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We suggest a scheme for the preparation of highly correlated Laughlin (LN) states in the presence
of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or
atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly
interacting composite fermions (CF) along with magnetic flux quanta one-by-one. The topologically
protected Thouless pump (”Laughlin’s argument”) is used to create two localized flux quanta and
the resulting hole excitation is subsequently filled by a single boson, which, together with one of
the flux quanta forms a CF. Using our protocol, filling 1/2 LN states can be grown with particle
number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate
the feasibility of our scheme, we consider two-dimensional (2D) lattices subject to effective magnetic
fields and strong on-site interactions. We present numerical simulations of small lattice systems and
discuss also the influence of losses.

PACS numbers: 42.50.Pq,73.43.-f,03.67.Lx

Introduction In recent years topological states of mat-
ter [1–8] have attracted a great deal of interest, partly due
to their astonishing physical properties (like fractional
charge and statistics) but also because of their poten-
tial practical relevance for quantum computation [9, 10].
While these exotic phases of matter were first explored
in the context of the quantum Hall effect of electrons
subject to strong magnetic fields [11, 12], there has been
considerable progress recently towards their realization in
cold-atom [13–16] as well as photonic [17–23] systems. A
particularly attractive feature of such quantum Hall sim-
ulators are the comparatively large intrinsic length scales
which allow coherent preparation, manipulation and spa-
tially resolved detection of exotic many-body phases and
their excitations.

In electronic systems the preparation of topological
states of matter relies on quick thermalization and cool-
ing below the many-body gap. While this is already hard
to achieve in cold-atom systems (partly due to the small
required temperatures), cooling is even less of an op-
tion in photonic systems due to the absence of effective
thermalization mechanisms. On the other hand, lasers
with extremely narrow linewidths allow for a completely
different avenue towards preparation of extremely pure
quantum states. For instance, it was suggested to use
the good coherence properties of lasers to directly excite
two (and more) photon LN states in non-linear cavity
arrays [24], where the laser plays the role of a coherent
pump. However, this approach has the inherent prob-
lem of an extremely small multi-photon transition am-
plitude. While this might be acceptable for small sys-
tems of N = 2, 3 photons, it makes the preparation of
true many-body states with N ≫ 2 practically impossi-
ble. Moreover, the prepared states in this case contain
superpositions of different photon-numbers rather than
being Fock states.

In this letter we suggest an alternative scheme for the

preparation of topologically ordered states of strongly in-
teracting bosons, and we discuss systems allowing for an
implementation of our scheme with state-of-the-art tech-
nology. It consists of adiabatically growing such states
and makes direct use of the Thouless pump [25] con-
nected to the many-body topological invariant. In the
case of quantum Hall physics the latter is realized by
local flux insertion in the spirit of Laughlin’s argument
for the quantization of the Hall conductivity σH [26]:
Introducing magnetic flux φ = 2 × 2π in the center of
the system produces a quantized outwards Hall current
∼ σH∂tφ, leaving behind a hole along with 2 flux quanta,
see FIG. 1 (a).

In the next step, the so-created hole can be replenished
by a single boson. In view of the composite fermion (CF)
picture [27, 28] of the fractional quantum Hall effect, this

magn. fluxCF

(a) (b)

FIG. 1. (Color online) (a) The key idea of our scheme is to
grow LN states by introducing weakly interacting CFs into the
system. This is achieved by adding magnetic flux (arrows) in
the center and replenishing the arising hole by a new boson
(red bullet). (b) We consider the Hofstadter-Hubbard model
(flux α per plaquette). Additional flux φ can be introduced in
the center by adiabatically changing the complex phase of the
hoppings marked with a box. Furthermore, the central site is
assumed to be externally accessible for a coherent drive (Rabi
frequency Ω).
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refilling step can be interpreted as the addition of a single
CF (composed of a bare boson and one flux quantum)
into a free orbital of the CF Landau level (LL), using
up the remaining flux quantum. To refill such a hole
deterministically by a single boson, we consider a coher-
ent pump in the center of the system. Excitations by
more than one particle are prohibited by the many-body
gap, and the coherent coupling can not decrease the to-
tal particle number because the central cavity is empty
initially. Thus, our final state has sub-poissonian bo-
son number statistics. A complementary scheme, where
holes resulting from boson losses are dynamically refilled
in the entire system using single photon pumps, has re-
cently been suggested for photonic systems [29]. Our
protocol, in contrast, does not rely on an explicit sin-
gle photon source to achieve strongly suppressed photon
number fluctuations.
A key advantage of our scheme, compared to adiabatic

ones, is the ability to grow LN states with a size increas-
ing linearly in time. To reach N particles with given
fidelity 1 − ε, the protocol has to be carried out suffi-
ciently slow to avoid errors in the repumping protocol.
For ε≪ 1 the total required time scales like

