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Abstract. We investigate the quantum dynamics of systems involving small
numbers of strongly interacting photons. Specifically, we develop an efficient
method to investigate such systems when they are externally driven with a
coherent field. Furthermore, we show how to quantify the many-body quantum
state of light via correlation functions. Finally, we apply this method to two
strongly interacting cases: the Bose–Hubbard and fractional quantum Hall
models, and discuss an implementation of these ideas in atom–photon system.
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Strongly interacting photonic systems provide new avenues for examining quantum simulation,
topological quantum computation and many-body states of matter [1–5]. Inspired by analogies
to electronic systems, these studies focus on ground state properties. However, a photonic
system is naturally an open driven system. At the same time, this is in stark contrast to ultracold
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atomic systems, which have been extensively studied in the context of many-body physics; in
most cases atoms are trapped in a potential and the particle number is conserved within the
trapping time [6–8]. Therefore, the most relevant approach to understand and manipulate many-
photon states involves understanding the non-equilibrium dynamics in such systems [9–14].
For example, in a one-dimensional system strong interaction between photons leads to their
fermionization, which can be probed in the output correlation functions of an externally driven
system, both in a discrete array [9] and in the continuum limit [11]. Another unique property
of photonic system is the lack of chemical potential, in contrast to other bosonic systems. In
particular, these differences raises key questions: given the presence of photon loss, how does
one prepare a photonic state with many-body features? What is the manifestation of important
properties such as incompressibility and collective effects, when the system is coherently driven
with a laser field rather than coupled to a thermal bath?

In this paper, we address these questions by studying a driven system of strongly interacting
photons and evaluating physical observables that display quantum many-body signatures. We
focus on a two-dimensional lattice of interacting photons with an effective gauge field [15–18].
In the presence of strong interaction (nonlinearity) on each site, the system maps into the bosonic
fractional quantum Hall (FQH) [19–21] model. Such nonlinearities have been experimentally
shown at the single site (resonator), both for optical [22–24] and microwave [25, 26] photons.
We demonstrate that by weakly driving the system, a few photon Laughlin state can be
prepared. We introduce experimentally-relevant observables such as the correlation function of
the common-mode (the common-mode) to investigate the response of the system. Furthermore,
we present a scheme to adibatically prepare such state using many-photon Fock state and
compare it to a driven scheme.

The key idea underlying our approach to the driven scheme is to generalize the theoretical
technique of weakly driven cavity-QED system (involving one atom interacting with one
photon) to the many sites and many-photon regime. We follow Carmichael et al [27] who
showed that when an optical resonator with strong nonlinearity is weakly driven, one can
truncate the Hilbert space up to two-excitation states, reduce the exact master equation
description to an effective Schrödinger equation description. Most importantly, the ‘quantum
jumps’ do not contribute in the correlation functions. In particular, while the one-photon state
is intact under nonlinearity, the two-photon component exhibits bunching or anti-bunching
features. Similarly, in a system of many sites, the photonic state at each photon-number
manifold reorganize themselves according to the interaction. Ignoring the quantum jumps has
a significant benefit which allows the investigation of larger systems and avoids finite size
effects in numerical simulations. In a dilute lattice with Nφ magnetic flux quanta and strong
interaction for a fixed number of bosonic particles (Nph), the system is expected to have
fractional quantum Hall states (Laughlin-type) at filling factors ν = Nph/Nφ = 1/2, 1/4, . . .

[31, 32]. We demonstrate that when an optical system is driven with a weak coherent field, which
has Poissonian distribution of photon number, the system forms Laughlin state in a photon-
number (Nph) manifold which corresponds to the bosonic Laughlin filling factors, at specific
pump frequencies. We show that measuring the Nph-body correlation function reveals the
existence of such state. Furthermore, we present an alternative adiabatic method to prepare such
a state for larger photon number and compare the two methods. While our results are general
and can be implemented in various photonic systems, we focus on a physical implementation of
these ideas with coupled optical resonators.
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1. Driven photonic quantum Hall model on a lattice

