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A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting
circuits. This allows the investigation of confined and deconfined phases in quantum link models,
and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining
strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we
show how state-of-the-art superconducting technology allows us to simulate these phenomena in
relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized
excitations emerging when superconducting qubits are coupled, we show how to engineer gauge
invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate
that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate
properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant
field theories. The experimental realization of these models in larger superconducting circuits could
address open questions beyond current computational capability.

PACS numbers: 03.67.Lx, 11.15.Ha, 75.10.Jm, 85.25.-j

I. INTRODUCTION

Since the pioneering experiments showing quantized
coherent excitations in electrical circuits [1, 2], supercon-
ducting circuits including Josephson junctions are play-
ing a fundamental role to demonstrate quantum effects
at a mesoscopic level and, remarkably, in quantum infor-
mation processing. The enormous recent progress in this
field comprises, for example, the realization of quantum
teleportation [3] and complex two- and three-qubit algo-
rithms, including number factoring and quantum error
correction [4–8]. From the viewpoint of analog quantum
simulation, the large coherence times and non-linearities
achieved with superconducting qubits [9–12] have opened
frontiers towards the simulation of Hubbard models with
photonic excitations and, as a by-product, the emulation
of classical static fields in circuit lattices [13–15].

A new perspective in quantum simulation is to mimic
fundamental interactions, such as those arising in field
theories [16], and in particular, lattice gauge theories [17].
In elementary particle physics, dynamical quantum gauge
fields mediate fundamental interactions [18–20]. In con-
densed matter systems such as spin liquids, dimer mod-
els, and presumably in high-temperature superconduc-
tors, gauge fields emerge as relevant low-energy degrees of
freedom [21–25]. Solving these theories is, however, fun-
damentally challenging. Classical simulations typically
rely on Monte Carlo methods which may suffer from se-
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vere sign problems, which imply that real-time dynamics
and certain exotic phases are so far out of reach. The
quantum simulation of dynamical gauge fields is thus at-
tracting a great deal of interest, giving rise to a variety of
recent proposals, mainly based on cold atoms in optical
lattices [26–37].

Here we show how different gauge invariant models can
be simulated with superconducting circuits (SC). This
platform offers on-chip highly-tunable couplings, and lo-
cal control over basic modules that can be intercon-
nected, enabling — in principle — scalability. Specif-
ically, in this work we focus our attention on two-
dimensional U(1) gauge theories, and show how ring-
exchange interactions, present in dimer models, and pla-
quette terms arising in lattice gauge theories, can be en-
gineered with quantum circuits under realistic dissipative
conditions. We will illustrate this by constructing gauge
invariant models in a superconducting-circuit square lat-
tice. As we will show, even in the presence of excitation
loss and disorder, distinctive features of the gauge theory,
such as confinement and string dynamics can be observed
in relatively small circuit lattices. The implementation
of these gauge invariant interactions generalizes previous
proposals based on cold atoms [26–38], as well as pioneer-
ing studies in this area with Josephson-junction arrays
[39], trapped ions [40], and superconducting circuits [41].

To quantum simulate dynamical gauge fields, we use
the framework of quantum link models [42–44]. In this
formulation, the gauge field is represented by quantum
degrees of freedom residing on the links that connect
neighboring lattice sites. In contrast to Wilson’s lattice
gauge theory [18, 19], quantum link models have a finite-
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dimensional Hilbert space per link. For a U(1) quantum
link model, the link degrees of freedom may be repre-
sented by spin S = 1

2
operators. Quantum dimer models

have the same Hamiltonian as the U(1) quantum link
model, but operate in a static background of “electric”
charges. Upon doping, quantum dimer models may real-
ize Anderson’s resonating valence bond scenario of high-
temperature superconductivity [45]. In this case, confine-
ment manifests itself in valence bond solid phases, while
deconfinement is associated with quantum spin liquids.

Confinement is characterized by the energy of the elec-
tric flux strings that connect charge and anticharge, and
whose energy is proportional to the string length. In
quantum link and quantum dimer models the strings
fractionalize into strands of electric flux 1

2
[46, 47] and

1
4

[48], respectively. Of specific interest in the context
of quantum simulation are dynamical properties, such as
the evolution after a quench [49]. In our lattice gauge the-
ory, the time evolution of the confining strings is beyond
current computational capability for relatively small lat-
tices, and as we show below, could be addressed with
a quantum simulator based on superconducting circuits.
In particular, it would be interesting to investigate how
an initially prepared confining string separates into frac-
tionalized strands as a function of time, a process that
is also relevant from a condensed matter perspective in
the context of quantum dimer models. Although here
we concentrate on small superconducting-circuit lattices
that can be built with current superconducting-circuit
technology, in the future, larger systems could be built
to investigate subtle aspects of the string dynamics, both
at the roughening transition and near a bulk phase tran-
sition, which can be captured by a low-energy effective
string theory [46, 47]. In this sense, the proposed devices
can be used to study “string theory on a chip”.

The paper is organized as follows. In section II we
introduce quantum link and quantum dimer models, em-
phasizing their gauge symmetry. We construct the corre-
sponding Hamiltonians and discuss associated phenom-
ena, in particular, the dynamics of confining strings. In
section III we show how the gauge invariant models of
interest can be simulated with a superconducting-circuit
architecture. Specifically, we analyze in detail the build-
ing blocks that compose the circuit lattice, and demon-
strate how, for realistic parameters, the system can be
tuned via external magnetic fields to give access to dif-
ferent parameter regimes, and thus the corresponding
phases of the model. In section IV we propose a minimal
experiment to demonstrate ring-exchange dynamics in a
single plaquette. In section V we study the physics asso-
ciated with the competing energy scales of our model. In
particular, we show how a bulk phase transition manifests
itself in the behavior of a particular lattice state, and dis-
cuss the physics associated with electric flux strings. Our
simulations of minimal instances pave the way towards
experiments on small lattices to demonstrate dynamical
effects in equilibrium and out-of-equilibrium gauge sys-
tems, which have been out of reach so far. In section VI

we present our conclusions and discuss possible directions
for future developments.

II. QUANTUM LINK AND QUANTUM DIMER
MODELS

In this work we consider the implementation of various
U(1) gauge theories on a two-dimensional lattice, using
the quantum link model (QLM) formulation of lattice
gauge theories. As already outlined in the introduction,
QLMs are lattice gauge theories with a finite-dimensional
Hilbert space per link, which makes them ideally suited
for quantum simulation. Moreover, prominent models in
condensed matter physics, such as quantum spin ice or
quantum dimer models, naturally fall in this theoretical
framework [24]. The purpose of this section is to establish
the main concepts and a common notation used in the
later parts of the paper. For an introduction to Wilson’s
standard formulation of lattice gauge theories the reader
is referred to [18–21].

