

(
σ−ρσ+ − 1

2
{σ+σ−, ρ}

)
, (1.3)

where σα are Pauli matrices and σ−|e〉 = |g〉. Defining ραβ = 〈α|ρ|β〉, the resulting

master equation is

ρ̇gg = γρee, ρ̇ee = −γρee, ρ̇eg = −γ
2
ρeg, (1.4)

where the evolution of ρgg and the evolution of ρee, ρeg come from the first and

second terms in Eq. (1.3), respectively. From this, we see explicitly how the second

term of Eq. (1.3) gives rise to population loss in the excited state as well as loss

of coherence between the excited and ground states, while the first term captures

the fact that the loss in the excited state population will lead to an increase in the

ground state population.

In driven-dissipative systems, an important concept is the steady state, which

describes the long-time behavior of the system. In terms of the master equation,

4



the steady state is defined by

ρ̇ = 0. (1.5)

In the simple case of dissipation discussed above, the steady state is simply ρss =

|g〉〈g|, i.e. the system is in its ground state at long times. Naturally, such states are

not particularly interesting, nor is the relaxation to the steady state. This is where

the importance of the coherent drive becomes evident. By including both a coherent

drive and dissipation, the long-time behavior of the system can not be understood in

terms of familiar unitary dynamics or the “ground state” of some dissipative process.

Instead, it must be understood in terms of a competition between these two distinct

forms of dynamics, giving rise to the possibility of long-time dynamics that cannot

be understood in terms of equilibrium or unitary processes. For example, consider

introducing a resonant drive via the Hamiltonian,

H = Ωσx, (1.6)

where Ω is the Rabi frequency describing the drive strength. Then the resulting

steady state of the system is

ρss =
1

γ2/4 + 2Ω2

 γ2/4 + Ω2 −iΩγ/2

iΩγ/2 Ω2

 . (1.7)

Even in this simple example of a driven-dissipative two-level system, we can see

immediately that the steady state is not governed according to a Boltzmann distri-

bution ρ ∝ e−H/T for some temperature T , as the off-diagonal elements are complex.

Thus once we move to an interacting many-body context, new forms of nonequi-

librium physics may emerge that behave qualitatively different from the familiar

5



context of equilibrium systems.

1.3 Critical Phenomena

An emergent notion in many-body systems is macroscopic phases of matter

[43,44]. Although the microscopic behaviors of a many-body system can in principle

be endlessly complex, they tend to arrange themselves in such a way that different

parts of the system exhibit nearly identical macroscopic properties. Additionally,

as the parameters of a given system are modified, although certain quantitative

properties of the system tend to undergo changes, the qualitative features of the

system nevertheless remain unchanged, and it is these qualitative features that define

the phase of the system. The most familiar examples of phases are those of water,

particularly water vapor, liquid water, and ice. Although water vapor and liquid

water are both fluids, ice possesses a crystalline structure and is thus qualitatively

different from either fluid. However, as the temperature of liquid water is reduced,

it freezes and becomes ice; gradual quantitative changes lead to a sudden qualitative

change. This change from one phase to another describes a phase transition.

There are in general two ways such a phase transition may occur. The first is

a first-order or discontinuous phase transition. In this case, at the phase transition

both phases coexist, although they continue to behave qualitatively differently. As

the phase transition is crossed, the system discontinuously changes between these

two phases, resulting in discontinuities in the thermodynamic properties of the sys-

tem. The liquid-gas phase transition is one such example, where the density discon-

6



tinuously changes as the phase transition is crossed. In contrast, the second type

of phase transition is a second-order or continuous phase transition. In this case,

the two phases are identical at the phase transition, and one continuously changes

to the other. This too can occur in the liquid-gas transition, although only at the

critical point where the first-order phase transition line terminates. Another well-

known example is the Curie point of ferromagnets, where the material continuously

develops a nonzero magnetization as the temperature is decreased.

Near a continuous phase transition, the system undergoes a change in which

the behaviors of all parts of the system collectively change together. Since the same

changes are happening at macroscopic length scales, phase transitions are in general

a highly-correlated process. Away from the phase transition, correlations typically

fall off exponentially via

C(x1,x2) ≡ 〈φ(x1)φ(x2)〉 − 〈φ(x1)〉〈φ(x2)〉 ∝ e−|x1−x2|/ξ, (1.8)

where φ is the order parameter which captures the ordering of the system, xi are

position coordinates, and ξ is the correlation length. The correlation length describes

the scale over which fluctuations in the system are highly correlated. When two

parts of the system are at distances larger than ξ, their fluctuations are effectively

independent of one another. Generally, this correlation length is small and on the

order of the inter-particle spacing of the system. However, at the critical point where

the entire system undergoes a macroscopic, continuous change, the correlation length

ξ diverges. In the case of the first-order phase transitions, ξ typically remains finite.

One of the key features of the divergent correlation length in a continuous

7



(a) (b)

Figure 1.1: Illustration of block-spin renormalization procedure using 3 × 3 blocks
where white (black) denotes the spin is +1 (−1). (a) Majority of spins are white,
leading to an effective white spin. (b) Majority of spins are black, leading to an
effective black spin.

phase transition is that microscopic details of the system become less and less im-

portant as the critical point is approached. This is because for distances smaller than

the correlation length, everything is highly correlated, so microscopic differences on

these length scales are less important from the perspective of macroscopic length

scales. A physically intuitive way to understand this is provided by Kadanoff’s

block-spin renormalization group [45]. In this approach, one considers separating

the system into “blocks” of nearby spins which are described by the average prop-

erties of their constituents, washing out the microscopic variations (see Fig. 1.1).

Such a process can be iterated, allowing microscopic variations to be increasingly

ignored at larger and larger length scales. As long as these length scales are smaller

than the correlation length, the system will continue to look qualitatively the same.

Physically, this process is analogous to “zooming out” to look at the behavior of

the system at larger length scales. Once these length scales are on the order of the

system size, only macroscopic properties remain, such as the average spin of the

system.

As an example, let us consider the classical Ising model on a square lattice,
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(a) (b) (c)

Figure 1.2: Block-spin renormalization of Ising model. The top figures illustrate a
typical system state prior to renormalization. The bottom figures illustrate the sys-
tem state after applying block-spin renormalization using 9× 9 blocks and rescaling
each new large block to the original block size. (a) In the ferromagnetic phase, the
renormalization procedure leads to a more paramagnetic state. (b) At the critical
point, the renormalization procedure leads to a similar state with large correlations.
(c) In the disordered paramagnetic phase, the renormalization procedure leads to a
more disordered state.

whose Hamiltonian is

H = −J
∑
〈ij〉

σiσj, (1.9)

where J is the nearest-neighbor interaction strength, σi ∈ {−1, 1} is a classical

spin at site i, and 〈ij〉 indicate that i and j are nearest neighbors [46]. At large

temperatures T � J , the system is paramagnetic and the spins do not align. At

small temperatures T � J , the system is ferromagnetic and the spins all align to

±1. At a critical temperature Tc, these two phases continuously change from one to

the other, corresponding to a continuous phase transition. In Fig. 1.2, we illustrate

Kadanoff’s block renormalization group for a typical spin configuration at three

temperatures: one in the paramagnetic phase T > Tc, one in the ferromagnetic phase

T > Tc, and one at the critical point T = Tc. After applying the renormalization
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procedure with 9 × 9 spin blocks, we see that while certain microscopic details

are lost, the system still possesses the properties associated with its phase. For

T < Tc, the alignment of the spins becomes more apparent, while for T > Tc, the

system looks more disordered, losing microscopic structure. However, for T = Tc

the system continues to exhibit highly correlated structures that possess the same

statistical properties.

If we were to continue this process for much larger system sizes, this trend

would continue: the ferromagnetic phase would look more ferromagnetic, the para-

magnetic phase would look more paramagnetic, and the critical point would con-

tinue to display correlated structures. This behavior in which the system remains

unchanged is indicative of scale invariance, i.e. the system continues to look the

same no matter how much the relevant length scales are increased. Although this

discussion has been very qualitative, it may be formalized more rigorously, and it

is this scale invariance which is at the heart of the various renormalization group

techniques that have been developed in the past century [47–52].

By examining how the system changes as the relevant length scales are in-

creased, it is possible to ascertain various properties of the system. In the para-

magnetic and ferromagnetic phases, the system “flows” under this RG procedure

to a corresponding scale invariant point: a fully paramagnetic phase and a fully

ferromagnetic phase. In both cases, the scale invariant point is fully uncorrelated

with ξ = 0. This is because for any finite correlation length, this RG procedure will

eventually only consider length scales larger than the initial correlation length, so

these microscopic correlations are lost. The crucial exception to this case is natu-
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rally the critical point itself, where the correlation length is infinite. In this case,

no matter how large the length scale is, correlations will continue to play a crucial

role. Thus scale invariant points of the RG flow, which we shall refer to as fixed

points from here on out, correspond to phases when ξ = 0 and continuous phase

transitions when ξ =∞.

At the critical point where ξ = ∞, the description of the correlations in

Eq. (1.8) is no longer adequate. Rather than the emergence of a constant correlation

at arbitrary distances, many properties of the system can be described according to

power laws because, unlike exponential decay, power laws are scale invariant. If we

assume that microscopic fluctuations are completely unimportant, then these power

laws can be obtained via simple dimensional analysis considerations. For example,

at the phase transition of the three-dimensional version of the above classical Ising

model, this would imply the correlation function takes the form

C(r) =
1

r
f(r/ξ), (1.10)

for r = |x1 − x2| and some dimensionless function f . However, although often a

good approximation, this form is not quite correct. This is because continuous phase

transitions are defined by the importance of highly-correlated fluctuations, which

take place on all length scales including microscopic length scales. As a result, we

cannot fully ignore the effect of these fluctuations, and the form of the correlation

function is slightly modified to

C(r) =
1

r1+η
f(r/ξ, a/ξ), (1.11)

where η, known as an anomalous dimension, captures modifications to the power-
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law scaling due to fluctuations and a describes the microscopic length scale. Thus

the power laws describing the phase transition will be composed of contributions

from both simple scaling analysis as well as corrections due to fluctuations. The set

of exponents which describe these power laws are known as critical exponents [43].

In fact this power-law behavior extends into a small region around the critical

point as well. While the points in this region will eventually flow to the fixed

point corresponding to their phase, they also possess very large correlation lengths.

Thus until the RG procedure reaches length scales comparable to ξ, the correlation

length is effectively infinite and the system will be well-described by the fixed point

associated with the critical point. As a result, power laws emerge which describe

properties of the system as a function of the distance from the critical point. For

example, the magnetization M in the ferromagnetic phase and the correlation length

scale as

M ≡
〈

1

N

∑
i

σi

〉
∝ (Tc − T )β, ξ ∝ |T − Tc|−ν , (1.12)

where β and ν are the corresponding critical exponents and N is the total number

of spins.

While the emergence of power-law behavior at a critical point is an interesting

feature, on its own it does not appear to give deeper insight into the nature of phase

transitions. For example, if instead of the isotropic Ising model in Eq. (1.9) we were

to consider an anisotropic Ising model with Hamiltonian

H = −Jx
∑
〈ij〉x

σiσj − Jy
∑
〈ij〉y

σiσj, (1.13)

where Jx 6= Jy and 〈ij〉x, 〈ij〉y indicate i, j are nearest neighbors in the x- and y-
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directions respectively, then we might expect a different set of power laws associated

with the corresponding phase transition. However, contrary to this expectation this

is not the case. Even when some amount of anisotropy is introduced, the critical

exponents governing the phase transition remain the same [53, 54]. Moreover, this

equivalence of critical behavior goes well beyond connecting models with similar mi-

croscopic structure. For example, the critical point of the liquid-gas phase transition

exhibits critical exponents that are identical to that of the Ising models above [55].

In spite of the fact that water and ferromagnets are completely different systems mi-

croscopically, they behave the same when near the critical point. Thus we see that

critical points can exhibit universal properties that connect dramatically different

systems.

This universality of behavior is a consequence of the fact that RG captures

macroscopic features at large length scales. As a result of this, many microscopic

details become unimportant, and properties which can persist at infinitely large

scales, such as symmetries, will be the primary factors in determining the critical

properties of the system. This universal behavior motivated the concept of univer-

sality classes, where two phase transitions are said to fall into the same universality

class if they exhibit the same critical properties [56]. Thus by determining a set of

critical exponents for a given phase transition, the corresponding universality class

may be identified along with the critical properties that had not been determined.

In contrast, if there is no universality class associated with a new set of critical

exponents, this indicates the existence of a new universality class. Although a large

variety of universality classes have been identified and understood in equilibrium
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contexts, universality in nonequilibrium settings is less developed [57]. One of the

primary goals of the work in this dissertation is to develop an understanding of

universality in driven-dissipative phase transitions, which is presented in Chapter 2.

1.4 Rydberg Atoms

Rydberg atoms are atoms whose valence electron(s) has been excited to large

principal quantum numbers n [58]. At these high principal numbers, the valence

electron is weakly bound to the nucleus and is generally far from the nucleus and core

electrons, as schematically illustrated in Fig. 1.3. As a result of this, these highly-

excited states display a variety of exaggerated properties, including long lifetimes

and strong, long-range interactions. In this section, we will discuss the origin of

some of these properties and why they position Rydberg systems as an excellent

platform for quantum computation and simulation.

Due to the fact that the valence electron is typically far from the nucleus,

Rydberg atoms can be understood as hydrogen-like atoms to excellent approxima-

tion, and many of the concepts used to understand the hydrogen atom carry over

to Rydberg atoms. The first important scaling behavior is in the energy levels of

the Rydberg states

Enlj = − Ry

(n− δnlj)2
= − Ry

n∗nlj
2 , (1.14)

where l is the orbital angular momentum quantum number, j is the total angu-

lar momentum (excluding nuclear spin) quantum number, and Ry is the Rydberg

constant. The δnlj term is known as the quantum defect, and it is only weakly de-
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pendent on n, j. The quantum defects account for the fact that the Rydberg state

is only approximately a hydrogen-like atom. For l = 0, these are typically no larger

than 3 to 5 and quickly fall towards 0 as l is increased. Since typically n � δnlj,

in the rest of this section we will drop the subscript nlj and consider the Rydberg

properties in terms of n∗. The second important scaling behavior is that of the

dipole matrix elements. At large values of n∗, the radial wavefunction of the excited

state is very similar to that of nearby Rydberg states, so the dipole matrix elements

scale with n∗ as

〈n|r|n′〉 ≈
√
〈n|r2|n〉 ∝ n∗2, (1.15)

when n′ ≈ n. From this we see that like the atomic radius of the Rydberg state,

the dipole matrix elements between nearby Rydberg states scales as n∗2. To put

this in perspective, if the ground state radius is on the order of one Bohr radius

a0 ≈ 5.3 × 10−2 nm, then the radius of a n∗ = 50 Rydberg state is on the order of

130 nm, which is comparable to the lattice spacing of optical lattices. When n� n′,

these dipole matrix elements decrease as

〈n|r|n′ ± 1〉 ≈ n∗−3/2. (1.16)

Using the scaling behavior of the energy levels and the dipole matrix elements,

we may identify the resulting scaling behavior of several other important properties

of Rydberg atoms. Here, we will focus on two in particular: Rydberg state lifetimes

and Rydberg interactions. According to Fermi’s golden rule, the rate of spontaneous

emission between two states is given by

Γn→n′ =
4αω3|〈n|r|n′〉|2

3c2
, (1.17)
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Figure 1.3: Qualitative illustration of a Rydberg atom. A single valence electron is
excited to a large principal quantum number n so that it generally far away from
the nucleus and core electrons.

where α is the fine structure constant, ω is the energy difference between |n〉 and

|n′〉, and c is the speed of light. When n ≈ n′, then Eq. (1.14) indicates that

ω3 ∝ n∗−9, so Γn→n′ ∝ n∗−5. In contrast, when n′ corresponds to a lowly excited

state, then ω is approximately the ionization energy of the ground state and has no

scale dependence. Thus in this case, Γn→n′ ∝ n∗−3. When considering all of the

different states that |n〉 can decay to, these low-lying states will dominate, and the

lifetime scales as

τ =
1∑

n′ Γn→n′
∝ n∗3. (1.18)

From this, we see that for large n, these lifetimes can be quite large. For example,

for an s state with n = 50, we find τ ≈ .1 ms [59].

Next, we consider interactions between different Rydberg atoms. At distances

larger than the Rydberg state radius, Rydberg atoms interact via a dipole-dipole

interaction

Vdd =
µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)

r3
, (1.19)

where µi is the electric dipole moment of the ith Rydberg atom and r is the dis-

placement vector between the two Rydberg atoms. Since the dipole matrix elements
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are proportional to n∗2, the dipole-dipole interaction scales as

Vdd ∝
n∗4

r3
. (1.20)

In the absence of an electric field, which gives each state a permanent dipole moment,

〈ψψ′|Vdd|ψ′′ψ′′′〉 6= 0 only when l = l′′ ± 1 and l′ = l′′′ ± 1 due to parity. This

means that atoms in the same state do not experience dipole-dipole interactions.

Resonant dipole-dipole interactions involving two Rydberg states will be particularly

important in this dissertation. These interactions take the form

V =
C3

r3
(1− 3 cos2 θ12)|ψψ′〉〈ψ′ψ|+H.c., (1.21)

where C3 = e2|〈ψ|r|ψ′〉|2 and θ12 is the angle r makes with the quantization axis.

These off-diagonal “flip-flop” interactions cause the Rydberg states of the two atoms

to coherently swap.

Although two atoms in the same Rydberg state do not experience dipole-

dipole interactions, they experience a van der Waals (vdW) interaction through off-

resonant dipole dipole interactions. According to second-order perturbation theory,

two atoms in the same state experience the interaction

VvdW =
∑
ψ′ψ′′

|〈ψ|Vdd|ψ′〉〈ψ|Vdd|ψ′′〉|2
2Eψ − Eψ′ − Eψ′′

, (1.22)

where |ψ′′〉 = |n′′l′′j′′m′′j 〉 and Eα is the energy of state |α〉. The numerator will be

largest and the denominator will be smallest when n′, n′′ ≈ n. Thus the numerator

scales like n∗8/r6 while the denominator scales like the energy level spacing of nearby

states, i.e. n∗−3. Altogether, the vdW interactions scale like

VvdW ∝
n∗11

r6
. (1.23)
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(a) (b)

Figure 1.4: Illustration of Rydberg (a) blockade and (b) antiblockade for diagonal
Rydberg interactions where |g〉 (|r〉) denotes the ground (Rydberg) state. The
excitation of the Rydberg atom r shifts the effective energy level of the Rydberg
state for the red (blue) atoms by an interaction strength V , preventing resonant
(facilitating off-resonant) excitations, leading to Rydberg blockade (antiblockade).

From this, we see that as n is increased, the vdW interactions rapidly increase,

allowing for strong, long-range interactions between atoms in the same Rydberg

state.

Two important concepts when studying Rydberg atoms are blockade and an-

tiblockade (also known as facilitated resonance), which emerge when external fields

are used to excite more than one atom to a Rydberg state [60–63]. In both cases,

consider an external drive that couples the ground state to a Rydberg state. When

the first Rydberg state is excited, it will effectively shift the energy level of the cor-

responding Rydberg state of the nearby Rydberg atoms by this interaction strength.

Blockade occurs when the drive is resonant, and the effect of the Rydberg interaction

is to make the drive effectively off-resonant, blockading the subsequent excitations

of Rydberg atoms (see Fig. 1.4a). In contrast, antiblockade occurs when the drive is

off-resonant. In this case, when the Rydberg interaction is properly chosen, it can

make the drive effectively resonant, thus facilitating the excitation of a subsequent
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Rydberg atom (see Fig. 1.4b). In the case of diagonal vdW interactions, the re-

sulting interaction shifts will add together. However, for off-diagonal dipole-dipole

interactions, the effect of multiple interactions is more complicated. Chapter 3 will

discuss how for off-diagonal dipole-dipole interactions, a complex interplay of both

blockade and antiblockade processes can emerge.

1.5 Outline of Dissertation

In Chapter 2, we consider more generally the behavior of multicritical points in

driven-dissipative systems where two order parameters describe the system’s critical

behavior. We show that near such a multicritical point, new nonequilibrium criti-

cality can emerge. In particular, using dynamical perturbative RG, we show that

in addition to several well-known equilibrium universality classes, a new nonequilib-

rium universality class emerges. We study this new universality class and identify

several novel behaviors that are not typically possible in conventional equilibrium

systems.

In Chapter 3, we consider an example of an experimentally-motivated driven-

dissipative many-body Rydberg system. In particular, we consider how blackbody

radiation from the driven Rydberg s state to nearby (in n) p states induces strong,

long-range dipole-dipole interactions. These interactions give rise to a complex in-

terplay of blockade and antiblockade effects, leading to reduced populations for res-

onant drive and strongly enhanced populations for far detuned drive. We study this

problem theoretically using two different approaches and compare their performance
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against experimental results in Ref. [64].
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Chapter 2: Nonequilibrium fixed points of coupled Ising models

2.1 Introduction

The increasing control over atomic, molecular, and optical (AMO) systems has

provided new avenues into studying many-body physics that are not accessible in

conventional condensed matter systems. In particular, driven-dissipative systems,

defined by the competition between a coherent drive and dissipation due to the

coupling to the environment, have emerged as a versatile setting to investigate non-

equilibrium physics [36]. They are very naturally realized by a variety of emerging

AMO quantum simulation platforms ranging from exciton-polariton fluids [65–70],

to trapped ions [71,72], to Rydberg gases [73–76], to circuit-QED platforms [12,77].

At long times, these systems approach a nonequilibrium steady state due to the

interplay of drive and dissipation. The steady states can potentially harbor novel

phases and exhibit exotic dynamics. Situated far from equilibrium, understanding

the properties of these steady states requires methods beyond those suitable in

or near equilibrium. The quest to realize and characterize macroscopic phases of

these nonequilibrium systems has sparked a flurry of theoretical and experimental

investigations.

Given their nonequilibrium dynamics, driven-dissipative systems are expected
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to exhibit universal, critical properties different from their equilibrium counterparts.

In spite of this, it has become increasingly clear that an effective temperature, and

thus an effectively classical equilibrium behavior, emerges in a large class of driven-

dissipative phase transitions [78, 79]. In particular, the equilibrium Ising univer-

sality class and more generally the model A dynamics of the Hohenberg-Halperin

classification—describing the critical behavior of a non-conserved order parame-

ter in or near equilibrium—have emerged in a variety of driven-dissipative phase

transitions; these include bosonic/photonic Bose-Hubbard systems [80–83], various

driven-dissipative spin models near an Ising [84–90], antiferromagnetic [87–95], or

limit-cycle phase [88–91], as well as driven-dissipative condensates consisting of po-

laritons [96, 97]. A possible exception is a two-dimensional driven-dissipative con-

densate, where it has been argued that the nonequilibrium Kardar-Parisi-Zhang

(KPZ) universality class governs the long-wavelength dynamics [98, 99]. While ex-

isting experiments are consistent with an effective thermal behavior [100,101], KPZ

physics is expected to emerge under different experimental conditions. In general,

an important goal of the field is to identify whether generic driven-dissipative sys-

tems can escape the pull of an effective equilibrium behavior and instead give rise

to new nonequilibrium universality classes. In particular, it has proved difficult to

identify nonequilibrium universal behavior which is genuinely of a quantum nature;

see Refs. [102–104] for recent proposals to achieve nonequilibrium quantum critical-

ity and Ref. [105] for numerical evidence of an equilibrium quantum critical point

in a driven-dissipative system.

An effective equilibrium behavior is not special to driven-dissipative quantum
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systems. In driven-diffusive classical systems too, where the drive as well as the

dynamics are entirely classical, effective equilibrium seems to be remarkably robust.

For instance, an Ising-type dynamics governing a non-conserved order parameter is

proved to be stable against all dynamical, nonequilibrium perturbations [106]. More

generally, the universal dynamics of various models in the Hohenberg-Halperin clas-

sification [56] are shown to be robust against nonequilibrium perturbations which vi-

olate detailed balance [107–116]; truly nonequilibrium behavior emerges under more

constrained dynamics, for example, in the presence of a conserved order parameter

in an anisotropic medium [117–121]. In much of the previous work, situations have

been considered where the phase transition is governed by a single order parameter.

Due to the restriction that this places on the dynamics, a description based on an

effective Hamiltonian often becomes available, hence the emergence of an effective

equilibrium behavior.

In this work, we consider a driven-dissipative model that gives rise to multi-

critical points defined by the joint transition of two order parameters. In particular,

we investigate the interplay of two phase transitions, each of which has been studied

extensively in driven-dissipative settings: One is the many-body analog to optical

bistability, and in the other a sublattice symmetry is spontaneously broken, lead-

ing to an antiferromagnetic ordering. A schematic illustration of this combination is

shown in Fig. 2.1. With two order parameters, the nonequilibrium dynamics is much

less constrained than that of equilibrium and an immediate identification of an effec-

tive Hamiltonian is no longer possible. Remarkably, we show that a new, genuinely

nonequilibrium universal behavior emerges at the multicritical point, giving rise to
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Figure 2.1: Schematic illustration of the physical setup. The contrast of the two
checkerboard (light yellow and dark blue) sublattices defines the antiferromagnetic
order parameter. On each sublattice, there is a low-population (low nph; solid curve)
and a high-population (high nph; dashed curve) steady state, corresponding to the
bistability order parameter. The large arrow indicates the drive, while the wavy
arrows represent the dissipation. J and V denote the hopping and nearest-neighbor
interactions, respectively.

exotic critical behavior and dynamics. Our proposal to observe nonequilibrium crit-

ical behavior relies on tuning the system parameters (such as drive and detuning,

which are easy to control) to a multicritical point. In fact, the driven-dissipative

setting of our model can be experimentally realized using cross-Kerr nonlineraties

in cavity arrays [93, 94,122].

In order to determine the critical behavior, we will employ the Keldysh-

Schwinger and functional integral formalism suited for the nonequilibrium setting

of driven-dissipative systems [82, 87, 96–99, 102, 103, 123–127]. While the presence

of two order parameters prevents an immediate Hamiltonian description, the long-

wavelength universal behavior—and whether or not the macroscopic behavior es-

capes an equilibrium fixed point (EFP)—is determined by investigating how the
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parameters evolve under a dynamical version of renormalization-group (RG) tech-

niques [128].

