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Abstract. One of the major advances needed to realize all-optical information
processing of light is the ability to delay or coherently store and retrieve optical
information in a rapidly tunable manner. In the classical domain, this optical
buffering is expected to be a key ingredient of managing the flow of information
over complex optical networks. Such a system also has profound implications for
quantum information processing, serving as a long-term memory that can store
the full quantum information contained in an optical pulse. Here, we suggest a
novel approach to light storage involving an optical waveguide coupled to an
optomechanical crystal array, where light in the waveguide can be dynamically
and coherently transferred into long-lived mechanical vibrations of the array.
Under realistic conditions, this system is capable of achieving large bandwidths
and storage/delay times in a compact, on-chip platform.
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1. Introduction

Light is a natural candidate for transmitting information across large networks owing to its high
speed and low propagation losses. A major obstacle to building more advanced optical networks
is the lack of an all-optically controlled device that can robustly delay or store optical wave
packets over a tunable amount of time. In the classical domain, such a device would enable all-
optical buffering and switching, bypassing the need to convert an optical pulse to an electronic
signal. In the quantum realm, such a device could serve as a memory to store the full quantum
information contained in a light pulse until it can be passed to a processing node at some
later time.

A number of schemes to coherently delay and store optical information are being
actively explored. These range from tunable coupled resonator optical waveguide (CROW)
structures [1, 2], where the propagation of light is dynamically altered by modulating the
refractive index of the system, to electromagnetically induced transparency (EIT) in atomic
media [3, 4], where the optical pulse is reversibly mapped into internal atomic degrees
of freedom. While these schemes have been demonstrated in a number of remarkable
experiments [5]–[8], they remain difficult to implement in a practical setting. Here, we present
a novel approach to store or stop an optical pulse propagating through a waveguide, wherein
coupling between the waveguide and a nearby nanomechanical resonator array enables one to
map the optical field into long-lived mechanical excitations. This process is completely quantum
coherent and allows the delay and release of pulses to be rapidly and all-optically tuned. Our
scheme combines many of the best attributes of previously proposed approaches, in that it
simultaneously allows for large bandwidths of operation, on-chip integration, relatively long
delay/storage times and ease of external control. Beyond light storage, this work opens up the
intriguing possibility of a platform for quantum or classical all-optical information processing
using mechanical systems.
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2. Description of the system: an optomechanical crystal (OMC) array

An optomechanical crystal (OMC) [9] is a periodic structure that comprises both a photonic [10]
and a phononic [11] crystal. The ability to engineer optical and mechanical properties in the
same structure should enable unprecedented control over light–matter interactions. Planar two-
dimensional (2D) photonic crystals, formed from patterned thin dielectric films on the surface of
a microchip, have been succesfully employed as nanoscale optical circuits capable of efficiently
routing, diffracting and trapping light. Fabrication techniques for such 2D photonic crystals have
matured significantly over the last decade, with experiments on an Si chip [12] demonstrating
excellent optical transmission through long (N > 100) linear arrays of coupled photonic crystal
cavities. In a similar Si chip platform, it has recently been shown that suitably designed photonic
crystal cavities also contain localized acoustic resonances that are strongly coupled to the
optical field via radiation pressure [9]. These planar OMCs are thus a natural candidate for
the implementation of our proposed slow-light scheme.

In the following, we consider an OMC containing a periodic array of such defect cavities
(see figures 1(a) and (b)). Each element of the array contains two optical cavity modes (denoted
1, 2) and a co-localized mechanical resonance. The Hamiltonian describing the dynamics of a
single element is of the form

H̃ om = h̄ω1â†
1â1 + h̄ω2â†

2â2 + h̄ωmb̂†b̂ + h̄h(b̂ + b̂†)(â†
1â2 + â†

2â1). (1)

Here, ω1,2 are the resonance frequencies of the two optical modes, ωm is the mechanical
resonance frequency and â1, â2, b̂ are annihilation operators for these modes. The
optomechanical interaction cross-couples the cavity modes 1 and 2 with a strength characterized
by h and that depends linearly on the mechanical displacement x̂ ∝ (b̂ + b̂†). While we formally
treat â1, â2, b̂ as quantum mechanical operators, for the most part it also suffices to treat these
terms as dimensionless classical quantities describing the positive-frequency components of the
optical fields and mechanical position. In addition to the optomechanical interaction described
by equation (1), cavity modes 1 are coupled to a common two-way waveguide (described
below). Each element is decoupled from the others except through the waveguide.

The design considerations necessary for achieving such a system are discussed in detail in
the section ‘Optomechanical crystal design’. For now, we take as typical parameters ω1/2π =

200 THz, ωm/2π = 10 GHz, h/2π = 0.35 MHz and mechanical and (unloaded) optical quality
factors of Qm ≡ ωm/γm ∼ 103 (room temperature)–105 (low temperature) and Q1 ≡ ω1/κ1,in =

3 × 106, where γm is the mechanical decay rate and κ1,in is the intrinsic optical cavity decay
rate. Similar parameters have been experimentally observed in other OMC systems [9, 13]. In
practice, one can also over-couple cavity mode 1 to the waveguide, with a waveguide-induced
optical decay rate κex that is much larger than κin.

For the purpose of slowing light, cavity modes 2 will be resonantly driven by an external
laser, so that to good approximation â2 ≈ α2(t)e−iω2t can be replaced by its mean-field value. We
furthermore consider the case where the frequencies are tuned such that ω1 = ω2 + ωm. Keeping
only the resonant terms in the optomechanical interaction, we arrive at a simplified Hamiltonian
for a single array element (see figure 1(b)),

Hom = h̄ω1â†
1â1 + h̄ωmb̂†b̂ + h̄�m(t)(â†

1b̂ e−i(ω1−ωm)t + h.c.). (2)

Here, we have defined an effective optomechanical driving amplitude �m(t) = hα2(t) and
assume that α2(t) is real. Mode 2 thus serves as a ‘tuning’ cavity that mediates population
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Figure 1. (a) Illustration of a double optical cavity system forming the unit
cell of the optomechanical array. A two-way optical waveguide is coupled to
a pair of optical cavity modes a1 and a2, whose resonance frequencies differ
by the frequency of the mechanical mode b. Both optical modes leak energy
into the waveguide at a rate κex and have an inherent decay rate κin. The
mechanical resonator optomechanically couples the two optical resonances with
a cross-coupling rate of h. (b) A simplified system diagram where the classically
driven cavity mode a2 is effectively eliminated to yield an optomechanical
driving amplitude �m between the mechanical mode and the cavity mode a1.
(c) Frequency-dependent reflectance (black curve) and transmittance (red) of
a single array element, in the case of no optomechanical driving amplitude
�m = 0 (dotted line) and an amplitude of �m = κex/10 (solid line). The inherent
cavity decay is chosen to be κin = 0.1κex. (Inset) The optomechanical coupling
creates a transparency window of width ∼4�2

m/κex for a single element and
enables perfect transmission on resonance, δk = 0. (d) Energy level structure
of the simplified system. The number of photons and phonons are denoted by
n1 and nm, respectively. The optomechanical driving amplitude �m couples
states |nm + 1, n1〉 ↔ |nm, n1 + 1〉, while the light in the waveguide couples states
|nm, n1〉 ↔ |nm, n1 + 1〉. The two couplings create a set of 3-type transitions
analogous to that in EIT.
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transfer (Rabi oscillations) between the ‘active’ cavity mode 1 and the mechanical resonator
at a controllable rate �(t), which is the key mechanism for our stopped-light protocol. In
the following analysis, we will focus exclusively on the active cavity mode and drop the ‘1’
subscript.