A. U(1) Quantum link models

In the Hamiltonian formulation of Wilson-type Abelian
lattice gauge theories — such as quantum electrodynam-
ics (QED) — the dynamical gauge fields are represented
by variables Uij = exp(iϕij) ∈ U(1) that live on the
links between two neighboring lattice sites i and j. Here

ϕij = ∫
j
i dl⃗ ⋅ A⃗ corresponds to the phase accumulated by

a charged particle moving from i to j in the presence
of a vector potential A⃗. Associated to each link vari-
able, there is a canonically conjugate electric flux opera-
tor Eij = −i∂ϕij [see Fig. 1(a)], which obeys the commu-
tation relations

[Eij , Uij] = Uij , [Eij , U †
ij] = −U

†
ij . (1)

In Wilson’s lattice gauge theory the operator Eij acts
on an infinite-dimensional local link Hilbert space, with
eigenstates Eij ∣eij⟩ = eij ∣eij⟩ and eigenvalues eij ∈ Z. The

commutation relations (1) imply that Uij and U †
ij act as

raising and lowering operators of the electric flux eij ,
respectively. Here we use the convention that positive
eigenvalues, eij > 0, correspond to a flux from site i to
site j. In the lattice formulation, the dynamics of the
gauge fields is described by a Hamiltonian of the form

H = g
2

2
∑
⟨ij⟩

E2
ij −

1

4g2 ∑
◻

(U◻ +U †
◻
) ,

U◻ = UijUjkUk`U`i
= exp{i(ϕij + ϕjk + ϕk` + ϕ`i)} = exp{iΦ}.

(2)

Here ⟨i, j⟩ denotes a pair of nearest-neighbor sites, and
◻ denotes an elementary plaquette. The first term in
Eq. (2) can be identified with the electric field energy,
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(a) (b) (c)

(d)

FIG. 1: (Color online). (a) In a U(1) lattice gauge theory, the electric field is represented by operators Eij that live on the
links of a (two-dimensional) lattice. An eigenstate ∣eij⟩ of the electric field operator Eij is represented by a flux arrow from site
i to the neighboring site j. The plaquette operators U◻ = UijUjkUk`U`i act on the four electric flux states around a plaquette.
(b) Mapping between an electric flux configuration and the corresponding spin states of the S = 1

2
quantum link model. (c)

Action of the plaquette operators on the electric flux and spin S = 1
2

representation. (d) Illustration of the Gauss law.

while the plaquette operator U◻ measures the gauge in-
variant magnetic flux through a single plaquette, Φ ≡
∫ d2σ⃗ ⋅ (∇⃗ × A⃗). Hence, the second term in Eq. (2) is
identified with the magnetic field energy.

In the lattice formulation of U(1) gauge theories,
the invariance of the underlying continuum theory un-
der gauge transformations of the vector potential, A⃗′ =
A⃗− ∇⃗α, corresponds to an invariance of the Hamiltonian
(2) under lattice gauge transformations of the form

U ′

ij = V UijV
† = exp(iαi)Uij exp(−iαj),

E′

ij = V EijV
† = Eij . (3)

Here V = ∏m exp{iαmGm} is a unitary operator that
implements a general gauge transformation. Using the
commutation relations between Eij and Uij , one can con-
vince oneself that the infinitesimal generator of a gauge
transformation at site m is given by

Gm = Eim +Ekm −Emj −Em`. (4)

Note that [H,Gm] = 0, so that the site charges Qm, satis-
fying Gm∣ψ⟩ = Qm∣ψ⟩, are local conserved quantities un-
der the time-evolution generated by H. In other words,
for a specified charge configuration {Qm}, the Gauss law
(Gm −Qm)∣ψ⟩ = 0 (for all m) defines a subset of physi-
cal states, where at each vertex the sum of incoming and
outgoing fluxes is equal to the total charge at vertex m,
Qm. This condition is the lattice version of the usual
Gauss law, ∇⃗ ⋅ E⃗ = ρ, for a continuous charge density ρ.

The U(1) QLM shares many features with the stan-
dard Wilson theory, but it uses a finite-dimensional repre-
sentation of the local algebra [Eij , Uij] = Uij . This is pos-

sible because in QLMs the link variables Uij and U †
ij are

no longer complex numbers, but non-commuting opera-

tors. The quantum link operators obey [Uij , U †
ij] = 2Eij ,

which implies that Uij , U
†
ij , and Eij generate an SU(2)

embedding algebra on each link. U(1) QLMs can be real-
ized with any finite-dimensional spin S representation of
the SU(2) algebra. In this case the electric flux on each
link can only assume a finite set of discrete integer or half-
integer values eij . The electric flux operator can then be
identified with the third component of a spin S operator,
Szij , and the quantum link variables are the correspond-
ing raising and lowering operators, S±ij . More precisely,

as illustrated in Fig 1(b) for the case of S = 1
2
, the pos-

itive flux states around a single plaquette are mapped
alternatingly into spin up and spin down states, accord-
ing to Eij = Szij and Uij = S−ij or Eij = −Szij and Uij = S+ij
[see Fig. 1(b) for the mapping between fluxes and spins].
With this convention, the generators of the symmetry
defined above are given by

Gm = Szim + Szkm + Szmj + Szm`, (5)

and the neutral subspace of the Hilbert space now corre-
sponds to configurations with two spin up and two spin
down states around each lattice site.

The generators Gm commute with the electric fluxes
Eij = Szij and with the plaquette operators U◻ =
S+ijS

−

jkS
+

k`S
−

`i. The spin S representation of the Hamilto-

nian (2) is then again invariant under U(1) gauge trans-
formations. A special scenario arises for the minimal
S = 1

2
representation, where the electric-field energy of

equation (2) is E2
ij = (Szij)2 = 1

4
, and thus only contributes

as a constant energy shift. In this case, a gauge invariant
extension of the gauge field Hamiltonian can be consid-
ered, for example, of the form [46, 47]

H = −J∑
◻

[U◻ +U †
◻
− λ (U◻ +U †

◻
)

2
] , (6)

where ∑◻ denotes the sum over all plaquettes. The first
term (“kinetic energy”) inverts the direction of the elec-
tric flux around flippable plaquettes, while the second
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term (“potential energy”) favors the formation of flip-
pable plaquettes. These terms are also known as “ring-
exchange” and “Rokhsar-Kivelson” interactions, respec-
tively. This Hamiltonian is gauge invariant, as it com-
mutes with the generators of infinitesimal U(1) gauge
transformations Gm given above.