T ∼ N3/2

∆LN ε1/2
, (1)

where ∆LN is the bulk many-body gap. In contrast to
previously proposed schemes [24, 30, 31], T only grows
algebraically with N .
Model We consider a 2D lattice with complex hop-

ping elements (amplitude J) realizing an effective mag-
netic field, supplemented by Hubbard-type on-site inter-
actions (strength U). This model is illustrated in FIG.1
and can be described by the following Hamiltonian,

Ĥint + Ĥ0 =
U

2

∑

m,n

â†m,nâm,n

(

â†m,nâm,n − 1
)

− J
∑

m,n

[

e−i2παnâ†m+1,nâm,n + â†m,n+1âm,n + h.c.
]

,

where we used Landau gauge and set ~ = 1. There have
been numerous suggestions how this Hamiltonian can be
implemented in photonic [18, 23, 24, 32, 33], circuit-QED
[34–36] or atomic [31, 37] systems, and in the last case
this goal has already been achieved [15, 16].
Local flux insertion can most easily be realized by

changing the hopping elements from site (m ≥ 0, n = 0)
to (m, 1) by a factor eiφ, see FIG.1 (b); These links are
thus described by

Ĥφ = −J
∑

m≥0

[

e−iφâ†m,1âm,0 + h.c.
]

, (2)

modifying the total magnetic flux through the central
plaquette to α−φ/2π (in units of the flux quantum). Ĥφ

is motivated by recent experiments with photons [18, 23],
where the hopping-phases can locally and temporally be

manipulated [38]. Finally to replenish the system with
bosons, we place a weak coherent pump (Ω ≪ 4παJ) in
the center,

ĤΩ = Ωe−iωtâ†0,0 + h.c.. (3)

In the following we present the details of our scheme,
neglecting local boson losses (rate γ) for the moment.
We include losses again afterwards in the discussion of
the performance of our scheme.
Protocol We begin by discussing the continuum case

when the magnetic flux per plaquette α ≪ 1 is small,
allowing us to make use of angular momentum Lz as a
conserved quantum number. This case is characterized
by a perfectly flat quasihole dispersion, such that holes
created in the center remain localized and can reliably
be refilled. We will show in a subsequent paragraph how
lattice effects modify this simplified picture.
The continuum can be described by LLs, which are

eigenstates of Ĥ0 in the limit α → 0 with energies
En = (n+ 1/2)ωc (n = 0, 1, 2, ...) and ωc = 4παJ denot-
ing the cyclotron frequency, see e.g.[28]. The magnetic

length is defined as ℓB = a/
√
2πα, where a denotes the

lattice constant. In symmetric gauge the single particle
states of the LLL are labeled by their angular momentum
quantum number l = 0, 1, 2, ... [28] and we define boson

creation operators of these orbitals as b̂†l .
For concreteness we here discuss the preparation of

LN states at filling ν = N/Nφ = 1/2, but the gener-
alization to other fillings is straightforward. To create
the first excitation, we coherently drive the central cav-
ity with frequency ω = ωc/2. When the coherent pump
is sufficiently weak, Ω ≪ ωc, we can neglect excitations
of higher LLs and (3) can be projected into the LLL,

leading to ĤΩ ≈ [b̂†0e
−iωtΩ

(1)
eff + h.c.] with Ω

(1)
eff = Ω

√
α.

Moreover, having two bosons in the central orbital would
cost the energy ∆LN ≈ min (V0, ωc), where V0 = Uα/2
is given by Haldane’s zeroth-order pseudo-potential [39].

Thus, assuming Ω
(1)
eff ≪ min (V0, ωc), no more than one

particle can enter the system due to blockade, and we
end up with an effective two-level system consisting of

the zero and one boson states, |0〉 and b̂†0|0〉. Then to
introduce a single boson, the coherent pump Ω can be

switched on for a time Tπ = π/2Ω
(1)
eff corresponding to a

π-pulse. For the latter to work, we further require negli-

gible losses γ ≪ Ω
(1)
eff [40].