A Hamiltonian of the form (2) also describes an optomechanical system with a
single optical mode, when the cavity is driven off resonance at frequency ω1 − ωm and â1

corresponds to the sidebands generated at frequencies ±ωm around the classical driving field.
For a single system, this Hamiltonian leads to efficient optical cooling of the mechanical
motion [14, 15], a technique being used to cool nanomechanical systems toward their quantum
ground states [16]–[19]. While the majority of such work focuses on how optical fields
affect the mechanical dynamics, here we show that the optomechanical interaction strongly
modifies optical field propagation to yield the slow/stopped light phenomenon. Equation (2)
is quite general and thus this phenomenon could, in principle, be observed in any array of
optomechanical systems coupled to a waveguide. In practice, there are several considerations
that make the 2D OMC ‘ideal’. Firstly, our system exhibits an extremely large optomechanical
coupling h and contains a second optical tuning cavity that can be driven resonantly, which
enables large driving amplitudes �m using reasonable input power [20]. Using two different
cavities also potentially allows for greater versatility and addressability of our system. For
instance, in our proposed design the photons in cavity 1 are spatially filtered from those in cavity
2 [20]. Secondly, the 2D OMC is an easily scalable and compact platform. Finally, as described
below, the high mechanical frequency of our device compared to typical optomechanical
systems allows for a good balance between long storage times and suppression of noise
processes.

3. Slowing and stopping light

3.1. Static regime

We first analyze propagation in the waveguide when �m(t) = �m is static during the transit
interval of the signal pulse. As shown in the appendix, the evolution equations in a rotating
frame for a single element located at position z j along the waveguide are given by

dâ

dt
= −

κ

2
â + i�mb̂ + i

√
cκex

2
(âR,in(z j) + âL,in(z j)) +

√
cκinâN(z j), (3)

db̂

dt
= −

γm

2
b̂ + i�mâ + F̂N(t). (4)

Equation (3) is a standard input relation characterizing the coupling of right- (âR,in) and left-
propagating (âL,in) optical input fields in the waveguide with the cavity mode. Here κ = κex + κin

is the total optical cavity decay rate, âN(z) is quantum noise associated with the inherent optical
cavity loss, and for simplicity we have assumed a linear dispersion relation ωk = c|k| in the
waveguide. Equation (4) describes the optically driven mechanical motion, which decays at a
rate γm and is subject to thermal noise F̂N(t). The cavity mode couples to the right-propagating
field through the equation(

1

c

∂

∂t
+

∂

∂z

)
âR(z, t) = i

√
κex

2c
δ(z − z j)â + ik0âR, (5)
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where k0 = ω1/c. We solve the above equations to find the reflection and transmission
coefficients r, t of a single element for a right-propagating incoming field of frequency ωk (see
the appendix). In the limit where γm = 0, and defining δk ≡ ωk − ω1,

r(δk) = −
δkκex

δk(−2iδk + κ) + 2i�2
m

, (6)

while t = 1 + r . Example reflectance and transmittance curves are plotted in figure 1(c). For
any non-zero �m, a single element is perfectly transmitting on resonance, whereas for �m = 0
resonant transmission past the cavity is blocked. When �m 6= 0, excitation of the cavity mode is
inhibited through destructive interference between the incoming field and the optomechanical
coupling. In EIT, a similar effect occurs via interference between two electronic transitions. This
analogy is further elucidated by considering the level structure of our optomechanical system
(figure 1(d)), where the interference pathways and the ‘3’-type transition reminiscent of EIT
are clearly visible. The interference is accompanied by a steep phase variation in the transmitted
field around resonance, which can result in a slow group velocity. These steep features and
their similarity to EIT in a single optomechanical system have been theoretically [21, 22] and
experimentally studied [23, 24], while interference effects between a single cavity mode and
two mechanical modes have also been observed [25].

From r, t for a single element, the propagation characteristics through an infinite array
(figure 2(a)) can be readily obtained via band structure calculations [10]. To maximize the
propagation bandwidth of the system, we choose the spacing d between elements such that
k0d = (2n + 1)π/2 where n is a non-negative integer. With this choice of phasing, the reflections
from multiple elements destructively interfere under optomechanical driving. Typical band
structures are illustrated in figures 2(b)–(f). The color coding of the dispersion curves (red for
waveguide, green for optical cavity and blue for mechanical resonance) indicates the distribution
of energy or fractional occupation in the various degrees of freedom of the system in steady
state. Far away from the cavity resonance, the dispersion relation is nearly linear and simply
reflects the character of the input optical waveguide, while the propagation is strongly modified
near resonance (ω = ω1 = ω2 + ωm). In the absence of optomechanical coupling (�m = 0), a
transmission band gap of width ∼κ forms around the optical cavity resonance (reflections from
the bare optical cavity elements constructively interfere). In the presence of optomechanical
driving, the band gap splits in two (blue shaded regions) and a new propagation band centered
on the cavity resonance appears in the middle of the band gap. For weak driving (�m . κ), the
width of this band is ∼4�2

m/κ , whereas for strong driving (�m & κ), one recovers the ‘normal
mode splitting’ of width ∼2�m [26]. This relatively flat polaritonic band yields the slow-light
propagation of interest. Indeed, for small �m, the steady-state energy in this band is almost
completely mechanical in character, indicating the strong mixing and conversion of energy in
the waveguide to mechanical excitations along the array.

It can be shown that the Bloch wavevector near resonance is given by (see the appendix)

keff ≈ k0 +
κexδk

2d�2
m

+
iκexκinδ

2
k

4d�4
m

+
(2κ3

ex − 3κexκ
2
in + 12κex�

2
m)δ3

k

24d�6
m

. (7)

The group velocity on resonance, vg = (dkeff/dδk)
−1

|δk=0 = 2d�2
m/κex, can be dramatically

slowed by an amount that is tunable through the optomechanical coupling strength �m. The
quadratic and cubic terms in keff characterize pulse absorption and group velocity dispersion,
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Figure 2. (a) Illustration of an OMC array. A two-way optical waveguide is
coupled to a periodic array of optomechanical elements spaced by a distance d.
The optical cavity modes a j of each element leak energy into the waveguide
at a rate κex and have an inherent decay rate κin. The mechanical resonator of
each element has frequency ωm and is optomechanically coupled to the cavity
mode through a tuning cavity (shown in figure 1) with strength �m. (b) The band
structure of the system, for a range of driving strengths between �m = 0 and
�m = κ . The blue shaded regions indicate band gaps, while the color of the bands
elucidates the fractional occupation (red for energy in the optical waveguide,
green for the optical cavity and blue for mechanical excitations). The dynamic
compression of the bandwidth is clearly visible as �m → 0. (c) Band structure
for the case �m = κ/10 is shown in greater detail. (d) The fractional occupation
for each band in (c) is plotted separately. It can be seen that the polaritonic
slow-light band is mostly mechanical in nature, with a small mixing with the
waveguide modes and negligible mixing with the optical cavity mode. Zoom-ins
of panels (c) and (d) are shown in (e) and (f).
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respectively. In the relevant regime where κex � κin, κex &�m, these effects are negligible

within a bandwidth 1ω ∼ min(
2
√

2�2
m√

Nκexκin
,

2(6π)1/3�2
m

κex N 1/3 ). The second term is the bandwidth over
which certain frequency components of the pulse acquire a π -phase shift relative to others,
leading to pulse distortion. This yields a bandwidth–delay product of

1ωτdelay ∼ min(
√

2Nκex/κin, (6π N 2)1/3) (8)

for static �m and negligible mechanical losses. When intrinsic optical cavity losses are
negligible, and if one is not concerned with pulse distortion, light can propagate over the full
bandwidth ∼4�2

m/κ of the slow-light polariton band and the bandwidth–delay product increases
to 1ωτdelay ∼ N (see the appendix). On the other hand, we note that if we had operated in a
regime where k0d = πn, constructive interference in reflection would limit the bandwidth–delay
product to 1ωτdelay ∼ 1, independent of system size.