The physics and phase diagram of this model is quite
rich. At zero temperature, the model is confining for
λ < 1, while at high temperatures, T > Tc, it has a decon-
fining phase. At a critical coupling λc there is a quantum
phase transition, which separates two distinct confined
phases with spontaneously broken translation symmetry.
The phase at λ < λc has, in addition, a spontaneously
broken charge conjugation symmetry. The phase tran-
sition that separates the two confined phases is a weak
first-order transition, but mimics several features of de-
confined quantum critical points [46].

B. Quantum dimer models

In condensed matter physics, a closely related class of
models are the so-called quantum dimer models. As we
will see, they are also U(1) gauge invariant, and describe
the short-range resonating valence bond states proposed
by Anderson [45], realizing valence bond solid or quan-
tum spin liquid phases. Here, a dimer represents a singlet
state formed by two electrons located at nearest-neighbor
sites of a two-dimensional square lattice. Within the
dimer model, the number of valence bonds is conserved,
but they can rearrange themselves in such a way that
each site shares exactly one dimer with one of the neigh-
boring sites.

In quantum dimer models, the degrees of freedom ac-
count for the presence or absence of a dimer on each link.
According to the dimer covering constraint, two dimers
cannot touch each other, but can be located at oppo-
site links of a lattice plaquette. The short-range dimer
Hamiltonian can be written as [50]

Hdimer = −J∑
◻

[(∣ ⟩⟨ ∣ + ∣ ⟩⟨ ∣)

− λ(∣ ⟩⟨ ∣ + ∣ ⟩⟨ ∣)],
(7)

where ∣ ⟩ and ∣ ⟩ denote states with two dimers located
vertically and horizontally, respectively, on opposite links
of a plaquette. The relation between the dimer model
and the spin 1

2
QLM can be established by identifying

the presence of a dimer with the state eij = + 1
2

and the

absence with the state eij = − 1
2
. With this identification,

the Hamiltonian is recast into the form

Hdimer = −J∑
◻

(B◻ − λB2
◻
), (8)

where B◻ = S+ijS−ikS+k`S−j` + H.c., and which, using U◻ =
S+ijS

−

jkS
+

k`S
−

`i, corresponds to the quantum link model

FIG. 2: (Color online). Action of the ring-exchange Hamilto-
nian on flippable plaquettes. Every configuration is illustrated
with the flow of electric flux through the links of the lattice
(above), the dimer covering (middle), and — equivalently —
the corresponding spin 1

2
representation (below).

Hamiltonian (6) [c.f. Fig. 2 for the action of the ring-
exchange interaction in lattice gauge theories, quantum
dimer models, and quantum link models]. Although the
U(1) QLM and the dimer model share the same Hamil-
tonian, they differ in the realization of the Gauss law
constraint, which for the dimer model is given by

Qm = eim + ekm + emj + em` = −1. (9)

This constraint ensures that exactly one dimer touches
each lattice site. On the square lattice, around each site
there are three links without a valence bond and just
one link that carries a dimer. For λ < 1, the square lat-
tice quantum dimer model exists in a confining colum-
nar phase that extends to the Rokhsar-Kivelson point at
λ = 1, a deconfined critical point at zero temperature.

C. Confinement and string dynamics

As mentioned above, the Gauss law, Gm∣ψ⟩ = 0, can
be violated by installing a charge-anticharge pair at two
lattice sites. In this situation, the electric flux flows from
particle to antiparticle [see Fig. 3 for illustrative examples
and Fig. 4 for an exact-diagonalization calculation], cre-
ating strings of flux whose tension and internal structure
provide information about confinement: a string has an
energy proportional to its length, with the string tension
being the proportionality factor. In the two-dimensional
U(1) QLM a string connecting two particles of charge
Qm = ±2 separates into four mutually repelling strands,
each carrying fractional electric flux 1

2
. Similarly, a string
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Q = 1 Q = − 1

Q = − 1

2
Q =

1

2

FIG. 3: (Color online). Illustration of possible strings of elec-
tric flux between a particle-antiparticle pair. Intrinsic prop-
erties of the string, such as its tension and width, contain
fundamental information about confinement. Here we show
two configurations with external charges Q = ±1 (left) and
Q = ± 1

2
(right) at the boundaries. Flux strings connect the

charge with the anticharge. The zig-zag boundary allows the
Gauss law to be satisfied at the edges of the system.

connecting particles of charge Qm = ±1 splits into two
strands.

The excitation spectrum of the strings contains fur-
ther physically relevant information. For example, it is
interesting to see how the electric fluxes spread on the lat-
tice in the transverse direction. This determines whether
the strings separate into mutually repelling strands and
whether they are rigid or rough. If the strings are rough,
a continuum effective string theory describes their low-
energy dynamics, which predicts that the width of the
transverse string fluctuations grows logarithmically with
the distance between the particle-antiparticle pair. The
parameters of the effective string theory, such as the
string tension and the intrinsic string width are measur-
able quantities. Below we present a roadmap for different
experiments in small systems that begin to address these
issues.

D. Building blocks for simulating static and
dynamical properties of quantum link models

Given the broad interest in quantum link and quan-
tum dimer models and their relevance in various areas of
physics, in the remainder of this paper we address the
controlled implementation of such models using coupled
superconducting circuits. The main challenge in artifi-
cially engineering interactions of the type (8) is to realize
the plaquette interactions between multiple spins. In this
respect, superconducting circuits are potentially benefi-
cial. First, different circuit elements can simply be con-
nected via electrical wires. Second, the extremely large
couplings and low losses observed in these systems al-
low the design of high-order interaction terms, which are
sufficiently strong compared to the relevant decoherence
energy scales. However, the fabrication and control of
large arrays of superconducting qubits is still under de-
velopment. Thus, it is the purpose of this work to first of
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FIG. 4: Electric-field distribution for the ground state of the
ring-exchange Hamiltonian (10) on a square lattice, using ex-
act diagonalization. We have chosen open zig-zag boundaries
in order to fulfil the Gauss law at each vertex. However, a
charge-anticharge pair has been created at the edges by vi-
olating the Gauss law at those sites, giving rise to electric
flux strings. The magnitude of the propagating electric flux
is indicated on each link, and can be experimentally measured
by taking snapshots of the spin distribution from an initially-
prepared state.

all describe and analyze the implementation of the essen-
tial building blocks of QLMs, and to discuss the minimal
settings which are required to observe precursors of the
physical phenomena outlined above. This will provide a
roadmap for constructing larger systems in a bottom-up
approach.