Next, we adiabatically introduce two units of magnetic
flux into the center of the system. One of them is at-
tached to the boson to form a CF, the second one is
needed to keep the filling fraction of CFs constant in the
growing scheme. When, for simplicity, the Hamiltonian
(2) for flux insertion is replaced by one with a symmet-
ric gauge choice preserving rotational symmetry [41], the

initial state |Ψ1〉 = b̂†0|0〉 attains two units of angular

momentum. Thus we end up in |Ψ2〉 = b̂†2|0〉, which
has a ring-structure with a hole in its center. Repeat-
ing the first step, we can again make use of the blockade
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to replenish the hole by exactly one particle. Because
the coherent pump couples to the center of the hole,
it can not lead to a reduction of the total boson num-
ber. Crucially, in contrast to the first step, the new state

is not the simple product state b̂†0|Ψ2〉, which has non-
zero interaction energy and is thus blocked. However,
there is precisely one zero-energy state with the correct
total angular momentum Lz = 2, namely the N = 2
LN state |LN, 2〉, which is coupled to |Ψ2〉 by a Rabi
frequency reduced by a Franck-Condon factor (FCF),

Ω
(2)
eff /Ω = 〈LN, 2|b̂†0|Ψ2〉

√
α.

Having established our protocol for two bosons, the
extension to N -particle LN states |LN, N〉 is straightfor-
ward. In this case, local flux insertion is used to create
two quasiholes in the center |2qh, N − 1〉, which are re-
filled by the coherent pump to prepare |LN, N〉. The

corresponding transition amplitude Ω
(N)
eff is reduced by a

many-body FCF,

Ω
(N)
eff /Ω =

√
α 〈LN, N |b̂†0|2qh, N − 1〉, (4)

which even for large N takes a non-zero value. Using ex-
act diagonalization (ED) of small systems (N = 1, ..., 9)

we find that Ω
(N)
eff is nearly constant as a function of N

and we extrapolate Ω
(∞)
eff ≈ 0.70 Ω

√
α. Thus our pump

protocol works equally efficient for large and small boson
numbers.
A natural explanation why highly correlated many-

body states can be grown in the relatively simple fashion
described above is provided by the composite fermion pic-
ture: LN states are separable (Slater determinant) states
of non-interacting CFs filling the CF-LLL [27]. Thus, in-
troducing CFs one-by-one into the orbitals of this LLL,
LN states can easily be grown.
To ensure a sizable cyclotron gap ωc, a not too small

flux per plaquette α is desirable, where lattice effects be-
come important. We will now study this regime, which
is also of great experimental relevance [15, 16, 23]. The

spectrum of the Hamiltonian Ĥ0(α) is the famous Hofs-
tadter butterfly [42], consisting of a self-similar structure
of magnetic sub-bands. When interactions are taken into
account, LN-type states can still be identified at filling
ν = 1/2 [31, 37].
The basic ideas of our protocol directly carry over to

the lattice case. Because the many-body Chern number
is strictly quantized, Laughlin’s argument shows that a
hole excitation can still be created by local flux insertion.
However, due to the formation of magnetic sub-bands,
such a quasihole will propagate away from the center.
This leaves us only a restricted time to refill the defect,
and, more dramatically, provides a decoherence mecha-
nism leading to a reduced efficiency of repumping. To
circumvent this problem, we introduce a trap for quasi-
holes. A static, repulsive potential of the form

Ĥpot =
∑

m,n

g√
2πℓB/a

e−(m2+n2)a2/2ℓ2
B â†m,nâm,n (5)

0 5 10 15 20
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FIG. 2. (Color online) Simulation of the full protocol on a C60

buckyball for U = 10J and including the static potential (5)
with g = J . We start from vacuum and Nφ = 0 flux quanta.
Then the coherent pump Eq.(3) is switched on for a time
TΩ = 6π/Ω (with Ω = 0.05J) and one boson is inserted with
an overlap (solid red) [conditioned on N = 1 (dotted red)]
close to one to the target N = 1 ground state. The driving
frequency ω is chosen to be resonant on the transition from
N = 0 to N = 1 ground state. After introducing two more
flux quanta in a time 2×20π/J the whole protocol is repeated
and we finally arrive close to a three particle LN-type ground
state.

is sufficient for a gapped ground state at any point in the
protocol. An alternative would be to include carefully
chosen long-range hoppings leading to a completely flat
band [43].

In the following we use ED to simulate our protocol for
small systems. To get rid of boundary effects, which can
be pronounced in small systems, we consider a spherical
geometry [44] and take into account lattice effects by us-
ing a buckyball-type lattice. The hopping elements on
all links have amplitude J and their phases were chosen
such that the flux per plaquette is α. Because the total
flux Nφ is integer quantized, it holds α = Nφ/Np with
Np = 32 being the number of plaquettes. We checked nu-
merically (using ED) that for the values of α ≤ 0.2 used
in this paper there are gapped LN-type ground states,
provided that the condition Nφ = 2(N − 1) for ν = 1/2
LN states on a sphere is fulfilled. We find gaps of the or-
der ∆LN ≈ 0.1J , as predicted for a square lattice [31, 37].