We consider a two-dimensional interacting photonic system which has the Hamiltonian (h̄ = 1)

Hsys = −J
∑
x,y

â†
x+1,yâx,y ei2παy + â†

x,yâx+1,y e−i2παy + â†
x,y+1âx,y + â†

x,yâx,y+1 + Hfree + Hint, (1)

where a†
x,y is the creation operator at site (x, y), J is tunneling rate between resonators, α

the effective magnetic flux per plaquette (total magnetic flux is Nφ = αNx Ny) and Hfree =∑
x,y ω0a†

x,yax,y . We take an on-site interaction term of the Kerr-type: Hint = Uâ†
i âi(â

†
i âi − 1)

where the index stands for the site i = (x, y). In the absence of the magnetic field (α = 0), the
Hamiltonian describes the Bose–Hubbard model, and can be implemented in an array of coupled
optical resonator [1–3]. The non-zero magnetic field can be synthesized using an imbalance in
the optical paths that connect resonators. We return to the discussion of implementation of such
Hamiltonian extending the scheme proposed in [16] later in the paper.

To include loss and driving, we use the stochastic wave-function approach [27, 33, 34]. The
coherent drive is applied uniformly; its effects and that of the associated loss can be described
by the non-Hermitian term Hpump =

∑
i κβ(eiωpt âi + e−iωpt â†

i ) − i κ â†
i âi , where κ is the coupling

rate to the resonators, β is the amplitude and ωp the frequency of the drive field. In the rotating
frame of the pump field, the effective Hamiltonian of the driven system is

Heff = Hsys + κβ
∑

i

(âi + â†
i ) − (1 + i κ)

∑
i

n̂i , (2)

where the pump detuning 1 = ωp − ω0 takes the form of a chemical potential. Since the system
is open, in the absence of the pump (β = 0), the system will be in the vacuum state.

We generalize the quantum-jump picture for evaluating the correlation functions [27] to
many-photons and many-modes. The evolution of the system is governed by the effective
Hamiltonian (equation (2)) and the corresponding quantum jump operators (âi ). In particular,
in the weakly excited system (β � 1), the metastable state of the system can be perturbatively
written as

|9〉 ' |0〉 +O(β)|1〉 +O(β2)|2〉 + · · · +O(βn)|n〉 + · · · , (3)

where |n〉 =
∑

ci1...in â†
i1

. . . â†
in
|0〉 represents a state in the n-photon manifold of the lattice

system. This state is the eigenstate of Heff with the smallest imaginary eigenvalues, i.e. it is
mostly the vacuum state. All other states have at least one photon, and therefore, they decay
rapidly into this state. When a photon decays from any site, the system undergoes a quantum
jump. These jumps occur at a rate κO(β2), and the system takes a state of the form |9 ′

i 〉 =

âi |9〉/(|âi |9〉|) ' |0〉 +O(β)|1′
〉 +O(β2)|2′

〉 + · · · +O(βn)|n′
〉 + · · ·. Similarly, the system can

undergo a two-photon jump with a slower rate κO(β4). Since the system is continuously
pumped, it is restored back into the steady state with a relatively fast rate (κ). Therefore, the
density matrix of the system can be formally written as: ρ = |9〉〈9| +O(β2)ρ1 +O(β4)ρ2 + · · ·,
where ρ j stands for the density matrix after ‘j’ consecutive jumps. For a single jump we have
ρ1 = (1/

∑
i〈9|â†

i âi |9〉)
∑

i〈9|â†
i âi |9〉|9 ′

i 〉〈9
′

i |. Now, we evaluate the n-body correlation
function of an arbitrary operator d̂ which is a linear superposition of the site operators (âi ).
In particular, we are interested in G(n)

= 〈ρd̂†nd̂n
〉. Using the above picture, this correlation
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function can be perturbatively written in powers of pump amplitude:

G(n)
=O(β2n)〈n|d̂†n

d̂n
|n〉 +O(β2n+2)〈n′

|d̂†nd̂n
|n′

〉 + · · · . (4)

Therefore, if we are interested in the n-photon manifold, the metastable state |9〉 is sufficient
for evaluation of any n-body correlation function and the corrections due to quantum jumps can
be ignored.