In the static regime, the bandwidth–delay product obtained here is analogous to CROW
systems [2]. In the case of EIT, a static bandwidth–delay product of 1ωτdelay∼

√
OD results,

where OD is the optical depth of the atomic medium. This product is limited by photon
absorption and rescattering into other directions, and is analogous to our result 1ωτdelay ∼
√

Nκex/κin in the case of large intrinsic cavity linewidth. On the other hand, when κin is
negligible, photons are never lost and reflections can be suppressed by interference. This yields
an improved scaling 1ωτdelay ∼ N 2/3 or ∼N , depending on whether one is concerned with
group velocity dispersion. In atomic media, the weak atom–photon coupling makes achieving
OD > 100 very challenging [27]. In contrast, in our system as few as N ∼ 10 elements would
be equivalently dense.

3.2. Storage of optical pulse

We now show that the group velocity vg(t) = 2d�2
m(t)/κex can in fact be adiabatically changed

once a pulse is completely localized inside the system, leading to distortion-less propagation at
a dynamically tunable speed. In particular, by tuning vg(t) → 0, the pulse can be completely
stopped and stored.

This phenomenon can be understood in terms of the static band structure of the system
(figure 2) and a ‘dynamic compression’ of the pulse bandwidth. The same physics applies for
CROW structures [1, 28], and the argument is re-summarized here. First, under constant �m, an
optical pulse within the bandwidth of the polariton band completely enters the medium. Once
the pulse is inside, we consider the effect of a gradual reduction in �m(t). Decomposing the
pulse into Bloch wavevector components, it is clear that each Bloch wavevector is conserved
under arbitrary changes of �m, as it is fixed by the system periodicity. Furthermore, transitions
to other bands are negligible provided that the energy levels are varied adiabatically compared
to the size of the gap, which translates into an adiabatic condition |(d/dt)(�2

m/κ)|. κ2. Then,
conservation of the Bloch wavevector implies that the bandwidth of the pulse is dynamically
compressed, and the reduction in slope of the polariton band (figure 2) causes the pulse to
propagate at an instantaneous group velocity vg(t) without any distortion. In the limit that
�m → 0, the polaritonic band becomes flat and completely mechanical in character, indicating
that the pulse has been reversibly and coherently mapped onto stationary mechanical excitations
within the array. We note that since �m is itself set by the tuning cavities, its rate of change
cannot exceed the optical linewidth and thus the adiabaticity condition is always satisfied in the
weak driving regime.
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The maximum storage time is set by the mechanical decay rate, ∼1/γm. For realistic system
parameters, ωm/2π = 10 GHz and Qm = 105, this yields a storage time of ∼10 µs. In CROW
structures, light is stored as circulating fields in optical nano-cavities, where state-of-the-art
quality factors of Q ∼ 106 limit the storage time to ∼1 ns. The key feature of our system is that
we effectively ‘down-convert’ the high-frequency optical fields to low-frequency mechanical
excitations, which naturally decay over much longer time scales. While storage times of ∼10 ms
are possible using atomic media [29], their bandwidths so far have been limited to <1 MHz [28].
In our system, bandwidths of ∼1 GHz are possible for realistic circulating powers in the tuning
cavities.

3.3. Imperfections in storage

The major source of error in our device will be mechanical noise, which through the
optomechanical coupling can be mapped into noise power in the optical waveguide output.
In our system, mechanical noise emerges via thermal fluctuations and Stokes scattering
(corresponding to the counter-rotating terms in the optomechanical interaction that we omitted
from equation (2)). To analyze these effects, it suffices to consider the case of static �m, and
given the linearity of the system, no waveguide input (such that the output will be purely noise).
For a single array element, the optomechanical driving �m results in optical cooling of the
mechanical motion [14, 15], with the mechanical energy Em evolving as (see the appendix)

dEm

dt
= −γm (Em − h̄ωmn̄th) − 0opt Em + 0opt

κ2

κ2 + 16ω2
m

(Em + h̄ωm). (9)

The first term on the right describes equilibration with the thermal surroundings, where
n̄th = (eh̄ωm/kBTb − 1)−1 is the Bose occupation number at the mechanical frequency and Tb is
the bath temperature. The second (third) term corresponds to cooling (heating) through anti-
Stokes (Stokes) scattering, with a rate proportional to 0opt = 4�2

m/κ . The Stokes process is
suppressed relative to the anti-Stokes in the limit of good sideband resolution κ/ωm � 1. For
an array of N elements, a simple upper bound for the output noise power at one end of the
waveguide is given by Pnoise = (1/2)(0opt Ess)N (ω1/ωm)(κex/κ), where Ess is the steady-state
solution of equation (9). The factor of 1/2 accounts for the optical noise exiting equally from
both output directions, 0opt Ess is the optically induced mechanical energy dissipation rate and
κex/κ describes the waveguide coupling efficiency. The term ω1/ωm represents the transduction
of mechanical to optical energy and is essentially the price that one pays for down-converting
optical excitations to mechanical to yield longer storage times—in turn, any mechanical noise
gets ‘up-converted’ to optical energy (whereas the probability of having a thermal optical photon
is negligible). In the relevant regime where 0opt � γm,

Pnoise≈
Nh̄ω1

2

κex

κ

(
γmn̄th + 0opt

(
κ

4ωm

)2
)

. (10)

This noise analysis is valid only in the weak driving regime (�m . κ) [14, 15]. The strong
driving regime, where the mechanical motion acquires a non-thermal character [32] and can
become entangled with the optical fields [33], will be treated in future work.

At room temperature, n̄th ≈ kBTb/h̄ωm is large and thermal noise will dominate, yielding
a noise power of ∼0.4 nW per element for previously given system parameters and κex/κ ≈ 1.
This is independent of 0opt provided that 0opt � γm, which reflects the fact that all of the thermal
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heating is removed through the optical channel. For high temperatures, the thermal noise scales
inversely with ωm, and the use of high-frequency mechanical oscillators ensures that the noise
remains easily tolerable even at room temperature.

Thermal noise in the high-frequency oscillator can essentially be eliminated in cryogenic
environments, which then enables faithful storage of single photons. Intuitively, a single-photon
pulse can be stored for a period only as long as the mechanical decay time ∼γ −1

m and as long
as a noise-induced mechanical excitation is unlikely to be generated over a region covering the
pulse length and over the transit time τdelay. The latter condition is equivalent to the statement
that the power Pph ∼ h̄ω11ω in the single-photon pulse exceeds Pnoise. While we have focused
on the static regime so far, when thermal heating is negligible, realizing Pph/Pnoise & 1 in the
static case in fact ensures that the inequality holds even when 0opt(t) is time varying. Physically,
the rate of Stokes scattering scales linearly with 0opt while the group velocity scales inversely,
and thus the probability of a noise excitation being added on top of the single-photon pulse is
fixed over a given transit length.