To describe the effect of local flux insertionNφ → Nφ+
φ/2π we slightly increase α→ α+φ/(2πNp) everywhere,
except on the central plaquette where α → α − (1 −
1/Np)φ/2π changes by −φ/2π in thermodynamic limit
(i.e. for Np → ∞). Starting from an incompressible
LN-type ground state, we checked numerically that the
correct number of low-lying quasihole states is obtained,
and that they can be gapped out by the potential Eq.(5)
(see Supplementary Material for more details).

In FIG.2 we present a numerical simulation of our full
protocol on the C60 buckyball lattice. We find that the
overlaps of the prepared states to the targeted N par-
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ticle ground states |gsN 〉 is close to one after all steps,
and the overlaps conditioned on having the correct par-
ticle number N (occurring with probability PN ) are even
larger. The time required for each cycle is of the or-
der of 2π/∆LN ≈ 60/J . At the end of the protocol,
the N = 3 boson ground state at Nφ = 4 is prepared
with high fidelity, which carries the signatures of a LN-
type state. Importantly the particle number fluctua-
tions after a completed cycle are strongly suppressed
[〈N̂2〉 − 〈N̂〉2]/〈N̂〉 ≪ 1.
In our simulations we neglected edge effects and bulk

losses. The latter result in a finite boson life-time, such
that in the growing scheme the mean density ρ(r) decays
with the distance r from the center. In continuum we
find ρ(r) ≈ 1

4πℓ2
B

exp
(

−γT0 r2

4ℓ2
B

)

, with T0 being the du-

ration of a single step of the protocol. In a forthcoming
publication [45] we study larger systems using a simpli-
fied model of non-interacting CFs on a lattice and show
that our protocol still works when edge-effects are taken
into account.
In FIG.2 we observe that the fidelity FN = |〈ψ(t)|gsN 〉|

for preparation of the N -particle LN-type ground state
is limited, mostly by the inefficiency of the pump. High
fidelity, however, is an indispensable requisite for measur-
ing e.g. braiding phases of elementary excitations, which
play a central role for topological quantum computation
[10]. Taking into account couplings between low-energy
states of the N and N + 1 boson sectors, induced by the
coherent pump (3), we find the following expression for
the fidelity,

FN ∼ exp

(

−
(

Λ2

∆2
LNT

2
0

+ γT0
N

2

)

N

2

)

. (6)

Here Λ is a numerical parameter determined by non-
universal FCFs, and from FIG.2 we estimate Λ ≈ 10
[46]. The second term in Eq.(6) describes boson loss,
whereas the first term takes into account imperfections
of the blockade in the repumping process with rates
scaling like ∼ (Ωeff/∆LN)

2
. In Eq.(6) we neglected fi-

delity losses from flux insertion, which according to the
Landau-Zener formula [47] yield only double exponen-
tial corrections, however, and within this approximation
T0 ≈ Tπ = π/2Ωeff.
In Eq.(6) we observe a competition between losses∼ T0

and errors of the pump∼ 1/T 2
0 . Thus, for a target fidelity

FN = 1 − ε, only LN states of a restricted number of
bosons N ≤ Nmax can be grown,

Nmax = 1.365 ε3/5
(

∆LN

Λγ

)2/5

. (7)

To do so, a time T = NmaxT0 = 1.22 N
3/2
maxε−1/2Λ/∆LN

is required, which yields Eq.(1).
Experimental realization In photonic cavity arrays

[18, 23, 24, 32, 33], the main experimental challenges
for realizing our protocol are the required large interac-
tions U & J and small losses γ ≪ ∆LN/N

5/2. Strong

non-linearities can be realized e.g. by placing single
atoms into the cavities [32] or coupling them to quantum
dots [23] or Rydberg gases [23, 48, 49]. Most promis-
ing, we believe, are circuit-QED systems, where loss-
rates γ = 10kHz have already been achieved [50] and
in which the strong coupling regime can be reached with
U = 100MHz = 10J [36]. The latter gives ∆LN ≈ 0.1J ≈
1MHz which corresponds to ∆LN/2π ≈ 17γ. To over-
come losses, an array of multiple flux and photon pumps
could be envisioned.