The remainder of this chapter is organized as follows. In Sec. 2.2, we present

the main results of this chapter and a summary of the nonequilibrium critical prop-

erties emerging in our driven-dissipative model. In Sec. 2.3, we discuss the phase

diagram of the model and identify the multicritical points where two distinct phase

transitions meet. In Sec. 2.4, we present the RG analysis and show that a pair of

new classical nonequilibrium fixed points (NEFPs) emerge that exhibit a variety of

novel critical behaviors. In Sec. 2.5, we discuss an experimental setting based on

cavity arrays to realize the multicritical points of our model. Finally, in Sec. 2.6,

we conclude this chapter with a discussion of possible future directions which are

motivated by the results of our work. In Appendix A, we present technical details

omitted from the main text.

2.2 Main Results

In this section, we present the main results of this chapter. We consider

a driven-dissipative model which displays two distinct phase transitions, each of

which arise generically in various settings. The first one is a many-body version

of bistability where two stable solutions arise with a low or high population of

photons (or excitation of spins). In the thermodynamic limit, the bistable region is

reduced to a line of first-order phase transitions that terminates at a critical point,

reminiscent of a liquid-gas phase transition. The second type of phase transition is
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one to an antiferromagnetic phase where the population takes different values on the

two sublattices (a/b) of the system. We shall consider a model where these phase

transitions coalesce at a multicritical point and investigate the exotic dynamics due

to the interplay of the respective order parameters. These features are provided, for

example, in a driven-dissipative model of weakly interacting bosons with nearest-

neighbor density-density interactions on a d-dimensional cubic lattice. The coherent

dynamics of the model is governed by the Hamiltonian

H =
∑
i

−∆a†iai + Ω(a†i + ai) +
∑
〈ij〉

−J(a†iaj + a†jai) + V a†iaia
†
jaj, (2.1)

where ∆ is the detuning of the drive, Ω the drive strength, J the hopping strength,

and V the strength of the nearest-neighbor interactions. The incoherent dynamics is

due to loss of bosons, characterized by the Lindblad operators Li =
√

Γai, where Γ

defines the loss rate. The (mixed) state of the system ρ evolves under the quantum

master equation

ρ̇ = −i[H, ρ] +
∑
i

LiρL
†
i −

1

2
{ρ, L†iLi}, (2.2)

until it approaches a nonequilibrium steady state at long times where ρ̇ = 0. The

interplay of the coherent drive (the linear term in the Hamiltonian) and dissipation

together with the interactions tends to give rise to bistability, while the nearest-

neighbor interactions can lead to an antiferromagnetic phase. We stress that our

general results should hold beyond the specific model considered here; for example,

the addition of on-site interactions or density-dependent hopping terms to our model

also gives rise to multicritical points whose universal properties should be indepen-

dent of the microscopic model considered. More generally, the relevant features of
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our bosonic model also arise in a variety of driven-dissipative systems including spin

models [82,86,87,89,91,93,94]. We have chosen this particular model as a minimal

driven-dissipative setting that gives rise to multicritical points, although our general

conclusions should apply to a large class of models.

Each phase transition in our model is characterized by an Ising-like order pa-

rameter (low/high density in bistability and sublattice a/b in the antiferromagnetic

transition). The simple structure of the order parameter, together with the incoher-

ent nature of the dynamics, puts a strong constraint on the universal properties of

the phase transition. Thus, it may be expected that each phase transition alone is

described by the Ising universality class that also governs the Ising-type transitions

in equilibrium. It can be argued, on more formal grounds, that this is indeed the

case. Associating the order parameter φ1 with bistability and φ2 with antiferromag-

netic ordering, their long-wavelength properties in the steady state are governed by

a thermal distribution but with respect to the effective (classical) Hamiltonians

H1 =

∫
x

D1

2
|∇φ1|2 − hφ1 +

r1

2
φ2

1 +
g1

4
φ4

1, (2.3a)

H2 =

∫
x

D2

2
|∇φ2|2 +

r2

2
φ2

2 +
g2

4
φ4

2, (2.3b)

with Di characterizing the stiffness, gi the interaction strength, ri the distance from

the critical point, and h an effective magnetic field. Note that due to sublattice

symmetry, there is no magnetic field associated with the antiferromagnetic phase.

Furthermore, the incoherent nature of the model leads to stochastic Langevin-type

dynamics of the order parameters as [128]

γi∂tφi = −δHi

δφi
+ ξi, (2.4)
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where γi is a “friction” coefficient and ξi describes Gaussian white noise with cor-

relations

〈ξi(t,x)ξj(t
′,x′)〉 = 2γiTiδijδ(t− t′)δ(x− x′), (2.5)

where Ti is the effective temperature of the system. Near equilibrium, the “friction”

coefficients γi control the rate at which the system relaxes to a thermal state via

dissipating energy and thus is a purely dynamical quantity. The noise itself is

related to the dissipation (i.e., friction) through temperature in what is known as the

Einstein relation, which itself is a consequence of the fluctuation-dissipation theorem

[128]. In the nonequilibrium context of driven-dissipative models, where there is no

intrinsic temperature, the ratio of the noise level to the dissipation can be used to

define an effective temperature at long wavelengths. Even a nonequilibrium system

that is effectively (i.e., at large scales) governed by the Hamiltonian dynamics [as in

Eq. (2.4)] is effectively in thermal equilibrium. This condition is typically satisfied

for a single Ising-like order parameter [120]. Notice that, with the appropriate

scaling of the fields φi, the effective temperatures can be set to Ti = 1. Therefore,

as long as the two order parameters are not coupled, their distribution in the steady

state is given by e−H1−H2 .

The situation is entirely different in the vicinity of multicritical points where

the two order parameters are generally coupled. Given the underlying symmetries,

the dynamics can always be brought to the form

γ1∂tφ1 = −δH1

δφ1

− g12φ1φ
2
2 + ξ1, (2.6a)

γ2∂tφ2 = −δH2

δφ2

− g21φ2φ
2
1 + ξ2. (2.6b)
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Notice that the new terms that couple the two fields respect the underlying Ising

symmetry of both order parameters. The noise correlations are given by Eq. (2.5);

we shall again exploit our freedom in scaling the fields to set T1 = T2 = 1. With the

two order parameters coupled, the condition for an effective equilibrium description

becomes much more restrictive. A thermal description requires the entire dynamics

to be described by a single Hamiltonian. This only occurs when g12 = g21, leading

to the effective Hamiltonian

H = H1 +H2 +
g12

2

∫
x

φ2
1φ

2
2, (2.7)

in which case the steady-state distribution is given by e−H. However, this will

not generally be the case, so we must consider how various parameters flow under

RG. While the microscopic (though coarse-grained) dynamics is not immediately

described by a thermal state, it could very well be the case that the RG flow pulls

the system into a thermal fixed point where g∗12 = g∗21 at macroscopic scales. Indeed,

we show that this is the case roughly when the microscopic values of the coupling

constants are both positive, i.e., when g12, g21 > 0. It is rather remarkable that

equilibrium restores itself under RG, showcasing another instance in which equi-

librium proves to be a robust fixed point even when the system is driven far from

equilibrium. This is, however, not the end of the story: We show that, when the

microscopic couplings have opposite sign (g12g21 < 0), a pair of two NEFPs emerge

where g∗12 = −g∗21. (Both EFPs and NEFPs are shown in Fig. 2.2.) Furthermore,

we will argue that for the model under consideration, the critical behavior will be

governed by one of the NEFPs. These fixed points give rise to a new nonequilibrium
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Figure 2.2: A schematic RG flow diagram projected to the g12-g21 plane. (The full
RG flow requires a 5-dimensional space; see Sec. 2.4.) In addition to the EFPs where
g12 = g21 (green circles), a pair of stable NEFPs (orange diamonds) emerge in the
sector defined by the opposite signs of g12 and g21. These new fixed points exhibit
exotic critical behavior reflecting their truly nonequilibrium nature. Filled (black)
arrows represent the stability while partial (gray) arrows indicate the expected sta-
bility of the various fixed points in different directions. Stability is known to lowest
order in ε = 4− d only in directions which preserve the ratio g12/g21. The RG flow
cannot cross the g12, g21 axes, which is represented by double lines. The stable EFP
is characterized by an emergent O(2) symmetry, while the unstable EFPs include a
biconical fixed point as well as various decoupled fixed points (which all lie at the
origin in this diagram) corresponding to combinations of Ising and Gaussian fixed
points.

universality class exhibiting a variety of exotic features that generically do not, or

even cannot, arise in any equilibrium setting. A summary of the most interesting

features, including the critical behavior, of the new NEFPs is illustrated in Fig. 2.3.

In the following subsections, we discuss these features in detail.
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2.2.1 Scaling Phenomena

In the vicinity of an RG fixed point governing a phase transition, the system

exhibits universal scaling behavior characterized by critical exponents, regardless

of the microscopic model. The scaling behavior of the correlation and response

functions at a NEFP or in its vicinity takes, respectively, the form

C(q, ω) ≡ F〈{a†(x, t), a(0, 0)}〉c/2 ∝ |q|−2+η−zC̃

(
ω

|q|z ,
r

|q|1/ν′ , P
(

log |q|
ν ′′

))
,

(2.8a)

χ(q, ω) ≡ iFΘ(t)〈[a†(x, t), a(0, 0)]〉 ∝ |q|−2+η′χ̃

(
ω

|q|z ,
r

|q|1/ν′ , P
(

log |q|
ν ′′

))
,

(2.8b)

where F denotes the Fourier transform in both space (x) and time (t) with q the

momentum and ω the frequency, the curly brackets denote the anti-commutator,

and the subscript c indicates the connected part of the correlation function. Here,

r =
√
r2

1 + r2
2 is the distance from the multicritical point, P is a 2π periodic function,

and the functions C̃ and χ̃ are dimensionless scaling functions. While in principle

the scaling behavior could be different for the two order parameters (φ1 and φ2),

we shall argue, based on a systematic RG analysis, that a stronger notion of scaling

emerges where the critical (static and dynamic) behavior and exponents charac-

terizing the two order parameters become identical. This is why we can express

either the correlation or the response function via a single scaling function (and not

one for each order parameter) with the same set of exponents. The exponents η

and η′ define the anomalous dimensions corresponding to correlation and response

functions, respectively, and z is the dynamical critical exponent characterizing the
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relative scaling of time with respect to spatial coordinates. The correlation length

ξ is described by the critical exponent ν ′ via ξ ∝ r−ν
′
. Typically, it is the exponent

ν, associated with the scaling behavior of r1 and r2, that describes the scaling of

the correlation length. However, the latter exponent becomes complex-valued at the

NEFPs, ν−1 = ν ′−1 + i ν ′′−1, with the real part determining the scaling of correla-

tion length and the imaginary part leading to a discrete scale invariance, as we shall

discuss shortly. Altogether, there are five independent critical exponents of interest:

ν ′, ν ′′, η, η′, z.

Critical points are generically associated with a continuous scale invariance

where the system becomes self similar upon an arbitrary rescaling of the momentum

and frequency. However, due to the “log-periodic” function in the scaling functions,

the correlations are self similar upon the rescaling q → b∗ q and ω → bz∗ ω for a

particular scaling factor

b∗ = e2πν′′ , (2.9)

or any integer powers thereof. Rather than a typical continuous scale invariance,

this behavior is indicative of a discrete scale invariance, which is reminiscent of

fractals, shapes that are self similar under particular choices of scaling [129]. A

schematic depiction of the correlation functions with discrete scale invariance is

shown in Fig. 2.3(a). Additionally, since the origin of the discrete scale invariance

is the scaling behavior of ri that characterize the distance from the critical point,

the phase boundaries themselves also exhibit a form of discrete scale invariance in

ri; see Fig. 2.4 and the discussion in the next subsection titled “Phase Diagram”.
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Figure 2.3: Summary of the main features of the NEFPs contrasted with effective

EFPs. (a) Schematic correlation functions. A generic continuous scale invariance

characteristic of criticality is reduced to a discrete scale invariance at the NEFP.

(b) Effective temperatures Ti representing the two order parameters as a function

of the length scale (q−1). The two temperatures become identical at long length

scales, but, while they approach a constant at the EFP, they diverge at large scales

at the NEFPs. (c) Gap closure upon approaching the critical point. ΓL denotes

the Liouvillian gap with the real part describing the relaxation rate (a.k.a. the

dissipative gap) and the imaginary part characterizing the “coherence gap”. For

the EFP, the gap can close only along the real line, indicated by the arrow. In

contrast, the gap for the NEFP can take complex values and close along any path

lying in the shaded region, making a maximum angle of π/3 with the real line. (d)

Critical exponents to lowest non-trivial order in ε = 4−d. The exponent ν, typically

associated with the divergence of the correlation length, becomes complex-valued

at the NEFPs with its imaginary part characterizing the discrete scale invariance

[cf. part (a)]. η and η′ are anomalous dimensions characterizing fluctuations and

dissipation with η 6= η′ at the NEFPs indicating the violation of the fluctuation-

dissipation theorem. z is the dynamical critical exponent.
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The critical exponents η and η′ characterize the anomalous dimensions corre-

sponding to fluctuations and dissipation, respectively. In an equilibrium setting, the

fluctuation-dissipation theorem dictates that the correlation and response functions

are related as [128]

C(q, ω) =
2T

ω
Imχ(q, ω). (2.10)

(We have assumed the classical limit of the fluctuation-dissipation theorem at low

frequencies and at a finite temperature.) In an equilibrium setting, the temperature

T is just a constant set by an external bath and thus is scale invariant. Therefore,

the overall scaling behavior of the correlation and response functions is identical

apart from the dynamical scaling (due to ω−1 on the rhs of the above equation) set

by the critical exponent z. This in turn puts a constraint on the critical exponents

as η = η′ for effectively equilibrium phase transitions. However, we find η 6= η′

at the NEFPs, indicating the violation of the fluctuation-dissipation theorem and

resulting in a new exponent characterizing the nonequilibrium nature of the fixed

point. This in turn results in an effective temperature that remains scale-dependent

at all scales. Inspired by the fluctuation-dissipation theorem, we define an effective

“temperature” as

Env[C(q, ω)] =
2T eff(q, ω)

ω
Env[Im [χ(q, ω)]]. (2.11)

To factor out the log-periodic nature of the correlation and response functions,

we have made a convenient choice by postulating a fluctuation-dissipation relation

between the envelope (Env) functions of the correlation and response functions. This

relation can be defined via either the upper or lower envelope functions. We can then

35



identify the scaling behavior of the effective temperature at the NEFP. Interestingly,

the system gets “hotter” and “hotter” at longer and longer scales, characterized by

an effective temperature that scales as T eff ∼ |q|η−η′ at long wavelengths and fixed

ω/|q|z. Of course, the divergence of the effective temperature at long wavelengths

does not imply an infinitely energetic state; rather, it reflects the fact that, at longer

wavelengths, the correlation function is increasingly larger compared to the response

function than one would expect in an equilibrium setting based on the fluctuation-

dissipation theorem. This behavior is illustrated in Fig. 2.3(b) individually for the

two effective temperatures corresponding to the two order parameters. At long

wavelengths, these effective temperatures become identical to each other and to

T eff(q, ω) defined above. Finally, the values of the critical exponents at the NEFPs

are provided to the lowest non-trivial order in ε = 4− d in Fig. 2.3(d).

2.2.2 Phase Diagram

The critical point described by the new fixed points is a tetracritical point,

illustrated in Fig. 2.4. In the vicinity of the tetracritical point (with h = 0), there

are four different phases where none, one, or both order parameters undergo a

continuous phase transition. A particularly exotic feature of the phase diagram is

that it exhibits spiraling phase boundaries. This leads to the discrete scale invariance

of the phase diagram itself, a property that follows from the same feature of the

scaling functions in Eq. (2.8). In contrast, depending on the microscopic model,

the EFPs can give rise to either a bicritical point—in which case there will not be
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DisDis

AFAFB+AFB+AF

BB

Figure 2.4: Phase diagram associated with the NEFPs of the nonequilibrium Ising
model of two coupled fields for h = 0. The white region indicates the disordered
phase, B (red vertical shading) corresponds to the phase where the bistability order
parameter undergoes spontaneous symmetry breaking, AF (blue horizontal shading)
denotes antiferromagnetic ordering, and B+AF (purple square shading) corresponds
to the phase where both order parameters are nonzero. The solid black lines denote
second-order phase transitions. The NEFP phase diagram exhibits logarithmic spi-
rals in the phase boundaries. The other NEFP is described by an analogous diagram
upon switching the roles of the two order parameters (B ↔ AF, r1 ↔ r2).
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a phase where both order parameters undergo a continuous phase transition—or a

tetracritical point; neither of these will exhibit spiraling phase boundaries. Note

that since the Z2 symmetry associated with the bistability transition (φ1 → −φ1)

is only an emergent one (when h = 0), the full phase diagram (including h 6= 0)

can be better described as a three-dimensional plot that also includes the first-order

phase transitions characteristic of bistability; see Fig. 2.7. The contrast between the

EFPs and NEFPs can further provide a route to experimentally identify the new

fixed points. An overview of the properties of bicritical and tetracritical points in

equilibrium systems can be found in Refs. [130–136].

2.2.3 Spectral Properties

The NEFP can be further distinguished by its particular dynamics that governs

the relaxation of the system to the steady state. In the nonequilibrium setting of

our model, the dynamics is described by the Liouvillian L via [cf. Eq. (2.2)]

∂tρ = L[ρ], (2.12)

rather than a Hamiltonian. However, in analogy with the ground state that is de-

scribed by the smallest eigenvalue of the Hamiltonian, the steady state(s) is given

by the 0 eigenvalue(s) of the Liouvillian; all the other eigenvalues of the Liouvillian

have a negative real part characterizing the decay into the steady state. Further-

more, the spectral gap of the Hamiltonian is naturally generalized to the eigenvalue

of the Liouvillian with the smallest (in magnitude) nonzero real part. We denote

this eigenvalue by ΓL. For a continuous phase transition, just like the spectral gap,
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the closing of the Liouvillian gap results in the divergence of a time scale associated

with a slow or soft mode of the dynamics. The fashion that the latter gap closes

reveals characteristic information about the nature of the phase transition. In equi-

librium phase transitions at finite temperature, this gap becomes real (i.e., purely

dissipative) as the critical point is approached. Even when the microscopic dynam-

ics is far from equilibrium, the Liouvillian gap may (and typically does) become

real, leading to effectively thermal equilibrium. In contrast, the dynamics near the

NEFPs can close away from the real axis. This indeed occurs in the doubly-ordered

phase; let Mi = 〈φi〉 6= 0 define the nonzero order parameters there and redefine the

fields as φi → φi +Mi. We then find the linearized equations of motion as

γ1∂tφ1 = −2g1M
2
1φ1 − 2g12M1M2φ2, (2.13a)

γ2∂tφ2 = −2g2M
2
2φ2 − 2g21M1M2φ1, (2.13b)

where, at the NEFPs, g∗12 = −g∗21 and g∗1 = g∗2 while we can choose γ∗1/γ
∗
2 = 1;

noise, gradient, and higher-order terms have been dropped. Due to the opposite

signs of g12 and g21 in the two equations, we find a spiral relaxation to the steady

state. This in turn is characterized by a complex Liouvillian gap—defined by a

conjugate pair of complex eigenvalues—which exhibits both a dissipative (real) and

a “coherent” (imaginary) part depending on the values of M1 and M2. We find that

when |M1| = |M2|, the angle of this complex gap relative to the real line achieves

its maximum value of π/3. This is illustrated in Fig. 2.3(c). The corresponding

mean-field relaxational dynamics is illustrated in Fig. 2.5.
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Figure 2.5: Mean field dynamics near the NEFP within the doubly ordered phase
with |M1| = |M2|. The arrows denote how the fields φi evolve in time, with four
possible steady states. At each steady state, there is a dissipative relaxation process
as well as a “coherent” rotation, resulting in a spiraling relaxation to the steady
state. Two of the steady states spiral clockwise while two spiral counter-clockwise.

2.3 Model

The representative model we have focused on is a driven-dissipative system of

weakly interacting bosons defined in Eqs. (2.1,2.2). In order to understand how this

model gives rise to bistability and antiferromagnetic ordering, we begin this section

with a detailed discussion of mean field theory and corrections, or fluctuations, on

top of the mean field solutions. Along the way, we will identify the soft modes of the

dynamics that ultimately describe the critical behavior of the multicritical point.

Finally, we conclude this section by presenting a mapping of our nonequilibrium

model to a model of coupled Ising-like order parameters with a Z2 × Z2 symmetry,

corresponding to the sublattice symmetry as well as the emergent Ising symmetry

due to bistability.
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2.3.1 Mean Field Theory

In order to analyze the phase diagram of our model, we begin with a mean-field

analysis, in which we assume different sites are uncorrelated; that is, for any two

operators Ai and Bj on neighboring sites, we have 〈AiBj〉 = 〈Ai〉〈Bj〉 [137, 138].

Additionally, we assume that individual sites are described by coherent states. While

the latter assumption follows from the former in our model, this will generally not

be the case, for example, when on-site Hubbard interactions are present. However,

a systematic path-integral formalism (adopted in subsequent sections) beyond mean

field theory is perfectly suited to analyzing the latter type of interaction. Finally, in

anticipation of the antiferromagnetic phase transition, we separate the system into

two sublattices a/b and assume each to be described by a single coherent state.

Following these assumptions and using the fact that ∂t〈O〉 = Tr(ρ̇O) for an

arbitrary operator O, the resulting mean field equations of motion are given by

iψ̇a = (−∆− iΓ/2)ψa − zJψb + zV |ψb|2ψa + Ω, (2.14a)

iψ̇b = (−∆− iΓ/2)ψb − zJψa + zV |ψa|2ψb + Ω, (2.14b)

where ψi corresponds to the coherent state 〈a〉 on sublattice i ∈ {a, b} and z is

the coordination number; from here on, we absorb z in the microscopic parameters

via zJ → J and zV → V . It is clear from these equations that the density-density

interaction behaves as an effective detuning that depends on the density of the other

sublattice. This results in a similar physics as Rydberg excitations in stationary

atoms, in which case the presence or absence of a Rydberg excitation on one site
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can either prevent (blockade) [60, 139, 140] or facilitate (anti-blockade) [141, 142] a

Rydberg excitation on a neighboring site by shifting it away or towards the effective

resonance.

Setting ψa = ψb, one can immediately see that the mean-field equations be-

come identical to those describing bistability; cf. Ref. [82] where the nonlinearity due

to the Hubbard interaction should be replaced by the density-density interactions

in this context. The emergence of bistability can be understood in simple terms:

Away from resonance, there is a low population on each site. However, once a suf-

ficient number of sites are highly excited, they begin to facilitate the excitation of

neighboring sites, resulting in a high-population steady state. This process occurs

when the shift in detuning due to interactions is comparable to the detuning. This

condition is satisfied approximately when Ω2

Γ2/4+(∆+J)2V ≈ ∆ + J, where J behaves

like an effective detuning while the product of the interaction strength V and the

non-interacting steady-state population [Ω2/(Γ2/4+(∆+J)2)] gives the interaction-

induced shift of the detuning. For Γ & ∆ + J , this reasoning becomes blurred as

the drive is effectively always on resonance due to the larger linewidth. As a result,

a finite region of bistability emerges with low- and high-population steady states.

Beyond mean field theory, the bistable region is replaced by a line of first-order

phase transitions that terminates at a critical point.

The presence of antiferromagnetic ordering in this system can be understood

by inspecting the role of the density-density interactions. Since the interaction

affects neighboring sites only, the blockade effects occur between sublattices but

not within each sublattice. For example, if one sublattice has a high population,
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it can prevent further excitations in the other sublattice. Similar to the case of

bistability, the phase boundary occurs approximately when the shift in detuning

due to interactions takes the system out of resonance. This approximately occurs

when | Ω2

Γ2/4+(∆+J)2V −∆− J | & Γ, i.e., when one sublattice is effectively more than

a linewidth out of resonance due to interactions. Unlike bistability, this process

does not break down as Γ and Ω are increased. As the decay Γ is increased, the

drive strength Ω can be further increased so that the interaction-induced shift in

the detuning compensates for the increase of the linewidth.

In order to better understand the mean-field structure of the model, it is

convenient to introduce a new set of fields corresponding to the two order parameters

as

ψB =
ψa + ψb

2
, (2.15a)

ψAF =
ψa − ψb

2
. (2.15b)

The field ψB captures the effects of bistability while ψAF describes the antiferro-

magnetic ordering. The mean-field equations can be in turn cast in terms of these

fields as

iψ̇B = (−∆− J − iΓ/2)ψB + V (ψ2
B − ψ2

AF )ψ∗B + Ω, (2.16a)

iψ̇AF = (−∆ + J − iΓ/2)ψAF + V (ψ2
AF − ψ2

B)ψ∗AF . (2.16b)

At the multicritical point, ψAF = 0 and the equation governing the steady-state

value of ψB is no different than if we had not considered antiferromagnetic ordering.

Thus, the critical values of ∆ + J , V , Ω as well as the steady-state value of ψB

are determined according to the critical point associated with bistability only. This
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leaves a single free parameter in the equation of motion for ψAF : ∆ − J . By

properly tuning the latter parameter, the antiferromagnetic phase boundary can

be manipulated so that it intersects the critical point associated with bistability.

Working in units of ∆ + J = 1, two multicritical points occur at

(∆c, Jc) =

(
1

3
,
2

3

)
or

(
2

3
,
1

3

)
,

and Γc =
√

4/3, Ωc = (2/3)3/2/
√
V ,

(2.17)

as well as Ψc =
√

2/3V e−iπ/3 as the steady-sate value of ψB at the critical point (by

virtue of symmetry, ψAF = 0 there).

The two fields ψB/AF are complex-valued, thus comprising four real (scalar)

fields. However, given the Ising nature of each transition, we must anticipate that

two scalar fields would be sufficient to describe the critical behavior of both types

of ordering. Indeed, we find that, at the multicritical point, two massless fields

emerge—defined by appropriate components of the original fields—corresponding to

the soft (or slow) modes φi, while the other components φ′i remain massive and are

therefore noncritical (or fast). We then adiabatically eliminate the two noncritical

modes by setting φ̇′i = 0 and solving for φ′i in terms of φi. Upon substituting our

solutions for the massive fields into φ̇i, we find an effective description in terms of

the soft modes. We shall closely follow Refs. [82, 87] to identify these modes. For

the bistability order parameter, we can identify

ψB = Ψc + eiπ/3φ1 + φ′1, (2.18)

with the real fields φ1 and φ′1 characterizing the slow and fast modes, respectively.