Of central interest to this work is the implementation
of the ring-exchange plaquette interaction, H◻ = −J(U◻+
U †
◻
), which can be written in the spin notation as

H◻ = −J (S+ijS−ikS+k`S−j` +H.c.) . (10)

As already mentioned above, this interaction flips the
spins around a plaquette and thus represents a delocal-
izing kinetic energy contribution. Besides the potential
energy contribution H2

◻
of Eq.(6), we also consider a two-

body spin interaction and first analyze the physics of the
model

H = −J∑
◻

S+ijS
−

ikS
+

k`S
−

j` +H.c. + V ∑
⌜

SzijS
z
jk, (11)

where the last (gauge invariant) term represents an Ising-
type coupling between adjacent link spins on each plaque-
tte, which will be denoted by the symbol ⌜ in the sums,
and favors spin configurations with a specific local mag-
netization. This model can be viewed as the simplest
non-trivial extension of the pure ring-exchange interac-
tion, and it exhibits a quantum phase transition as a
function of J/V . Like in the QLM of Eq.(6), the transi-
tion separates two distinct confined phases.
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A more general gauge invariant model for spin 1
2

is
given by the Hamiltonian

H = −J∑
◻

(S+ijS−ikS+k`S−j` +H.c.) + V ∑
⌜

SzijS
z
jk

+ W∑
◻

SzijS
z
ikS

z
k`S

z
j`. (12)

Here, in addition to the two-body interaction, we have
included a four-body plaquette term that favors an odd
number of spins pointing along the same direction around
every plaquette. The combination of ring-exchange, two-
body nearest-neighbor interaction, and four-body pla-
quette interaction, gives a large class of models that, as
we show below, can be quantum simulated with super-
conducting circuits. Next, we show the corresponding
implementation, and how the associated nontrivial dy-
namics can be probed in experiments.

III. SUPERCONDUCTING CIRCUIT
IMPLEMENTATION

The ring-exchange Hamiltonian (10) involves non-local
four-body interactions, which do not appear naturally in
superconducting circuits or systems with dipolar inter-
actions. In the following, we describe how this type of
interactions can be implemented using quantized excita-
tions in electrical circuits. As a concrete example, we will
focus on a circuit layout based on ‘transmon’ qubits [51];
however, the scheme is quite general and can be adapted
to other superconducting-qubit implementations as well.

A. General approach

Let us consider the general circuit lattice depicted in
Fig. 5. On each link the lowest two energy levels of a
strongly coupled superconducting circuit (qubit) are used
to implement an effective spin 1

2
system, representing the

gauge field, as described in Sec. II. Neighboring spins
on each plaquette and across each node are connected
by Josephson junctions, which induce nearest-neighbor
interactions. By an appropriate choice of parameters,
the resulting Hamiltonian of the circuit lattice takes the
form

H = ε∑
⟨ij⟩

Szij −Ω∑
+

SzijS
z
jk −Ω′∑

⌜

SzijS
z
jk

− µ∑
⌜

(S+ijS−jk +H.c.), (13)

where ε is the bare frequency splitting between qubit
states (the sum ∑⟨ij⟩ involves nearest-neighbor lattice
sites). The interactions Ω and Ω′ are diagonal coupling
constants for qubits located on opposite sides of each
lattice site and neighboring qubits within the same pla-
quette, respectively [see Fig. 5] (the sum ∑+ denotes

FIG. 5: Circuit lattice for the simulation of the model (11).
Every plaquette contains a qubit (e.g. a transmon) on the
links. Hopping and Kerr interactions of local excitations are
enabled by a capacitor in parallel with a Josephson junction
connecting neighboring qubits, giving rise to Sz

ijS
z
jk interac-

tions, and — perturbatively — to ring-exchange dynamics.
The tunneling term through each vertex may be suppressed
by choosing appropriately the value of the parallel capacitor
to the Josephson junction.

qubits around vertices, and the sum ∑⌜ involves nearest-
neighbor links around a plaquette). In addition, neigh-
boring qubits located within the same plaquette are cou-
pled by a small hopping term ∼ µ. By defining V ′ = Ω−Ω′

and omitting an overall frequency shift, we can rewrite
the Hamiltonian (13) as

H = ε∑
⟨ij⟩

Szij −Ω∑
m

G2
m + V ′∑

⌜

SzijS
z
jk

− µ∑
⌜

(S+ijS−jk +H.c.), (14)

where for each site Gm = Szim + Szkm + Szmj + Szm` is the
gauge generator introduced above. Under the assump-
tion that the system is initially prepared in the subspace
of states with exactly two spins up and two spins down
around each site, Gm∣ψ⟩ = 0 for all m, transitions out of
this subspace are suppressed by a large energy gap Ω. In
the limit µ,V ′ ≪ Ω we can use perturbation theory to
derive an effective Hamiltonian for this subspace, which
is given by

Heff = ε∑
⟨ij⟩

Szij + V ∑
⌜

SzijS
z
jk

− J∑
◻

(S+ijS−ikS+k`S−j` +H.c.), (15)



7

where

J = 4µ2

Ω
, V = V ′ − J. (16)

Apart from the overall qubit energy ∼ ε, which does
not affect the dynamics in the gauge invariant subspace,
this effective Hamiltonian reproduces the gauge invari-
ant model (11). In particular, taking V = 0, the standard
ring-exchange interaction (10) is recovered. An interac-
tion of the type SzijS

z
ikS

z
k`S

z
j` (arising in the RK model)

requires an additional circuit element, which will be dis-
cussed in Sec. III D.

B. Circuit model

We now show how the aforementioned interactions can
be implemented using superconducting circuits, in par-
ticular using transmon qubits on the links of a two-
dimensional lattice [c.f. Fig. 5]. A single transmon con-
sists of a capacitance C in parallel with a Josephson
junction with energy EJ . This circuit is described by
a Hamiltonian

Htransmon = Q
2

2C
−EJ cos( φ

φ0
) , (17)

where Q and φ are the canonically conjugate charge and
flux operators, obeying [φ,Q] = i, and φ0 = 1/(2e) is the
reduced flux quantum (φ0 ≈ 0.33 × 10−15 Wb) [here we
take h̵ ≡ 1]. In the regime where the Josephson energy
EJ dominates over the charging energy EC = e2/(2C),
the flux fluctuations are small compared to φ0, and the
cosine potential in Eq. (17) can be expanded in powers
of φ/φ0. Up to fourth order in this expansion, we then
obtain the Hamiltonian of a non-linear oscillator [51]

Htransmon ≈ Q
2

2C
+EJ

φ2

2φ2
0

−EJ
φ4

24φ4
0

≈ εa†a − U
2
a†a†aa,

(18)
where we have introduced annihiliation and creation op-
erators a and a† according to

Q

2e
= 4

√
EJ

8EC

i(a† − a)√
2

,
φ

φ0
= 4

√
8EC
EJ

(a + a†)√
2

. (19)

For typical experimental parameters, the qubit frequency
ε =

√
8ECEJ − U is several GHz, and the strength of

the nonlinearity U ≈ EC is around several 100 MHz [52].
Assuming that this nonlinearity is sufficiently large to
prevent transitions into states with n ≥ 2 excitations, the
dynamics of the transmon can be restricted to the lowest
two oscillator states, ∣ ↓⟩ ≡ ∣0⟩ and ∣ ↑⟩ ≡ ∣1⟩, and modeled
by a spin 1

2
Hamiltonian,

Htransmon ≈ εSz. (20)

To implement interactions between neighboring qubits,
we now consider the basic building block shown in Fig. 6.