In ultra cold atom systems [15, 16] on the other hand,
large interactions U and negligible decay γ are readily
available [51]. Local detection and addressing of single
atoms has also been demonstrated [52–55]. To realize the
coherent pump Eq.(3) one could e.g. use an atomic BEC
in an internal state |↓〉 as a reservoir, and couple it to
the system in the internal state |↑〉 by microwave pulses.
Supplementing this setup by a focused laser beam, it has
been shown that local addressing is possible [55]. We
believe that currently the biggest issue would be the re-
alization of local flux insertion. However, an alternative
way of creating quasiholes would be to introduce a fo-
cused laser-beam close to the edge of the system, the
intensity of which is adiabatically increased [56]. Also in
this configuration atoms are only added along with flux
quanta, which is the essence of our scheme.

Summary & Outlook We proposed a scheme for the
preparation of highly correlated LN states of bosons in ar-
tificial gauge fields. LN states can be understood in terms
of weakly interacting CFs, and our protocol is based on
the idea of adiabatically growing non-correlated states of
the latter. We demonstrated that this can be achieved
by first creating LN quasihole excitations which are sub-
sequently refilled with bosons. Importantly, our protocol
only requires a preparation time scaling slightly faster
than linear with system-size.

Our scheme is not restricted to the preparation of LN
states of bosons. For example, we expect that the ν = 1
bosonic Moore-Read Pfaffian [5, 57, 58] supporting non-
Abelian topological order, can also be grown using our
technique. Moreover, preparing bosons in higher LLs
opens the possibility to simulate exotic Haldane pseudo-
potentials, mimicking the effect of long-range interactions
without the need to implement these in first place. We
also expect that our scheme can be adapted for the prepa-
ration of fractional quantum Hall states of fermions.
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Lukin, M. Höning and N. Lauk for helpful discussions.
Support was provided by the NSF-funded Physics Fron-
tier Center at the JQI and by ARO MURI award
W911NF0910406. F.G. was supported by a fellowship
through the Excellence Initiative (DFG/GSC 266) and he
gratefully acknowledges financial support from the ”Mar-
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SUPPLEMENTARY: LAUGHLIN STATES ON

THE BUCKYBALL LATTICE

To simulate fractional Chern insulators – i.e. the lat-
tice analogues of Laughlin states – on a finite lattice sys-
tem without edges, we consider bosons hopping on the
bonds between the 60 sites of a buckyball. All hopping
elements are assumed to be of magnitude J and their
phases are chosen in such a way that in total an inte-
ger amount Nφ of flux quanta pierce the surface, with
homogeneous flux per plaquette α (in units of the flux
quantum). This is a simple generalization of the sphere
surrounding a magnetic monopole which was introduced
by Haldane [44].
Because in the spherical geometry – unlike in the case

of a torus – Chern numbers can not readily be calculated
from geometric Berry phases, we need to chose an alter-
native approach to identify Laughlin (LN) type ground
states. To this end we adiabatically introduce magnetic
flux through a single plaquette (say at the north pole),
thereby increasing the charge of the fictitious magnetic
monopole in the center of the sphere. This corresponds
to the flux insertion described in the main text. As a con-
sequence, an outwards Hall current pointing from north
to south pole is generated, which is proportional to the
Chern number of the many body state.

In FIG.3 we show the flux-insertion spectra (i.e. the
eigenenergies as a function of φ) for N = 3 bosons on the
buckyball lattice. In (a) we did not include the trapping
potential Eq.(5) from the main text, and thus for Nφ = 4
we expect an incompressible LN-type ground state from
the condition Nφ = 2(N − 1) for ν = 1/2 LN states on
a sphere. Indeed, we observe a ground state gap of the
order ∆LN ≈ 0.1J in (a) as predicted for a square lattice
[31, 37]. Moreover, for φ = 2π and 4π the correct count-
ing of (nearly degenerate) quasihole states is obtained,
supporting our assumption that the ground state is in
the LN universality class.

In FIG. 3 (b) the trapping potential Eq.(5) from the
main text is included and the quasihole degeneracy is
split. For all values of the additional magnetic flux φ
a gapped ground state is observed, and by calculating
the corresponding density profiles we checked that in the
flux insertion the expected Hall-current corresponding to
a Chern number C = 1/2 is generated. This moreover
shows that our intuitive picture of the ground state –
consisting of a quasihole trapped by the potential – ap-
plies. Finally, by adiabatically increasing g from g = 0 in
(a) to g = J in (b) we checked that the ground state gap
does not close at φ = 0 and its topological properties are
thus unchanged by the potential Eq.(5) from the main
text.
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