A similar identification has been made in Refs. [82, 87]; see also Refs. [143, 144] for
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(a) (b) (c)

Figure 2.6: Dynamics of gapped (fast/massive) and soft (slow/massless) modes with
arrows indicating the linear (in φi, φ

′
i) relaxation of the two modes. Near the critical

point, the gapped mode quickly decays to a straight line defined by the slow direction
of the soft mode. (a) Relaxation of the field ψB with the soft and gapped modes
lying along the angles π/3 and 0, respectively. (b) Relaxation of the field ψAF for
∆c = 1/3 with the soft and gapped modes lying along the angles −π/6 and π/6
respectively. (c) Relaxation of the field ψAF for ∆c = 2/3 with the soft and gapped
modes lying along the angles 0 and π/3 respectively. (We have adopted units where
∆ + J = 1.)

a similar reasoning, although the slow and fast modes identified there make a π/2

angle. For the antiferromagnetic field, the massless and massive components depend

on the choice of the multicritical point in Eq. (2.17) as

∆c = 1/3 : ψAF =
1√
3

(
e−iπ/6φ2 + eiπ/6φ′2

)
, (2.19a)

∆c = 2/3 : ψAF =
1√
3

(
φ2 + eiπ/3φ′2

)
. (2.19b)

Again, the unprimed fields are massless while the primed fields are massive. The

slow and fast modes of the fields are illustrated pictorially in Fig. 2.6.

Next we adiabatically eliminate the massive modes to find an effective de-

scription in terms of the soft modes. Including the gradient terms—describing the

coupling between neighboring sites—as well as the noise terms due to the coupling

45



to the environment, we find the Langevin equations

γ1φ̇1 = h− r1φ1 +D1∇2φ1 + ξ1 + A20φ
2
1 + A02φ

2
2 + A12φ1φ

2
2 + A30φ

3
1, (2.20a)

γ2φ̇2 = −r2φ2 +D2∇2φ2 + ξ2 +B11φ1φ2 +B21φ
2
1φ2 +B03φ

3
2, (2.20b)

with Gaussian noise

〈ξi(t,x)ξj(t
′,x′)〉 = 2γiTiδijδ(t− t′)δ(x− x′). (2.21)

Higher-order terms that are irrelevant in the sense of RG have been neglected. We

have expressed the noise coefficients in a convenient notation that mimics the dissi-

pative dynamics in thermal equilibrium, in spite of the underlying nonequilibrium

dynamics. Finally, the details of the adiabatic elimination together with the explicit

values of all the coefficients (h, rs, Ds, As, Bs, γs and T s) in terms of microscopic

parameters of the model are provided in Appendix A.1.

It turns out that, at the level of mean field analysis, A20 = 0 in the vicinity of

the multicritical point. The resulting mean-field dynamics (neglecting the gradient

and noise terms) of the two soft modes is then described by a cusp-Hopf bifurcation; a

detailed analysis of this type of bifurcation can be found in Ref. [145]. However, since

A20 is not protected by any symmetries, the corresponding term can be generated

in the course of RG and become of the order of the other quadratic terms. While

we shall focus on the multicritical points, further details about the full mean field

phase diagram of our model and slight variations on it can be found in Refs. [93,94].

46



2.3.2 Nonequilibrium Ising Model for Two Fields

Before proceeding with our perturbative RG analysis, it is important to iden-

tify what are known as redundant operators. These are terms in the action which are

generated under suitably local symmetry-preserving transformations of the fields.

Since such a transformation should not change the long-distance behavior of the

system, this redundancy can be used to simplify our analysis. This is an important

step for perturbative RG and to identify the upper critical dimension; see Ref. [146]

for a discussion of redundant operators in an equilibrium setting.

As a simple illustrative example, consider the generic Hamiltonian of a scalar

field φ in the absence of a Z2 symmetry:

H =

∫
ddx

[
(∇φ)2 − hφ+ rφ2 + u3φ

3 + uφ4
]
. (2.22)

Shifting the field by a constant as φ → φ + φ0, the Hamiltonian is given by the

same expression (up to an unimportant additive constant) with possibly different

coefficients. This underscores a redundancy in Hamiltonians that describe the same

physical system. The change of the Hamiltonian ∆H (or rather the integrand) due

to a constant shift of the field defines a redundant operator. In particular, the cubic

term transforms as

u3 → u3 + 4uφ0. (2.23)

By choosing the value of φ0 properly, the φ3 term can be dropped from the Hamil-

tonian while shifting the coefficients of the terms φ and φ2.

Identifying redundant operators is particularly important to determine the
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upper critical dimension. In the above example, the canonical scaling dimension of

φ is given by [φ] = d−2
2

. From this, the canonical scaling of an interaction term can

be determined; e.g., for a term of the form un
∫
x
φn in the Hamiltonian, we have

[un] = d − nd−2
2

. An interaction term becomes marginal when the corresponding

scaling dimension vanishes. Therefore, the upper critical dimension determined

by the φn term is d
(n)
c = n

n/2−1
. Had we naively started with the Hamiltonian in

Eq. (2.22), the dimensional analysis would have led us to conclude that the upper

critical dimension is six due to the cubic term. However, once we have taken the

redundant operator into account, the latter term vanishes while the quartic term

determines the upper critical dimension to be four.

Similar to the above example, we should first identify the redundant operators

in the nonequilibrium setting of the two coupled scalar fields φ1 and φ2. In this case,

we allow for a more general, nonlinear transformation which is suitably local and

retains the underlying symmetries. We find that the set of redundant operators in

our model is sufficient to remove all the quadratic terms in the Langevin equation

(or equivalently the cubic terms in the action, similar to the Hamiltonian in the

above example); the details of this analysis are presented in Appendix A.2. In

particular, we find that, under this transformation, A12/B21 → 2A02/B11; therefore,

the relative sign of the quadratic terms (prior to the transformation) determines the

relative sign of the cubic terms in the final equations of motion. In the model that

we have considered here, the two quadratic terms have opposite signs (see Appendix

A.1). This fact will be important in determining the fixed point of the RG flow. In

fact, we show that the above sign difference leads the system to one of the NEFPs.
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With the above considerations, the Langevin equations can be finally brought

into a canonical form as

γ1∂tφ1 = D1∇2φ1 + h− r1φ1 − g1φ
3
1 − g12φ1φ

2
2 + ξ1, (2.24a)

γ2∂tφ2 = D2∇2φ2 − r2φ2 − g2φ
3
2 − g21φ2φ

2
1 + ξ2, (2.24b)

with Gaussian noise

〈ξi(t,x)ξj(t
′,x′)〉 = 2γiTiδijδ(t− t′)δ(x− x′). (2.25)

Therefore, the dynamics exhibits a Z2×Z2 symmetry when h = 0, corresponding to

the emergent symmetry φ1 → −φ1 in addition to the sublattice symmetry φ2 → −φ2.

Such emergent symmetry has been previously identified in the bistability transition

[82, 86, 87]; our analysis shows that such symmetry emerges even in the vicinity of

a multicritical point where bistability and antiferromagnetic transitions coalesce.

We must point out that, even in the absence of the latter symmetry, the sublattice

symmetry alone prevents any mixing of the gradient and mass terms between the

two fields as well as the noise terms, a property that should hold to all orders of

perturbation theory.

2.4 Renormalization Group Analysis

In this section, we derive the perturbative RG equations to the two-loop order

(for reasons that will be explained shortly), identify the fixed points, and characterize

the critical exponents that determine the scaling properties of correlations near the

multicritical point.
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2.4.1 RG Equations

The Langevin-type equations can be cast in terms of the Martin-Siggia-Rose-

Janssen-De Dominicis functional integral. This allows us to study our nonequilib-

rium model by extending the standard techniques of the RG analysis to a dynamical

setting; see, for example, Ref. [128] for more details. The nonequilibrium partition

function is defined by Z =
∫
D[φi, iφ̃i]e

−A[φ̃i,φi] where the functional integral measure

as well as the “action” A involve both fields φi with i = 1, 2 and their correspond-

ing “response” fields φ̃i. In the language of Keldysh field theory, φ corresponds

to the classical field while φ̃/2i corresponds to the quantum field. The statisti-

cal weight of φi(t,x) can be obtained by integrating out both response fields as

P [φi] =
∫
D[iφ̃i]e

−A[φ̃i,φi]. While the partition function Z = 1 by construction, the

expectation value of any quantity—the fields themselves or their correlations— can

be determined by computing a weighted average in the partition function. For our

model defined by Eqs. (2.24,2.25), we write the action as the sum of quadratic and

nonlinear (beyond quadratic) terms as

A[φ̃i, φi] = A0[φ̃i, φi] +Aint[φ̃i, φi], (2.26a)

with the quadratic action given by

A0[φ̃i, φi] =

∫
t,x

−hφ̃1 +
∑
i

φ̃i(γi∂t −Di∇2 + ri)φi − γiTiφ̃
2
i , (2.26b)

and the nonlinear interaction terms

Aint[φ̃i, φi] =

∫
t,x

g1φ
3
1φ̃1 + g2φ

3
2φ̃2 + g12φ1φ

2
2φ̃1 + g21φ2φ

2
1φ̃2. (2.26c)
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Our goal is to determine the RG flow of various parameters in the action and specif-

ically of the coefficients g of the interaction terms.

We begin by considering the subspace defined by g12g21 = 0 when either g12 = 0

or g21 = 0. This subspace is special in that it is closed under renormalization to

all orders. The reason is that when g12 = 0 or g21 = 0, one of the two fields is not

affected by the other at the microscopic level, a property that should hold at all

scales. This can also be understood perturbatively in a diagrammatic scheme: If,

say, g12 = 0 then all diagrams that could generate g12 involve a causality violation,

hence it should remain zero to all orders. An important consequence of this fact is

that the relative sign of g12 and g21 cannot change, as this would require passing

through the closed subspace.

Before performing the RG analysis, we first use our freedom in rescaling the

fields to cast the action in a more convenient form. In Sec. 2.2, we used this freedom

to set both temperatures to unity; here, for the convenience of the RG analysis, we

shall make a different choice. Note that rescaling φ2 → cφ2 and φ̃2 → φ̃2/c maps

g2 → c2g2, g12 → c2g12, and T2 → T2/c
2. Exploiting this freedom, we can set the

rescaled value of g12 to be identical to g21 up to a sign. In doing so, we have effectively

shifted the renormalization of g12/g21 onto T1/T2, simplifying the RG analysis later.

Note, however, since g12 is rescaled by a factor c2, this transformation cannot change

the relative sign of g12 and g21. This is indeed consistent with the closure of the

g12g21 = 0 subspace discussed above. Having rescaled the fields appropriately, we
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can write the action as (the quadratic action is repeated for completeness)

A0[φ̃i, φi] =

∫
t,x

hφ̃1 +
∑
i

φ̃i(γi∂t −Di∇2 + ri)φi − γiTiφ̃
2
i , (2.27a)

Aint[φ̃i, φi] =

∫
t,x

u1φ
3
1φ̃1 + u2φ

3
2φ̃2 + u12φ1φ2(φ2φ̃1 + σφ1φ̃2), (2.27b)

where σ = ±1 indicates the relative sign of g12 and g21 and the coefficients u1,

u2, and u12 define the rescaled values of the interaction strengths (in an abuse of

notation, we use the same notation for the other rescaled parameters of the model

as well as the rescaled fields).

Let us first briefly consider σ = 1, in which case the action can be written in

a suggestive form as

A[φ̃i, φi] =

∫
t,x

∑
i

φ̃i

(
γi∂tφi +

δH
δφi

)
− γiTiφ̃

2
i , (2.28)

where the function H is given by

H =

∫
x

∑
i=1,2

(
Di

2
|∇φi|2 +

ri
2
φ2
i +

ui
4
φ4
i

)
− hφ1 +

u12

2
φ2

1φ
2
2. (2.29)

Put in this form, Eq. (2.28) bears close resemblance to an equilibrium setting where

the dynamics is governed by a Hamiltonian (in this case, H). However, with each

field at a different temperature, their coupled dynamics does not generally satisfy

fluctuation-dissipation relations and thus an (effective) equilibrium behavior cannot

be established, at least at the microscopic level. (Note that unlike Sec. 2.2, we have

already used the scaling freedom in redefining the interaction parameters which in

turn fixes the ratio T1/T2.) One then should resort to an RG analysis to deter-

mine whether or not effective equilibrium is restored at long wavelengths, that is, if
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T1/T2 → 1 under RG. We shall see shortly that equilibrium proves to be a robust

fixed point even when T1/T2 6= 1 at the microscopic level.

In contrast, a Hamiltonian dynamics [similar to Eqs. (2.28,2.29)] is not possible

when σ = −1 since a term proportional to φ2
1φ

2
2 in the Hamiltonian leads to equations

of motion that couple the two fields with the same coefficient and hence the same

sign. Therefore, in this case, the dynamics cannot flow to an EFP even when T1 = T2,

with the exception of a decoupled fixed point where u12 = 0 (or g12 = g21 = 0).

Indeed we shall argue that a pair of genuinely nonequilibrium fixed points emerge

in this case.

At a technical level, an RG analysis would be complicated as we need to

consider diagrams up to two loops. This is because at one loop, no renormalization

occurs for the temperatures (due to causality) as well as the diffusion constants and

friction terms (owing to their momentum and frequency dependence). This is while

the interaction terms (u1, u2, and u12) are all renormalized already at one loop. This

observation—besides aesthetic reasons—has motivated the representation adopted

here; in the original description in terms of g12 and g21, the ratio g12/g21 would not

be renormalized at one loop.

To perform the RG analysis, we first define the renormalized parameters as

DiR = ZDi
Di, riR = Zririµ

−2,

uiR = ZuiuiAdµ
−ε, u12R = Zu12u12Adµ

−ε,

γiR = Zγi
γi, TiR = ZTiTi,

(2.30)

where Ad = Γ(3−d/2)/(2d−1πd/2) is a geometrical factor, Γ(x) is the Euler’s Gamma

function, µ is an arbitrary small momentum scale (compared to the lattice spacing),
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and ε = 4 − d defines the small parameter of the epsilon expansion. The effect of

renormalization is captured in the Z factors that contain the divergences according

to the minimal subtraction procedure. We shall determine these factors pertur-

batively to the lowest non-trivial order in ε or loops (the details are provided in

Appendix A.3). The lowest-order corrections to Zr and Zu occur at one loop (∼ ε),

while those of Zγ, ZT , ZD appear at two loops (∼ ε2). These perturbative correc-

tions, while having some similarities with their equilibrium counterparts, are more

complicated due to their nonequilibrium nature.

Using the above Z factors, we determine the RG flow and beta functions via

γp = µ∂µ ln(pR/p), (2.31a)

βua = µ∂µuaR , (2.31b)

where p ∈ {ri,γi, Di, Ti} and ua ∈ {u1, u2, u12}. These functions describe the flow of

various parameters in the action under the change of the momentum scale µ. In par-

ticular, the beta functions identify the fixed points of the interaction coefficients via

βua = 0. At any such fixed point, the scaling behavior of the remaining parameters

is governed by power laws whose exponents depend on γp. Here, we report the beta

functions for the interaction parameters ua (the details are provided in Appendix

A.3):

βu1 = u1R

(
−ε+ 9

T1R

γ2
1R
D̃2

1R

u1R

)
+ σ

T2R

γ2
2R
D̃2

2R

u2
12R
, (2.32a)

βu2 = u2R

(
−ε+ 9

T2R

γ2
2R
D̃2

2R

u2R

)
+ σ

T1R

γ2
1R
D̃2

1R

u2
12R
, (2.32b)
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βu12 = u12R

(
−ε+ 3

T1R

γ2
1R
D̃2

1R

u1R + 3
T2R

γ2
2R
D̃2

2R

u2R

+
4

γ1Rγ2R

T1D̃2R + σT2RD̃1R

D̃1RD̃2R(D̃1R + D̃2R)
u12R

)
, (2.32c)

where we have introduced D̃iR ≡ DiR/γiR . These equations exhibit a number of

important features. First, for u12R = 0, we can absorb a factor of TiR/D
2
iR

into uiR ,

leaving the two beta functions for ui independent of Ti, Di,γi. We thus immediately

recover a pair of uncoupled equilibrium Ising phase transitions, as one should expect.

Second, under equilibrium conditions where σ = 1 and T1R = T2R ≡ TR, we recover

the standard beta functions in equilibrium. In a similar fashion, we can absorb

the factors of TR/D
2
iR

into uiR and TR/(D1RD2R) into u12R , again leaving the beta

functions dependent only on the coupling coefficients. This observation underscores

the important fact that, in equilibrium, static properties are entirely decoupled from

the dynamics. On the other hand, in the setting of our nonequilibrium model, statics

and dynamics are inherently intertwined. Indeed, no redefinition of the coupling

terms can lead to beta functions that would be independent of TiR and D̃iR . This

is not the case for γiR as they can always be absorbed in other parameters; for

example, we can still absorb 1/γ2
iR

into uiR and 1/(γ1Rγ2R) into u12R in the beta

functions. This reflects the fact that, through an appropriate rescaling of the fields,

one can always rescale γi arbitrarily without changing Ti, D̃i, or the overall structure

of the action.

To set up the full RG equations, let us define the parameters

v ≡ T2

T1

, w ≡ D̃2

D̃1

, (2.33a)
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ũi ≡
Ti
D2
i

ui, ũ12 ≡
T1

D1D2

u12. (2.33b)

With these definitions, the beta functions for the new interaction parameters ũa

depend only on the renormalized parameters vR and wR. To obtain the full RG

equations, we further need to determine the RG evolution of the latter parameters.

As we shall see, their RG equations are also closed in the (five) parameters defined

in Eq. (2.33). To see why, first notice that there are ten marginal parameters in

the original action at the upper critical dimension (γi, Di, Ti, gi, g12/21) which can

define the basin of attraction for the RG flow. Since all four fields and time can be

rescaled relative to an overall momentum scale, this leaves a total of five parameters

needed to define the fixed point. The remaining parameters (ri, h) define relevant

directions of the RG flow and thus must be tuned to their critical values. In order

to determine the RG equations for the parameters v and w, we use the identity

βp/q =
p

q
(γp − γq). (2.34)

We now report the full set of beta functions of the parameters of our model (with

ri and h set to zero at the fixed point)

βũ1 = ũ1R [−ε+ 9ũ1R ] + σvRũ
2
12R
, (2.35a)

βũ2 = ũ2R [−ε+ 9ũ2R ] + σvRũ
2
12R
, (2.35b)

βũ12 = ũ12R

[
−ε+ 4

σvR + wR
1 + wR

ũ12R + 3ũ1R + 3ũ2R

]
, (2.35c)

βv = −vRũ2
12R
F (wR)[vR − σ][vR + σF (w−1

R )/F (wR)], (2.35d)

βw = −wR
[
C
(
ũ2

1R
− ũ2

2R

)
+ ũ2

12R
(v2
RG(wR)−G(w−1

R )) + 2σvRũ
2
12R

(H(wR)−H(w−1
R ))

]
,

(2.35e)
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where we have defined C = 9 log(4/3)− 3/2 and the functions

F (w) = − 2

w
log

(
2 + 2w

2 + w

)
, (2.36a)

G(w) = log

(
(1 + w)2

w(2 + w)

)
− 1

2 + 3w + w2
, (2.36b)

H(w) =
1

w
log

(
2 + 2w

2 + w

)
− 3w + w2

8 + 12w + 4w2
. (2.36c)

The functions F,G,H always appear in the RG equations in pairs, with one taking

wR and the other w−1
R as an argument. This is because the diagrams that contribute

to the beta functions come in pairs, corresponding to one from the renormalization of

the terms involving φ1 only and the other from those that involve φ2 only. Similarly,

under the mapping ũ1R ↔ ũ2R , ũ12R → σvRũ12R , vR → v−1
R and wR → w−1

R , the beta

functions are left unchanged. This reflects the fact that we can switch the role of

φ1 and φ2 without changing the physics. As a result, if either σ = −1 or vR 6= 1 at

a given fixed point, there will always be a second fixed point paired with it.

The above equations determine the full RG equations of our nonequilibrium

model, but it is instructive to first consider the RG equations under equilibrium

conditions where the temperatures are equal, i.e., vR = 1, and σ = 1. We then

immediately find that the temperature ratio does not flow, βv = 0, hence the two

temperatures remain identical at all scales. Furthermore, the temperature itself—

and not just the ratio—remains scale invariant as γT = 0, indicating (effective)

thermal equilibrium. Finally, as remarked earlier, the RG equations for the inter-

action terms become independent of wR under equilibrium conditions, highlighting

once again the fact that, in equilibrium, the statics is decoupled from the dynamics.
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There are two distinct scenarios with respect to the beta function βw. The first

scenario is that the beta function vanishes when γD̃1
= γD̃2

. Since the dynamical

critical exponents are related to the flow of D̃ as zi = 2 + γD̃i
, we find that z1 = z2

under this scenario. This means that both fields are governed by the same dynamical

critical exponent, giving rise to a “strong dynamic scaling”. The second scenario

occurs when γD̃1
6= γD̃2

, which would lead to the fixed point wR = 0 or wR = ∞

depending on the sign of γD̃1
− γD̃2

. This behavior is then described by a “weak

dynamic scaling” where the two fields exhibit different dynamical scaling properties

and exponents [48, 147, 148]; see also [128]. Similarly, one can consider the beta

function βv characterizing the RG flow of the ratio of the temperatures. In this

case too, there are two scenarios: Either the beta function vanishes for a fixed

temperature ratio or rather, depending on the sign of γT1 − γT2 , the RG flow leads

to either vR = 0 or vR = ∞, which both correspond to the g12g21 = 0 subspace.

However, this subspace does not appear to be amenable to perturbative RG. In this

sector, we find that w flows to either 0 or∞, indicating weak dynamic scaling where

the two fields are governed by distinct dynamical universality classes. However,

in both cases, the fixed point values of the coupling terms diverge, resulting in a

nonperturbative regime that is not accessible within the perturbative RG analysis.

This indicates that an alternative approach from our present analysis should be

considered in this scenario. In this work, we shall restrict ourselves to the case

where vR and wR are both finite and nonzero.
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2.4.2 Fixed Points of RG Flow

With the RG beta functions, we can now identify the resultant fixed points.

In the σ = 1 sector, the only fixed points of the RG equations are those where

w∗R = 1, exhibiting a strong dynamic scaling, as well as v∗R = 1, indicating that the

two temperatures become identical at the fixed point. Indeed, aside from the case of

u12R = 0, the only possible fixed point value of vR at this order is 1. This can be seen

by noting that the only other root of Eq. (2.35d) is −F (w−1
R )/F (wR), which is always

negative and thus unphysical. Similarly, noting that the beta functions for u1R , u2R

are identical at this order, all coupled fixed points in this sector will satisfy u1R =

u2R . In light of this, we immediately identify wR = 1 as the only possible solution

of Eq. (2.35e). Remarkably, an effective equilibrium behavior emerges in this sector

despite the underlying nonequilibrium nature of the dynamics. In particular, we

recover the familiar equilibrium O(2) and biconical fixed points as well as various

decoupled fixed points involving combinations of Gaussian and Ising fixed points.

However, there are no additional NEFPs in this sector (possibly with the exception

of a kind of weak dynamical scaling in the g12g21 = 0 subspace). Note that the

emergent equilibrium is not achieved by a simple rescaling of the terms in the action

to mimic an effective Hamiltonian but is truly the result of a nontrivial two-loop

RG analysis.

In the σ = −1 sector, any nontrivial fixed point is truly nonequilibrium as

it cannot be described by effective Hamiltonian dynamics that defines equilibrium.

Therefore, we should first determine if there exists any nontrivial fixed point in
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this sector or alternatively if the RG evolution flows to a trivial (decoupled) fixed

point. Interestingly enough, the former is the case; we find a pair of genuinely

nonequilibrium fixed points as

v∗R = 1, w∗R = 1,

u∗1R =
ε

6
, u∗2R =

ε

6
, u∗12R

= ± ε

2
√

3
.

(2.37)

These fixed points also exhibit a strong dynamic scaling since w∗R = 1, so the two

fields are governed by the same dynamical scaling. Furthermore, we find v∗R = 1,

implying that the two temperatures are equal, which might suggest an equilibrium

behavior; however, the latter temperatures only characterize the strength of the

noise (more precisely, γiTi defines the noise) while a true equilibrium description

(and a genuine notion of temperature) requires Hamiltonian dynamics [similar to

Eq. (2.28)] which is inherently impossible in this sector.

While we have identified a new pair of NEFPs, this does not guarantee that

they would govern the critical behavior near the multicritical point. If these fixed

points are unstable under RG, further fine tuning would be necessary to access them.

Even if they are stable, depending on the initial microscopic parameters, the system

could still flow to an EFP under renormalization. Nevertheless, we shall argue that

the multicritical point is indeed governed by the new NEFPs.

To determine the stability of the fixed points, we need to consider the stability

matrix

Λab =
∂βa
∂sbR

, (2.38)

where sb denotes the set of parameters that enter the RG beta functions. A fixed
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point is stable if all of the eigenvalues of Λ are positive. Although we have deter-

mined the lowest order corrections to all five parameters, we can only determine

these eigenvalues up to O(ε). This is because in order to fully determine Λ to

O(ε2), we need to consider the two-loop corrections to the coupling terms u and

the three-loop corrections to v, w. However, when a fixed point possesses a higher

symmetry than the underlying field theory, then it is possible to determine some

of the O(ε2) eigenvalues without including higher-order corrections. This is a con-

sequence of the fact that a symmetry-preserving perturbation will not generate a

symmetry-violating term, so Λ finds a block-triangular form and the two sectors

can be diagonalized separately. In the equilibrium limit of our model (in the sector

σ = 1 when v = 1), a similar situation occurs with respect to statics and dynamics,

where perturbations in the dynamics (w) cannot affect the behavior of the statics

(u). This makes it possible to inspect the stability of w up to O(ε2) at the same

order of the RG calculations. In the full nonequilibrium model, the statics is not

decoupled from the dynamics, so the stability in w cannot be determined using such

an approach. However, for the EFPs, equilibrium plays a role similar to a higher

symmetry because equilibrium perturbations do not generate nonequilibrium terms.