FIG. 6: Basic building block for the lattice gauge theory archi-
tecture shown in Fig. 5. Two superconducting qubits (trans-
mons) are coupled through a Josephson junction in parallel
with a capacitor. This enables hopping and Kerr interactions
between quantized photonic excitations at nodes 1 and 2. The
value of the capacitor can be chosen appropriately in order to
control the hopping of excitations.

Here two transmons are connected via an additional
Josephson junction with energy E

(Q)
J in parallel with a

capacitor CQ. The associated Hamiltonian is [41, 53, 54]

H = 1

2
Q⃗C−1Q⃗T − ∑

`=1,2

E
(`)
J cos(φ`

φ0
)

− E
(Q)
J cos(φ1 − φ2

φ0
) , (21)

where Q` and φ` are the charge and flux operators at a
node `, Q⃗ ≡ (Q1,Q2), and

C = ( C1 +CQ −CQ
−CQ C2 +CQ

) , (22)

is the capacitance matrix. As above, for small phase
fluctuations we can expand the cosine functions and write
the resulting Hamiltonian as

H = ∑
`=1,2

H` +Hint. (23)

Here,

H` =
Q2
`

2C̄`
+ (E(`)J +E(Q)J )

φ2
`

2φ2
0

− (E(`)J +E(Q)J )
φ4
`

24φ4
0

,

(24)
are the modified Hamiltonians for each qubit, where

C̄1 = C1 +
C2CQ

C2 +CQ
, C̄2 = C2 +

C1CQ

C1 +CQ
. (25)

By assuming that CQ < C` and E
(Q)
J < E(`)J , the coupling

junction does not qualitatively change the single-qubit
Hamiltonians, H` ≈ ε`Sz` , with slightly modified frequen-
cies ε`. The remaining interaction Hamiltonian is given
by

Hint ≈
CQ

C1C2
Q1Q2 −

E
(Q)
J

φ2
0

φ1φ2

−
E
(Q)
J

4φ4
0

φ2
1φ

2
2 +

E
(Q)
J

6φ4
0

(φ1φ
3
2 + φ3

1φ2) ,

(26)
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FIG. 7: (Color online). Different parameter values as a function of the external flux φext. Here ε = 6 GHz, U = 300 MHz,
C+/C = C◻/C = 0.16, E+

J/EJ = E◻

J /EJ = 0.2 (dotted solid lines), and C+/C = 0.20, C◻/C = 0.16, E+

J/EJ = 0.25, E◻

J /EJ = 0.20
(dashed lines). (a) The ratio µ◻/Ω determines the region of external flux in which perturbation theory is still valid. (b)
Behaviour of J/Ω and V /Ω, [Ω = 120 MHz (dotted solid lines) and Ω = 150 MHz (dashed lines)]. Tuning the external magnetic
flux, the regimes i) J = 0, V ≠ 0, ii) J = V ≠ 0, and iii) J ≠ 0, V = 0, can be reached. (c) Tunability of the ratio J/V . For the
situation plotted with dashed lines, at φext/Φ0 ≈ 0.13 we find V ≈ 0, and J ≠ 0, giving rise to a ring-exchange interaction only.
In the vicinity of that point, the ratio J/V can go from positive to negative values.

and when projected onto the spin subspace of interest,
we obtain

Hint ≈ −
Ω

2
(Sz1 + Sz2) − µ(S+1S−2 + S−1S+2 ) −ΩSz1S

z
2 . (27)

We notice that here the subindexes 1 and 2 refer to re-
spective circuit nodes of Fig. 6, which are located on the
links of the two dimensional lattice of Fig. 5. The first
term in this Hamiltonian is a small frequency shift, which
can be absorbed into a redefinition of the qubit frequency,
ε` → ε` − Ω/2. The other two contributions represent a
spin flip-flop and an Ising-type spin-spin interaction with
coupling strenghts

µ = ε
2

⎛
⎝
E
(Q)
J

EJ
−
CQ

C

⎞
⎠
−Ω, Ω = U

2E
(Q)
J

EJ
, (28)

where we have assumed E
(1)
J = E(2)J ≡ EJ . Still under the

assumption that the capacitance CQ and the Josephson

energy E
(Q)
J are sufficiently small, the coupling between

different neighboring transmons on the lattice of Fig. 5
can simply be added up. Considering different coupling
constants around plaquettes (◻) and across lattice sites
(+), and taking

µ◻ = µ, Ω◻ = Ω′,

µ+ = 0, Ω+ = Ω,
(29)

we obtain the model (13), from which we then derive the
effective Hamiltonian (15), with parameters J and V as
defined in Eq. (16).

C. Parameters and tunablity

For the simulation of the model (11) we require that
the effective parameters J and V are much larger than
the relevant decoherence rates of the qubits, and that

the ratio J/V is tuneable to explore different regimes.
Assuming that the capacitances are fixed, the relative
strength of the model parameters can be adjusted by tun-

ing the Josephson energies E
(Q)
J . This can be done by

replacing a single junction by an equivalent two-junction
loop, with an effective Josephson energy given by

E
(Q)
J → E

(Q)
J cos(πφext

Φ0
) , (30)

where φext denotes an external magnetic flux through
the loop, and Φ0 ≡ 2πφ0 is the magnetic flux quan-

tum. We then set CQ = C+, E
(Q)
J = E+

J , and CQ = C◻,

E
(Q)
J = E◻

J cos (πφext/Φ0), for the couplings across the
lattice sites and within each plaquette, respectively (thus
making the latter tuneable), and choose the circuit pa-
rameters such that

µ+ =
ε

2
(
E+

J

EJ
− C+
C

) −Ω = 0, (31)

and

µ◻ =
ε

2
(
E◻

J

EJ
− C◻
C

) −Ω′ = 0. (32)

The coupling constants µ◻ and Ω◻, and therefore the ra-
tio J/V , can now be tuned by considering a two-junction
loop, coupling neighboring links around the plaquette.
These loops can be biased using either a global magnetic
field or local flux lines to generate a finite φext for the
◻-links, replacing the value of E◻

J and Ω′ in Eq. (32)

by E◻

J cos (π φext

Φ0
) and Ω′ cos (π φext

Φ0
), respectively. This

generates a finite µ◻ ≠ 0, which increases J and simul-
taneously lowers V . At a certain value of the external
flux, we reach V = 0, and we recover the pure ring-
exchange interaction. When φext = 0, we have J = 0
and V = 2U

EJ
(E+

J −E◻

J ).
In Fig. 7 we show the behaviour of the different sys-

tem parameters as a function of the external flux. A
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fine-tuning of the CQ’s ensures that for φext the condi-
tions (31) and (32) are fulfilled. Typical values of the
coupling constants in the region of magnetic flux where
the perturbative approach leading to Eq. (15) is still valid
(µ◻/Ω ≲ 0.5) are Ω ∼ 50 MHz, µ,J, V ∼ 5 MHz, still much
larger than the standard decoherence rates of a few tens
of kHz. As we will show below, the tuneability shown
in Fig. 7 allows us to access the different phases of the
model (15).

