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Abstract — We study Chern numbers to characterize the ground state of strongly interacting
systems on a lattice. This method allows us to perform a numerical characterization of bosonic
fractional quantum Hall (FQH) states on a lattice where the conventional overlap calculation with
the known continuum case such as the Laughlin state, breaks down due to the lattice structure or
dipole-dipole interaction. The non-vanishing Chern number indicates the existence of a topological

order in the degenerate ground-state manifold.

Copyright © EPLA, 2008

One of the most dramatic manifestations of interactions
in many-body systems is the appearance of new quantum
states of matter. Often such states can be characterized
by an order parameter and spontaneous breaking of
some global symmetries. The “smoking gun” evidence
of such states is the appearance of Goldstone modes of
spontaneously broken symmetries. However, some types
of quantum many-body phases cannot be characterized
by a local order parameter. Examples can be found in
FQH systems [1], lattice gauge theories [2], and spin
liquid states [3]. Such states can be characterized by the
topological order [4] which encompasses global geometrical
properties such as ground-state degeneracies on non-trivial
manifolds [5]. Topologically ordered states often exhibit
fractional excitations [6] and have been proposed as a basis
of a new approach to quantum computations [7]. However,
in many cases, identifying a topologically ordered state is
a challenging task even for theoretical analysis. Given an
exact wave function of the ground state in a finite system,
how can one tell whether it describes a FQH phase of
a 2D electron gas or a spin liquid phase on a lattice?
One promising direction to identifying topological order
is based on the Chern number calculations [8]. The idea
of this approach is to relate the topological order to the
geometrical phase of the many-body wave function under
the change of the boundary conditions [9].

Important work of Berry [10] and Simon [11] initiated
the investigation on geometrical phase factors and since

then the field has been extensively studied in different
contexts —for a review see, for example, [12]. In quan-
tum Hall (QH) systems, early works on the Chern number
analysis [13] is focused on the Hall conductance and
robustness of QH states against changes in the band struc-
ture [14] and the presence of disorder [5,15]. Currently,
there is also considerable interest in understanding FQH
states in the presence of a strong periodic potential.
Such systems are important in several contexts including
anyonic spin states [16], vortex liquid states [17], and ultra-
cold atoms in optical lattices [18-22] which are promising
candidates for an experimental realization.

In this letter, we investigate a novel procedure for
calculating Chern numbers and demonstrate that this
method provides insight into the topological order of the
ground state in regimes where other methods fails to
provide a definite answer for the nature of the ground-
state wave function. In particular, we study a fractional
quantum Hall system with bosons on a lattice with a
filling factor of v = 1/2, where v is the ratio of the number
of magnetic flux quanta to the number of particles. In
the continuum limit, where the flux-fraction through each
plaquette « is very small (o < 1), this system is exactly
described by the Laughlin wave function. However, in
a recent study [18], it was found that for some values
of «20.25, the Laughlin wave function ceases to be a
good description of the system, indicated by a decreasing
overlap between the ground state and the Laughlin wave
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Table 1: Chern number for different configurations in the hard-core limit for a fixed filling factor v =1/2. The Laughlin state
overlap is shown in the last column. Although the ground state deviates from the Laughlin state, the Chern number remains
equal to one half per state before reaching some critical a. ~ 0.4 where the energy gap vanishes.

Atoms | Lattice @ gap/J | Chern/state | Overlap
3 6 x6 0.17 0.24 1/2 0.99
4 6x6 0.22 0.24 1/2 0.98
3 5Xb 0.24 0.23 1/2 0.98
3 4x5 0.3 0.18 1/2 0.91
4 59X 0.32 0.15 1/2 0.78
3 4x4 |0.375 | 0.03 1/2 0.29

function. From this study, it is unclear whether this
represented a change in the nature of the ground state,
or just that the lattice structure distorts the state. Here,
we use the Chern number calculation to provide an
unambiguous characterization of the ground state even
outside the regime where there is a significant overlap with
the Laughlin wave function. In particular, we show that
the Chern number and hence the topological order of the
system remains undisturbed until a < 0.4 (table 1).