As a result, it is possible to determine the stability in v for the two coupled EFPs,

and we find both to be stable in v. However, for all of the coupled fixed points, w

remains marginal. In short, to the lowest order in our perturbative expansion, the

system flows to the NEFP (EFP) in the σ = −1 (σ = 1) sector. While, in principle,

non-perturbative effects or higher-order terms in ε could modify this behavior, this

is a generic feature of perturbative RG and not specific to our model. A qualitative
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sketch of the expected RG flow is illustrated in Fig. 2.2 in terms of the original

g12, g21 couplings.

Finally, we remark that in the case of the original microscopic model, A02 and

B11 have opposite signs, which thus carries over to the relative sign of g12 and g21.

Thus it is plausible to expect a critical behavior governed by the NEFPs.

2.4.3 Universal Scaling Behavior

Any fixed point—equilibrium or not—exhibits critical behavior and exponents

characterizing correlations and dynamics among other properties of the system. In

particular, we consider the anomalous dimensions η and η′ of the original and re-

sponse fields, the dynamical critical exponent z, as well as the exponent ν charac-

terizing the divergence of the correlation length as the critical point is approached.

These exponents describe the scaling behavior of the correlation and response func-

tions at or near criticality as

Ci(q, ω, {rj}) ∝ q−2+η−zĈi

(
ω

|q|z ,
{

rj
|q|1/νj

})
, (2.39a)

χi(q, ω, {rj}) ∝ q−2+η′χ̂i

(
ω

|q|z ,
{

rj
|q|1/νj

})
, (2.39b)

where Ĉi, χ̂i are general scaling (dimensionless) functions. We have dropped the

subscript i from η, η′, z due to the strong dynamic scaling and in anticipation of

the same spatial scaling dimensions for the two fields; however, we have kept the

subscript in rj for j = 1, 2 since the RG equations couple them in a nontrivial way.

The exponents at the fixed point can be extracted via what is known as the

method of characteristics (see Appendix A.4 for details). Noting that, for fixed bare
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(microscopic) parameters, the correlation and response functions are not affected by

changing the RG momentum scale µ, we can relate these critical exponents to the

flow functions as

η = γT − γD, η′ = −γD, z = 2 + γD − γγ. (2.40)

The renormalization of the parameters rj and the corresponding exponent νj requires

a special treatment and will be discussed later in this section. At the nonequilibrium

critical point, we find [cf. Eqs. (2.31a,2.37) together with the Z factors in Appendix

A.3]

γγ = −ε
2

6
log(4/3), γD = − ε

2

36
, γT = −ε

2

3
log(4/3). (2.41)

Interestingly, we see that in contrast to an EFP where the temperature becomes

scale-invariant, the effective temperature at the NEFPs changes with the scale. In

particular, the system becomes “hotter” at longer length scales since γT < 0. Using

Eq. (2.40), the critical exponents at the NEFPs are given by

η =
ε2

36
(1− 12 log (4/3)) , (2.42a)

η′ =
ε2

36
, (2.42b)

z = 2 + η′ (6 log (4/3)− 1) . (2.42c)

While, in equilibrium, η = η′ as a consequence of the fluctuation-dissipation the-

orem, we have η 6= η′ since the temperature itself is scale dependent, γT 6= 0, at

the NEFP. Note also that the critical exponents z, η, η′ are the same for both fields.

While strong dynamic scaling already guarantees the same dynamical critical expo-

nent, the anomalous dimensions are also identical owing to the emergent symmetry
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of the fixed point where u1R = u2R and vR = wR = 1. However, the latter do not

reflect any actual symmetry of the model and could be modified at higher orders in

the epsilon expansion.

An interesting feature of the NEFPs is that η < 0 to the first nontrivial order

in the epsilon expansion. This is in contrast with equilibrium where η > 0, a fact

that can be even proved on general grounds (e.g., unitarity in a related quantum field

theory) [149]. If this feature (η < 0) extends beyond perturbation theory to, say,

two dimensions, it would indicate that the correlation function (C(r) ∝ |r|−d+2−η)

diverges at large distances. This would, however, invalidate the starting point of our

field-theoretical treatment based on an expansion in field powers since large-scale

fluctuations grow without bound. However, it might also indicate the absence of

ordering in low dimensions. This possibility seems particularly natural in light of

the effective temperature increasing at larger scales, which in turn tends to disallow

ordering in low dimensions. While this may be an artifact of perturbative RG, it

indicates that the behavior of the NEFPs in low dimensions is governed by different

principles than their equilibrium counterparts. Finally, we note that, to the lowest

nontrivial order considered, the dynamical critical exponent z is related to η′ in an

identical fashion as in equilibrium.

Next we consider the renormalization of the mass terms. This requires spe-

cial care as their renormalization is intertwined. Similar to our redefinition of u,

we should instead consider the renormalization of ri/Di so that we only need to

consider two flow equations, which is consistent with the scaling analysis in Ap-

pendix A.4. In a slight abuse of notation, we simply replace ri → Diri. Defining
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µ̃(l) = µl and the flowing parameters r̃i(l) with r̃i(1) = riR , we find the flow equa-

tions [cf. Eqs. (2.31a,2.37) together with the Z factors in Appendix A.3]

l
dr̃1(l)

dl
= γr1 r̃1 =

(
−2 +

ε

2

)
r̃1(l)± ε

2
√

3
r̃2(l), (2.43a)

l
dr̃2(l)

dl
= γr2 r̃2 =

(
−2 +

ε

2

)
r̃2(l)∓ ε

2
√

3
r̃1(l), (2.43b)

where the ± refer to the two NEFPs with opposite signs of ũ12R . The flow equations

can be solved as

r̃1(l) = l−1/ν′
[
r1R cos

log l

ν ′′
+ r2R sin

log l

ν ′′

]
, (2.44a)

r̃2(l) = l−1/ν′
[
r2R cos

log l

ν ′′
− r1R sin

log l

ν ′′

]
, (2.44b)

where

ν ′
−1

= 2− ε

2
, ν ′′

−1
= ± ε

2
√

3
. (2.45)

These equations can be cast in a more compact notation as

r̃1(l) + ir̃2(l) = l−1/ν′−i/ν′′(r1R + ir2R). (2.46)

Defining r ≡ r1 + ir2, we can recast this equation as r̃(l) = l−1/νrR where the critical

exponent ν emerges as

ν−1 = ν ′−1 + i ν ′′
−1

= 2−
(

1

2
± i

2
√

3

)
ε. (2.47)

Interestingly, the exponent ν becomes complex-valued at the NEFP. We can then

express the scaling functions in Eq. (2.39) as

Ĉi = C̃i

(
ω

|q|z ,
|rR|
|q|1/ν′ , P

( log |q|
ν ′′

− ∠rR
))

, (2.48a)
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χ̂i = χ̃i

(
ω

|q|z ,
|rR|
|q|1/ν′ , P

( log |q|
ν ′′

− ∠rR
))

, (2.48b)

where |rR| = |r1R + ir2R | =
√
r2

1R
+ r2

2R
while ∠rR denotes the polar angle in the

r1R-r2R plane. Additionally, P is a 2π-periodic function. To obtain these equations,

we have used the fact that r/l1/ν
′+i/ν′′ can be instead written as a function of |r|/l1/ν′

and ei(log l)/ν′′−i∠r. The former expression often appears in scaling functions of this

type and characterizes the scaling of the correlation length; however, the latter

gives rise to a log-periodic function as a change of log l → log l + 2πν ′′ leaves the

exponential invariant.

The appearance of log-periodic functions has important consequences for the

critical nature of the fixed points. They lead to a discrete scale invariance rather

than the characteristic continuous scale invariance at a typical critical point [129].

Rather than a self-similar behavior at all length scales, a preferred scaling factor

emerges as

b∗ = e2πν′′ , (2.49)

rescaling by which, or any multiple integer thereof, leaves the system scale invariant.

In this sense, discrete scale invariance mimicks a fractal-like structure, in which

rescaling the system by a particular factor leaves the system self similar. Note,

however, that the discrete scale invariance and the fractal-like structure only emerges

at long length scales (in the continuum) as opposed to the microscopic structure of

a fractal (in discrete space). Additionally, if we were to consider, e.g., the effect of

a physical momentum cutoff Λ, this would enter the periodic function as a phase

shift, thus determining the phase of the oscillations.
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Fixed Point u1 u2 u12 ν−1 η η′ z − 2

NEFP ε
6

ε
6

±ε
2
√

3
2−

(
1
2
± i

2
√

3

)
ε ε2

36
(1− 12 log 4

3
) ε2

36

η′(6 log 4
3
− 1)

O(2) ε
10

ε
10

ε
10

2− 2
5
ε ε2

50

Biconical ε
18

ε
18

ε
6

2− 1
3
ε ε2

54

Z2 + Z2
ε
9

ε
9

0 2− 1
3
ε ε2

54

Table 2.1: Fixed point values of the coupling coefficients and critical exponents to
the lowest order. In all cases, vR = wR = 1. At the NEFP, σ = −1. The decoupled
Z2+Z2 fixed point and the biconical fixed point in this case are unstable to the order
O(ε), while the other two fixed points are stable to the same order. The Z2 +Z2 and
biconical fixed points exhibit the same critical behavior since they can be mapped
to each other through a π/4 rotation in the φ1-φ2 plane. Fixed points involving the
Gaussian fixed point are not included.

Similar phenomena appear to arise in stock markets [150], earthquakes [151],

equilibrium models on fractals [152] and several other systems [129]. Log-periodic

functions and the emergence of a preferred scale have been identified in the early

developments of renormalization group theory [153–155], but they have been rejected

as artifacts of position-space RG. On the other hand, their recent surge in diverse

contexts from earthquakes to stock markets has instead relied on simple dynamical

systems (with one or few variables) where the dynamics involves a discrete map

itself [129]. This phenomenon has also emerged in recent works in the context of

driven-dissipative quantum criticality [102,156] as well as the dynamics of strongly-

interacting nonequilibrium systems [157]. A particularly well-known example of

RG limit cycles is the behavior of Efimov states [158, 159], whose binding energies

form a geometric progression similar to discrete scale invariance. These quantum

RG limit cycles have been noted to be closely related to Berezinskii-Kosterlitz-

Thouless (BKT) phase transitions [160, 161]. Disordered systems provide another
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context where complex-valued exponents and discrete scale invariance have been

noted in both classical [162–166] and quantum [167] settings. The discrete scale

invariance reported in this work, however, appears to be unique as it has emerged

in an effectively classical yet nonequilibrium model in the absence of disorder.

The discrete scale invariance approaches a continuous one as the upper critical

dimension, dc = 4, is approached. In three dimensions, perturbative values at the

NEFP (with ε = 1) yield a very large scaling factor (b∗ ∼ 109); however, with the

exponential dependence on the critical exponents, the scaling factor is sensitive even

to small corrections of the exponent beyond the lowest-order perturbation theory.

Nevertheless, our results should be viewed as a proof of principle for the emergence

of discrete scale invariance in macroscopic nonequilibrium systems. Additionally,

higher harmonics in the periodic function P can be significant, which then should

be observed over smaller variations in the physical scale.

Finally, we elaborate on a possible connection between the log-periodic be-

havior and limit cycles. Indeed, the microscopic mean-field phase diagram near the

multicritical point also includes a limit-cycle phase that displays persistent oscilla-

tions. For a rapidly oscillating limit cycle, the corresponding phase transition can

be described from the viewpoint of a rotating frame (defined by the oscillation fre-

quency) and by making the rotating-wave approximation. With this mapping, a

limit-cycle phase transition is no different from a dissipative phase transition with

an emergent U(1) symmetry [89]. Near our multicritical point, however, the fre-

quency of oscillations becomes small and thus no such mapping is possible. On the

other hand, the discrete scale invariance discussed above also leads to an oscillatory
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behavior (in both space and time), albeit one that is log-periodic. Nevertheless, a

natural possibility is that, at some intermediate regime away from the multicritical

point, the discrete scale invariance merges into a limit-cycle solution. Moreover, we

shall see that in the doubly-ordered phase, the Liouvillian gap becomes complex-

valued (see Sec. 2.4.5). This furthers the possible connection to the limit-cycle phase

as a nonzero imaginary part implies that the system undergoes oscillations—which

however decay—as the steady state is approached.

In Table 2.1, we summarize all of the fixed points (aside from those involving

the trivial Gaussian fixed point) and their critical exponents to the lowest order.

2.4.4 Phase Diagram

The phase diagram itself is distinct in the vicinity of the NEFPs. In contrast

with their equilibrium counterparts, these fixed points only give rise to a tetracritical

point. With the effective magnetic field set to zero, h = 0, four different phases

emerge: A disordered phase with φ1 = φ2 = 0; two phases with either φ1 6= 0

corresponding to bistability or φ2 6= 0 leading to antiferromagnetic ordering; and,

finally, a doubly-ordered phase where both fields become ordered, φ1 6= 0 6= φ2.

While the first three phases also emerge in the mean field theory of the microscopic

model, the doubly-ordered phase only arises in the course of RG when the A20 term

is generated.

The phase boundaries are governed by the scaling behavior of ri. Let us

set the effective magnetic field to zero, h = 0, and consider the scaling functions
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characterizing the correlation and response functions in Eq. (2.39). To determine

the phase boundary, it suffices to take the limit ω,q → 0. In this case, the scaling

functions are solely determined as a 2π-periodic function of ν′

ν′′
log (|rR|)−∠rR; this

is achieved by eliminating the momentum scale in Eq. (2.48) in favor of rR. Since the

correlation functions only depend on the mass terms through the above combination,

the phase boundary itself—characterized by the divergence of correlations—arises

at a fixed value of this quantity (up to integer multiples of 2π). Therefore, the shape

of the phase boundary is given by

ν ′

ν ′′
log(|rR|)− ∠rR = const, (2.50)

which is a spiral, leading to the phase diagram illustrated in Fig. 2.4. Similar to our

discussion of the discrete scale invariance, the perturbative values of the exponents

at ε = 1 require very large scales to observe a full spiral. But again these scales

are highly sensitive to corrections to perturbative RG. Moreover, partial spirals can

still be observed for reasonable scales. Since the spiraling boundaries all spiral in

the same direction, distinguishing them from equilibrium critical points, the effects

of this may be seen even for very weak spiraling. Additionally, the two NEFPs are

distinguished from each other by the direction of spiraling, since each has a different

sign of ν ′′.

When the effective magnetic field is nonzero, there is no such symmetry as

φ1 → −φ1, leading to a surface of first-order phase transitions where φ1 undergoes

spontaneous symmetry breaking. This first-order transition occurs in both the uni-

form phase (defined by the B phase at h = 0) and the antiferromagnetic phase
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Figure 2.7: Phase diagram for (one of the two) the nonequilibrium tetracritical
points as a function of effective mass terms and magnetic field. The transparent
boundary indicates the location of an antiferromagnetic phase transition from a
uniform phase. The horizontal (red) surface denotes a surface of first-order phase
transitions. In both AF and uniform phases, the latter indicates a transition from
a low- to a high-population phase; the sublattice population difference changes con-
tinuously across this surface. The (black) square boundary in the middle indicates
the plane of h = 0. The diagram for the second nonequilibrium tetracritical point
will spiral in the opposite direction.
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(defined by the B+AF phase at h = 0). In both cases, the average population

changes discontinuously while the sublattice population difference changes contin-

uously. Finally, we take into account the magnetic field in determining the phase

boundaries by considering an effective mass as rR + |hR|1/βδ where β and 1/δ de-

scribe the scaling behavior of the order parameter with r and h, respectively, within

the ordered phase. The effect of the magnetic field h is to “unravel” the spirals for

small ri. The corresponding phase diagram for nonzero effective magnetic field is

illustrated in Fig. 2.7.

2.4.5 Liouvillian Gap Closure

In this section, we investigate how the Liouvillian gap closes upon approaching

the multicritical point. In contrast to the EFPs where the gap always closes along the

real axis (hence, purely dissipative or relaxational dynamics), the NEFPs exhibit a

qualitatively different behavior with the gap closing along a complex path, indicating

an interplay between reversible and irreversible relaxation in this phase.

We consider the system in the doubly-ordered phase where both fields take

nonzero expectation values Mi; for notational convenience, we make the change of

variable φi → φi +Mi where the fields φi now represent the fluctuations around the

order parameter. In addition to the original action, this transformation introduces
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new quadratic and linear terms as (including the original r1 and r2 terms too)∫
x,t

(r1 + 3u1M
2
1 + u12M

2
2 )φ1φ̃1 + (r2 + 3u2M

2
2 + σu12M

2
1 )φ2φ̃2

+ 2u12M1M2φ2φ̃1 + 2σu12M1M2φ1φ̃2

+M1(r1 + u1M
2
1 + u12M

2
2 )φ̃1 +M2(r2 + u2M

2
2 + σu12M

2
1 )φ̃2.

(2.51)

In addition, several cubic terms are also introduced, which are not reported for

simplicity. We set the vertices φ̃1 and φ̃2 to zero since, by definition, φi solely

represent the fluctuations. This in turns sets r1 = −u1M
2
1 − u12M

2
2 and r2 =

−u2M
2
2 −σu12M

2
1 . Upon including the effect of fluctuations to O(u), the remaining

quadratic vertices are then given by

2u1RM
2
1φ1φ̃1 + 2u2RM

2
2φ2φ̃2 + 2u12RM1M2(φ2φ̃1 + σφ1φ̃2), (2.52)

where the coupling terms have been replaced with their renormalized values due to

the inclusion of fluctuations in the form of counterterms. The other parameters are

not renormalized at this order, but if we were to include higher order fluctuations,

they too would be replaced with their renormalized values since the ordered phases

do not give rise to any new Z factors.

Putting these terms together with the quadratic part of the action, we find

S0 =

∫
x,t

∑
i

φ̃i(γ∂t −D∇2 +Ri)φi − γT φ̃2
i +R12(φ2φ̃1 + σφ1φ̃2), (2.53)

where Ri = 2uiRM
2
i and R12 = 2u12RM1M2. The poles of the corresponding propa-

gators are then obtained as

0 = σR2
12 − (Dk2 +R1 + iγω)(Dk2 +R2 + iγω), (2.54)
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or more explicitly as

− iγω = Dk2 +
R1 +R2

2
±
√
σR2

12 +

(
R1 −R2

2

)2

. (2.55)

From this equation, we can find a simple condition for when the poles do not lie along

the imaginary axis (corresponding to the negative real eigenvalues of the Liouvillian)

as

− σR2
12 >

(
R1 −R2

2

)2

. (2.56)

Indeed, in equilibrium, where σ = 1, this condition cannot be satisfied. This implies

that the relaxation is purely relaxational in equilibrium as expected (in this case,

for model A). However, at the NEFPs where σ = −1, the above condition can be

satisfied. To see this, let us cast the above condition for σ = −1 in terms of u and

Mi as

4u2
12R
M2

1M
2
2 > (u1RM

2
1 − u2RM

2
2 )2. (2.57)

Recalling that u1R = u2R at the NEFPs at least to the lowest order in the epsilon

expansion, the above condition is trivially satisfied whenever |M1| = |M2|. In this

case, the pole with the lowest nonzero decay rate takes the form (with |M1| = |M2| ≡

M and k→ 0)

− iγω = 2M2(u1R ± iu12R). (2.58)

In fact, with |M1| = |M2|, the Liouvillian gap achieves its largest imaginary value

relative to its real part. We can identify the ratio of the imaginary part to the real

part of the gap as
u12R

u1R
=
√

3, which corresponds to the Liouvillian gap closing at

the angle π/3 with respect to the real axis. Again, higher orders in the epsilon
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expansion may modify the value of this angle. A generalization of the model consid-

ered here to the O(N)×O(N) model of N -component vector-like order parameters

leads to similar behavior. In fact, we find that, for N = 2 and N = 3, the corre-

sponding Liouvillian gap closes at the angles π/4 and π/6, respectively. We should

then conclude that different nonequilibrium universality classes of our model and

its generalization give rise to different angles of the Liouvillian gap closure in the

complex plane. Further details on these generalized models will be presented in

follow-up papers.

The scaling of (the magnitude of) the gap itself as a function of the distance

from the critical point can be directly obtained by observing that the gap defines

an inverse time scale which itself is associated with the exponent z. Thus the gap

scales as rzν
′
, where the exponent ν ′ is due to the scaling of r itself. With the order

parameters M1 and M2 scaling similarly, the angle that defines the gap closure in

the complex plane only depends on (the absolute value of) their ratio. As remarked

earlier, this angle achieves its maximum when |M1| = |M2|. We further note that the

gap is purely real (relaxational) near phase boundaries where only one of the order

parameters undergoes a transition since the lhs of Eq. (2.57) would be suppressed

compared to the rhs.

Finally, much like the discrete scale invariance in the previous section, the

complex Liouvillian gap is somewhat reminiscent of limit cycles, although a true

limit-cycle phase is characterized by purely imaginary eigenvalues that characterize

the steady state itself.
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2.5 Experimental Realization

An ideal avenue for realizing these multicritical points is via the use of cavity or

circuit quantum electrodynamics (QED). Individual cavities and circuits have been

studied experimentally in great depth due to their potential applications in quantum

computation [12, 168, 169]. Furthermore, both cavity-QED and circuit-QED have

been proposed as platforms for realizing many-body states of light via nearest-

neighbor coupling arrays of cavities or circuits [11, 13, 170, 171]. Generally, these

cavities and circuits have non-negligible loss due to dissipation. While dissipation is

detrimental when it comes to realizing the quantum ground state of a given system,

it is a crucial ingredient in realizing driven-dissipative phase transitions. There has

been a variety of theoretical proposals to realize different driven-dissipative models

in cavity- and circuit-QED systems [90, 93, 94, 125, 172, 173]. Recent experiments

have even identified a driven-dissipative many-body phase transition [77].

For the model considered in this work (see Sec. 2.2), many-body experimen-

tal platforms already exist that include drive, hopping, as well as dissipation. The

remaining ingredient is then the nearest-neighbor interaction [the quartic term in

Eq. (2.1)] to be contrasted with a Hubbard term that characterizes on-site interac-

tion. Both types of interaction are generally known as Kerr nonlinearities; we are

interested in what is known as a cross-Kerr nonlinearity, which has been utilized

experimentally in several few-mode systems [174–176]. A more general version of

our model has been considered in Refs. [93,94], along with a discussion on how the

nonlinear interaction terms can be tuned experimentally via Josephson nanocircuits.
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In a recent theoretical proposal, a setting consisting of a capacitor in parallel with a

superconducting quantum interference device (SQUID) is put forth as an alternative

means of achieving tunable Kerr nonlinearities [122].

While generic experimental settings introduce other nonlinear terms (e.g.,

Hubbard interactions and correlated hopping) in addition to the density-density

interactions, we do not expect them to dramatically affect the results of this chap-

ter. While such terms can change the location of the multicritical point [93, 94],

the universal properties of the latter should not be affected by the details of the

microscopic model.

We close this section by a discussion of the sign of various terms (e.g., the

negative cross-Kerr nonlinearity) arising in the proposals of Refs. [93,94,122]. While

a negative interaction term could lead to unbounded energy spectra, it would not

pose a problem in the context of driven-dissipative systems where the steady state is

not concerned with a minimum-energy ground state. Furthermore, one can change

the sign of various terms in the Hamiltonian of a driven-dissipative system with a

proper mapping [177]. For example, by sending Ω → −Ω and a → −a on one of

the two sublattices, the sign of J can be changed while leaving the remaining terms

fixed. Similarly, one can also map H → −H by taking the complex conjugate of the

master equation, which, together with the previous mapping, allows an appropriate

choice for the sign of J, V . Finally, the overall phase of Ω is unimportant while the

parameter ∆ can be easily directly tuned to a desired sign.
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2.6 Conclusion and Outlook

In this work, we have considered an experimentally relevant driven-dissipative

system where two distinct order parameters emerge that characterize a liquid-gas

type transition (associated with the average density) as well as an antiferromagnetic

transition (associated with the difference in the sublattice density). The two phase

transitions coalesce and form a multicritical point where both transitions occur at

the same time. We have investigated the nontrivial interplay of two order param-

eters at the multicritical point. Using a field-theoretical approach—appropriate

in the vicinity of the phase transition—we have shown that the critical behavior

at this point can be mapped to a nonequilibrium stochastic model described by a

Z2 × Z2 symmetry. Using perturbative renormalization group techniques, we have

determined the RG flow equations of the model and identified a pair of new classical

nonequilibrium fixed points which exhibit several exotic properties. First, we obtain

two different exponents for the critical scaling of fluctuations and dissipation at the

critical point, underscoring the violation of the fluctuation-dissipation relation at all

scales and resulting in a behavior where the system becomes hotter and hotter at

larger and larger scales. Furthermore, these NEFPs are distinguished by the emer-

gence of discrete scale invariance and a complex Liouvillian gap even close to the

critical point. Additionally, the phase diagram near these multicritical points dis-

plays spiraling phase boundaries. The latter properties could be particularly useful

in identifying these NEFPs in experiments.

While generic driven-dissipative phase transitions tend to have effective equi-
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librium dynamics, we have shown that the interplay between several order parame-

ters (in this case, two) could very well lead to exotic nonequilibrium behavior. This

perspective opens a new avenue to investigate and experimentally realize nonequi-

librium phases and phase transitions in the context of driven-dissipative systems

without relying on the engineering of complicated non-local or non-Markovian dis-

sipation.

Future experimental and numerical studies into the NEFPs discussed in this

work are crucial to develop a more complete understanding of their properties.