D. Rokhsar-Kivelson model

Different gauge invariant interactions can be engi-
neered by slightly modifying the complexity of the cir-
cuit lattice shown in Fig. 5. A particularly interesting
example is the Rokhsar-Kivelson (RK) model [50] — a
paradigm of dimer physics, which describes resonant va-
lence bond dynamics, relevant in the context of high-
temperature superconductivity [45]. This model can be
simulated with the circuit shown in Fig. 8, where we draw
a basic plaquette of the two-dimensinal lattice. Although
this circuit is similar to the architecture of Fig. 5, here the
squids coupling neighboring transmons are biased with a
quantum flux from an LC resonator located at the center
of the plaquette. Following a similar derivation to section
III, the model describing this circuit can be written as

H = ωb†b + ε∑
⟨ij⟩

Szij −Ω∑
m

G2
m

+ V ′∑
⌜

SzijS
z
jk − µ∑

⌜

(S+ijS−jk +H.c.)

+ (b† + b) [β′∑
⌜

ςijS
z
ijS

z
jk

− η∑
⌜

ςij(S+ijS−jk +H.c.)]. (33)

Here ςij = 1 for spins on horizontal links of the lattice,
while ςij = −1 for vertical links. The sum ∑⟨ij⟩ involves
nearest-neighbor lattice sites, and the sum ∑⌜ involves
nearest-neighbor links around a plaquette. For equal

transmons, and in the limit CQ ≪ C`, E
(Q)
J ≪ E

(`)
J , the

coupling constants are given by

V ′ = Ω −Ω′,

Ω′ = U
2E◻

J

EJ
cos(πφext

Φ0
) ,

µ = ε
2
(
E◻

J

EJ
cos(πφext

Φ0
) −

CQ

C
) −Ω′,

β′ = U
2E◻

J

EJ
sin(πφext

Φ0
) ,

η = ε
2

E◻

J

EJ
sin(πφext

Φ0
) − β′.

(34)

In the derivation of the Hamiltonian (33) we have as-
sumed that, on top of the quantum flux from the res-
onator, consecutive squids are biased with external clas-
sical fields of alternating signs. Furthermore, we notice

FIG. 8: Circuit lattice to engineer the Rokhsar-Kivelson
model and different four-body spin interactions. Every pla-
quette of the two-dimensional lattice contains one qubit (e.g.
a transmon) on each link. These are mutually coupled via
a capacitor in parallel with a two-Josephson-junction loop.
When this loop is biased with a quantum flux from a central
LC circuit, interactions of the type ∼ Sz

1S
z
2S

z
3S

z
4 are enabled

perturbatively (see main text for details).

that, under realistic experimental conditions, the con-
stants β′ and η will be reduced by a factor α ⩽ 1 deter-
mined by the fraction of the LC-resonator flux biasing
the squid.

Given the Hamiltonian (33), and the hierarchy of
scales V ′, µ, β′, η ≪ Ω ≪ ε,ω, we can treat the terms
∼ V ′, µ, β′, η perturbatively, and obtain the second-order
effective dynamics

Heff = ωb†b + ε∑
⟨ij⟩

Szij −Ω∑
m

G2
m

− J∑
◻

B◻ + V ∑
◻

B2
◻
− V

2
∑
∣∣

SzijS
z
k`. (35)

Here ∑∣∣ restricts the sum to opposite links on each pla-
quette, B◻ ≡ S+ijS−kjS+k`S−i` + H.c., and the coupling con-

stants are given by J = − 4µ2

Ω
− 4η2

Ω−ω
, V = − 2β2

ω
. Further-

more, we have taken parameters such that V ′ = −J −V /2,
and assumed that the central resonator is initially cooled
to the ground state, thus having transitions between the
resonator Fock states ∣0⟩ and ∣1⟩ only. The last term of
Eq. (35) can be eliminated by adding a Josephson junc-
tion in parallel with a capacitor connecting opposite links
on each plaquette, and choosing the corresponding ca-
pacitance and Josephson energies appropriately. In this

case, using B◻ = U◻ + U †
◻

and identifying λ = V /J , the
Hamiltonian (35) reproduces the dynamics given by (6).
Alternatively, choosing V ′ = −J , we obtain the effective
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Hamiltonian

Heff = ωb†b + ε∑
⟨ij⟩

Szij −Ω∑
m

G2
m

− J∑
◻

(S+ijS−kjS+k`S−i` +H.c.)

+ 2V ∑
◻

SzijS
z
kjS

z
k`S

z
i`, (36)

which displays explicitly the competition between ring-
exchange and a four-body Ising interaction.

IV. PROBING RING-EXCHANGE
INTERACTIONS

A minimal setup for studying ring-exchange interac-
tions is a circuit with four superconducting qubits form-
ing a single plaquette [see Fig. 9]. The approach de-
scribed in the previous section can then be used to en-
gineer an effective ring-exchange interaction within the
two-excitation subspace of the four spins on the plaque-
tte. In this minimal instance, the only non-vanishing
coupling is between the states ∣ ↑↓↑↓⟩ and ∣ ↓↑↓↑⟩, i.e.,

⟨↓↑↓↑ ∣H ∣ ↑↓↑↓⟩ = −J. (37)

Note that for a single plaquette the Ising-type coupling
∼ V commutes with the ring-exchange interaction, and
a competition between both terms in the Hamiltonian
(11) appears only in systems consisting of two or more
plaquettes.