In particular, for a two-particle case, we define the two-body observables to characterize the
deviation from the classical regime. For a single resonator this deviation is characterized by the
equal time second-order correlation function as g(2)

= 〈â†2
i â2

i 〉/〈â
†
i âi〉

2. This quantity is useful
in characterization of cavity QED experiments. However, this observable cannot encapsulate
the collective effects in the system. In particular, in the presence of strong interaction (U � J ),
such a quantity is always less than one regardless of the collective features of the entire system.
Instead, we consider a collective observable which is the second-order correlation function of
the common-mode (b̂†

=
1

√
N

∑
i â†

i ): g(2)

CM =
〈b̂†2b̂2

〉

〈b̂†b̂〉2 . This observable is particularly interesting
since we are exciting all the resonators the same way, and therefore, this mode is primarily
excited. Such quantity can be obtained by measuring the second-order correlation function of
the far-field light emitted from all the resonators. In the context of ultra cold gases confined
in optical cavities, optical correlation functions can reveal many-body physics of the atomic
system [28–30].

To numerically find |9〉, we consider a truncated Hilbert space corresponding to at most a
few particles and find the eigenstate of Heff with the smallest imaginary part of its eigenvalue.
Note that in contrast to grand canonical ensemble—where we minimize (Ĥ − µN̂ )—here
we find the steady state of the system as a function of the pump field. Such approach
allows us to consider larger lattices which are otherwise inaccessible with the density matrix
approaches [20].

2. Overlap with Laughlin wavefunction and correlation functions

Using the technique described above, we study the driven system of interacting photons with
the Hamiltonian of equation (1). First, we consider the case of hard-core bosons (U � J ),
and investigate the response of the system as a function of the pump field frequency (1).
For simplicity, we only consider the case of ν = 1/2. The input field consists of a Poisson
distribution of photons. When photons are injected at the frequency corresponding to the
Laughlin state at the Nph-photon manifold, photons reconfigure themselves and form a wave
function which corresponds to the Laughlin state. The remarkable overlap of this photonic state
with the Laughlin wave function in the Nph-photon manifold is shown in figure 1(a). Note the
frequency required to be resonant with the Laughlin state is at the vicinity of the free photon
state (Hofstadter’s spectrum). In the limit of large system (Nx Ny → ∞), and dilute magnetic
field (α � 1), these two frequencies coincide since the Laughlin state is the exact ground state
of the Hamiltonian in the continuum limit. For numerical simulations, we have used the discrete
version of the Laughlin wave function on the lattice with torus boundary condition [32].

Around the resonance, we observe the suppression of the correlation function of the
common-mode. The reason behind this suppression is that the external pump is coupled
differently to the single particle manifold and Nph-photon manifold, corresponding to the
Laughlin filing factor. We note that the energy of the single particle state and the Laughlin
state per particle is exactly equal to each other in the continuum limit, and the previously
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Figure 1. Overlap with the Laughlin wave function (ν = 1/2), and the correlation
function of the zero mode (g(2)

CM) are shown as a function of: (a) the pump
frequency for hard-core bosons (b) the interaction strength for 1 = −3.36 J, as
shown by an arrow on (a). We have evaluated the overlap with the Laughlin
function in Nph = 2 manifold. The total magnetic flux is Nφ = 4. Panels (c), (d)
are similar to (a), (b) for Nph = 3, Nφ = 6, 1 = −3.095 J and the corresponding
correlation function (g(3)

CM). All the simulations are performed for a 6 × 6 lattice,
torus boundary condition, and the maximum number of photon is 3. κ = 0.01 J,
β = 0.01. All calculated quantities are dimensionless.

reported discrepancy is due to the finite size effect [18]. The direct experimental verification
of the Laughlin overlap is a difficult task which requires number post-selection (Nph) and state

tomography in a Hilbert space with dimension
(

Nx Ny

Nph

)
. However, the common-mode correlation

function can be obtained by using conventional quantum optics measurements.
Now, we relax the hard-core constraint and investigate the same observables. In the weak

interaction limit, the system approaches the classical response, as shown in figure 1(b). In
the absence of interaction, using transport measurements—varying the pump frequency and
measuring reflection/transmission—one recovers the Hofstadter’s butterfly spectrum [16], but
regardless of the pump frequency, the correlation function remains equal to one. Similar
behavior was observed for Nph = 3, as shown in figures 1(c) and (d).