Characterizing the discrete scale invariance, either in the dynamics or the form

of the phase boundary, defines a particularly important direction. Investigating the

possible emergence and the critical behavior of such nonequilibrium phase transitions

in low dimensions is worthwhile. It would be particularly interesting to identify

low-dimensional ordering and phase transitions which are not otherwise possible

in equilibrium settings. Another question that remains open is the fate of the

subspace g12g21 = 0, namely if it contains new NEFPs. Beyond these nonequilibrium

generalizations of model A systems, one can further consider similar nonequilibrium

versions of other equilibrium universality classes. While we focused on the particular

case of an experimentally-relevant model with only two scalar order parameters, our

analysis indicates that a large class of new nonequilibrium multicritical points are yet

to be discovered. A natural extension of our work is to identify possibly new NEFPs

in O(N‖)× O(N⊥) models involving vector-like order parameters [130–136]. While

a driven-dissipative condensate of polaritons has been investigated theoretically in

detail [96,97], recent experimental studies into condensate supersolids [26,178–181]
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can provide excellent platforms for probing any emergent NEFPs. In addition to

the U(1) symmetry of the condensate, the two coupled optical cavities can provide

either an additional Z2×Z2 symmetry (corresponding to a lattice supersolid) or an

approximate O(2) symmetry (corresponding to a continuous supersolid).
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Chapter 3: Dissipation-Induced Dipole Blockade and Antiblockade

in Driven Rydberg Systems

3.1 Introduction

Ultracold atomic systems are an ideal setting for studying many-body quantum

systems due to their large degree of control and tunability. Rydberg atoms in partic-

ular are a key ingredient in many of these systems, primarily for their strong, long-

range interactions and long lifetimes [30,182]. Because of these features, the possibil-

ities Rydberg atoms provide are incredibly diverse, including simulating many-body

driven-dissipative systems [76,91,92,183,184], simulating topological states of mat-

ter [185, 186], and applications in quantum information [30, 31, 187]. One aspect of

several of these systems is Rydberg dressing [22,185,186,188–192], which provides a

means of creating soft-core potentials and is achieved by weakly dressing a ground

state with a Rydberg state [193–196]. However, recently it has been found that

through spontaneous decay and blackbody radiation, nearby contaminant Rydberg

states can become populated and can drastically modify the system’s behavior via

the resultant dipole-dipole interactions [64, 197, 198]. While Rydberg dressing has

been achieved with up to 200 atoms [199], the possible appearance of contaminant
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states necessitates a form of post-selection, with far more post-selection required to

increase the strength and range of the dressed potentials or to increase the system

size. On the other hand, the manner in which the dipole-dipole interactions arise

is unique. Rather than coherent processes (e.g. drive) leading to interactions, we

instead have a system in which a dissipative process leads to interactions. As a re-

sult, this provides an interesting platform for studying driven-dissipative systems in

which coherent processes both compete with and rely on dissipation, whereas they

typically only compete in most Rydberg systems.

There are two primary mechanisms which lead to the broadening induced by

the dipole-dipole interactions: blockade and antiblockade. Blockading is the pro-

cess in which a nominally resonant excitation becomes off-resonant due to interac-

tions [60], which can lead to the formation of superatoms with collectively enhanced

Rabi frequencies [193,200,201]. Complementary to this, antiblockading (also known

as facilitated resonance) is the process in which a nominally off-resonant excitation

becomes resonant due to interactions and plays an important role in phenomena

such as Rydberg aggregation [61–63]. Both of these mechanisms play a crucial role

in all Rydberg systems, but most investigations have focused on 1/r6 diagonal van

der Waals interactions. In such systems, when the drive is resonant, blockading dom-

inates, while when the drive is off-resonant, antiblockade often dominates. However,

we are interested in 1/r3 off-diagonal (“flip-flop”) dipole-dipole interactions. As a re-

sult of the off-diagonal nature and angular dependence of dipole-dipole interactions,

blockading and antiblockading will behave qualitatively differently than for van der

Waals interactions, with both effects competing with one another in complicated
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Figure 3.1: Theoretical three-level system. The g and s states are coupled via a
classical laser with Rabi frequency Ω and detuning δ, while the s and p states interact
via a dipole-dipole interaction

∑
i 6=j σ

sp
i σ

ps
j . There are three decay processes: s→ g,

p→ g, and s→ p, with decay rates of γs, γp, γR respectively.

ways. This complicates any attempt to truncate the Hilbert space via blockading

or dephasing, which has been successful in studying Rydberg systems with diagonal

interactions [202–204].

In this chapter, we study the steady states of a driven-dissipative model in

which Rydberg dipole-dipole interactions are induced via dissipation as in Refs.

[64, 197, 198]. In all three references, a ground state is driven to a Rydberg s state

with Rabi frequency Ω and detuning δ. Through spontaneous decay and blackbody

stimulated transitions, nearby (in principal quantum number) contaminant p states

are populated. These p states interact strongly with subsequently driven s states

via dipole-dipole interactions, leading to strong dephasing. A simplified model of

this is illustrated in Fig. 3.1.

We approach this system theoretically in two different ways. The first is by
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considering evolution under the full master equation and applying a cumulant expan-

sion approximation, which allows for two-atom correlations but ignores higher-order

correlations. This is motivated by the presence of dissipation, which causes high-

order correlations to decay faster than low-order correlations, and allows the many-

body problem to be treated numerically. This approach has previously been used in

a variety of systems, including nonlinear optics [205], cavity quantum electrodynam-

ics [206,207], and other driven-dissipative systems with similar interactions [89,208].

The second is a set of phenomenological inhomogeneous rate equations in which the

decoherence strength for a given atom is determined by the population and inter-

action strength of neighboring contaminant states. Similar types of rate equations

have been considered previously in other Rydberg systems [197,204,209,210].

For the cumulant expansion approach, we restrict our focus to the case of

resonant drive (δ = 0), and we consider both one-dimensional (1D) and three-

dimensional (3D) systems. We find that in spite of the angular dependence and flip-

flop nature of dipole-dipole interactions, a blockade radius interpretation still arises.

However, the many-body blockade radius is found to be smaller than and to behave

qualitatively differently from the two-body blockade radius. This occurs due to an

interplay between both blockade and antiblockade effects. Additionally, the steady-

state Rydberg population exhibits power law decay over several orders of magnitude

as a function of interaction strength, although the decrease in population is not as

pronounced as observed experimentally in Ref. [64], which is possibly due to the

importance of higher-order correlations and many-body effects. Finally, we observe

at high Rabi frequencies a trend away from the expected quadratic dependence of
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the Rydberg population on Rabi frequency. For higher atomic densities, this trend

occurs at lower Rabi frequencies. One reason to expect this is that at sufficiently

low Rabi frequency, the density of Rydberg atoms becomes small and dipole-dipole

interactions become irrelevant. We verify this experimentally by studying the low

Rabi frequency behavior at two different densities. While there are still a number of

qualitative and quantitative differences with theory, we find that the crossover occurs

at lower Rabi frequencies for higher densities as expected. Furthermore, even when

the scaling behavior is quadratic, the experimentally observed Rydberg populations

are still much smaller than expected from single-particle physics, indicating that

interactions still play an important role in this regime.

For the rate equation approach, we consider both resonant (δ = 0) and off-

resonant (δ 6= 0) drive in 3D. While van der Waals interactions are diagonal and

can be thought of as leading to an effective detuning, dipole-dipole interactions are

off-diagonal and cannot be thought of in the same way. Therefore, we treat them

as a source of decoherence, as the contribution to an effective detuning will depend

strongly on the spatial configuration of the atoms and cannot be simply represented

by a single value. Since stronger interactions will have a larger effect, we make

this decoherence strength proportional to the interaction strength and population

of the contaminant states. Finally, we focus on inhomogeneous rate equations to

reflect the inherent inhomogeneity in the system due to spontaneous decay. We find

that such an approach accurately captures the experimentally observed behavior

of the Rydberg population in Ref. [64], both on resonance and off resonance. Fur-

thermore, the exact details of how the decoherence is implemented primarily affects
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the Rydberg population lineshapes, while the qualitative scaling behavior remains

unchanged. However, this model fails to accurately capture both the early time and

low Rabi frequency behavior. In these regimes the number of contaminant atoms is

small and individual Rydberg atoms can affect the system more easily, so the spatial

configuration of the atoms, and thus their correlations, play a more important role.

The remainder of the chapter is organized in the following manner. In Sec. 3.2,

we describe our theoretical approaches to this system, including the details of the

cumulant expansion approximation and our phenomenological inhomogeneous rate

equations. In Sec. 3.3, we present the theoretical results of the cumulant expan-

sion approximation as well as an experimental examination of the crossover from

quadratic to linear dependence of the Rydberg population on Rabi frequency. In

Sec. 3.4, we present the theoretical results of our phenomenological inhomogeneous

rate equations and compare them to the experimental results of Ref. [64]. Finally,

in Appendix B, we include several details omitted from the main text.

3.2 Theoretical Models

In order to study the effect of contaminant p states on driven-dissipative Ry-

dberg systems, we consider a three-level system composed of states |g〉, |s〉, and |p〉,

corresponding to the ground, ns, and mp states, where n and m are the principal

quantum numbers of the s and p Rydberg states, respectively. Although there are

generally multiple mp states with large enough dipole matrix elements with the ns

state to affect the dynamics of the system, we consider here only one contaminant
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p state for simplicity. We also assume a nonzero magnetic field, as is the case in

Refs. [64, 197,198]. Our effective three-level model is illustrated in Fig. 3.1.

The transition between |g〉 and |s〉 is driven via a classical laser with Rabi

frequency Ω and detuning δ, where we have chosen to define our Rabi frequency

as half of the traditional definition to avoid carrying around extra factors of two.

Additionally, the |s〉 and |p〉 states will interact according to a flip-flop dipole-dipole

interaction. While van der Waals interactions are typically present, we ignore them

here since they are weak compared to the dipole-dipole interactions that we want

to study. Together, these result in the following Hamiltonian

H =
∑
i

[−δσssi + Ω(σgsi + σsgi )] +
∑
i 6=j

Vijσ
sp
i σ

ps
j , (3.1)

where we define operators σαβi = |α〉i〈β|i. The last sum is over both i and j. The

interaction strength between atoms i and j is given by

Vij =
C3

r3
ij

(1− 3 cos2 θij), (3.2)

where C3 defines the strength of the dipole-dipole interactions, rij is the separation

between atoms i and j, and θij is the angle the displacement vector rij makes with

the quantization axis, which is determined by the magnetic field. While there are

dipole-dipole interactions which have a different angular dependence, they are off-

resonant due to Zeeman shifts from the magnetic field and are less relevant as a

result. However, for sufficiently strong interactions relative to the Zeeman shifts,

these interactions could potentially play a more important role.

In addition to Hamiltonian dynamics, decay also plays a crucial role as the

source of the contaminant p states. We treat both aspects according to a master
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equation description

ρ̇ = −i[H, ρ] + γsLs[ρ] + γpLp[ρ] + γRLR[ρ], (3.3)

where γs, γp, and γR are the decay rates from |s〉 to |g〉, |p〉 to |g〉, and |s〉 to |p〉

respectively. We ignore blackbody radiation from the p state back to the s state

since most of the corresponding blackbody radiation goes to other s and d states.

Throughout this chapter, we will take γs = γp = 1 and γR = .3, which provides

comparable branching ratios to Ref. [64], although this comparison is complicated

by the fact that there are many relevant p states as well as decay to non-participating

ground states. The associated Lindblad operators for decay Ls, Lp, and LR are given

below

Ls[ρ] =
∑
i

[
σgsi ρσ

sg
i −

1

2
{ρ, σssi }

]
, (3.4a)

Lp[ρ] =
∑
i

[
σgpi ρσ

pg
i −

1

2
{ρ, σppi }

]
, (3.4b)

LR[ρ] =
∑
i

[
σpsi ρσ

sp
i −

1

2
{ρ, σssi }

]
. (3.4c)

We are most interested in the steady state of the above master equation.

However, this can only be determined numerically for up to approximately ten

atoms, far from any sort of long-range many-body behavior we are interested in.

One common approach to this problem is to use Gutzwiller mean field theory, which

ignores the effects of correlations and assumes the steady-state density matrix is a

product state [137, 138]. In Appendix B.1, we explain why this technique fails to

capture the behavior of our model. Instead, we will approach the problem via a

cumulant expansion approximation, which we discuss below.
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3.2.1 Cumulant expansion

Rather than truncate the hierarchy of differential equations at the level of

single atom operators as in Gutzwiller mean field theory, we instead use a second-

order cumulant expansion approximation, which continues one step further and

allows for correlations between pairs of atoms [205–208]. Formally, this amounts to

making the following approximation

〈AiBjCk〉 = 〈AiBj〉〈Ck〉+ 〈CkAi〉〈Bj〉+ 〈BjCk〉〈Ai〉 − 2〈Ai〉〈Bj〉〈Ck〉, (3.5)

where i, j, k correspond to distinct atoms and A,B, C are single atom operators (σαβ

in our model). This is equivalent to setting all three-atom and higher connected

correlations to zero. The nth-order connected correlation accounts for inherently n-

body correlations which cannot be understood in terms of lower-order correlations.

This truncation reduces a set of ∼ 9N equations to a set of O(N2) equations, where

N is the number of atoms. This is justified under the assumption that two-atom

correlations will dominate, which is often the case when dissipation and decoherence

are involved. However, higher densities and interaction strengths mean a given atom

will interact with a larger number of atoms, which leads to more relevant many-body

effects, and the approximation is less valid in this limit.

Restricting our focus to a lattice with unit filling, we may use translational

symmetry and truncate correlations past a certain distance (where they are neg-

ligible) in order to reduce this further to a set of O(M) equations, where M is

the number of displacement vectors considered. For 3D, we take all correlations
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involving distances greater than 16 times the lattice spacing to be zero. For 1D,

we choose this distance to be 100 times the lattice spacing. Furthermore, we take

advantage of the four different reflection symmetries present in the dipole interac-

tion in 3D, reducing the number of nonlinear coupled ordinary differential equations

by a further factor of 16. Finally, there is also a U(1) symmetry present in the

form of |p〉 → eiφ|p〉, which forces some terms in the density matrix to be zero

in steady state. Since we are assuming correlations past a certain distance to be

negligible, we restrict the strength of C3 so that the interaction strengths beyond

this distance are not large compared to the decay rates. By using these symmetries,

we are able to consider large system sizes and, correspondingly, large interaction

strengths. Steady-state behavior is found by numerically integrating the resultant

effective equations of motion using a 4th-order Runge-Kutta method. Examples of

the resultant effective nonlinear equations of motion are given in Appendix B.2.

To understand whether we can expect the cumulant expansion to give rea-

sonably accurate results, we use a quantum trajectories approach [211–214]. We

compare the results of the approximate cumulant expansion with the exact numer-

ics of quantum trajectories for small system sizes. We find that both approaches

produce results that are similar in this limit, with Rydberg populations generally

differing by no more than 5%. While the rest of this chapter focuses on parameter

regimes well outside this limit, this demonstrates that this approximation can cap-

ture the effects of the interactions. The results of this comparison are covered in

detail in Appendix B.3.
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3.2.2 Inhomogeneous Rate Equations

In addition to the cumulant expansion approach on resonance, we also study a

set of phenomenological inhomogeneous rate equations. The fundamental assump-

tion we make in forming these rate equations is that rather than an effective shift

in the detuning of individual sites, nearby p atoms cause dephasing proportional

to their interaction strength. This is motivated by the fact that the dipole-dipole

interactions are off-diagonal, so their effect cannot be strictly understood in terms of

effective detunings. Additionally, we take these rate equations to be spatially inho-

mogeneous by considering atoms which are independently and identically distributed

according to a 3D Gaussian probability distribution. This is done to capture the

fact that in a real system, the spontaneous decay will lead to a spatially inhomoge-

neous distribution of p atoms. These assumptions lead to the following set of rate

equations

ṡi = Ri(gi − si)− (γs + γR)si, (3.6a)

ṗi = γRsi − γppi, (3.6b)

ġi = −Ri(gi − si) + γssi + γppi, (3.6c)

where the pumping rate Ri is given by

Ri =
Ω2

δ2 + Γ2
i /4

Γi, (3.7)

and the dephasing rate Γi is given by

Γi = γs + γR + C3

∣∣∣∣∣∑
j 6=i

Vijpj

∣∣∣∣∣ . (3.8)
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The variables si, pi, gi refer respectively to the s, p, g populations at site i.

One important feature of these rate equations is that the scaling behavior of

the steady state population is generally insensitive to the exact manner in which

the interactions are included in the dephasing rate, and several different choices

produce the observed experimental scaling. They primarily differ in the coefficient

of the linewidth and of the resonant Rydberg population scaling as well as the

resultant lineshapes. For example, Ref. [198] considers a set of homogeneous rate

equations with Γ = γs + γR + n3DC3p, where n3D (n1D) is the density of atoms in

3D (1D). This model captures many features of the width behavior, but it predicts

dome-like lineshapes rather than the experimentally observed Lorentzian lineshapes.

Similarly, the spatial distribution of atoms in these types of models can also affect

the lineshape, with a lattice distribution often leading to more dome-like lineshapes

in general. Our choice of effective dephasing is the simplest choice we have found

which results in near-Lorentzian lineshapes. We compare the lineshapes of these

other approaches in more detail in Appendix B.4.

3.3 Cumulant Expansion Results

3.3.1 Divergences

In this section, we discuss the results of the cumulant expansion approxi-

mation, which takes third-order and higher connected correlations to be zero. As

mentioned previously, we will set γs = γp = 1 and γR = .3 throughout this section,

which produces similar branching ratios to the experimental setup in this chapter
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Figure 3.2: Approximate divergence diagrams for cumulant expansion in 3D. (a)
Divergence diagram on resonance (δ = 0). Most of the low Rabi frequencies on
resonance are convergent, although they become less stable as the interactions are
increased. Sufficiently large Rabi frequencies are also convergent, where steady-state
populations begin to saturate. (b) Divergence diagram for Ω/γs = .4. A very narrow
region near resonance is convergent for sufficiently small interaction strengths. The
outer edges of the divergent region grow approximately quadratically in detuning in
this parameter regime.

and in Ref. [64].

One issue that can arise under this approximation is the presence of unphysical

divergences. Although we focus our attention on resonance, these divergences gener-

ally occur at intermediate detunings and Rabi frequencies. Rather than divergences

due to numerical error, these divergences appear to be fundamental instabilities of

the nonlinear differential equations, where there is only a single, unstable steady

state. Furthermore, these divergences are less present in 1D systems, but they are

very relevant in 3D systems. The origin of these instabilities is most likely the im-

portance of the higher-order correlations that we have ignored [205], although finite

size effects could play a role as well.

In Fig. 3.2 we plot a diagram showing the approximate parameter regimes

where the cumulant expansion leads to a divergence. The regions where one would

expect high-order correlations to be more important are exactly those where the
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divergences are present. The vast majority of the data in Ref. [64] is well into these

divergent regions, with C3n3D/γs often an order of magnitude larger than what we

can treat numerically. Interestingly, the outer edge of the divergent region appears

to grow approximately as δ ∝
√
C3n3D/γs. This is exactly the experimentally ob-

served scaling behavior of the linewidth as a function of interaction strength, so the

observed scaling of the linewidths may be reflected in the behavior of the divergences.

As the interaction strength is increased, the linewidth increases, expanding the re-

gion where high-order correlations are important. Additionally, if we increase γR or

decrease γp, the size of these divergent regions tends to increase due to the increase

in the number of p atoms relative to the number of s atoms. Thus if high-order

correlations are the origin of the divergences, we would expect these divergences to

grow in the same manner as the lineshapes themselves, which is exactly what we

find.

In order to determine the Rydberg populations in divergent parameter regimes,

we further consider two more terms in the master equation that represent decoher-

ence on the |s〉 and |p〉 states.

Lsd[ρ] = γsd
∑
i

[
σssi ρσ

ss
i −

1

2
{ρ, σssi }

]
, (3.9a)

Lpd[ρ] = γpd
∑
i

[
σppi ρσ

pp
i −

1

2
{ρ, σppi }

]
, (3.9b)

where γsd and γpd correspond to the strength of decoherence on |s〉 and |p〉, respec-

tively. We set γsd = γpd = γd for simplicity. In terms of the differential equations

themselves, this amounts to including extra decay on the coherences but not on

the populations. When a sufficient amount of decoherence is included, parameter
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Figure 3.3: Illustration of how fitting the Rydberg population as a function of
decoherence is used to approximate the Rydberg population in divergent regions.
(a) n3DC3/γs = 1250,Ω/γs = .4. The orange line corresponds to a quartic fit of
the blue circles where γd/γs > .1. The purple square denotes the population for
γd = 0, which is convergent for these parameters. (b) Relative error of Rydberg
population extracted from a γd/γs > .1 fit compared to actual Rydbeg population
at γd = 0, denoted 〈σss〉F and 〈σss〉0 respectively, for several choices of parameters
just outside of the divergent region. The inset shows the parameters used in the
divergence diagram on resonance, where the orange ×’s denote the parameters used
and the blue line separates the convergent and divergent regions, with the top right
corresponding to the divergent region.

regimes which were formerly divergent become convergent. This is consistent with

the understanding that the instabilities are a result of the importance of higher-order

correlations, since decoherence decreases correlations. We focus on the cases of reso-

nant drive because they only require a small amount of extra decoherence to become

convergent. The amount of decoherence necessary for convergence (γd/γs ≈ .1) is

small compared to the decay rates and certainly smaller than any potential experi-

mental source of decoherence which we have not included in our model.

More importantly, the effect of increasing decoherence modifies the steady-

state population in a simple way. As one crosses from the convergent region to

the divergent region, the convergent steady state continuously becomes a divergent

steady state. This provides a way to estimate the expected population when no

decoherence is included. We achieve this by fitting the numerics for different de-
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coherences and extrapolating the population at γd = 0 according to the fit. The

accuracy of this technique is illustrated in Fig. 3.3, where we apply it to several

choices of parameters just outside of the divergent region. The populations we ex-

trapolate from the fits differ from the actual populations at γd by at most one tenth

of a percent. However, as one moves far into the divergent regime, this method

becomes increasingly less accurate because stronger decoherence is necessary for

convergence.

3.3.2 Blockade Radius Reduction

A concept that is often useful to consider in Rydberg systems is the blockade

radius [60, 200, 201]. Although in this case we are not considering the usual 1/r6

diagonal van der Waals interactions, the general effect of interactions suppressing

excitations will occur in a similar fashion. However, due to the off-diagonal nature

of the interactions, the effect of blockading will be modified in a non-trivial way in

many-body systems.

The blockade radius rb is often defined as the distance at which the interaction

strength is equal to the effective Rabi frequency, V (rb) = Ωeff. The effective Rabi

frequency is defined self-consistently as Ωeff =
√
NbΩ, where Nb is the number of

atoms in a blockade volume. In this limit, where only one excitation is possible

within a blockade volume, a superatom picture arises in which many atoms behave

as an effective two-level atom [201,215]. Since each Rydberg superatom blockades a

volume of Vb ∝ r3
b , the total number of Rydberg atoms is proportional to 1/Vb. One
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might näıvely expect to apply a similar analysis in the case of the contaminant p

states, with each producing a large blockade volume in which s atoms can no longer

be excited or de-excited. However, were this the case, the Rydberg populations in

Ref. [64] would be much lower than observed because the long-range behavior of the

dipole-dipole interaction corresponds to blockade volumes that are on the order of

the system size, while the corresponding populations of Rydberg states can be in

the hundreds. As a result, the size of the blockade volume due to the contaminant

states, if one exists, must be significantly smaller in order to account for the observed

Rydberg populations.

In a many-body Rydberg system, individual atoms are affected by interac-

tions due to multiple atoms. In the case of diagonal van der Waals blockading,

these interactions will only serve to further blockade any given excitation. On the

other hand, in the case of off-diagonal dipole-dipole interactions this will not be the

case, even when all matrix elements Vij are positive. This can be understood by

considering two atoms whose dipole-dipole interaction has a strength of V . Because

the interactions are off-diagonal, the corresponding eigenvalues are ±V . As a result,

if two p atoms are each blockading an atom in the ground state, then it becomes

possible for the blockade effects to interfere and effectively cancel each other out,

allowing the ground state atom to be excited. In a many-body system, this becomes

more complicated, with many different atoms taking part in a given excitation.

In order to observe this effect, we will consider both 1D systems, whose matrix

elements Vij are all the same sign, and 3D systems, whose matrix elements Vij may

be positive or negative. Additionally, the blockade radius will be defined according

97



to the connected correlations between s and p states,

〈σpp0 σ
ss
r 〉c = 〈σpp0 σ

ss
r 〉 − 〈σpp0 〉〈σssr 〉. (3.10)

These correlations describe how a p atom at the origin affects the likelihood there

is an s atom at r. When the strength of the dipole-dipole interaction between two

atoms is strong compared to the Rabi frequency, the connected correlation will be

negative and approximately constant. A negative connected correlation corresponds

to the effect of blockade, as it indicates a decreased likelihood for an s atom to

be present near a p atom. It is constant for large interaction strengths because

increasing the interaction strength further only serves to move a far off-resonant

excitation further away from resonance, so the s state will be strongly blockaded in

either case.

Unlike in the case of the 1D system, the 3D system can have small interactions

for short distances because of the dipole-dipole interaction’s angular dependence.

As a result, the concept of a blockade radius is slightly modified, so we will instead

consider an effective distance

reff = r/|1− 3 cos2 θ|1/3. (3.11)

Under this definition, sites which do not interact with each other are considered as

being infinitely far apart. While in reality these nearby sites will affect each other due

to higher-order processes even if they do not interact, this effective distance reduces

the effects of the anisotropic nature of the dipole-dipole interactions, providing a

useful way to understand how the effect of blockading is modified in many-body

systems.
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Figure 3.4: Correlations between s and p atoms for Ω/γs = .4. The blue dots are
from the cumulant expansion while the orange line corresponds to exact calculations
for just two atoms separated a distance r. These are plotted in (a) 1D for n3

1DC3/γs =
800 and (b) 3D for n3DC3/γs = 800.

In Fig. 3.4, we plot examples of the connected correlations for a 1D system

and a 3D system. As expected, we see that for small distances the connected corre-

lations are negative and approximately constant, with the 3D system showing more

fluctuations due to many-body effects and the angular dependence of the interac-

tions. As the distance is increased, these correlations drop off to zero, indicating a

lack of any correlation due to negligible interaction strength. In 1D, there is some

oscillation in the correlations after r = 7. This likely arises in a similar manner

to the emergence of staggered order in other driven-dissipative Rydberg system, in

which the blockading of nearby atoms prevents further atoms from being similarly

blockaded [76, 91, 183]. There are also some outliers in the 3D correlations, which

likely arise via a combination of many-body effects, the use of reff, and artifacts

from the cumulant expansion approximation. Finally, we note that the many-body

blockade radius is clearly smaller than the two-body blockade radius in both cases,

illustrating the presence of antiblockade effects.