To introduce the basic ideas of the Chern number
calculation in the many-body system, we first discuss the
continuum regime. We consider a single particle with
charge q on a torus T%(L, x L,) in the presence of a
magnetic field B perpendicular to the surface. The corre-
sponding Hamiltonian is invariant under the magnetic
translation of the single particle s, t,(a) = e’*"/" where
a is a vector on the torus, and k° is the pseudo-
momentum of the particle s, defined by k)=
—ih%(y) —qAz)(F)gBy(z) in z and (y) direction,
respectively, and A is the corresponding vector potential.
The generalized boundary condition is given by the trans-
lation, ts(Li'z)d"(xsa ys) = ewi’w(ms» ys)a where (Z =1, 2)
refer to two directions (x,%) on the torus 72 and the 6;’s
are twist angles of the boundary (fig. 1a). The magnetic
phase through each plaquette (27«) arises from the field
perpendicular to the surface of the torus. The Chern
number for non-degenerate state « is defined by

1 21 27 o o
Cl@) =5 [ty [ a0a(0A ~ 0, (1)
0 0

where A;D‘) (01,02) is defined as a vector field based
on the eigenstate ¥(*)(#;,0,) on T? by Aga)(el,Og)i
05 0)).

In the context of QH systems, the time derivative of
twist angles could be considered as voltage drops across
the Hall device in two dimensions and the boundary
averaged Hall conductance of any state is related to the
Chern number of that state [9]: o = C(a)e? /h.

The non-trivial behavior (non-zero conductance in the
case of quantum Hall system) occurs because of singulari-
ties of the vector field. If for a given non-degenerate state
the corresponding vector field is not defined for certain

(b)

21

Fig. 1: (Colour on-line) (a) Twist angles of the boundary condi-
tion as the result of two magnetic fluxes threaded the torus.
(b) Redefining the vector potential around the singularities:
Aj is not well-defined everywhere on the torus of the bound-
ary condition. Therefore, another vector field A’; with different
definition should be introduced around each singularity (67, 03)
of A;. However, A; and A’; are related to each other with a
gauge transformation y and the Chern number depends only
on the loop integrals of x around those singularity regions.

angles (67,60%) in S, regions (fig. 1b), then we should
introduce a new well-defined vector field A’;a)(91,92),
inside those regions. These two vector fields differ from
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each other by a gauge transformation, Ag.a)(ﬁl,Gg)—

A’§-a)(01, 62) = 0;x(01,02) and the Chern number reduces
to the winding number of the gauge transformation
x(01,02) over small loops encircling (07, 0%), i.e. 9S, [13],

1 - .
C’(a):zg » Vy -db. (2)

For the case of degenerate ground state a generalization
of the above argument can be made, where instead of
having a single vector field AE—D‘) (01,02), a tensor field
ALP)(9,,6,) should be defined, a, =1, ..., q for a ¢-fold
degenerate ground state: .A;a’ﬁ)(ﬂl, 0z) =i(T(®)] %W(ﬁ))

J

Therefore, when A;-a’ﬁ ) is not defined, similar to
the non-degenerate case, a new gauge convention should
be acquired for those regions with singularities. This
gives rise to a tensor gauge transformation on the
border of these regions, 9;x(*?)(6;,0) = A§a’ﬂ)(91, 02) —

A’ga’ﬁ ) (01,02) and consequently the Chern number is
given by the trace of the tensor Y,

1 = —
C(l,2,...,q):Z% b VTr x*# .40, (3)

We focus on a system of bosons on a square lattice
described by the Hamiltonian [19]:

_ A~ ~ —imay | AT A iTaz
H=-J E Ayt y0z,y€ +ay 100,y +h.c.
.y

F U iy (firy —1),

z,y

(4)

where J is the hopping energy between two neighboring
sites, U is the on-site interaction energy, and 27« is the
phase acquired by a particle going around a plaquette. We
concentrate on the hardcore limit (U > J) and v=1/2
where v is the ratio of the number of particles to the
total number of flux in the system. The experimental
proposal for realizing such a Hamiltonian for atomic
gases confined in an optical lattice has already been
investigated [18,19]. The ground state of the system for
very dilute lattice o <0.2 is two-fold degenerate and is
well described by the Laughlin state. When « increases the
lattice structure becomes more apparent and the overlap
with the Laughlin wave function breaks down. However,
by numerical calculation, we show that the Chern number
characterizes the system better and remains the same,
i.e. 1/2 for each state in the ground-state manifold, for
systems with higher flux density o < 0.4.