In other to clarify the connection between zero mode correlation and the collective nature
of the system response, we investigate the driven photonic Bose–Hubbard model (figure 2)
[10, 13]. In the limit of weak interaction, the system behaves classically and the correlation
function approaches that of a coherent state, i.e. g(2)

CM = 1, as shown in figure 2(b). However, in
the strong interaction limit (U � J ) the system exhibits significant deviation from a classical
state [13]. In contrast, to the previous works [10, 13], we focus in the weakly driven regime,
and therefore, we expect that the system to be in the superfluid state and the correlation function
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Figure 2. The correlation function of the zero mode (g(2)

CM) are shown as a
function of: (a) the pump frequency for hard-core bosons, (b) the interaction
strength for 1 = −4.0 J (where g(2)

CM is minimum, as shown with a red circle on
(a)). All simulations are performed for a 6 × 6 lattice, torus boundary condition
and the maximum number of photon is 3. κ = 0.002 J, β = 0.01.

to be equal to one. This deviation is due to the finite size of the system and can be understood
in the following way: the system is weakly driven and manifolds with large number of photons
are weakly populated. Therefore, the effective filling factor 〈ntot〉/(Nx Ny) is small and in the
presence of a non-zero interaction, one expects the system to be in a superfluid regime. However,
due to finite size of the system, the common-mode is not completely harmonic and the two-
photon resonance is slightly shifted. This leads to a deviation of the correlation function from
unity; using the single-mode approximation, we get an estimate g(2)

max = 1 +
(

δU
κ

)2
, where δU

is the nonlinear shift, i.e. the difference between half of the two-photon state energy and the
single-photon state energy. Such nonlinearity decrease with the system size, in direct analogy
to spin–boson transformation (Holstein–Primakoff) of the Dicke-model, where the residual
nonlinearity disappears in the limit of large spins.

We numerically verify such statement by evaluating the correlation function (g(2)

CM) as a
function of the system size. In the Bose–Hubbard model, as the system size increases, the
correlation function g(2)

CM approach the classical limit, i.e. unity, as shown in figure 3(a), while
the correlation function of individual sites is equal to zero. The green curve shows the numerical
estimate based on the nonlinearity between one- and two-photon manifold lowest energies,
which diminishes as the system size increases. In contrast, in the FQH model, g(2)

CM remains
constant as the system size changes, as shown in figure 3(b). Note that the overlap with the
Laughlin wave function is also constant and remains close to unity. We have also performed
numerical simulation for two-point correlation function g(i, j) = 〈â†

i â†
j â j âi〉 projected into the

Nph-photon manifold, and the results agrees with two-point correlation of the Laughlin state.
Note that in the general case of n-photon FQH state, one should measure n-body correlation
function G(n)

= 〈ρd̂†nd̂n
〉, as introduced earlier. Such correlation function can be measured
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Figure 3. The correlation function of the zero mode (g(2)

CM) are shown as a func-
tion of the system area (Nx × Ny) for: (a) Bose–Hubbard and (b) fractional quan-
tum Hall models. The overlap with the Laughlin wavefunction is shown in (a).
The correlation function estimate is based on single-mode approximation (see
text). Nφ = 2, κ = 0.04 J, β = 0.01 and the system is truncated at three photons.

using a modified Hanbury Brown–Twiss setup [35]: the photonic mode d̂ is collected, the light
passes through n beam splitters and then the state is detected using n photodetectors.