In order to extract an effective blockade radius from these connected corre-

99



n1D(C3/γs)
1/3

0 10 20 30 40

r b
/r

(2
)

b

0

0.2

0.4

0.6

0.8

1a)
Ω/γs = .5
Ω/γs = 1

n3DC3/γs
0 200 400 600 800 1000

r b
/r

(2
)

b

0

0.2

0.4

0.6

0.8

1b)
Ω/γs = .4, γd/γs = 0
Ω/γs = .4, γd/γs = 1
Ω/γs = 1.2, γd/γs = 1
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(2)
b as a function of interaction strength. (a) 1D system with γd = 0 for all

points. (b) 3D system with examples of both γd = 0 and γd 6= 0.

lations, we will consider the distance or effective distance at which the connected

correlations decrease by a factor of 1/2. To reduce the effect of the fluctuations in

the 3D system, the correlation at an arbitrary effective distance is defined by an

average of the correlations from the cumulant expansion in a range of ∆reff = 1,

effectively smoothing out the numerics.

In Fig. 3.5, we consider the ratio of the many-body blockade radius to the two-

body blockade radius r
(2)
b , which is defined as the value of r at which the connected

correlations decrease by a factor of 1/2 relative to the short distance connected

correlations in a system of only two atoms. At small densities and interaction

strengths, this ratio approaches one, as is expected. However, once we consider larger

densities and interaction strengths, the ratio begins to decrease, demonstrating the

effect of the competition between blockade and antiblockade effects.

Remarkably, the trend is qualitatively similar for both small and large Rabi

frequency, regardless of whether the system is in 1D or 3D. Furthermore, including

decoherence does not drastically change the quantitative behavior in 3D. However,

this similarity in behavior does not appear to hold for arbitrary Ω. By solving the
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cumulant expansion equations of motion perturbatively in Ω, it can be shown that

to lowest order in Ω, the ratio of the many-body blockade radius to the two-body

blockade radius is one. This result reflects the fact that when one goes to sufficiently

small Rabi frequencies, the Rydberg population becomes small, so it is rare to have

two or more nearby p atoms to give rise to many-body effects.

3.3.3 Rydberg Population Scaling

Next, we are interested in understanding how the Rydberg population is af-

fected by dipole-dipole interactions. Although the many-body blockade radius is

smaller than the two-body blockade radius at large interaction strengths, both in-

crease as the interaction strength is increased, so we should expect to see a corre-

sponding decrease in the Rydberg population. Fig. 3.6 illustrates the steady-state

population’s dependence on interaction strength for both 1D and 3D systems. The

population appears to decrease according to a power law with a fitted exponent of

−.055 for 1D and −1/5 for 3D, observed over four and two orders of magnitude

respectively. These exponents appear to be relatively insensitive to changes in the

decay rates. For example, if we double γp in 1D, the corresponding exponent remains

close to −.055.

Particularly in 3D, there is some deviation from purely power law behavior,

with a faster fall-off at small interaction strengths compared to large interaction

strengths. This is the opposite of what one might normally expect for power law be-

havior. When there are no interactions, the population is given by some constant, so
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Figure 3.6: Steady-state s state population dependence on interaction strength for
Ω/γs = .4. (a) 1D system with best fit power-law with exponent of −.055. (b) 3D
system with best fit power-law exponent of −1/5.

we would expect a slower fall-off at small interaction strengths. Since the cumulant

expansion is more accurate for weak interactions, the fact that we do not see this

indicates that if we were to solve the full master equation, we would probably see

a faster fall-off at large interactions than what we see here. As a result, we expect

the full master equation to result in a scaling behavior much closer to the experi-

mentally observed exponent of −1/2 [64]. A likely source of this behavior is that at

higher interaction strengths, higher-order correlations become more important, and

ignoring these correlations ignores relevant blockading effects. However, in order

to confirm this hypothesis theoretically, it is important to account for higher-order

correlations, which is difficult to achieve in practice.

We are also interested in understanding the population’s dependence on the

Rabi frequency, which was originally observed to be closer to linear dependence

rather than the quadratic behavior of a non-interacting system [64]. However, at

sufficiently small Rabi frequencies, the density of s excitations will be so small that

interactions will become irrelevant, at which point quadratic behavior should be

restored. This can be seen by treating the system perturbatively in Ω, which results
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Figure 3.7: Scaling exponent b from fit of 〈σss〉 = aΩb for Ω/γs = .05, .1 as a
function of interaction strength. (a) 1D system. (b) 3D system with data only up
to n3DC3/γs = 200 due to finite size effects.

in 〈σss〉 ≈ 4Ω2

(γs+γR)2 to lowest order. This is the same perturbative result as for a

non-interacting system.

We observe this effect in Fig. 3.7, where we find the fit of the population

for two points Ω = .05γs, .1γs using the function 〈σss〉 = aΩb. The value of b is

essentially an approximation of the slope on a log-log plot for Ω ≈ .05γs. As the Rabi

frequency is increased, this slope will decrease, transitioning from quadratic behavior

towards linear behavior. As the interaction strength is increased, this exponent

decreases, indicating that the departure from quadratic behavior is happening at

lower Rabi frequencies, allowing for a possible linear behavior over a large range of

Rabi frequencies. Additionally, since the Rydberg population is suppressed more

for larger interactions, reaching saturation will require stronger Rabi frequencies,

expanding the possible range of linear behavior even further. For 3D, we only

consider a maximum interaction strength of n3DC3/γs = 200. This is because past

this point, the interactions at the furthest distances we allow become comparable

to the small Rabi frequencies considered and the numerics become less accurate.

In spite of this restriction on the range of interaction strengths we can consider,
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Figure 3.8: Resonant pumping rate as a function of Rabi frequency for two atomic
densities, where f corresponds to the fractional density of atoms initially in the
driven ground state and f = 100% corresponds to a density of 57 µm−3. Blue
circles (red squares) are from experimental data for f = 25% (f = 100%) and lines
are from fits of Eq. (3.12). The empty blue circle and red square correspond to
the fitted crossover Rabi frequency Ωc for each density, denoting the crossover from
quadratic to linear scaling in Rabi frequency. Error bars represent the one standard
deviation from exponential fits to extract the pumping rates.

we see that the extracted exponent decreases at a much faster rate in the higher

dimensional system.

In order to determine whether this behavior corresponds to a real effect or

simply an artifact of the cumulant expansion approximation, we study this change in

scaling behavior experimentally. Using the same experimental setup as in Ref. [64],

we consider the scaling behavior for two different densities which differ by a factor of

four. In Fig. 3.8, we plot the resonant pumping rate as a function of Rabi frequency

for the two different densities. The pumping rate gives the rate at which atoms

are pumped out of the relevant three-level system of Fig. 3.1 once a quasi-steady-

state has been reached. Further experimental details can be found in Appendix B.5.

This pumping rate provides a good approximation of the steady-state population

of Rydberg atoms 〈σss〉 ≈ R0

γ′
, where γ′ is the total decay rate from the s state,
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including decay which takes an atom to an undriven ground state. For both densities,

we have determined a best fit using the function

R0 =


aΩ2 Ω < Ωc

aΩc(2Ω− Ωc) Ω ≥ Ωc

(3.12)

This describes a continuous, smooth function which changes from quadratic scaling

to linear scaling at a critical value of Rabi frequency Ωc. While in reality the change

in scaling behavior may be more gradual, this gives a useful way of determining

where the scaling behavior change occurs. We find that Ωc

2π
= 31 ± 1 MHz for the

higher density and Ωc

2π
= 55± 2.5 MHz for the lower density, where the uncertainty

corresponds to one standard deviation from the fits. This clearly illustrates that the

scaling behavior changes at smaller Rabi frequencies for higher density samples. We

further note that although the quadratic regime is visible at low Rabi frequencies,

the corresponding populations are still well below the single-particle limit. This

indicates that the quadratic behavior extends beyond the single-particle physics

considered above. While this crossover is fairly clear in the experiment, theoretically

we see a much more gradual crossover. This could be due to finite size effects or

van der Waals interactions, which we have ignored in our model.

3.4 Rate Equation Results

In this section, we will discuss the results of our phenomenological rate equa-

tion approach in Eqs. (3.6-3.8) with the aim of comparing the lineshapes, scal-

ing behavior of the resonant Rydberg population, and the scaling behavior of the
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linewidths to the experimental results in Ref. [64]. Due to computational constraints,

we will restrict ourselves to considering 1080 atoms independently and identically

distributed according to a 3D Gaussian probability distribution with relative spatial

dimensions of 2×4×5, which is similar to the experimental setup. The density n3D

will be taken to be the density at the center of the distribution. Using a uniform

probability distribution gives similar results. Although we will vary n3DC3 rather

than the total number of atoms, both approaches result in quantitatively similar

behavior.

While the experiment takes place in a lattice, we consider a random distri-

bution to help capture the fact that at any given time, the distribution of the p

atoms themselves will be random due to dissipation and will not fully exhibit the

structure of the lattice. Additionally, when a lattice distribution is used instead of

a random, inhomogeneous distribution, this tends to make the resulting lineshapes

highly non-Lorentzian. Further details about this may be found in Appendix B.4.

The existence of a steady state can be influenced by the manner in which

interactions are included in the dephasing. For the choice we are considering here,

there are some regions in which no steady-state solution exists. At the edges of

such regions, the long-time behavior is periodic, exhibiting limit cycles. Further

into these parameter regimes, this periodic behavior likely continues, although the

time to reach the limit cycles becomes prohibitive due to the number of atoms in the

system. However, in either case the average population of all atoms approaches an

approximate steady-state value relatively quickly, with only small deviations from

this value as a function of time. This is illustrated in Fig. 3.9, where 〈σss〉ave denotes
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Figure 3.9: Example of the time dependence of the s population ensemble average
〈σss〉ave on resonance in units of γ−1

s . While neither a steady state nor a limit cycle is
reached quickly, 〈σss〉ave very quickly approaches an approximate steady-state value,
whose time average we will denote by 〈σss〉 for simplicity.

the time-dependent ensemble average of the Rydberg s population. Thus we may

take a time average of the s state ensemble average in order to find a good approx-

imation of the s population. From here on out, we will write the time average of

the s state ensemble average as 〈σss〉 for simplicity. We find that our phenomeno-

logical rate equations produce scaling behavior which is remarkably similar to the

experimentally observed scaling behavior as well as very Lorentzian lineshapes.

As mentioned before, the exact manner in which the interactions are included

in the decoherence can have an effect on the behavior of the steady-state popula-

tions. For example, if a homogeneous set of rate equations is used in which the

decoherence is merely proportional to n3DC3 times the average p population, this

will give reasonable scaling behavior, but it will also result in dome-shaped line-

shapes which drop off much faster than a Lorentzian. However, this homogeneous

approach ignores the importance of the spatial distribution of the p atoms, which

influences the strength and nature of the interactions and thus the decoherence. In

order to capture this behavior, some form of inhomogeneity should be included in
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Figure 3.10: Examples of near-Lorentzian lineshapes from inhomogeneous rate equa-
tions at n3DC3/γs = 5000 for several Rabi frequencies. Error bars indicate standard
error from five random distributions of atoms and the lines are best-fit Lorentzians.

the rate equations. Our choice of decoherence and atomic distribution provides a

simple way of capturing these features and results in more accurate lineshapes.

In Fig. 3.10, we plot the resulting lineshapes for several different Rabi frequen-

cies. We find that aside from the sharper behavior near resonance, the lineshapes

appear to be quite Lorentzian, even at very large linewidths. Another simple choice

of decoherence we might make is Γi = γs + γR + C3

∑
j 6=i |Vij|pj, which only allows

decoherence from different sites to add constructively. The resulting lineshapes from

this choice would be similar, but they would be more Lorentzian near resonance and

drop off faster than a Lorentzian in the wings. Additionally, a steady state is present

in all parameter regimes, in contrast to our choice of decoherence.

In Fig. 3.11, we compare the resonant population scaling behavior of the rate

equation model to the scaling behavior observed experimentally. As before, we can

relate the steady-state Rydberg population to the pumping rate via 〈σss〉 ≈ R0

γ′
,

where γ′ corresponds to the total decay rate from the s state, including decay which

takes the atom to an undriven ground state. Note that β3 =
∑ |C(np)

3 |bnp/Γnp,

108



(Ω/γs)/(n3DC3/γs)
1/2

10-3 10-2

⟨σ
ss
⟩

10-3

10-2

10-1
a)

f = 15%
f = 30%
f = 50%
f = 100%

Ω/(n3Dβ3)
1/2 (ms−1)

10-1 100 101

R
0
(m

s−
1
)

100

101

b)

f = 15%
f = 30%
f = 50%
f = 100%

Figure 3.11: Resonant steady-state s population scaling as a function of Rabi fre-
quency and interaction strength. Different points of the same color and symbol
correspond to different Rabi frequencies and error bars represent one standard devi-
ation from the Lorentzian fits. (a) Theoretical rate equation results, where f = 100%
corresponds to n3DC3/γs = 5000. The solid line is a linear fit with a slope of 3. (b)
Experimental resonant pumping rate results from Ref. [64] where f = 100% corre-
sponds to n3Dβ3 = 6612. The solid line is a linear fit with a slope of 3. Note that
our definition of Ω differs from the reference by a factor of two.

where C
(np)
3 is the corresponding value of C3 for a p state times the root-mean-

squared average of the angular dependence, bnp are the branching ratios from the

driven s state to various p states, and Γnp are their corresponding decay rates. This

means that n3Dβ3 will be comparable to n3DC3/γs. Because γ′ is the same order

of magnitude as γs, we should expect similar dependence on Ω and n3DC3 or n3Dβ3

up to some constant factor. This is in fact the case, with the constant coefficient

differing by less than a factor of two. Additionally, the change in behavior between

smaller Rabi frequencies and larger Rabi frequencies is quantitatively similar as well,

with both exhibiting a slight jump.

In Fig. 3.12, we compare the linewidth scaling behavior of our model to

the scaling behavior observed experimentally. At the lowest Rabi frequencies, the

linewidth approaches 1.3γs, which is the bare linewidth due to γs and γR. Above

these lower Rabi frequencies, we find that the general scaling behavior is again the
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Figure 3.12: Steady-state linewidth scaling as a function of Rabi frequency and
interaction strength. Different points of the same color and symbol correspond to
different Rabi frequencies and error bars represent one standard deviation from the
Lorentzian fits. (a) Theoretical rate equation results, where f = 100% corresponds
to n3DC3/γs = 5000. The solid line is a linear fit with a slope of .5 and y-intercept
of 1.3 (the bare linewidth). (b) Experimental linewidth results from Ref. [64] where
f = 100% corresponds to n3Dβ3 = 6612. The solid line is a linear fit with a slope of
1.8. Note that our definition of Ω differs from the reference by a factor of two.

same for theory and experiment, differing only by a constant factor, which in this

case is approximately four. While this is not as consistent as for the resonant scaling

behavior, it is remarkably consistent considering the simplicity of our model.

Furthermore, we also consider how the scaling coefficients change as γp and

γR are varied between .4γs and 2γs, which is comparable to the range possible for

87Rb at T = 300 K. These scaling coefficients are plotted in Fig. 3.13. We find that

the scaling coefficient for the resonant population and linewidth are approximately

proportional to
√
γp/γR and

√
γR/γp respectively, which is consistent with the def-

inition of β3. This is natural since γp/γR corresponds to the ratio of s atoms to

p atoms, so a higher ratio results in stronger dephasing in the same way that an

increase in the interaction strength results in stronger dephasing. However, if we

were to extend the range of possible γp and γR further, this behavior will eventually

start to break down.
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Figure 3.13: (a) Scaling coefficient for resonant population as a function of
(γp/γR)1/2. The coefficient αr is extracted from fitting the resonant population
according to 〈σss〉 = αr(Ω/γs)/(n3DC3/γs)

1/2 for fixed γR, γp, where error bars
correspond to one standard deviation from the fits. The solid line is a linear
fit with a slope of 1.5. (b) Scaling coefficient for the widths as a function of
(γR/γp)

1/2. The coefficient αw is extracted from fitting the widths according to
Γ/γs = αw(Ω/γs)(n3DC3/γs)

1/2 for fixed γR, γp, where error bars (not visible) cor-
respond to one standard deviation from the fits. The solid line is a linear fit with a
slope of .7.

While the general scaling behavior of Ref. [64] is captured very well, there are

two areas in which the rate equations fail qualitatively. The first qualitative failure

is in the transition from quadratic to linear scaling in Rabi frequency. This model

predicts the resonant linear behavior to continue into much smaller Rabi frequencies

than observed experimentally in Fig. 3.8 (theory not shown). A possible reason for

this is that at low Rabi frequencies, there is a small number of Rydberg atoms, so

that the exact details of their interactions and correlations become more important

and cannot be treated simply as dephasing. Another possible reason is that we

have neglected van der Waals interactions, which may be more important in this

regime. The second qualitative failure is the time required to reach steady state,

which the model predicts to be much longer than observed experimentally, as noted

for the homogeneous rate equations in Ref. [198]. This is most likely because the

exact details of the interactions and correlations are more important when there is a
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small number of Rydberg atoms. Rather than a diffuse population of p atoms slowly

increasing the excitation rate, there is initially a single p atom which immediately

brings directly into resonance many other possible excitations, leading to highly-

correlated growth dynamics.

3.5 Conclusion and Outlook

We have investigated the effect that dissipation-induced dipole-dipole inter-

actions have in a driven-dissipative Rydberg system using a cumulant expansion

approach and phenomenological inhomogeneous rate equations. For the cumulant

expansion approach, we showed that a modified many-body blockade radius picture

arises, leading to steady-state populations which scale with the interaction strength

like a power law. Additionally, we demonstrated a trend away from quadratic scaling

in Rabi frequency at low Rabi frequencies for strong interactions. We theoretically

predicted and experimentally observed that this transition occurs earliest for high

densities. While the cumulant expansion behaves qualitatively similar to experi-

mental observations, it is insufficient for quantitative agreement. This is because

in spite of the large amount of dissipation, the strong, long-range nature of the

dipole-dipole interaction gives rise to important many-body correlations which need

to be taken into account. However, with a simple choice of phenomenological inho-

mogeneous rate equations in which decoherence is proportional to the interaction

strength of nearby p atoms, we found remarkable quantitative agreement with the

experimental results of Ref. [64], although the rate equations fail to properly capture

112



low Rabi frequency behavior and early time dynamics, where the actual structure

of the correlations is particularly important.

In order to fully understand the underlying physics which gives rise to the

anomalous Rydberg broadening, further theoretical and experimental study is nec-

essary. While we have gone beyond mean field theory by including second-order

connected correlations, there are other possible routes as well, such as Keldysh field

theory [87, 99] or cluster mean-field approaches [216]. If one can determine which

high-order correlations are likely to be important with a reasonable degree of accu-

racy, this could provide a better way to reduce the exponential number of equations

of motion while still capturing the effects of high-order correlations. The success

of our phenomenological rate equations may also provide insight into other systems

involving dipole-dipole interactions or a path towards a more rigorous derivation

of similar rate equations, as has been done for the case of diagonal interactions in

Ref. [204]. Furthermore, the regimes where the rate equations performed poorly

were where the Rydberg population was smaller, so they may be amenable to meth-

ods which take advantage of this. This regime is also where there is likely to be

an interesting interplay between dipole-dipole interactions and van der Waals inter-

actions, which we have neglected here. So far, both theory and experiment have

been primarily focused on the effect of the interactions on the total Rydberg pop-

ulation, so determining the details of the many-body correlations theoretically and

experimentally remains an interesting open problem.
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Appendix A: Appendices to Chapter 2

A.1 Langevin Equations Near the Multicritical Points

In this section, we present the details of the derivation of the Langevin equa-

tions in the main text. To this end, we follow the procedure detailed in Ref. [82].

We begin by constructing the Keldysh path integral, then identify a semi-classical

limit, and derive a pair of complex Langevin equations that describe the dynamics

near the steady state. Finally, we identify a pair of two massless real fields (i.e., soft

modes) and two massive real fields (i.e., fast modes). We adiabatically eliminate the

massive fields to obtain a pair of Langevin equations presented in the main text.

We first ignore the sublattice symmetry for simplicity; this would not affect

the analysis presented here. We shall return to the latter symmetry once we identify

the semi-classical limit and corresponding Langevin equations. We cast our model

in terms of a Keldysh path integral as

Z =

∫
D[ψq, ψcl]e

iSK , (A.1)
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where the action SK is defined as

SK =

∫
x,t

ψ∗q∂tψcl + ψq∂tψ
∗
cl −

∫
x,t

(Hn(ψcl + ψq)−Hn(ψcl − ψq))

+ iΓ

∫
x,t

(|ψq|2 − ψclψ∗q/2− ψ∗clψq/2), (A.2)

with ψcl/q the classical/quantum fields and Hn(ψ) the normal-ordered form of the

Hamiltonian. The third line corresponds to the particular case of the Lindblad

operator
√

Γa, although this approach may easily be extended to more general

Lindbladians [99]. With the Hamiltonian in Eq. (2.1), the action in the continuum

(with the nearest-neighbor interactions expanded in powers of the gradient) is given

by

SK =

∫
x,t

ψ∗q

(
i∂t + J∇2 + ∆ + zJ + i

Γ

2

)
ψcl + c.c.

−
∫
x,t

V |ψcl|2(∇2 + z)ψclψ
∗
q −
√

2Ωψ∗q + c.c.

+

∫
x,t

iΓ|ψq|2 − V |ψq|2(∇2 + z)ψclψ
∗
q + c.c.,

(A.3)

where z = 2d is the coordination number. This expression bears a close resemblance

to the action of Eq. (12) in Ref. [82], but they differ in the form of their interac-

tions (which involve gradient terms here) and due to our use of normal ordering

rather than the Weyl ordering of Ref. [82]. This motivates a similar rescaling of the

parameters as

Ψcl = ψcl/
√
N , Ψq = ψq

√
N ,

Ω̃ = Ω/
√
N , v = zVN .

(A.4)

The parameter N effectively describes a density scale for the microscopic model via

|ψcl|2 = N|Ψcl|2, where |Ψcl|2 is O(1). Since varying the density scale also modifies

the interaction energy per particle, the interaction strength should be reduced cor-
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respondingly such that V |ψcl|2 = v|Ψcl|2; similarly, the drive should be increased so

that Ωψq = Ω̃Ψq. We can then rewrite the action as

SK =

∫
x,t

Ψ∗q

(
i∂t + J∇2 + ∆ + zJ + i

Γ

2

)
Ψcl + c.c.

−
∫
x,t

v|Ψcl|2(∇2/z + 1)ΨclΨ
∗
q −
√

2Ω̃Ψ∗q + c.c.

+

∫
x,t

i
Γ

N |Ψq|2 −
v

N 2
|Ψq|2(∇2/z + 1)ΨclΨ

∗
q + c.c.

(A.5)

In the limit of large N , the last term (the second term in the last line) can be

dropped, leading to an action that is at most quadratic in Ψq. This is simply

because a large population N corresponds to the semi-classical limit represented by

a large classical field ψcl and small fluctuations due to the quantum field ψq. Using

this fact, we can map the action to a Langevin equation as [128]

i∂tΨ = −(J∇2 + ∆ + zJ + iΓ/2− v(1 +∇2/z)|Ψ|2)Ψ + Ω̃ + ξ, (A.6a)

〈ξ∗(x, t)ξ(x′, t′)〉 =
Γ

N δ(x− x′)δ(t− t′), 〈ξ〉 = 0. (A.6b)

Note that the noise level is further suppressed at larger N as should be expected

from our semi-classical treatment.

Next we include the sublattice symmetry by defining Ψ1 as the sublattice

average and Ψ2 as the sublattice difference of the field Ψ; see Eq. (2.15), which differs

by a factor of
√
N due to our semi-classical limit. Our new Langevin equations are

now

i∂tΨ1 = −(∆ + J + iΓ/2)Ψ1 + v(Ψ2
1 −Ψ2

2)Ψ∗1 + Ω̃ + ξ1, (A.7a)

i∂tΨ2 = −(∆− J + iΓ/2)Ψ2 + v(Ψ2
2 −Ψ2

1)Ψ∗2 + ξ2, (A.7b)

〈ξ∗i (x, t)ξj(x′, t′)〉 =
Γ

N δijδ(x− x′)δ(t− t′), 〈ξi〉 = 0. (A.7c)
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3
δΩ̃

δΓ
2

√
3

2
δΩ̃ −

√
6

4
δΓ

√
2

9
− 1√

3
− 5

9
√

3

(a)

κ2 zD2 r2 B11 B03 B21

∆c = 1/3 2vΓ 4
√

3
9

2
√

3
3
δ∆ + 5

6
δΓ −

√
2

3
δΩ̃ −2

√
2

3
− 5

9
√

3
− 1

3
√

3

∆c = 2/3 2vΓ
√

3
3

2
√

3
3
δ∆ + 5

6
δΓ −

√
2

3
δΩ̃ −2

√
2

3
− 1

9
√

3
− 1

3
√

3

(b)

Table A.1: Langevin equation parameters for soft modes (a) φ1 and (b) φ2 in
Eq. (A.12).

Notice that we have dropped all the gradient terms as they do not play a role in

identifying the massive fields and their adiabatic elimination. We also follow our

convention in the main text to set zJ → J .

Our model exhibits two multicritical points where two modes (each a compo-

nent of one of the two fields Ψi) become critical. Due to the sublattice symmetry,

Ψ2 = 0 at the multicritical points up to fluctuations. Working in units where

∆ + J = 1, the two multicritical points occur at

(∆c, Jc) =

(
1

3
,
2

3

)
,

(
2

3
,
1

3

)
,

Γc =
√

4/3, Ω̃c = (2/3)3/2/
√
v,

(A.8)

with Ψ1 = Ψc =
√

2/3ve−iπ/3.

Next, we expand the Langevin equations in the vicinity of the two multicritical
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points as

∆ = ∆c + δ∆, Jc = Jc − δ∆,

Γ = Γc + δΓ, Ω̃ = Ω̃c + δΩ̃/
√
v,

Ψ1 = Ψc + ψ1/
√
v, Ψ2 = ψ2/

√
v.