A. Spectroscopy

While we are most interested in the dynamics induced
by the Hamiltonian (11) in the gauge invariant subspace,
we first describe an approach for probing signatures of
the ring-exchange interaction (10) by performing spec-
troscopic measurements on the full circuit. To do so we
assume that the four qubits can be individually coupled
to a cavity resonator, which can be used to apply weak
driving fields, as well as to detect microwave photons
emitted from the qubits into the resonator. The result-
ing dynamics can be modelled by the master equation

ρ̇ = −i[H +Hdrive(t), ρ]

+ Γ

2
∑
`

(2S−` ρS+` − {S+` S−` , ρ}), (38)

where the sum runs over all the spins (on the lattice
links), H is the Hamiltonian of Eq. (13), and Hdrive(t) =
∑4
`=1 Ωd`(S+` e−iωdt + S−` eiωdt) accounts for driving fields

with frequency ωd and site-dependent driving strength
Ωd` . In Eq.(38), Γ is the qubit decay rate (assumed to
be homogeneous), which limits the qubit performance
and the accuracy of realizing gauge invariance. Un-
der stationary driving conditions, the total number of

(b)(a)

0 exc

1 exc

2 exc

3 exc

4 exc

(1)

(1)

(1)
(2)

(1)
(3)

(1)
(1)

(1)

(1)

(1)
(2)

FIG. 9: (Color online). (a) Setup for a minimal experiment
to verify ring-exchange dynamics. This system consists of a
single plaquette on the lattice of Fig. 5, where four supercon-
ducting qubits (whose spin degree of freedom is represented
by the arrows) are mutually coupled via a Josephson junction
in parallel with a capacitor. (b) Energy levels of the micro-
scopic Hamiltonian (13) [see Appendix A]. Five different sets
of states (distinguished by the total number of excitations on
the plaquette) are separated by the energy scale ε (qubit fre-
quency). Within the two-excitation subspace, a large energy
scale Ω separates states corresponding to different Gauss law
sectors. Finally, the lower energy scales µ and J provide an
energy splitting (in the one- and two-excitation subspaces,
respectively). The numbers on the right indicate the level
degeneracy.

photons emitted from a single qubit is proportional to
the steady-state excited state population ⟨σee(`)⟩, where
σee(`) ≡ 1

2
+ Sz` . By looking at correlated photon detec-

tion events, one also has access to functions of the form
⟨σee(`)σee(`′)⟩.

Fig. 10 shows the typical spectra in the case where
qubit 2 is driven in a single plaquette [c.f. Fig 9(a)].
Measuring the excitation probability of the neigboring
qubit 1, ⟨σee(1)⟩, one observes four distinct peaks, which
can be identified with transitions between different en-
ergy eigenstates depicted in Fig. 9(b). The two peaks
at ωd = ε + Ω ± 2µ correspond to transitions from the
ground state ∣ ↓↓↓↓⟩ to eigenstates in the one-excitation
manifold. Within this subspace, a single spin excitation
can hop from site to site, thus forming delocalized eigen-
states. The peak in the middle exhibits an additional
splitting, which cannot be explained by the single exci-
tation dynamics. It arises from a two-photon transition
to the state ∣ ↓↑↓↑⟩, which is then coupled to the state
∣ ↑↓↑↓⟩ via the effective ring-exchange coupling, and leads
to the characteristic splitting ∼ 2J of the transition.

Additional evidence for a correlated two-spin hopping
interaction can be obtained from correlation measure-



11

0

0.05

0.1

0.15

0.2

0.25

0-1 1 2-2

FIG. 10: (Color online). Excitation spectroscopy of a sin-
gle plaquette [four coupled transmons – see Fig. 9(a)], as
given by the microscopic Hamiltonian (13). Here the qubit
2 is driven and the average population and correlations are
computed in the steady state, considering qubit relaxation
as captured by Eq. (38). The population of qubit 1 (solid
line) yields a four-peak structure reminiscent of the one- and
two-excitation subspaces shown in Fig. 9(b). The peak at
ωd = ε+Ω+J is a signature of the ring-exchange dynamics, as
can be seen in cross-correlation measurements between dif-
ferent links (dashed lines). Here the parameter values are
Γ/(2π) = 30 kHz, Ω/(2π) = 100 MHz, µ/(2π) = 7 MHz,
Ωd

2/(2π) = 100 kHz, Ωd
`≠2 = 0. Notice that these parameter

values are not optimized — in order to illustrate the feasi-
bility under suboptimal conditions — [c.f. Figs. 7 and 13 for
optimal parameter values]. Also note that the value of ε is
irrelevant for the effective dynamics.

ments of the form ⟨σee(`)σee(`′)⟩, which directly probe
the two-excitation subspace. For example, as shown in
Fig. 10, the value of ⟨σee(1)σee(3)⟩ is no longer sensitive
to the single excitation resonances, but still exhibits the
ring-exchange splitting at ωd ≈ ε+Ω and ωd ≈ ε+Ω+J . In
contrast, the correlations between neighboring spins, e.g.
⟨σee(1)σee(4)⟩, vanish almost completely, since states of
the type ∣ ↑↓↓↑⟩ are not coupled via the ring-exchange
Hamiltonian. Therefore, in combination, such measure-
ments can be used to confirm that the relevant dynamics
within the two-excitation subspace are indeed accurately
described by the Hamiltonian (13), and thus — effec-
tively — by (15).

B. Dynamics

In the remainder of the paper we are primarily inter-
ested in the dynamics induced by the effective Hamilto-
nian (15), within the gauge invariant sector defined by
Gm∣ψ⟩ = 0. For a single plaquette, this means that start-
ing from the actual ground state of the circuit, ∣ ↓↓↓↓⟩,
at time t = 0 we apply a fast microwave pulse to a se-
lected set of qubits, which excite the system into one of
the gauge invariant states, e.g. ∣ ↑↓↑↓⟩. The subsequent

FIG. 11: (Color online). Time-evolution of the gauge invari-
ant states on a single plaquette given by the ring-exchange in-
teraction (10). Initially, the state ∣ ↓↑↓↑⟩ (one excitation on the
links 2 and 4) is prepared (lines starting at ∣⟨ψ(0)∣ψ(t)⟩∣2 = 1
for t = 0). It coherently oscillates with the state ∣ ↑↓↑↓⟩ (one
excitation on the links 1 and 3). The microscopic model of
Eq. (13) (solid lines) is compared with the effective Hamilto-
nian (15) (dotted lines). Including the effect of cavity decay,
Γ/(2π) = 30 kHz for all resonators, the population decays to
∼ 90% after one oscillation. The values of the parameters are
Ω/(2π) = 100 MHz, µ/(2π) = 7 MHz, Ωd

2/(2π) = 100 kHz,
Ωd

`≠2 = 0. Notice that these parameter values are not opti-
mized — in order to illustrate the feasibility under subopti-
mal conditions — [c.f. Figs. 7 and 13 for optimal parameter
values]. Also note that the value of ε is irrelevant for the
effective dynamics.

dynamics is then given by the effective Hamiltonian, up
to the point where one of the qubits decays. In Fig. 11 we
show the evolution given by both the microscopic Hamil-
tonian (13) and the effective model (15) — on a single
plaquette — including the effect of qubit decay. Prepar-
ing initially the state ∣ ↓↑↓↑⟩ (one excitation on the links
2 and 4), this coherently oscillates with ∣ ↑↓↑↓⟩ (one exci-
tation on the links 1 and 3). Even for small qubit-qubit
couplings, µ/(2π) ∼ 7 MHz, considered here, the micro-
scopic model and the effective model agree qualitatively
well, and start to be appreciably shifted only after a few
oscillations. Assuming a qubit decay Γ/(2π) = 30 kHz
[9, 10], the prepared-state population is ∼ 0.9 after one
oscillation, which shows the possibility of simulating the
dynamics of the ring-exchange interaction with current
superconducting circuits.