In a realistic setting, the optomechanical driving amplitude �m itself will be coupled
to the bath temperature, as absorption of the pump photons in the tuning cavities leads to
material heating. To understand the limitations as a quantum memory, we have numerically
optimized the static bandwidth–delay product 1ωτdelay for a train of single-photon pulses,
subject to the constraints 1ω < min(2

√
2�2

m/
√

Nκexκin, 2(6π)1/3�2
m/(κex N 1/3)), Pph/Pnoise >

1 and γmτdelay < 1. As a realistic model for the bath temperature, we take Tb = T0 + χα2
2 =

T0 + χ(�m/h)2, where T0 is the base temperature and χ ∼ 2 µK is a temperature coefficient
that describes heating due to pump absorption (see the appendix). Using T0 = 100 mK and
Qm = 105, we find (1ωτdelay)max ∼ 110, which is achieved for parameter values N ∼ 275,
κex/2π ∼ 1.1 GHz and �m/2π ∼ 130 MHz.

4. OMC design

A schematic diagram showing a few periods of our proposed 2D OMC slow-light structure is
given in figure 3. The structure is built around a ‘snowflake’ crystal pattern of etched holes into a
silicon slab [20]. This pattern, when implemented with a physical lattice constant of a = 400 nm,
snowflake radius r = 168 nm and snowflake width w = 60 nm (see figure 3(a)), provides a
simultaneous phononic band gap from 8.6 to 12.6 GHz and a photonic pseudo-band gap from
180 to 230 THz (see the appendix). Owing to its unique band gap properties, the snowflake
patterning can be used to form waveguides and resonant cavities for both acoustic and optical
waves simply by removing regions of the pattern. For instance, a single point defect, formed
by removing two adjacent holes (a so-called ‘L2’ defect), yields the co-localized phononic
and photonic resonances shown in figures 3(b) and (c), respectively. The radiation pressure,
or optomechanical coupling between the two resonances, can be quantified by a coupling rate,
g, which corresponds to the frequency shift in the optical resonance line introduced by a single
phonon of the mechanical resonance. Numerical finite-element method (FEM) simulations of
the L2 defect indicate that the mechanical resonance occurs at ωm/2π = 11.2 GHz, with a
coupling rate of g/2π = 489 kHz to the optical mode at frequency ωo/2π = 199 THz (free-
space optical wavelength of λ0 ≈ 1500 nm).

To form the double-cavity system described in the slow-light scheme above, a pair of L2
cavities are placed in the near field of each other as shown in the dashed box region of figure 3(a).
Modes of the two degenerate L2 cavities mix, forming supermodes of the double-cavity system
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Figure 3. (a) Top view of the proposed OMC array, with the superlattice unit
cell of length d highlighted in the center. The unit cell contains two coupled
L2 defect cavities (shaded in gray) with two side-coupled linear defect optical
waveguides (shaded in red). The different envelope functions pertain to the odd
and even optical cavity supermodes (green solid and dashed lines, respectively),
the odd mechanical supermode (blue solid line) and the odd and even optical
waveguide modes (red solid and dashed lines). The displacement field amplitude
|Q(r)| of the mechanical mode and in-plane electric field amplitude |E(r)| of
the optical mode are shown in (b) and (c), respectively, for a single L2 defect
cavity. (d) Bandstructure of the linear-defect waveguide (gray) and the zone
folded superlattice of the entire coupled-resonator system (red). The cavity mode
(green) crosses the superlattice band at mid-zone, and the waveguide–cavity
interaction is shown in more detail in insets (e) and (a) for the even (σy = +1)
and odd (σy = −1) supermodes, respectively.

that are split in frequency. The frequency splitting between modes can be tuned via the number
of snowflake periods between the cavities. As described in more detail in the appendix, it is the
optomechanical cross-coupling of the odd (E−) and even (E+) optical supermodes mediated by
the motion of the odd parity mechanical supermode (Q−) of the double cavity that drives the
slow-light behavior of the system. Since Q− is a displacement field that is antisymmetric about
the two cavities, there is no optomechanical self-coupling between the optical supermodes and
this mechanical mode. On the other hand, the cross-coupling between the two different parity
optical supermodes is large and given by h = g/

√
2 = 2π(346 kHz). By letting â1, â2 and b̂ be

the annihilation operators for the modes E−, E+ and Q−, we obtain the system Hamiltonian of
equation (1).

The different spatial symmetries of the optical cavity supermodes also allow them to be
addressed independently. To achieve this, we create a pair of linear defects in the snowflake
lattice, as shown in figure 3(a), each acting as a single-mode optical waveguide at the desired
frequency of roughly 200 THz (see figure 3(d)). Sending light down both waveguides, with the
individual waveguide modes either in or out of phase with each other, will then excite the even
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Figure 4. The input power (red line) required to achieve the system parameters
used in the text, i.e. �m/2π = 130 MHz with h/2π = 0.346 MHz, and the
attenuation per unit cell α (solid black line) are shown as a function of detuning
of the pump beam from the pump cavity frequency. The dotted line is the
approximate expression derived for the attenuation, α ≈ κexκin/4δ2

k . The gray
region indicates the band gap in which the pump cavities cannot be excited from
the waveguide. The trade-off between small pump input powers and low pump
attenuation factors is readily apparent in this plot.

or odd supermode of the double cavity, respectively. The waveguide width and proximity to the
L2 cavities can be used to tune the cavity loading (see the appendix), which for the structure
in figure 3(a) results in the desired κex/2π = 2.4 GHz. It should be noted that these line-defect
waveguides do not guide phonons at the frequency of Q− and thus no additional phonon leakage
is induced in the localized mechanical resonance.

The full slow-light waveguide system consists of a periodic array of the double-cavity,
double-waveguide structure. The numerically computed band diagram, for spacing d = 15a
periods of the snowflake lattice between cavity elements (the superlattice period), is shown in
figure 3(d). This choice of superlattice period results in the folded superlattice band intersecting
the E− (â1) cavity frequency ω1 at roughly mid-zone, corresponding to the desired inter-cavity
phase shift of kd = π/2. A zoom-in of the bandstructure near the optical cavity resonances
is shown in figures 3(e) and (f). In figure 3(e), the even parity supermode bandstructure is
plotted (i.e. assuming that the even supermode of the double waveguide is excited), whereas
in figure 3(f) it is the odd parity supermode bandstructure.

A subtlety in the optical pumping of the periodically arrayed waveguide system is that for
the E+ (â2) optical cavity resonance at ω2, there exists a transmission band gap. To populate
cavity â2, then, and to create the polaritonic band at ω1, the pump beam must be slightly off-
resonant from ω2, but still at ω1 − ωm. We achieve this by choosing a double-cavity separation
(14 periods) resulting in a cavity mode splitting ((ω1 − ω2)/2π = 9.7 GHz) slightly smaller than
the mechanical frequency (ωm/2π = 11.2 GHz), as shown in figures 3(e) and (f). By changing
the detuning between ω1 − ω2 and ωm, a trade-off can be made between the attenuation of the
pump beam per unit cell, α ≡ exp(−Im{K }d), and total required input power, shown in figure 4.
In appendix D.3, we show that the total attenuation per unit cell is given by α ≈ κexκin/4δ2

k .
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Interestingly, by using higher input powers such that α → 0, it is in principle possible to
eliminate completely effects due to absorption in the array, which may lead to inhomogeneous
pump photon occupations.