(A.9)

The soft and gapped modes can be determined as linear combinations of the real

and imaginary parts of the two fields ψ1, ψ2. As in the case of bistability, the first

pair is identified as [82]

ψ1 = φ′1 + eiπ/3φ1, (A.10)

where φ′1 is massive and relaxes quickly while φ1 defines the slow field. Identify-

ing the massive/massless components of the field ψ2 depends on the corresponding

multicritical point as

∆c = 1/3 : ψ2 =
1√
3

(φ2e
−iπ/6 + φ′2e

iπ/6),

∆c = 2/3 : ψ2 =
1√
3

(φ2 + φ′2e
iπ/3),

(A.11)

where again the primed (unprimed) field indicates the massive (massless) field. Note

that these differ from the main text by a factor of
√
V , which is done to simplify the

resulting parameters in the Langevin equations by moving all the V dependence to

the noise term.

Upon adiabatically eliminating the massive fields and restoring the gradient

terms, we arrive at the Langevin equations

φ̇1 = h− r1φ1 +D1∇2φ1 + ξ1 + A20φ
2
1 + A02φ

2
2 + A12φ1φ

2
2 + A30φ

3
1, (A.12a)

φ̇2 = −r2φ2 +D2∇2φ2 + ξ2 +B11φ1φ2 +B21φ
2
1φ2 +B03φ

3
2, (A.12b)
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with Gaussian noise

〈ξi(x, t)ξj(x′, t′)〉 = 2
κi
N δijδ(x− x′)δ(t− t′). (A.13)

The various numerical factors are summarized in Table A.1 for the two multicritical

points under consideration. Note that γi = 1 and Ti = κi/N . We can see at this

point that the opposite signs of A02 and B11 indicate that no Hamiltonian description

is possible. Indeed, as will be discussed in the following section, this will carry over

to the signs of g12 and g21, leading to the critical behavior defined by the NEFPs.

A.2 Redundant Operators

In this section, we identify the redundant operators in the Langevin equa-

tions (A.12). In general, this can be done at the level of the Schwinger-Keldysh ac-

tion; however, we shall focus on the equivalent description in terms of the Langevin

equations. This perspective is particularly suitable in dealing with the (Itô) regu-

larization that is required to properly define the stochastic equations.

Consider a pair of Langevin equations that define an Itô process in the differ-

ential form [217]

dφ1 = f1(φ1, φ2)dt+
√
κ1dW1, (A.14a)

dφ2 = f2(φ1, φ2)dt+
√
κ2dW2, (A.14b)

where dWi is the stochastic noise that obeys the Itô rules:

dWidWj = δijdt, (A.15a)

dWidt = dtdWi = 0, (A.15b)
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dt2 = 0. (A.15c)

At the multicritical point, where the effective masses and the magnetic field are set

to zero, the Langevin equations (A.12) can be written in the form of Eq. (A.14)

with

f1(φ1, φ2) = D1∇2φ1 + A20φ
2
1 + A02φ

2
2 + A12φ1φ

2
2 + A30φ

3
1, (A.16a)

f2(φ1, φ2) = D2∇2φ2 +B11φ1φ2 +B21φ
2
1φ2 +B03φ

3
2. (A.16b)

In order to identify the redundant operators, we should examine the Langevin

equations under a general change of the field variables. We should then find the

dynamics in terms of new variables defined as Φ1 = g1(φ1, φ2) and Φ2 = g2(φ1, φ2);

the functions gi are general (but local) nonlinear maps which are invertible in a

neighborhood around the multicritical point and preserve the sublattice symmetry

φ2 → −φ2. The equations governing the dynamics of the new variables take the

form

dΦ1 =
∂g1

∂φ1

dφ1 +
∂g1

∂φ2

dφ2 +
1

2

∂2g1

∂φ2
1

dφ2
1 +

1

2

∂2g1

∂φ2
2

dφ2
2 +

∂g1

∂φ1∂φ2

dφ1dφ2

=

(
f1
∂g1

∂φ1

+ f2
∂g1

∂φ2

+
κ1

2

∂2g1

∂φ2
1

+
κ2

2

∂2g1

∂φ2
2

)
dt+

√
κ1
∂g1

∂φ1

dW1 +
√
κ2
∂g1

∂φ2

dW2.

(A.17)

We have used the Itô rules to derive the above equation, which is known as Itô’s

formula or Itô’s lemma [217]. A similar stochastic equation can be derived for

Φ2 by switching 1 ↔ 2. Note that the terms on the rhs should be expressed in

terms of Φi through the inverse functions g−1
i . One notices that there are new

contributions to the deterministic dynamics due to the noise. However, since we
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are working under the assumption that the noise is parametrically small compared

to the deterministic terms (with a strength proportional to 1/N ), we can ignore

such terms. Additionally, the noise terms are no longer additive but are instead

multiplicative, which introduces new terms in the action. However, since κi 6= 0,

the latter are irrelevant in the sense of RG and can be neglected as well. The same

holds for nonlinear terms (beyond quadratic terms) that involve gradients.

We shall assume without loss of generality that

∂gi
∂φj

∣∣∣∣
φi,φj=0

= δij; (A.18)

rescaling the fields by a constant factor does not allow us any additional freedom

while rotations obscure the symmetry φ2 → −φ2. Additionally, we do not consider

a constant shift in the field φ1 (a shift in φ2 is disallowed due to symmetry) for now,

but discuss it separately later in this section. Based on the structure of Eq. (A.17),

we notice that the quadratic terms in fi and gi result in additional cubic terms.

All other new terms in the deterministic part of the dynamics involve fourth- or

higher-order terms which are irrelevant under RG. Expressing a general nonlinear

transformation as

g1(φ1, φ2) = φ1 + c20φ
2
1 + c02φ

2
2, (A.19a)

g2(φ1, φ2) = φ2 + c11φ1φ2, (A.19b)

the modification of the cubic terms to lowest order in the coefficients and interaction
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terms are given by 
A12

B21

B03

→


A12

B21

B03

+ M


c20

c02

c11

 , (A.20)

where the matrix M is given by

M =


2A02 2B11 − 2A20 −2A02

−B11 0 A20

0 −B11 A02

 . (A.21)

Notice that the coefficient A30 is left unchanged. The rank of matrix M is 2, which

then determines the number of corresponding redundant operators.

In addition to the two redundant operators above, a third one emerges due

to a constant shift φ1 → φ1 + c00. Under this transformation, the quadratic terms

transform as 
A20

A02

B11

→


A20

A02

B11

+


3A30

A12

4A21

 c00. (A.22)

The effective mass and magnetic field terms also change, but this simply shifts the

location of the critical point.

The three redundant operators derived here can be used to always set the terms

A20, A02, B11 to zero. This can be understood by noting that the transformation

corresponding to M allows one to adjust the ratios of A12 and A21 relative to A30

without changing the quadratic terms. By properly using this redundancy, these

ratios can be tuned until the constant shift in Eq. (A.22) shifts all three quadratic
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terms to zero. At the same time, the cubic terms transform as

A30 → A30, (A.23a)

B03 → B03 −
A12A20B11 − 6A02A30B11 + 2A02A20B21

2A20(A20 −B11)
, (A.23b)

A12 → 2A02
3A30

2A20

, (A.23c)

B21 → B11
3A30

2A20

. (A.23d)

Having exhausted the three redundant operators to remove the three quadratic

terms, there is no further freedom in tuning other terms and, specifically, all the

cubic terms are fixed. While we could in principle include cubic or higher-order

terms in the nonlinear transformation [Eq. (A.19)], these would only modify the

fourth- or higher-order terms which are irrelevant under RG due to the presence of

the cubic terms. We also see that the relative sign of A12 and B21 is indeed directly

determined by the relative sign of A02 and B11, leading to criticality described by

the NEFPs. Finally, we note that the coefficient A20 appears in the denominator of

the above transformations. We assumed that this term is generated under coarse-

graining and thus should pose no problem in making the above transformations.

However, if there is a mechanism where this coefficient could be tuned to zero, the

above transformations are no longer valid and the two nonzero cubic terms should

be kept.

A.3 Perturbative RG

In this section, we discuss the details of the calculations in our perturbative

RG analysis. In the first part, we introduce the diagrammatic techniques we have
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(a) (b)

Figure A.1: Diagrammatic representation of Gaussian propagators. Solid (dotted)
lines correspond to classical (response) fields. The two fields are later distinguished
by thickness and color. In this figure, we have shown (a) the response propagator,
and (b) the correlation propagator.

used in the main text. In the second part, we compute the one-loop diagrams,

while, in the third part, we compute the two-loop diagrams for terms which are

unrenormalized at one loop.

A.3.1 Diagrammatic Techniques

To define the Gaussian propagators, we start with the Gaussian model with

the corresponding action

A0[φ̃i, φi] =
∑
i

∫
t,x

φ̃i(γi∂t −Di∇2 + ri)φi − γiTiφ̃i
2
. (A.24)

The Gaussian response and correlation functions are then given by

χi0(q, ω) = F〈φ̃i(0, 0)φi(r, t)〉 =
1

−iγiω +Diq2 + ri
, (A.25a)

Ci
0(q, ω) = F〈φi(0, 0)φi(r, t)〉 =

2γiTi
γ2
iω

2 + (Diq2 + ri)2
, (A.25b)

where F denotes the Fourier transform in both space and time. These propagators

can be expressed in a diagrammatic representation as shown in Fig. A.1.

The four interaction vertices from Eq. (2.27b) are illustrated in Fig. A.2. Due

to the structure of the action, one can find the corresponding Z factors for φ2 by

switching the subscripts 1↔ 2 and multiplying u12 by a factor of σ.
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(a) (b) (c) (d)

Figure A.2: Interaction vertices. Thin black (thick cyan) lines correspond to the
first (second) field and solid (dashed) lines correspond to the classical (response)
field. (a) u1φ

3
1φ̃1. (b) u2φ

3
2φ̃2. (c) u12φ

2
2φ1φ̃1. (d) σu12φ

2
1φ2φ̃2.

Finally, we quote identities which will prove useful in computing the integrals

in various Feynman diagrams:

1

ArBs
=

Γ(r + s)

Γ(r)Γ(s)

∫ 1

0

xr−1(1− x)s−1

[xA+ (1− x)B]r+s
dx, (A.26a)

∫
ddp

(2π)d
1

(m2 + 2q · p +Dp2)s
=

Γ(s− d/2)

(4π)d/2Γ(s)

D−d/2

(m2 − q2/D)s−d/2
, (A.26b)

where Γ(x) is Euler’s Gamma function. Finally, in order to determine the Z factors,

we employ the minimal subtraction procedure. This means that only the ultraviolet

divergences, in the form of powers of 1/ε, are incorporated into the Z factors. For

simplicity, we only present these divergences in the evaluation of integrals in the

following sections; non-divergent terms are dropped.

A.3.2 One-Loop Diagrams

A.3.2.1 Mass Terms

In this section, we consider corrections to r1. The corrections to r2 can be

obtained by switching the roles of φ1 and φ2. There are two diagrams that provide

corrections, which are illustrated in Fig. A.3. The combinatorial and interaction fac-

tors are (a) 3×u1 and (b) u12. Thus the one-loop contribution to the renormalization
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(a) (b)

Figure A.3: One-loop corrections to r1φ1φ̃1. Analogous diagrams for φ2φ̃2 can be
obtained by switching thin black and thick cyan lines.

of r1 is ∫
ddp

(2π)d

∫
dω

2π

[
3u1C

1
0(p, ω) + u12C

2
0(p, ω)

]
, (A.27)

so we should evaluate the integral of Ci
0. The latter can be written as

2γiTi

∫
ddp

(2π)d

∫
dω

2π

1

γ2
iω

2 + (Dip2 + ri)2

=Ti

∫
ddp

(2π)d
1

Dip2 + ri
, (A.28)

where the last line follows once we integrate over frequency.

The phase transition occurs where the renormalized mass term vanishes. The

critical value of the mass parameter ric is then determined by

r1c = −3u1T1

∫
ddp

(2π)d
1

D1p2
− u12T2

∫
ddp

(2π)d
1

D2p2
, (A.29)

and similarly for r2c ; note that the factors of r in the denominator have been dropped

as they introduce O(u2) corrections. Defining an additive renormalized mass term

ri = ri−ric , we can determine the Z factors for ri. To this end, we need to compute

integrals of the form

∫
ddp

(2π)d
ri

Dip2(Dip2 + ri)
=
Adµ

−ε

ε

ri
D2
i

, (A.30)

where we have included the geometrical factor Ad. We can then compute the corre-
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sponding Z factors as

Zr1 = 1− 3u1
Adµ

−ε

ε

T1

D2
1

− u12
Adµ

−ε

ε

T2

D2
2

r2

r1

, (A.31a)

Zr2 = 1− 3u2
Adµ

−ε

ε

T2

D2
2

− σu12
Adµ

−ε

ε

T1

D2
1

r1

r2

. (A.31b)

From this point on, we simply write ri as ri.

A.3.2.2 Coupling Terms

We first consider one-loop corrections to u1. We need to consider two diagrams

as illustrated in Fig. A.4. The combinatorial and interaction factors are (a) −3 ×

2×3×u2
1 and (b) −2×σu2

12. Thus the one-loop contribution to the renormalization

of u1 is

−
∫

dp

(2π)d

∫
dω

2π

[
18u2

1χ
1
0(p, ω)C1

0(−p,−ω) (A.32)

+2σu2
12χ

2
0(p, ω)C2

0(−p,−ω)
]
, (A.33)

whose evaluation we shall put aside for the moment.

The renormalization of u12 involves eight diagrams, four of which are illustrated

in Fig. A.5 and renormalize u12φ
2
2φ1φ̃1. The combinatorial and interaction factors

are (a) −2×2×u2
12, (b) −2×2×σu2

12, (c) −2×3×u2×σu12, and (d) −3×2×u1×u12.

The remaining four diagrams, corresponding to the renormalization of σu12φ
2
1φ2φ̃2,

can be simply obtained by interchanging the two fields. The resulting set of internal

diagrams and combinatorial factors are the same up to a factor of σ, so φ2
2φ1φ̃1 and

φ2
1φ2φ̃2 are renormalized in the same way at this order. Indeed, this reflects the fact

fact that g12/g21 is not renormalized at the one-loop order.
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(a) (b)

Figure A.4: One-loop corrections to u1φ
3
1φ̃1. Analogous diagrams for φ3

2φ̃2 can be
obtained by switching thin black and thick cyan lines.

(a) (b)

(c) (d)

Figure A.5: One-loop corrections to u12φ
2
2φ1φ̃1. Analogous diagrams for σu12φ

2
1φ2φ̃2

can be obtained by switching thin black and thick cyan lines.

Thus the one-loop contribution to the renormalization of u12 is

−
∫

dp

(2π)d

∫
dω

2π

[
4u2

12χ
1
0(p, ω)C2

0(−p,−ω) + 4σu2
12χ

2
0(p, ω)C1

0(−p,−ω)

+6σu1u12χ
2
0(p, ω)C2

0(−p,−ω) + 6u2u12χ
1
0(p, ω)C1

0(−p,−ω)
]
. (A.34)

This expression involves a nontrivial integral of the form

Uij = −
∫

dp

(2π)d

∫
dω

2π
χi0(p, ω)Cj

0(−p,−ω)

= −
∫

dp

(2π)d

∫
dω

2π

1

−iγiω +Dip2 + ri

2γjTj
γ2
jω

2 + (Djp2 + rj)2
. (A.35)

Integrating out frequency, the latter integral becomes

− Tj
γiγj

∫
dp

(2π)d
1

(D̃jp2 + r̃j)((D̃i + D̃j)p2 + γj r̃i + γir̃j)
, (A.36)

where Di = γiD̃i and ri = γir̃i. Using Feynman’s parametrization, this may be
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rewritten

− Tj
γiγj

∫
dp

(2π)d

∫ 1

0

dx
1

[(1− x)(D̃jp2 + r̃j) + x(D̃i + D̃j)p2 + xr̃i + xr̃j]2
, (A.37)

allowing us to integrate over momentum to find

− Tj
γi

Γ(2− d/2)

(4π)d/2

∫ 1

0

dx
(D̃j + D̃ix)−d/2

(r̃j + r̃ix)2−d/2 . (A.38)

Noting that r̃i = µ2r̃iR + O(u) and r̃iR is a finite constant, then according to the

minimal subtraction procedure, (r̃j+ r̃ix)2−d/2 ≈ µ−ε(r̃jR + r̃iRx)0 = µ−ε, where ε has

been set to 0 in the non-divergent part to extract the residue of the pole. Similarly,

we expand Γ(2 − d/2) = 2/ε + O(1) to extract the pole. Thus the above integral

becomes

Uij = − Tj
γiγj

1

D̃j(D̃i + D̃j)

Adµ
−ε

ε
, (A.39)

where we have included the geometrical factor Ad. This result in combination with

the diagrams considered above results in the following Z factors

Zu1 = 1 + 18U11u1 + 2U22σu
2
12/u1, (A.40a)

Zu2 = 1 + 18U22u2 + 2U11σu
2
12/u2, (A.40b)

Zu12 = 1 + 4U21u12 + 4U12σu12 + 6U11u1 + 6U22σu2. (A.40c)

A.3.3 Two-Loop Diagrams

First, we consider the two-loop corrections which arise from the φ̃iφi terms.

There are three two-loop diagrams that renormalize γ1 and D1 as shown in Fig. A.6.

The corresponding combinatorial and interaction factors are (a) −2!
2!
×3×2×3×u2

1,

(b) −2!
2!
× 2× u2

12, and (c) −2× 2× σu2
12.
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(a) (b)

(c)

Figure A.6: Two-loop corrections to γ1 and D1. Analogous diagrams for γ2, D2 can
be obtained by switching thin black and thick cyan lines.

As in the case of the coupling terms, the internal diagrams are all of the same

form, so we consider a generic internal diagram in the form of Fig. A.7.

This diagram corresponds to the integral

Ikij =

∫
ddpddq

(2π)2d

∫
dω1dω2

(2π)2
χk0(k− p− q, ω − ω1 − ω2)Ci

0(p, ω1)Cj
0(q, ω2), (A.41)

or

∫
ddpddq

(2π)2d

∫
dω1dω2

(2π)2

4γiγjTiTj
[(Dip2 + ri)2 + γ2

iω
2
1][(Djq2 + rj)2 + γ2

jω
2
2]
×

1

−iγk(ω − ω1 − ω2) +Dk(k− p− q)2 + rk
(A.42)

Integrating out the frequencies, this becomes

TiTj
γiγjγk

∫
ddpddq

(2π)2d

2

(D̃ip2 + r̃i)(D̃jq2 + r̃j)
×

1

D̃ip2 + D̃jq2 + D̃k(k− p− q)2 + r̃i + r̃j + r̃k − iω
. (A.43)

Once more, we use Feynman parameters to integrate over momenta, first combining

the second two factors in the denominator as

TiTj
γiγjγk

∫
dp

(2π)d
1

D̃ip2 + r̃i

∫ 1

0

dx

∫
dq

(2π)d
1

(α0 + 2ααα1 · q + α2q2)2
, (A.44)
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Dk(k− p− q)2

γk(ω − ω1 − ω2)

Dip
2

γiω1

Djq
2

γjω2

Figure A.7: A generic internal two-loop diagram leading to a renormalization of γi
and Di.

where

α0 = r̃j(1− x) + x(D̃jq
2 + D̃k(k− q)2 + r̃i + r̃j + r̃k − iω), (A.45a)

ααα1 = xD̃k(p− k), (A.45b)

α2 = D̃i + xD̃k. (A.45c)

Integrate over q yields

TiTj
γiγjγk

Γ(2− d/2)

(4π)d/2

∫ 1

0

dx

∫
ddp

(2π)d
1

(D̃ip2 + r̃i)

α
−d/2
2

(α0 −ααα2
1/α2)2−d/2 . (A.46)

Again taking advantage of a second Feynman parameter, we write this as

TiTj
γiγjγk

Γ(2− d/2)

(4π)d/2
Γ(3− d/2)

Γ(2− d/2)

∫ 1

0

∫ 1

0

dxdy

∫
ddp

(2π)d
α
−d/2
2 y1−d/2

(β0 + 2βββ1 · p + β2p2)3−d/2 ,

(A.47)

where

β0 = (1− y)r̃i + y(r̃j + xD̃k)k
2 + r̃kx+ r̃ix− ixω −

x2D̃2
kk

2

D̃j + xD̃k

, (A.48a)

βββ1 =
−xyD̃kD̃j

D̃j + xD̃k

k, (A.48b)

β2 = (1− y)D̃i + xy

(
D̃i +

D̃kD̃j

D̃j + D̃kx

)
. (A.48c)
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Integrating over p, we are left with the expression

Ikij =
TiTj

γiγjγk

Γ(2− d/2)

(4π)d
Γ(3− d/2)

Γ(2− d/2)

Γ(3− d)

Γ(3− d/2)

∫ 1

0

∫ 1

0

dxdy
(α2β2)−d/2y1−d/2

(β0 − βββ2
1/β2)3−d .

(A.49)

In order to determine corrections to ω and k2, we consider W k
ij ≡

∂Ikij
∂(−iω)

and Kk
ij ≡

∂Ikij
∂(k2)

, respectively, in the limit ω → 0,k → 0. Additionally, noting Γ(3 − d) =

−1
ε

+O(1) and taking d→ 4 while extracting a factor µ−2ε, we have

W k
ij = − TiTj

4γiγjγk

A2
dµ
−2ε

ε

∫ 1

0

∫ 1

0

x

(D̃kD̃jxy + D̃i(D̃j + D̃kx)(1− y + xy))2
dxdy,

(A.50a)

Kk
ij = − TiTj

4γiγjγk

A2
dµ
−2ε

ε

∫ 1

0

∫ 1

0

D̃iD̃jD̃kx(1− y + xy)

(D̃kD̃jxy + D̃i(D̃j + D̃kx)(1− y + xy))3
dxdy,

(A.50b)

where we have included the geometrical factor A2
d. We evaluate both of these inte-

grals exactly to find the resulting corrections

W k
ij = − TiTj

4γiγjγk

A2
dµ
−2ε

ε

1

D̃2
kD̃iD̃j

log

(
(D̃k + D̃i)(D̃k + D̃j)

D̃iD̃j + D̃k(D̃i + D̃j)

)
, (A.51a)

Kk
ij = − TiTj

4γiγjγk

A2
dµ
−2ε

ε

(D̃i + D̃j)D̃
2
k + 2D̃iD̃jD̃k

2D̃iD̃j(D̃i + D̃k)(D̃j + D̃k)(D̃iD̃j + D̃iD̃k + D̃jD̃k)
,

(A.51b)

from which we identify the following Z factors

Zγ1 = 1− (18u2
1W

1
11 + 2u2

12W
1
22 + 4σu2

12W
2
12)/γ1, (A.52a)

Zγ2 = 1− (18u2
2W

2
22 + 2u2

12W
2
11 + 4σu2

12W
1
21)/γ2, (A.52b)

ZD1 = 1− (18u2
1K

1
11 + 2u2

12K
1
22 + 4σu2

12K
2
12)/D1, (A.52c)

ZD2 = 1− (18u2
2K

2
22 + 2u2

12K
2
11 + 4σu2

12K
1
21)/D2, (A.52d)
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(a) (b)

Figure A.8: Two-loop corrections to γ1T1. Analogous diagrams for γ2T2 can be
obtained by switching thin black and thick cyan lines.

where the three corrections correspond to diagrams (a), (b), and (c) in Fig. A.6,

respectively.

Next, we consider the two-loop corrections to the φ̃2
i terms. There are two

such diagrams, which are illustrated in Fig. A.8. The combinatorial and interactions

factors are (a) 2!
2!
× 3!× u2

1 and (b) 2!
2!
× 2× u2

12. Note the lack of minus sign due to

the sign difference in A[φ̃i, φi].

Again, the internal diagrams are all of the same form, so we instead consider

the generic internal diagram in Fig. A.9. The integral corresponding to this diagram

is

Sijk =

∫
ddpddq

(2π)2d

∫
dω1dω2

(2π)2
χi0(p, ω1)χj0(q, ω2)χk0(p + q, ω1 + ω2), (A.53)

or

TiTjTk
γiγjγk

∫
ddpddq

(2π)2d

∫
dω1dω2

(2π)2

8

[(D̃ip2 + r̃i)2 + ω2
1][(D̃jq2 + r̃j)2 + ω2

2]
×

1

(D̃k(p + q)2 + r̃k)2 + (ω1 + ω2)2
. (A.54)

Integrating out the frequencies, this becomes

TiTjTk
γiγjγk

∫
ddpddq

(2π)2d

2

(D̃ip2 + r̃i)(D̃jq2 + r̃j)(D̃k(p + q)2 + r̃k)
×

1

D̃ip2 + D̃jq2 + D̃k(p + q)2 + r̃i + r̃j + r̃k
. (A.55)
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Dk(p+ q)2

γk(ω1 + ω2)

Dip
2

γiω1

Djq
2

γjω2

Figure A.9: Generic internal two-loop diagram leading to corrections to γiTi.