3. Possible implementations and outlook

Now we discuss the implementation of the Hamiltonian in equation (1) and the conditions to
observe fractional quantum Hall states of photons. Recently, there have been several proposals
to implement the artificial magnetic fields for photons [15–19] and various means to achieve
strong interaction in coupled resonators systems [1–3]. Here, we focus on the proposal in [16]
which does not require time-reversal symmetry breaking for the implementation of the magnetic
field. Strong photon-photon interaction—which can lead to photon blockade—can be mediated
by coupling emitters (e.g. atoms [36], quantum-dots [37], Rydberg states [38–40] for optical
photons and Josephson junctions for microwave photons [41]) to the resonators.

Besides the driven method to reach fractional quantum Hall state that we discussed above,
one can also prepare a Laughlin state by adiabatically melting a Mott-insulator of photons,
similar to the atomic method discussed in [31], as described in figure 4. However, this requires
both preparation of Nph Fock states and photon lifetimes long enough to allow for the melting
to be adiabatic, making the coherent drive approach preferable. Note that one might be able to
use the nonlinearity of the system itself to prepare the Nph Fock states of photons [42].

Regardless of the preparation method, coupling atoms to the photonic system introduces
loss which can be reduced by detuning the cavity resonance from the emitter transitions
(1, 1′

� 0). As an example case, one can use an ensemble of N -level atoms to mediate onsite
two-body interaction of the Kerr-type (figure 4(b)) [3], which still preserves the propagation
direction (clockwise or counterclockwise) used in [16]. In this approach, the optical cavity and
ensemble enter into a slow-light regime, where the excitations are dark state polaritons [43]
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Figure 4. Adiabatic preparation photonic Laughlin states: (a) atomic ensembles
are coupled to resonators to mediate interaction. A control field couples internal
levels of the atom, shown in (b), and provides on-site interaction for photons [3].
(c) Overlap of the two lowest states with Laughlin wave function (energy levels
relative to the ground state) are represented by dashed (solid) lines, respectively.
The procedure to make a Laughlin state: (i) create Np photons in the whole
system (e.g. by using lambda systems inside the resonator), at this stage α is
set to be zero. (ii) Make a N ′

x × N ′

y superlattice potential V (e.g. by detuning
selected resonators) such that the ground state gets to the first Mott insulator
(Nph = N ′

x N ′

y). (iii) Turn on a single-site potential Vpert by detuning a cavity
(in this case (x, y) = (3, 3)). (iv) Turn on the magnetic field to the desired
value α = Nph/(νNx Ny). (v) Melt the Mott insulator by lowering the superlattice
potential strength to zero. (vi) Lower the single-site potential. Three snapshots of
lattice potential are shown at (iv) and the end of (v) and (vi) steps, respectively.
The impurity potential splits the ground state degeneracy of the Laughlin state on
the torus boundary condition [32] and prevents level crossing and sharp changes
in the overlap.

9̂x,y ∝ �âx,y − g
√

N Ŝx,y , where � is the pump field, g is the vacuum Rabi coupling, N is the
number of ensemble atoms and Ŝx,y is the spin-wave operator describing coherence between two
atomic states |a〉 and |c〉 (from figure 4(b)). These bosonic excitations lead to an overall increase
of dynamical timescales by η = c/vg � 1, the ratio between the speed of light and group
velocity for the dark state polariton, but they can also interact via a self-Kerr interaction with
state |d〉 [44]. For observing a Laughlin state and having a finite gap, the effective interaction
between photons (U ' g2/1′) should be at least comparable to the tunneling rate J [32].
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These conditions can be satisfied for systems with a large Purcell factor (g2/κ0 � 1). The
same criterion applies to implementation of such scheme in the microwave domain.

In conclusion, we have shown that driven strongly interacting photons exhibits interesting
many-body behaviors and FQH state of photons and their incompressibility can be probed
by using conventional optical measurement techniques. Investigation of other many-body
signatures of these states such as their topological properties and fractional statistics and
preparation of photonic many-body state with reservoir engineering [45] can be the subject
of further research.
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