In the case of a very dilute lattice a <1, i.e. the
magnetic length is much larger than the lattice spac-
ing, and hence the lattice Hamiltonian approaches the
continuum limit. According to Haldane [23], the magnetic
translational symmetry of the center of mass results in
a two-fold degeneracy of the ground state for v=1/2.

-9.95

Fig. 2: (Colour on-line) Low-lying energy levels as a function of
twist angles. For finite o the ground-state energy oscillates as
a function of twist angles and for high a2 0.4 the oscillations
reach the exited levels. Panel (a) shows lowest-energy levels for
a=0.32 (4 atoms on a 5 x 5 lattice) while (b) shows the five
lowest-energy levels for o =0.4 (5 atoms on a 5 x 5 lattice). In
both plots, 62 =7 and #; is varied from zero to 27.

However, by increasing the magnetic field, the lattice
structure becomes more pronounced, in such a way that
even for a single particle, the lattice modifies the energy
levels from being simple Landau levels into the fractal
structure known as the Hofstadter butterfly [24]. For the
many-body problem, the presence of the lattice causes the
energy levels to oscillate (see fig. 2a) and instead of having
a unique degeneracy for all twist angles values, the ground
state is two-fold degenerate at only certain twist angles.
However, the two-dimensional ground-state manifold is
well defined and separated from the other states. By inte-
grating over twist angles, one state mixes with the other
state when levels touch each other, therefore in the Chern
number evaluation, both levels participate and the degen-
erate form of the Chern number should be used (eq. (3)).

It is important to note that the degeneracy in the non-
interacting regime (Landau degeneracy) is fundamentally
different from that of the interacting hard-core case.
In the non-interacting limit (U < J), the degeneracy
can be lifted by a local perturbation, e.g., an impurity,
while in the hardcore case, the degeneracy remains in
the thermodynamic limit [5]. The latter degeneracy is
a consequence of the global non-trivial properties of
the manifold on which the particles move rather than
symmetries of the Hamiltonian (e.g., the Ising model) [4].
Recently, it was shown [6] that in presence of a gap, there is
a direct connection between the fractionalization and the
topological degeneracy. In particular, the amount of the
degeneracy is related to the statistics of the fractionalized
quasiparticles, e.g. in the case of v =1/2, the two-fold
degeneracy is related to 1/2 anyonic statistics of the
corresponding quasiparticles.

The ground-state degeneracy prevents the direct
integration of eq. (1) since wave functions would mix
together when twist angles vary. Therefore, one has to
use eq. (3) and also resolve the extra gauge related to
the ground state. We can consider two possibilities: fixing
the relative phase between the two states in the ground
state, or lifting the degeneracy by adding some impurities.
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In the latter case, we can show that the system has a
topological order in spite of a poor overlap with the
Laughlin state [19]. On the other hand, a significant
amount of impurity in the system may distort the energy
spectrum, so that the underlying physical properties of
the lattice and fluxes could be confounded by the artifacts
due to the impurities, especially for large a.. Therefore, in
this letter we focus on the degenerate case.

We start with the simple case of a non-degenerate
ground state on a discrete s-dimensional Hilbert space,
U (01,02) = (c1,ca,-..,¢s). The one-dimensional gauge can
be resolved by making two conventions: in one convention
the first element and in the other the second element of
the wave function in the Hilbert space should be real, i.e.
we transform the ground state ¥ into Vg = P® = WU Td,
where ® = (1,0,...,0)! is a s-dimensional vector and P
is a projection into the ground state and similarly with
the other reference vector ® =(0,1,...,0)f. Hence, we
can uniquely determine the gauge x which relates the two
corresponding vector fields: e’X = & P®’. Therefore, the
Chern number will be equal to the number of vorticities
of x around regions where A, = ®TP® =|c;|? is zero.

For fixing the g-dimensional ground-state manifold
gauge, we take two reference multiplets ® and @’ which
are two s X q matrices (@ =2 in our case). We define an
overlap matrix as Ay =®'P®, and consider the regions
where detAg or detAl vanishes (similar to zeros of the
wave function in the non-degenerate case). Hence, the
Chern number for q degenerate states will be equal to
the total winding number of Tr x(*#) for small neighbor-
hoods S,,, in which detAg vanishes. It should be noted
that the zeros of detAs and detAf should not coincide
in order to uniquely determine the total vorticity. In our
numerical calculation, we choose multiplets ® and ®' to be
two sets of two degenerate ground states at two different
twist angles far apart, e.g., (0,0) and (7, 7). In fig. 3, we
have plotted Q = det(®P®’), detAs, and detAl, found by
numerical diagonalization of the Hamiltonian over a grid
(30 x 30) of twist angles ¢, and #3. The Chern number can
be determined by counting the number of vortices and it
is readily seen that the winding number is equal to one for
the corresponding zeros of detAy and detAg.