As before, we use Feynman parametrization to integrate over q. However, since

there are three terms in the denominator that involve q, we should introduce two

Feynman parameters x, y. The integral then becomes

2
TiTjTk
γiγjγk

Γ(3)

∫
ddp

(2π)d
1

D̃ip2 + r̃i

∫ 1

0

∫ 1

0

dxdy

∫
ddq

(2π)d
y

(α0 + 2ααα1 · q + α2q2)3
,

(A.56)

where

α0 = (1−y)(D̃i+ D̃k)p
2 +xyD̃kp

2 +(1−y)r̃i+(1−xy)r̃j +(1−y+xy)r̃k, (A.57a)

ααα1 = D̃k(1− y + xy)p, (A.57b)

α2 = (1− xy)D̃j + (1− y + xy)D̃k. (A.57c)

Integrating over q, we obtain

2
TiTjTk
γiγjγk

Γ(3− d/2)

(4π)d/2

∫ 1

0

∫ 1

0

dxdy

∫
ddp

(2π)d
yα
−d/2
2

(D̃ip2 + r̃i)(α0 −ααα2
1/α2)3−d/2

. (A.58)

Introducing a third Feynman parameter, we write this as

2
TiTjTk
γiγjγk

Γ(4− d/2)

(4π)d/2

∫ 1

0

∫ 1

0

∫ 1

0

dxdydz

∫
ddp

(2π)d
yz2−d/2α

−d/2
2

(β0 + 2βββ1 · q + β2p2)4−d/2 , (A.59)

where

β0 = (1− yz)r̃i + (1− xy)zr̃j + (1− y + xy)zr̃k, (A.60a)
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βββ1 = 0, (A.60b)

β2 = (1− yz)D̃i + (1− y + xy)zD̃k −
D̃2
k(1− y + xy)2z

D̃k(1− y + xy) + D̃j(1− xy)
. (A.60c)

Integrating over q leaves us with the integral

2
TiTjTk
γiγjγk

Γ(4− d)

(4π)d

∫ 1

0

∫ 1

0

∫ 1

0

dxdydz
yz2−d/2(α2β2)−d/2

(β0 − βββ2
1/β2)4−d . (A.61)

Several of the Γ factors cancel out; also, we note that Γ(4−d) = 1/ε+O(1). Taking

the limit d→ 4 and extracting a factor µ−2ε, we rewrite the latter integral as

C

∫ 1

0

∫ 1

0

∫ 1

0

dxdydzf(x, y, z, D̃i, D̃j, D̃k), (A.62a)

f(x, y, z, D̃i, D̃j, D̃k) =

y

D̃jD̃k(−1 + y − xy2 + x2y2)z + D̃i(D̃j(1− xy) + D̃k(1− y + xy)(−1 + yz))2

(A.62b)

C =
TiTjTk

2γiγjγk

A2
dµ
−2ε

ε
, (A.62c)

where we have included the geometrical factor A2
d. Taking advantage of the fact that

at least two of the D̃ must be the same, this integral can be evaluated analytically

as

Sijj = Sij =
TiT

2
j

2γiγ2
j

A2
dµ
−2ε

ε

1

D̃2
i D̃

2
j

log

22D̃i/D̃j
D̃i + D̃j

D̃i

(
D̃i + D̃j

2D̃i + D̃j

)1+2D̃i/D̃j

 ,

(A.63)

where D̃i corresponds to the field with one propagator and D̃j to the field with two.

Thus we identify the corresponding Z factors

Zγ1ZT1 = 1 + (3u2
1S

1
1 + u2

12S
1
2)/(γ1T1), (A.64a)
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Zγ2ZT2 = 1 + (3u2
2S

2
2 + u2

12S
2
1)/(γ2T2), (A.64b)

where the two corrections correspond to diagrams (a) and (b) in Fig. A.8, respec-

tively. Note that the factors are half of their combinatorial factors. This is because

the zeroth order vertex is 2γiTi rather than γiTi.

A.4 Method of Characteristics

In this section, we employ the method of characteristics in order to derive the

scaling behavior of the correlation and response functions at or near a given fixed

point. Since the correlation and response functions do not depend on the renormal-

ized parameters, they are independent of the momentum scale of renormalization µ.

Thus,

µ
d

dµ
Ci(q/µ, ω/µ

2, {pR}, {uR}) = 0, (A.65a)

µ
d

dµ
χi(q/µ, ω/µ

2, {pR}, {uR}) = 0, (A.65b)

where {p} = {ri,γi, Di, Ti} and {u} = {u1, u2, u12} are the interaction strengths.

Additionally, we define dimensionless scaling functions via Ci = µ−4Ĉi and χi =

µ−2χ̂i, where the scaling factors are due to the scaling dimensions of the fields as

well as the delta functions—which are factored out—corresponding to momentum

and energy conservation. In each case, we can rewrite the total derivative µ d
dµ

in
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terms of the partial derivatives with respect to other parameters as

µ
d

dµ
Ci = µ−4

(∑
p

γppR∂pR +
∑
s

βu∂uR − 4

)
Ĉi, (A.66a)

µ
d

dµ
χi = µ−2

(∑
p

γppR∂pR +
∑
s

βu∂uR − 2

)
χ̂i, (A.66b)

Next we employ the method of characteristics and define µ̃(l) = µl. We then

introduce the flowing dimensionless parameters p̃(l), ũ(l) via

l
dp̃(l)

dl
= γp(l)p̃(l), p̃(1) = pR, (A.67)

l
dũ(l)

dl
= βu(l), ũ(1) = uR. (A.68)

Casting the correlation and response functions in terms of the new flowing param-

eters and l, the scaling functions satisfy the differential equations

(
d

dl
− 4

)
Ĉi(q/(µl), ω/(µl)

2, {p̃(l)}, {ũ(l)}) = 0, (A.69a)

(
d

dl
− 2

)
χ̂i(q/(µl), ω/(µl)

2, {p̃(l)}, {ũ(l)}) = 0. (A.69b)

At the fixed point, βu(l) = 0 for all u and the parameters and flow functions assume

their fixed-point values ũ(l) = u∗ and γp(l) = γ∗p . This allows us to easily solve the

flowing parameters as

p̃(l) = pRl
γ∗p . (A.70)

Thus, at the fixed point, we can solve Eq. (A.69) and find the scaling form of the

correlation and response functions as

Ci(q, ω, {pR}) = (µl)−4Ĉi(q/(µl), ω/(µl)
2, {pRlγ

∗
p}), (A.71a)

χi(q, ω, {pR}) = (µl)−2χ̂i(q/(µl), ω/(µl)
2, {pRlγ

∗
p}), (A.71b)
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where the u arguments have been dropped since they approach a constant at the

fixed point and do not affect the universal scaling behavior. Since all the terms in

the perturbation series involve integrals of Gaussian propagators, we can simplify

reduce the scaling functions to [cf. Eq. (A.25)],

Ĉi

(
q

µl
,
ω

(µl)2
, DRl

γ∗D , TRl
γ∗T ,γiRl

γ∗γ , {rjRlγrj }
)
→

γiRTR
D2
R

lγ
∗
γ+γ∗T−2γ∗DĈi

(
q

µl
,
γiRω

µ2D2
R

l−2−γ∗D+γ∗γ , 1, 1, 1,

{
rjR
DR

l
γ∗rj−γ

∗
D

})
, (A.72a)

χ̂i

(
q

µl
,
ω

(µl)2
, DRl

γ∗D , TRl
γ∗T ,γiRl

γ∗γ , {rjRlγrj }
)
→

D−1
R l−γ

∗
D χ̂i

(
q

µl
,
γiRω

µ2D2
R

l−2−γ∗D+γ∗γ , 1, 1, 1,

{
rjR
DR

l
γ∗rj−γ

∗
D

})
, (A.72b)

where we have utilized the fact that the scaling behavior of γ, D, T is the same

for both fields. The above simplification was made by noting that in the Gaussian

propagators, we can absorb some arguments into others, e.g., by absorbing a factor

γi into the definition of ω or noting that Ti enters only as an overall multiplicative

constant in Ci. Upon applying the matching condition |q| = µl, we can express the

correlation and response functions as

Ci(q, ω, {rj}) ∝ |q|−4+γ∗γ+γ∗T−2γ∗DĈi

(
ω

|q|2+γ∗D−γ∗γ
,

{
rjR

|q|−γ∗rj +γ∗D

})
, (A.73a)

χi(q, ω, {rj}) ∝ |q|−2−γ∗D χ̂i

(
ω

|q|2+γ∗D−γ∗γ
,

{
rjR

|q|−γ∗rj +γ∗D

})
, (A.73b)

where we have further simplified the arguments of the scaling functions by dropping

factors of µ and pR and excluding arguments involving only a constant in a slight

abuse of notation. Comparing these scaling functions against those in Eq. (2.8), we
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identify the critical exponents

η = γ∗T − γ∗D, η′ = −γ∗D, z = 2 + γ∗D − γ∗γ. (A.74)

Simiarly, we can identify ν−1
j = −γ∗rj + γ∗D although the subtleties of a complex-

valued exponent ν at the NEFPs are discussed in detail in the main text.
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Appendix B: Appendices to Chapter 3

B.1 Gutzwiller Mean Field Theory

In Sec. 3.2, we motivated our use of a cumulant expansion approximation due

to the fact that Gutzwiller mean field theory fails to provide any insight into our

model. In this section, we provide the reasons for this failure. Using an inhomoge-

neous Gutzwiller mean-field approximation, we assume the density matrix has the

form

ρ =
⊗
i

ρi, (B.1)

which assumes there are no correlations between different atoms [137, 138]. The

method is inhomogeneous in the sense that each atom has its own density matrix,

whereas in homogeneous Gutzwiller mean field theory all atoms have the same

density matrix. This results in an effective local Hamiltonian

Heff
i = −δσssi + Ω(σsgi + σgsi ) +

∑
j

[Vijσ
ps
i 〈σspj 〉+H.c.]. (B.2)

Under this approximation, the interactions behave as an effective driving term

between the s and p states whose strength and phase are determined by the 〈σsp〉

coherences of the surrounding atoms. This explicitly assumes a breaking of the U(1)

symmetry |p〉 → eiφ|p〉. If it is not broken, then the system behaves as if there are
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no interactions. Additionally, in the full master equation’s steady state, the ratio of

s to p atoms is fixed because the number of p atoms only changes due to single-site

decay processes. However, under the mean-field approximation, the effective drive

between s and p states will inevitably change this ratio in steady state.

If we want to keep the ratio of s to p atoms reasonably close to the true

value, the effective Rabi frequency must be small. In this limit, we can easily solve

perturbatively for the steady state value of 〈σsp〉 as a function of the effective Rabi

frequency Ωeff =
∑

j Vij〈σspj 〉

〈σspi 〉 ≈
i(〈σssV=0〉 − 〈σppV=0〉)
iδ − γs+γp+γR

2

Ωeff, (B.3)

where 〈σssV=0〉 and 〈σppV=0〉 are the s and p populations with no interactions. In this

limit, the coherence depends linearly on the effective Rabi frequency, which can be

written as a matrix equation

〈σspi 〉 ≈ C
∑
j

Vij〈σspj 〉, (B.4)

where C is some complex constant with nonzero imaginary part. Equation (B.4)

may be thought of in terms of finding the eigenvector associated with an eigenvalue

1/C of the matrix defined by Vij where Vii = 0. However, since Vij is a symmetric,

real matrix, it has only real eigenvalues, so 1/C cannot be an eigenvalue and the only

solution to Eq. (B.4) is 〈σspi 〉 = 0. Thus the only possibility of a low effective Rabi

frequency mean-field solution with nonzero coherences is one which is not constant

in time, such as a limit cycle.

In order to determine whether other nontrivial solutions are possible, we ini-

tialize a cubic lattice of randomized density matrices for each lattice site and evolve
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the system according to the mean field equations of motion. This was done for a

variety of numerically feasible parameters, while the nearest neighbor interaction

strength remained at least two orders of magnitude above Ω and all decay rates.

In all cases, including those with large initial Ωeff, we found that the 〈σsp〉

coherences all decay to zero in steady state, in which case the system behaves as if

there are no interactions. This would not occur if the interactions were of the form

∑
i 6=j

Vijσ
ss
i σ

pp
j . (B.5)

Collective decay between the s and p states does result in nonzero 〈σsp〉 co-

herences in steady state, but we find numerically that the effect of interactions

when collective decay is included is small. Furthermore, the experimental results

in Refs. [64, 198] indicate that collective decay is not the source of the observed

broadening and is suppressed by the dipole-dipole interactions. For these reasons,

we do not consider collective decay in the above mean field analysis.

B.2 Cumulant Expansion Equations of Motion

In this section, in order to illustrate how the cumulant expansion approxi-

mation truncates the hierarchy of differential equations, we will present example

derivations for a single-atom expectation value 〈σsgi 〉 as well as a two-atom expecta-

tion value 〈σspi σpgj 〉 while taking advantage of the symmetries mentioned in Sec. 3.2.1.

In the full master equation, we can consider the evolution of the expectation value of

an operator O via ∂t〈O〉 = Tr(ρ̇O). Thus the corresponding differential equations
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for the two operators are

∂t〈σsgi 〉 = iΩ(〈σggi 〉 − 〈σssi 〉) + i
∑
k 6=i

Vki〈σspk σpgi 〉 −
γs + γR + 2γd

2
〈σsgi 〉, (B.6)

∂t〈σspi σpgj 〉 = iΩ(〈σgpi σpgj 〉 − 〈σspi σpsj 〉)−
γs + γR + 2γp + 3γd

2
〈σspi σpgj 〉

+ i
∑
k 6=i

Vki(〈σppi σspk σpgj 〉 − 〈σssi σspk σpgj 〉) + i
∑
k 6=j

Vkj〈σspi σsgj σpsk 〉,
(B.7)

where the sums are only over k. Note that some of the three-atom operators may

sometimes be two-atom operators if two of the indices are the same, in which case

no approximation is necessary and they are treated exactly.

In the above equations of motion, only the interaction terms couple operators

involving a different number of atoms. The driving terms and decay terms always

couple to the same sites. Additionally, since the interaction is composed of only

two-atom terms, n-atom operators can only couple to operators involving n or n±1

sites. As a result, assuming three-atom connected correlations to be zero implies all

higher-order connected correlations are zero, truncating the hierarchy of equations

that results from the interactions.

Once we apply translational invariance, single-atom expectation values are

site-independent, e.g. 〈σsgi 〉 = 〈σsg〉, and two-atom expectation values depend only

on their displacement vector, e.g. 〈σspi σpgj 〉 = 〈σsp0 σ
pg
j−i〉. Furthermore, the U(1)

symmetry of |p〉 → |p〉eiφ implies terms like 〈σspi 〉 or 〈σpgi σssj 〉 are zero in steady

state. Applying the cumulant expansion approximation, the terms in the equations

of motion due solely to the interactions become

∂t〈σsg〉 = · · ·+ i
∑
j 6=0

V0j〈σsp0 σ
pg
j 〉, (B.8)
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∂t〈σsp0 σ
pg
i 〉 = · · ·+iV0i〈σpp0 σ

sg
i 〉+i

∑
j 6=0,i

Vji〈σsp0 σ
pg
j 〉(〈σpp〉−〈σss〉)+i

∑
j 6=0,i

Vji〈σsp0 σ
ps
j 〉〈σsg〉.

(B.9)

Note that there are two types of interaction terms present above. The first involves

terms whose interaction strength and two-atom operator correspond to the same

atoms, while in the second only one index matches.

B.3 Quantum Trajectories

In this section, we verify that the cumulant expansion approach is a reasonable

approach by comparing it to the exact numerical approach of quantum trajectories

[211–214]. However, the quantum trajectories approach can be applied for at most

10 atoms due to computational constraints, which puts a limit on the range of C3 we

can consider if we want to keep boundary effects to a minimum. Here, we focus on

a 1D lattice of atoms with periodic boundary conditions. To take this into account,

the interaction between two given atoms is taken to be

Vij =
C3

r3
1

+
C3

r3
2

, (B.10)

where r1,2 are the two smallest distances between atoms i and j.

We can consider in general a quantum master equation of the following form

ρ̇ = −i[H, ρ] +
∑
i

γi

(
OiρO†i −

1

2
{O†iOi, ρ}

)
, (B.11)

which may be rewritten in terms of an effective non-Hermitian Hamiltonian and

recycling terms

ρ̇ = −i(Heffρ− ρH†eff) +
∑
i

γiOiρO†i , (B.12a)
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Heff = H − i

2

∑
i

γiO†iOi. (B.12b)

Rather than considering the evolution of the density matrix, we will instead

consider stochastic evolution of a normalized state |ψ(t)〉 according to Heff. As a

result of the non-Hermitian part of the effective Hamiltonian, the norm of |ψ(t)〉 is

not conserved, and after a time dt it will have a norm of 〈ψ̃(t+dt)|ψ̃(t+dt)〉 = 1−p.

The deviation p corresponds directly to the probability that a quantum jump has

occurred due to the Lindbladian. In the case where several possible types of quantum

jumps are possible, as is the case here, each process is weighted according to

pi = wip, (B.13a)

wi =
γi〈ψ(t)|O†iOi|ψ(t)〉∑
i γi〈ψ(t)|O†iOi|ψ(t)〉

. (B.13b)

Thus with probability pi the new state is

|ψ(t+ dt)〉 = Oi|ψ(t)〉/
√
〈O†iOi〉, (B.14)

and with probability 1− p the new state is

|ψ(t+ dt)〉 = |ψ̃(t+ dt)〉/
√

1− p. (B.15)

In contrast to a density matrix approach, there is no specific steady-state |ψ〉

which is constant in time. Instead, we extract the corresponding steady-state density

matrix by considering time averages of |ψ〉 once it has evolved sufficiently long to

exhibit steady-state behavior. This is effectively equivalent to averaging over many

runs to a specific time which is large compared to the steady-state relaxation time.

In Fig. B.1, we compare the results from quantum trajectories to the results from
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Figure B.1: Relative error of cumulant expansion (CE) with respect to quantum
trajectories (QT). Error bars denote standard error from quantum trajectories sam-
pling. The total sampling time is 4500 γ−1

s .

cumulant expansion. We see that at least in the limit of small interaction strengths

and densities, the steady-state error due to the cumulant expansion is not too large.

B.4 Comparison of Different Rate Equation Approaches

In this section, we compare the different implementations of the decoherence in

the rate equation model. In particular, we will consider how the distribution of atoms

and the summation of the interaction terms in the decoherence affect the lineshapes

and scaling behavior of the populations. The two distributions we consider will be

a Gaussian distribution, as in the main text, and a lattice distribution. The two

methods of summing the interaction terms are expressed below

Γi = γs + γR + C3

∣∣∣∣∣∑
j 6=i

Vijpj

∣∣∣∣∣ , (B.16a)

Γi = γs + γR + C3

∑
j 6=i

|Vijpj| . (B.16b)

The first of these two methods is used in the main text and allows for the decoherence

due to some p atoms to reduce the decoherence due to other p atoms when the
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Figure B.2: Example lineshapes for several implementations of decoherence, where
lines correspond to Lorentzian fits. (a) Lattice implementations of the rate equa-
tions. (b) Gaussian distribution implementation of the rate equations.

interactions are of a different sign. The second of these two methods only allows

different sources of decoherence to add together. As a shorthand, we will refer to

the former as the subtraction method and the latter as the addition method.

We will focus on how the different approaches affect the lineshapes of the Ryd-

berg populations. Since the experimentally observed lineshapes are quite Lorentzian

[64, 198], we should hope to reproduce this behavior as well. Example lineshapes

are shown for each implementation of decoherence in Fig. B.2.

In both of the lattice distribution approaches, we see that although there

is clear broadening evident, the population drops off in the wings too fast to be

considered Lorentzian, although this is less extreme for the subtraction method.

Additionally, the dome lineshapes of the lattice addition method are nearly identical

to the uniform approach of Ref. [198]. This occurs because the rate equations for the

internal lattice sites are all nearly identical. Since each atom behaves identically,

if there is a particular detuning at which a given atom’s population is no longer

drastically enhanced, then this will be the case for the entire sample, leading to a

sharp cutoff. By introducing more inhomogeneity, different atoms experience this
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cutoff at different detunings, leading to a more gradual decline in population.

The lineshapes produced by the Gaussian distributions are fairly Lorentzian

for both choices of implementing the decoherence. We find that the populations from

the addition method tend to fall off slightly faster than Lorentzian at large detunings,

while the populations from the subtraction method tend to have a sharper peak on

resonance than a Lorentzian.

Additionally, in spite of the fact that these approaches result in quite different

lineshapes, their scaling behavior is qualitatively the same. For example, if the pa-

rameters are changed such that either the width or the resonant population doubles

for one approach, the width or the resonant population of the other approaches will

approximately double as well.

B.5 Experimental Methods

In this section, we describe the experimental methods used in the main text.

The details of the experimental setup are described in Refs. [64,218]. In a nutshell,

the basis for the apparatus is a 87Rb Bose-Einstein condensate (BEC) machine

producing a BEC composed of N ≈ 4 × 104 atoms every 16 seconds. We excite

the atoms to the 18s1/2 state using a two-photon transition via the 5p1/2 state with

intermediate detuning ∆/2π ≈ 240 MHz. The lower and upper Rabi frequencies are

independently calibrated to Ω1/2π = 0 MHz to 5 MHz and Ω2/2π ≈ 12.5 MHz. In

keeping with the notation of the main text, these are both half the typical definition

of the Rabi frequency. The two lasers are locked to the same high-finesse optical
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Figure B.3: Experimental excitation and measurement scheme. The ground-state
manifold is initially populated with a fraction f in the |g〉 = |F = 2,mF = −2〉 state
and 1− f in the |F = 2,mF = 2〉 state using three applications of microwave rapid
adiabatic passage. The |F = 2,mF = −2〉 state is then driven via an off-resonant
two-photon transition through the 5p1/2 state to the 18s1/2 state with intermediate
detuning ∆, two-photon detuning δ, and lower and upper Rabi frequencies Ω1 and
Ω2.

cavity with < 10 kHz linewidth and are tuned for the transition |g〉 = |5s, F =

2,mF = −2〉 → |s〉 = |18s, F = 2,mF = −2〉. The BEC is created in the |F =

1,mF = −1〉 state, and we control the fraction f transferred to |5s, F = 2,mF = −2〉

via microwave rapid adiabatic passage. The remaining atoms are then transferred

to the shelving state |F = 2,mF = 2〉. This offers control over the fractional density

of atoms participating to the Rydberg excitation. This process is shown in Fig. B.3.

The post-excitation populations in the ground hyperfine manifold are sepa-

rated in time-of-flight with a Stern-Gerlach magnetic field gradient and measured

via absorption imaging. Experiments are done in a 3D optical lattice made with 812

nm light, resulting in a lattice spacing of 406 nm. This distance is comparable to

the 18s van der Waals blockade radius. We measure the resonant Rydberg pump-

ing rate R0 as a function of the two-photon Rabi frequency Ω = Ω1Ω2/∆ for two
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fractional densities f . This is achieved by measuring the post-excitation population

in the |5s, F = 2,mF = −2〉 initial state as a function of the excitation time, to

which we fit an exponential to extract the pumping rate. We obtain the resonant

rate R0 due to the Rydberg s state by subtracting the off-resonant 5s− 5p optical

pumping rate. The measurements presented in the main text are done with two

different fractional densities: f = 25% and f = 100%.
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Martin Kamp, Sven Höfling, Alfred Forchel, and Yoshihisa Yamamoto. Alge-
braic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-
polariton gas. Phys. Rev. B, 90(20):205430, November 2014.

[102] Jamir Marino and Sebastian Diehl. Driven Markovian Quantum Criticality.
Phys. Rev. Lett., 116(7):070407, February 2016.

[103] Emanuele G. Dalla Torre, Eugene Demler, Thierry Giamarchi, and Ehud Alt-
man. Quantum critical states and phase transitions in the presence of non-
equilibrium noise. Nat. Phys., 6(10):806–810, October 2010.

[104] H. F. H. Cheung, Y. S. Patil, and M. Vengalattore. Emergent phases and
critical behavior in a non-Markovian open quantum system. Phys. Rev. A,
97(5):052116, May 2018.

[105] Riccardo Rota, Fabrizio Minganti, Cristiano Ciuti, and Vincenzo Savona.
Quantum Critical Regime in a Quadratically Driven Nonlinear Photonic Lat-
tice. Phys. Rev. Lett., 122(11):110405, March 2019.

[106] K. E. Bassler and B. Schmittmann. Critical Dynamics of Nonconserved Ising-
Like Systems. Phys. Rev. Lett., 73(25):3343–3346, December 1994.

[107] P. L. Garrido and J. Marro. Effective Hamiltonian description of nonequilib-
rium spin systems. Phys. Rev. Lett., 62(17):1929–1932, April 1989.

159



[108] Jian Sheng Wang and Joel L. Lebowitz. Phase transitions and universality
in nonequilibrium steady states of stochastic Ising models. J. Stat. Phys.,
51(5-6):893–906, June 1988.

[109] M. C. Marques. Critical behaviour of the non-equilibrium Ising model with
locally competing temperatures. J. Phys. A, 22(20):4493–4497, October 1989.

[110] M.C. Marques. Nonequilibrium Ising model with competing dynamics: A
MFRG approach. Phys. Lett. A, 145(6-7):379–382, April 1990.

[111] T. Tome, M J de Oliveira, and M. A. Santos. Non-equilibrium Ising model
with competing Glauber dynamics. J. Phys. A, 24(15):3677–3686, August
1991.

[112] M J de Oliveira, J F F Mendes, and M. A. Santos. Nonequilibrium spin models
with Ising universal behaviour. J. Phys. A, 26(10):2317–2324, May 1993.

[113] A. Achahbar, J. J. Alonso, and M. A. Muñoz. Simple nonequilibrium extension
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[128] Uwe C. Täuber. Critical Dynamics: A Field Theory Approach to Equilibrium
and Non-Equilibrium Scaling Behavior. 2014.

[129] Didier Sornette. Discrete-scale invariance and complex dimensions. Phys.
Rep., 297(5):239–270, April 1998.

[130] Michael E. Fisher and David R. Nelson. Spin Flop, Supersolids, and Bicritical
and Tetracritical Points. Phys. Rev. Lett., 32(24):1350–1353, June 1974.

[131] David R. Nelson, J. M. Kosterlitz, and Michael E. Fisher. Renormalization-
Group Analysis of Bicritical and Tetracritical Points. Phys. Rev. Lett.,
33(14):813–817, September 1974.

[132] Alastair D. Bruce and Amnon Aharony. Coupled order parameters, symmetry-
breaking irrelevant scaling fields, and tetracritical points. Phys. Rev. B,
11(1):478–499, January 1975.

[133] J. M. Kosterlitz, David R. Nelson, and Michael E. Fisher. Bicritical and
tetracritical points in anisotropic antiferromagnetic systems. Phys. Rev. B,
13(1):412–432, January 1976.

[134] R. Folk, Yu Holovatch, and G. Moser. Field theory of bicritical and tetracritical
points. I. Statics. Phys. Rev. E, 78(4):041124, October 2008.

161



[135] R. Folk, Yu Holovatch, and G. Moser. Field theory of bicritical and tetracritical
points. II. Relaxational dynamics. Phys. Rev. E, 78(4):041125, October 2008.
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Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice.
Phys. Rev. A, 96(4):043809, October 2017.

[173] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte, and R. Fazio.
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