5. Outlook

The possibility of using optomechanical systems to facilitate major tasks in classical optical
networks has been suggested in several recent proposals [20, 25, 35]. The present work not
only extends these prospects but proposes a fundamentally new direction where optomechanical
systems can be used to control and manipulate light at a quantum mechanical level. Such
efforts would closely mirror the many proposals to perform similar tasks using EIT and atomic
ensembles [4]. At the same time, the optomechanical array has a number of novel features
compared to atoms, in that each element can be deterministically positioned, addressed and
manipulated, and a single element is already optically dense. Furthermore, the ability to freely
convert between phonons and photons enables new possibilities for manipulating light through
the manipulation of sound. Taken together, this raises the possibility that mechanical systems
can provide a novel, highly configurable on-chip platform for realizing quantum optics and
‘atomic’ physics.
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Appendix A. Equations of motion for an OMC array

Here we derive the equations of motion for an array of optomechanical systems coupled to a
two-way waveguide. Because each element in the array couples independently to the waveguide,
it suffices here to only consider a single element, from which the result for an arbitrary number
of elements is easily generalized.

We model the interaction between the active cavity mode 1 and the waveguide with the
following Hamiltonian,

Hcav-wg =

∫
∞

−∞

dk h̄(ck − ω1)â
†
R,k âR,k −

∫
∞

−∞

dk h̄(ck + ω1)â
†
L,k âL,k

−h̄g
√

2π

∫
∞

−∞

dz δ(z − z j)(â
†
1(âR(z) + âL(z)) + h.c.). (A.1)

Here, âR,k , âL,k are annihilation operators for left- and right-going waveguide modes of
wavevector k, and ω1 is the frequency of the cavity mode. For convenience, we have defined all
optical energies relative to ω1, and assumed that the waveguide has a linear dispersion relation
ω(k) = c|k|. The last term on the right describes a point-like coupling between the cavity (at
position z j ) and the left- and right-going waveguide modes, with a strength g. The operator
âR(z) physically describes the annihilation of a right-going photon at position z and is related to
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the wavevector annihilation operators by âR(z) =
1

√
2π

∫
∞

−∞
dk eikzâR,k (with a similar definition

for âL(z)). Equation (A.1) resembles a standard Hamiltonian used to formulate quantum cavity
input–output relations [36], properly generalized to the case when the cavity accepts an input
from either direction. Note that we make the approximation that the left- and right-going
waves can be treated as separate quantum fields, with modes in each direction running from
−∞ < k < ∞. This allows both the left- and right-going fields to separately satisfy canonical
field commutation relations, [âR(z), âR(z′)] = [âL(z), âL(z′)] = δ(z − z′), while commuting
with each other. Thus each field contains some unphysical modes (e.g. wavevector components
k < 0 for the right-going field), but the approximation remains valid as long as there is no
process in the system evolution that allows for the population of such modes.

From the Hamiltonian above, one finds the following Heisenberg equation of motion for
the right-going field,(

1

c

∂

∂t
+

∂

∂z

)
âR(z) =

√
2π ig

c
δ(z − z j)â1 + ik0âR, (A.2)

where k0 = ω1/c. A similar equation holds for âL. The coupling of the cavity mode to a
continuum of waveguide modes leads to irreversible decay of the cavity at a rate κex. Below,
we will show that κex is related to the parameters in the Hamiltonian by κex = 4πg2/c. With this
identification, one recovers equation (5) in the main text.

The Heisenberg equation of motion for the cavity mode is given by

d

dt
â1 = ig

√
2π(âR(z j) + âL(z j)). (A.3)

To cast this equation into a more useful form, we first integrate the field equation (A.2) across
the discontinuity at z j ,

âR(z+
j ) = âR(z−

j ) +

√
2π ig

c
â1, (A.4)

âL(z
−

j ) = âL(z
+
j ) +

√
2π ig

c
â1. (A.5)

We can define âL,in(z j) = âL(z+
j ) and âR,in(z j) = âR(z−

j ) as the input fields to the cavity. It then
follows that

d

dt
â1 = ig

√
2π
(
âR,in + âL,in

)
−

2πg2

c
â1, (A.6)

and thus we indeed see that the waveguide induces a cavity decay rate κex/2 = 2πg2/c. In
the case where the cavity has an additional intrinsic decay rate κin, a similar derivation holds
to connect the intrinsic decay with some corresponding noise input field âin. From these
considerations, and including the optomechanical coupling, one arrives at equation (3) in the
main text,

dâ1

dt
= −

κ

2
â + i�mb̂ + i

√
cκex

2

(
âR,in(z j) + âL,in(z j)

)
+

√
cκinâN(z j). (A.7)

Finally, we consider the equation of motion for the mechanical mode given by equation (4)
in the main text,

db̂

dt
= −

γm

2
b̂ + i�mâ1 + F̂N(t). (A.8)
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The zero-mean noise operator F̂N must accompany the decay term in the mechanical evolution
in order to preserve canonical commutation relations of b̂, b̂† at all times. In the case where
the decay causes the mechanical motion to return to thermal equilibrium with some reservoir at
temperature Tb, the noise operator has a two-time correlation function given by 〈FN(t)F†

N(t ′)〉 =

γm(n̄ + 1)δ(t − t ′) [37], where n̄ = (eh̄ωm/kBTb − 1)−1 is the Bose occupation number at the
mechanical frequency ωm.

Appendix B. Transfer matrix analysis of propagation

First, we derive the reflection and transmission coefficients for a single element in the case of
constant optomechanical driving amplitude �m. Given the linearity of the system, it suffices to
treat equations (A.2), (A.7) and (A.8) as classical equations for this purpose, and furthermore to
set the noise terms F̂N = 0, âin = 0. For concreteness, we will consider the case of an incident
right-going cw field in the waveguide. Upon interaction with the optomechanical system at z j ,
the total right-going field can be written in the form

aR(z) = eikz−iδk t
(
2(−z + z j) + t (δk)2(z − z j)

)
, (B.1)

while the left-going field is given by aL(z) = e−ikz−iδk tr(δk)2(−z + z j). Here, 2(z) is the unit
step function, δk = ck − ω1 is the detuning of the input field from the cavity resonance, and r, t
are the reflection and transmission coefficients for the system. At the same time, we look for
solutions of the cavity field and mechanical mode of the form a1 = Ae−iδk t and b = Be−iδk t . The
coefficients r, t, A, B can be obtained by substituting this ansatz into equations (A.2), (A.7) and
(A.8). This yields the reflection coefficient given by equation (6) in the main text, while the
transmission coefficient is related by t = 1 + r .