We have calculated the Chern number for fixed v =1/2
and different a’s by the method described above. The
result is shown in table 1. For a1, we know from
previous calculation [18] that the ground state is the
Laughlin state and we expect to obtain a Chern number
equal to 1/2 for each state, i.e. total Chern number equal
to one. For higher a, the lattice structure becomes more
apparent and the overlap with the Laughlin state decreases
rapidly. However, in our calculation, the ground state
remains two-fold degenerate and the associated Chern
number remains equal to one before reaching some critical
a.~0.4. Hence, we expect to have similar topological
order and fractional statistics of the excitations on the
lattice in this regime.
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Fig. 3: (Colour on-line) (a) Q(61,62) for fixed ® and ®'. #; and
02> changes from zero to 27. This plot has been produced for 4
atoms in the hard-core limit on a 5 x 5 lattice (o =0.32). (b)
and (c) surface plots of detAs and detAy (blue is lower than
red). 61 and 62 changes from zero to 27. The total vorticity
corresponding to each of the trial function (® or ®’) indicates
a Chern number equal to one for the two-dimensional ground-
state manifold.

For higher flux densities, a > a., the two-fold ground-
state degeneracy is no longer valid everywhere on the torus
of the boundary condition. In this regime, the issue of
degeneracy is more subtle, and finite-size effect becomes
significant. The translational symmetry argument [23]
is no longer valid and the degeneracy of the ground
state varies periodically with the system size [25]. Some
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gaps might be due to the finite size and vanish in the
thermodynamic limit. To investigate this, we study the
ground-state degeneracy as a function of boundary angles
(01,02) which are not physical observable. Therefore, the
degeneracy in the thermodynamic limit should not depend
on the their value. In particular, fig. 2b shows the energy
levels of five particles at o =0.4 for different values of
twist angles. The first and the second level are split at
(81 =02 =0), while they touch each other at (1 =2 = 7).
We have observed a similar behavior for different number
of particles and lattice sizes, e.g. 3 and 4 atoms at a =
0.5. Therefore, the ground state enters a different regime
which is a subject for further investigation. The existence
of the topological order does not require a very strong
interaction, i.e. hard-core limit. Even at finite interaction
strength U ~ Ja, we have observed the same topological
order with the help of the Chern number calculation. If
U gets further smaller, the energy gap above the ground
state diminishes [19] and the topological order disappears.

One of the impediment of the experimental realization
of a quantum Hall state is the smallness of the gap which
can be improved in the presence of the dipole-dipole inter-
action [19]. The dipole interaction can be represented as
an extra term ), Uqn; n;/|r; — r;|® in the Hamiltonian
eq. (4), where n; is the number of particles at location
r; in units of lattice spacing and Uy is the strength of
the interaction. The magnetic dipole-dipole interaction
has been achieved in the Bose-Einstein condensation
of chromium [26], however, for a lattice realization,
polar molecules with strong permanent electric dipole
moments are more promising candidates, where the
dipole interaction can be an order of magnitude greater
than the tunneling energy. In the presence of such strong
long-range interaction, the ground state deviates from
the conventional FQH state even in the continuum case
(i.e. for even o < 0.2, the overlap with the Laughlin wave
function decreases by increasing the strength of the dipole
interaction). However, by evaluating Chern number, we
are able to identify the topological order of the system,
that turns out to be intact, i.e. Chern number equal to
one for the two-fold degenerate ground state.

In conclusion, we have investigated a method to unam-
biguously calculate the Chern number for the ground state
of a system. For the FQHE system on the lattice that we
have investigated, the Laughlin wave function ceases to
be a good description of the ground state for high fluxes

a2 0.25, but the Chern number remains 1/2 per state
until @ <0.4 which is a direct indication of topological
order in the system. Calculating Chern numbers by this
method can be generalized for finite lattice systems to
properly characterize the ground-state manifold which is
otherwise impossible with conventional overlap methods.
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