To calculate propagation through an array of N elements, it is convenient to introduce a
transfer matrix formalism. Specifically, the fields immediately to the right of the optomechanical
element (at z = z+

j ) can be related to those immediately to the left (at z = z−

j ) in terms of a
transfer matrix Mom,(

aR(z+
j )

aL(z+
j )

)
= Mom

(
aR(z−

j )

aL(z
−

j )

)
, (B.2)

where

Mom =
1

t

(
t2

− r 2 r
−r 1

)
. (B.3)

On the other hand, free propagation in the waveguide is characterized by the matrix Mf,(
aR(z + d)

aL(z + d)

)
= Mf

(
aR(z)

aL(z)

)
, (B.4)

where

M f =

(
eikd 0
0 e−ikd

)
. (B.5)

The transfer matrix for an entire system can then be obtained by successively multiplying
the transfer matrices for a single element and for free propagation together. In particular, the
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transfer matrix for a single ‘block’, defined as interaction with a single optomechanical element
followed by free propagation over a distance d to the next optomechanical element, is given by
Mblock = Mf Mom, and the propagation over N blocks is simply characterized by MN = M N

block.
Before studying the propagation through the entire array, we first focus on the propagation

past two blocks, M2 = M2
block. Because we want our device to be highly transmitting when the

optomechanical coupling is turned on, we choose the spacing d between consecutive blocks to
be such that k0d =

π

2 (2n + 1), where n is an integer. Physically, this spaces consecutive elements
by an odd multiple of λ/4, where λ is the resonant wavelength, such that the reflections from
consecutive elements tend to destructively interfere with each other. This can be confirmed by
examining the resulting reflection coefficient for the two-block system,

r2 ≡
M2(1, 2)

M2(2, 2)
= −

κ2
exδ

2
k

2�4
m

+ O(δ3
k ), (B.6)

where M2(i, j) denotes matrix elements of M2. Note that the reflection coefficient is now
suppressed as a quadratic in the detuning, whereas for a single element r ≈ iκexδk/2�2

m is linear.
In the above equation, we have made the simplifying approximation that kd ≈ k0d, since in
realistic systems the dispersion from free propagation will be negligible compared to that arising
from interaction with an optomechanical element.

Now we can consider transmission past N/2 pairs of two blocks (i.e. N elements in total).
Because the reflection r2 is quadratic in the detuning, its effect on the total transmission is
only of the order of δ4

k (because the lowest-order contribution is an event where the field is
reflected twice before passing through the system). Thus, up to O(δ3

k ), the total transmission
coefficient tN is just given by tN ≈ t N/2

2 , where t2 = 1/M2(2, 2) is the transmission coefficient
for a two-block system. It is convenient to write tN = eikeff Nd in terms of an effective wavevector
keff, which leads to equation (7) in the main text. Performing a similar analysis for the case
where k0d = nπ , where reflections from consecutive elements interfere constructively, one
finds that the bandwidth–delay product for the system 1ωτdelay ∼ 1 does not improve with the
system size.

Appendix C. Optical noise power

In this section, we derive the optical cooling equation given by equation (9) in the main text.
We begin by considering the system Hamiltonian for a single element (equation (1) of the main
text), in the case where the tuning mode 2 is driven on resonance and can be approximated by a
classical field, â2→α2e−iω2t ,

H̃ om = h̄ω1â†
1â1 + h̄ωmb̂†b̂ + h̄h(b̂ + b̂†)(â†

1α2e−iω2t + α∗

2eiω2t â1). (C.1)

Defining a detuning δL = ω2 − ω1 indicating the frequency difference between the two cavity
modes, we can rewrite equation (C.1) in a rotating frame,

H̃ om = −h̄δLâ†
1â1 + h̄ωmb̂†b̂ + h̄�m(b̂ + b̂†)(â1 + â†

1), (C.2)

where �m = hα2 (we have redefined the phases such that �m is real). In the weak driving limit
(�m . κ), the cavity dynamics can be formally eliminated to arrive at effective optically induced
cooling equations for the mechanical motion [14, 15]. In particular, the optomechanical coupling
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terms â†
1b̂ + h.c. and â†

1b̂† + h.c. induce anti-Stokes and Stokes scattering, respectively. These
processes yield respective optically induced cooling (0−) and heating (0+) rates,

0∓ =
κ�2

m

(δL±ωm)2 + (κ/2)2
. (C.3)

In the case where δL = −ωm, the cooling process is resonantly enhanced by the cavity, yielding
a cooling rate 0opt ≡ 0−(δL = −ωm) = 4�2

m/κ as given in the main text. Also in this case, the
optical heating rate is given by 0+ = 0opt

κ2

κ2+16ω2
m

. This leads to the net cooling dynamics given
by equation (9) in the main text,

dEm

dt
= −γm (Em − h̄ωmn̄th) − 0opt Em + 0opt

κ2

κ2 + 16ω2
m

(Em + h̄ωm). (C.4)

Because the optical cooling process removes phonons from the mechanical system via optical
photons that leak out of the cavity, one can identify (ω1/ωm)0opt Em as the amount of optical
power that is being leaked by the cavity in the anti-Stokes sideband during the cooling process.
Similarly, the cavity leaks an amount of power (ω1/ωm)0opt

κ2

κ2+16ω2
m
(Em + h̄ωm) in the Stokes

sideband. We have ignored this contribution in equation (10) in the main text, because its
large frequency separation (2ωm) from the signal allows it to be filtered out, but otherwise it
approximately contributes an extra factor of 2 to the last term in equation (10). Finally, we
remark that the expression for Pnoise given by equation (10) represents an upper bound in that it
does not account for the possibility that the output spectrum from a single element may exceed
the transparency bandwidth, which could cause some light to be absorbed within the system
after multiple reflections and not make it to the end of the waveguide.

Appendix D. The band structure analysis

D.1. Derivation of dispersion relation

For simplicity, here we work only with the classical equations so that the intrinsic noise terms in
the Heisenberg–Langevin equations can be ignored. We begin by transforming equations (A.7)
and (A.8) to the Fourier domain,

0 =

(
iδk −

κ

2

)
a + i�mb + i

√
cκex

2
(aR,in(z j) + aL,in(z j)), (D.1)

0 =

(
iδk −

γm

2

)
b + i�ma. (D.2)

To simplify the notation, we define operators at the boundaries of the unit cells (immediately to
the left of an optomechanical element) given by c j = −i

√
caR(z−

j ), d j = −i
√

caL(z
−

j ). It is also
convenient to re write the transfer matrix Mom in the form

Mom =

(
1 − β −β

β 1 + β

)
, (D.3)
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with the parameter β(δk) given by

β(δk) =
−iκexδk

−iκinδk + 2(�2
m − δ2

k )
. (D.4)

The transfer matrix Mblock describing propagation to the next unit cell can subsequently be
diagonalized, Mblock = SDS−1, with the diagonal matrix D given by

D =

(
eiK d 0

0 e−iK d

)
. (D.5)

Physically, this diagonalization corresponds to finding the Bloch wavevectors K (δk) of the
periodic system. The dispersion relation for the system can be readily obtained through the
equation

cos(K (δk)d) = cos(kd) − iβ(δk) sin(kd). (D.6)

Writing k in terms of δk , we arrive at kd = ω1d/c + δkd/c. As described previously, the desirable
operation regime of the system is such that the phase imparted in free propagation should be
ω1d/c = (2n + 1)π/2. For concreteness, we set here ω1d/c = π/2, satisfying this condition.
For the frequencies δk of interest, which easily satisfy the condition |δk| � d/c and ignoring the
intrinsic loss κin, the simple approximate dispersion formula

cos(K (δk)d) = −
κexδk

2(�2
m − δ2

k )
(D.7)

can be found. This dispersion relation yields two band gaps, which extend from ±κex/2 and
±2�2

m/κ , in the weakly coupled EIT regime (�m . κex). We therefore have three branches in
the band structure, with the narrow central branch having a width of 4�2

m/κex. This branch has
an optically tunable width and yields the slow-light propagation.

The dispersive and lossy properties of the array can also be found by analyzing
equation (D.6) perturbatively. Expanding equation (D.6) as a power series in δk , we find

K (δk) = k0 +
κexδk

2d�2
m

+
iκexκinδ

2
k

4d�4
m

+
(2κ3

ex − 3κexκ
2
in + 12κex�

2
m)δ3

k

24d�6
m

+ O(δ4
k ), (D.8)

which agrees with equation (7) in the main text.

D.2. Fractional occupation calculation

In our system, the Bloch functions are hybrid waves arising from the mixing of optical
waveguide, optical cavity and mechanical cavity excitations. It is therefore of interest to
calculate the hybrid or polaritonic properties of these waves, by studying the energy distribution
of each Bloch mode.

The number of photons nWG in the waveguide can be found by taking the sum of the left-
and right-moving photons in a section of the device. Over one unit cell, one obtains

nWG =
(
|c j |

2 + |d j |
2
) d

c
. (D.9)

The relation between this value and the amplitude of the hybrid Bloch wave may be found by
considering the symmetry transformation used to diagonalize the unit-cell transmission matrix.
Defining C j to be the amplitude of the Bloch mode of interest, one finds that c j = s11C j and
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d j = s21C j , while from the properties of the symmetry matrix S, |C j |
2
= |c j |

2 + |d j |
2. From here

we can deduce the number of excitations in the waveguide nWG, the optical cavity no and the
mechanical cavity nm for a given Bloch wave amplitude,

nWG =
d

c
|C j |

2, (D.10)

no = |a|
2 (D.11)

=
2|β(δk)|

2

κex
|c j + d j |

2 (D.12)

=
2|β(δk)|

2

κex
|s11 + s21|

2
|C j |

2, (D.13)

nm = |b|
2 (D.14)

=
|�m|

2

δ2
k + γ 2

i /4
|a|

2. (D.15)

We then define the fractional occupation in the mechanical mode by nm/(nWG + n0 + nm)

(with analogous definitions for the other components). These relations were used to plot the
fractional occupation and colored band diagrams shown in the main text.

D.3. Pump input power

The technicalities associated with pumping the OMC array system are subtly distinct from those
in its atomic system analogue. Due to the periodic nature of the structure and its strongly coupled
property (κex � κin), a band gap in the waveguide will arise at the frequency of the ‘tuning’ or
pump cavities. This prevents these cavities from being resonantly pumped via light propagating
in the waveguide. This problem may be circumvented by making the pump frequency off-
resonant from ω2 (but still at ω1 − ωm), and by, for example changing the splitting ω1 − ω2

to be less than the mechanical frequency. Interestingly, the periodic nature of the system also
allows one to suppress attenuation of the pump beam through the waveguide (which would
cause inhomogeneous driving of different elements along the array). Here we calculate the
waveguide input powers required to drive the pump cavities. We then find the effect of the
cavity dissipation rate κin on the beam intensity, to provide estimates for the power drop-off as a
function of distance propagated in the system. Finally, we note that there is a trade-off between
required pump intensity and pump power drop-off. In other words, by tuning the pump beam to
a frequency closer to the pump cavity resonance, the required input power is reduced, but the
attenuation per unit cell exp(−Im{K }d) is increased.

To calculate the waveguide input power, we start by considering the net photon flux in the
right-moving direction,

8R = |c j |
2
− |d j |

2. (D.16)

Using the properties of the Bloch transformation matrix S and equation (D.13), this expression
may be written in terms of the number of photons in the optical cavity of interest (no, j ),

8R =
κex

2β2
1

|s11|
2
− |s21|

2

|s11 + s21|
2

no, j , (D.17)
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where

β1(δk) =
−iκex/2

−iκin/2 − δk
. (D.18)

The required input power Pin = h̄ωo8R for the system parameters studied in the main text is
shown in figure 4.

To find the attenuation per unit cell exp(−α), with α = Im{K (δk)}d, of this pump beam,
we use a perturbative approach similar to that used to find the polaritonic band dispersion. By
expanding the Bloch vector as K (δk) = k(0) + k(−1)/δk + k−2/δ2

k . . . and using equation (D.6),
we find k(−1)

= κex/2d and k(−2)
= iκexκin/4d, implying that α ≈ κexκin/4δ2

k . This approximate
expression is shown along with the exact calculated values for the attenuation in figure 4.

Appendix E. Implementation in an OMC

For the theoretical demonstration of our slow-light scheme, we confine ourselves to a simplified
model of an OMC where only the 2D Maxwell equations for TE waves and the equation of
elasticity for in-plane deformations of a thick slab are taken into account. These equations
approximate fairly accurately the qualitative characteristics of in-plane optical and mechanical
waves in thin slabs, and become exact as the slab thickness is increased. In this way, many of the
intricacies of the design of high-Q photonic crystal cavities (which are treated elsewhere [34])
may be ignored, and the basic design principles can be demonstrated in a slightly simplified
system.

The 2DOMC system used here utilizes the ‘snowflake’ design [34], which provides large
simultaneous photonic and phononic band gaps in frequency. Here, we choose to use optical
wavelengths in the telecom band, i.e. corresponding to a free-space wavelength of λ ≈ 1.5 µm.
For this wavelength, we found that the crystal characterized by a lattice constant a = 400 nm,
snowflake radius r = 168 nm and width w = 60 nm, shown in figure 2, should work well.

E.1. Optical and mechanical cavities

E.1.1. Single cavity system. We begin our design by focusing on the creation of a single
optomechanical cavity on the 2DOMC, with one relevant optical and mechanical mode. This
cavity is formed by creating a point defect, consisting of two adjacent removed holes (a so-called
‘L2’ cavity). We calculate the optical and mechanical spectra of this cavity using COMSOL, a
commercial FEM package, and find a discrete set of confined modes. Of these, one optical and
one mechanical mode were chosen, exhibiting the most promising value of the optomechanical
coupling strength g (see below for calculation). These modes are shown in figures 2(b) and (c),
and were found to have frequencies νm = 11.2 GHz and νo = 199 THz, respectively.

E.1.2. Double-cavity system. From here, we move on to designing the nearly degenerate
double optical cavity system with large cross-coupling rates. As two separate L2 cavities are
brought close to one another, their interaction causes the formation of even and odd optical and
mechanical super modes with splittings in the optical and mechanical frequencies. This splitting
may be tuned by changing the spacing between the cavities. We take the even and odd optical
modes of this two-cavity system as our optical resonances at ω2 and ω1.
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E.1.3. Optomechanical coupling rates. The optomechanical coupling arises from a shift in the
optical frequency caused by a mechanical deformation. Our Hamiltonian for the single-cavity
system can then be written as

Ĥ = h̄ω(x̂)â†â + h̄ωmb̂†b̂, (E.1)

where x̂ = xZPF(b̂† + b̂) is the quantized displacement of the mechanical mode, and xZPF is the
characteristic per-phonon displacement amplitude. The deformation-dependent frequency ω(x̂)

may be calculated to first order in x̂ using a variant of the Feynman–Hellman perturbation
theory, the Johnson perturbation theory [38], which has been used successfully in the past to
model OMC cavities [9, 39]. The Hamiltonian is then given to first order by

Ĥ = h̄ωoâ†â + h̄ωmb̂†b̂ + h̄g(b̂† + b̂)â†â, (E.2)

where ω0 is the optical mode frequency in the absence of deformation and

g =
ωo

2

√
h̄

2ωmds

∫
dl (Q · n)

(
1ε|E‖

|
2
− 1(ε−1)|D⊥

|
2
)√∫

dA ρ|Q|2
∫

dA ε|E|2
. (E.3)

Here, E, D and Q are the optical mode electric field, optical mode displacement field and
mechanical mode displacement field, respectively, ds is the thickness of the slab and ε(r) is
the dielectric constant.

These concepts can be extended to optically multi-mode systems, represented by the
Hamiltonian

Ĥ = h̄
∑

i

ωo,i â
†
i âi + h̄ωmb̂†b̂ +

h̄

2

∑
i, j

gi, j(b̂
† + b̂)â†

i â j , (E.4)

where now the cross-coupling rates can be calculated by the following expression,

gi, j =
ωi, j

2

√
h̄

2ωmds

∫
dl(Q · n)

(
1εE‖∗

i · E‖

j − 1(ε−1)D⊥∗

i · D⊥

j

)
√∫

dA ρ|Q|2
∫

dA ε|Ei |
2
∫

dAε|E j |
2

. (E.5)

We denote this expression for convenience as gi, j ≡ 〈Ei | Q|E j〉.
For the modes of the L2 cavity shown in figures 2(b) and (c), the optomechanical coupling

was calculated to be 〈E|Q|E〉/2π = 489 kHz for silicon. When two cavities are brought in the
vicinity of each other, supermodes form as is shown in figure 2(a). We denote the symmetric
(+) and antisymmetric (−) combinations by E± and Q±. These modes can be written in terms
of the modes localized at cavity 1 and 2,

E± =
E1 ± E2

√
2

and Q± =
Q1 ± Q2

√
2

. (E.6)

By symmetry, the only non-vanishing coupling term involving the Q− (antisymmetric
mechanical) mode is 〈E+|Q−|E−〉. Assuming that the two cavities are sufficiently separated, we
can approximate 〈E+Q−〉 ≈ 〈E|Q|E〉/

√
2. For the supermodes of interest, 〈E1+|Q−|E−〉/2π =

h/2π = 346 kHz.
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Figure E.1. (a) The snowflake waveguide consists of the usual snowflake lattice,
with a removed row and adjusted waveguide width. The guiding region is shaded
red for clarity. (b) The mechanical band structure exhibits a full phononic band
gap at the resonance frequency of the mechanical mode (νm). (c) The optical band
structure exhibits a single band that passes through the resonance frequency ν0 of
the optical mode. The waveguide acts as a single-mode optical waveguide with
field pattern Hz shown in (d). The Hz component of the guided optical mode of
opposite symmetry is shown in (e) for completeness.

E.2. Properties of snowflake crystal waveguides

A line defect on an OMC acts as a waveguide for light [40, 41]. Here, the line defects used
consist of a removed row of holes, with the rows above and below shifted toward one another
by a distance W , such that the distance between the centers of the snowflakes across the line
defect is

√
3a − 2W (see figure E.1(a)). The waveguide was designed such that mechanically, it

would have no bands resonant with the cavity frequency (see figure E.1(b)) and would therefore
have no effect on the mechanical Q factors. Optically, it was designed to have a single band
crossing the cavity frequency (see figure E.1(c)) and would therefore serve as the single-mode
optical waveguide required by the proposal. The band structure of the mechanical waveguide
was calculated using COMSOL [42], while for the optical simulations, MPB [43] was used.

E.3. Cavity–waveguide coupling

By bringing the optical waveguide near our cavity, the guided modes of the line defect are
evanescently coupled to the cavity mode, and a coupling between the two may be induced, as
shown in figure E.2(a). Control over this coupling rate is achieved at a coarse level by changing
the distance between the cavity and the waveguide, i.e. the number of unit cells between them.
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Figure E.2. (a) A plot of the magnitude of the time-averaged Poynting vector,
|〈S〉t | (in arbitrary units), shows the leakage of photons out of the double-cavity
system. This induces a loss rate on the optical modes, which was used to calculate
the extrinsic coupling rate κex, plotted in (b) for various values of W/a. (c)
Plot of the mechanical quality factor Qm,TED due to TED, as a function of the
ambient temperature T0. (d) The time-harmonic component of the temperature
field 1T (r) = T − T0 is plotted at various times during a mechanical oscillation
period.

We found a distance of six rows to be sufficient for placing our coupling rate κex in a desirable
range. At this point, a fine-tuning of the coupling rate may be accomplished by adjustment of the
waveguide width parameter W , described previously. The achievable values of κex are plotted
against W in figure E.2(b). For the final design, W = 0.135a is used.

To simulate this coupling rate, we performed finite-element simulations using COMSOL
where we placed the waveguide near our cavity, and placed absorbing boundaries at the
ends of the waveguide away from the cavity. The resulting time-averaged Poynting vector
〈S〉t = |E × H∗

|/2 is plotted in figure E.2(a), showing how the power flows out of the system.

E.4. Estimates for thermoelastic damping (TED)

The achievable storage times of our system are determined by the lifetimes of the mechanical
resonances. Since we use a phononic crystal, all clamping losses have been eliminated.
However, other fundamental sources of mechanical dissipation remain, and here we provide
estimates for one of these, the component due to TED [44, 45].

Using the COMSOL finite-element solver [42], we solved the coupled thermal and
mechanical equations for this system [46]. In these simulations, the change in the thermal
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conductivity and heat capacity of silicon with temperature were taken into account. The TED-
limited quality factors, Qm,TED are plotted in figure E.2(d). In these simulations, we see that
for the mode simulated, Qm,TED surpasses 106 at bath temperatures of T0 < 5 K. To illustrate
some representative results of these simulations, we have plotted the change in temperature
field 1T (r) from the ambient temperature versus the phase of the mechanical oscillation in
figure E.2(d). At ωmt = π/2, there are variations in temperature despite the displacement field
Q being uniformly 0 at this time. This shows that at these frequencies, the temperature does not
follow the displacement adiabatically.

E.5. Estimate for optical pump heating

As mentioned in the main text, in a realistic setting the optomechanical driving amplitude �m

itself will be coupled to the bath temperature through absorption of optical pump photons in the
tuning cavities. This optical pump heating of the structure is important in estimating the practical
limits of the optomechanical system for quantum applications where thermal noise impacts
system performance. As a realistic model for the bath temperature in our proposed silicon OMC
array, we take Tb = T0 + χα2, where T0 is the base temperature and χ is a temperature coefficient
that describes the temperature rise in each cavity per stored cavity photon due to optical
absorption. Our estimate of χ for a thin-film silicon photonic crystal structure is as follows. The
absorbed power for |α|

2 photons stored in a cavity is given simply by Ploss = h̄ωoκi|α|
2, where

ωo is the resonance frequency and κi the optical (intrinsic) linewidth of the cavity. If we assume
that all of this power is being converted to heat, the change in temperature is 1T = Ploss Rth,
where Rth is the effective thermal resistance of the silicon structure. There are a number of
sources in the literature for Rth in relevant photonic crystal geometries [47, 48]. We choose
here to use the value for a 2D crystal system in silicon, Rth ≈ 2.7 × 104 K W−1, which yields a
per photon temperature rise of χ ∼ 2 µK assuming an intrinsic loss rate of κi ≈ 4 × 109 rad s−1

(Qi ≈ 3 × 106).
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