V. PROBING STRING DYNAMICS

Next we discuss more complex dynamics given by the
gauge invariant model (11). To this end we now consider
the case V ≠ 0, and study phenomena associated with
the competing phases as the ratio J/V is varied. First,
we will show how the quantum phase transition of the
model (11), present in the infinite-size limit, manifests
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FIG. 12: (Color online). Upper panel: Flux configurations
that obey the Gauss law on a lattice of two plaquettes,
and corresponding spin configurations (below). Lower panel:
Flux distribution in the ground state for J/V = 0 (left) and
J/V = −100 (right). For J/V = 0 we recover the state ∣a⟩,
while for ∣J/V ∣≫ 1 the ground state is a superposition of the
three gauge invariant states, with the electric flux propagating
completely along the edges of the lattice.

itself as a crossover displayed by the magnetization of a
single spin in a system of two plaquettes. Second, we
study the physics of the electric flux strings connecting a
charge and an anticharge in the lattice.

In the upper panel of Fig. 12 we show the possible con-
figurations compatible with the Gauss law for a lattice of
two plaquettes. Notice, that for a spin 1

2
representation

of the gauge fields, the Gauss law is irremediably bro-
ken at the vertices connected to three links. Therefore,
in Fig. 12 a charge-anticharge pair with Qm = ± 1

2
has

been created at the vertices 3 and 4. Furthermore, each
of the states ∣a⟩, ∣b⟩, ∣c⟩, is degenerate with the state
corresponding to simultaneously inverting all the spins,
a degeneracy that can be broken by applying a small
magnetic field. These states can be initially prepared by
locally applying simultaneous π pulses on the appropri-
ate qubits. Starting e.g. in ∣a⟩, which corresponds to the
ground state of the Hamiltonian (11) for J = 0, V > 0, we
can adiabatically switch on the ring-exchange interaction
to reach the ground state of the system for a particular
ratio J/V . In the lower panel of Fig. 12 we show a sim-
ulation of the ground-state flux distribution for J/V = 0,
V > 0 (left) and for J/V = −100, V > 0 (right). In the
former case, the ground state is, as mentioned above,
the antiferromagnetic state ∣a⟩. However, when the ratio
∣J/V ∣ is increased, the ring-exchange term dominates the
dynamics and the electric flux propagates from charge to
anticharge along the edges of the lattice. In this case, the
ground state is no longer a product state, but a quantum
superposition of the states ∣a⟩, ∣b⟩, and ∣c⟩.

0 2 4 6 8
-0.5

-0.4

-0.3

-0.2

-0.1

0

 = 20 kHz

 = 200 kHz

 = 800 kHz

Hamiltonian dynamics

FIG. 13: (Color online). The infinite-size quantum phase
transition of the model (11) manifests itself as a crossover in
a minimal lattice of two plaquettes. Here we have prepared
the initial product state shown in the inset, and swept the
parameters as J = 30 MHz× sin2(vt), V = 30 MHz× cos2(vt),
with a constant speed v/(2π) = 2π× 2 MHz/µs. When the ef-
fect of qubit decay is considered, the spin on the common link
[corresponding to the “order parameter” ⟨M⟩ in this minimal
case] decays at a rate Γ, thereby reducing the value of ⟨M⟩
for large ∣J/V ∣.

A. Finite-size crossover

In Fig. 13 we show how the infinite-size quantum phase
transition of the model (11) manifests itself on a lattice
of two plaquettes, captured by the average magnetization
⟨M⟩ ≡ ⟨Sz

QQ̄
⟩ of the central spin between both plaque-

ttes Here we start with the product state ∣ψ0⟩ = ∣a⟩ [c.f.
Fig. 12 and inset of Fig. 13], which can be experimen-
tally prepared by first cooling the system to the ground
state [55] and then applying a simultaneous π pulse on
the appropriate links. We notice that this state is the
ground state of the Hamiltonian (11) for J = 0, V > 0,
and that the large energy scale ∼ Ω ensures that the
Gauss law is satified. In Fig. 13 we calculate ⟨M⟩ when
the parameters are varied with time as J = J0 sin2(vt),
V = V0 cos2(vt), which, given a constant speed v, and
amplitudes J0, V0, approximately follows the functional
form shown in Fig. 7(c). Neglecting qubit decay, ⟨M⟩
increases from −0.5 to 0. At finite relaxation rates, ⟨M⟩
reaches a maximum at a finite value of J/V and then de-
creases due to qubit decay. For standard relaxation rates
[Γ/(2π) ∼ 20 kHz] [9, 10], and superconducting-circuit
parameters, the behavior of ⟨M⟩ in the presence of qubit
decay approximates well the one shown by the Hamilto-
nian dynamics, thereby allowing us to characterize the
transition.
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FIG. 14: Effect of disorder in a minimal lattice of two pla-
quettes. When the qubit frequencies take random values be-
tween ±∆ε/2, the transition becomes less visible. Here we
have taken ∆ε = 15 MHz, and plotted the average ⟨M⟩ (solid
line) and standard deviation (dashed lines) over 10000 realiza-
tions. The figure shows that, with uncertainties in the qubit
frequencies of this magnitude, the crossover can still be ob-
served. Here we have prepared the initial product state shown
in the inset of Fig. 13, and swept the parameters as J = 30
MHz× sin2(vt), V = 30 MHz× cos2(vt), with a constant speed
v/(2π) = 2π× 2 MHz/µs.

Disorder

An important concern in the implementation of the
model (11) is to what degree the crossover is masked
by disorder (inhomogeneities among qubit frequencies).
This effect is illustrated in Fig. 14, where we show the av-
erage of the magnetization, ⟨M⟩, over 10000 realizations
(sufficient for convergence), with qubit frequencies tak-
ing random values between ±∆ε/2. We notice that post-
selecting qubits with similar frequencies after fabrication,
or incorporating tuneable qubits, may allow uncertainties
in qubit frequencies ≲ 15 MHz (considered in Fig. 14).
For larger values of ∆ε, the smoothening of the crossover
shown in Fig. 14 becomes more pronounced, but up to
∆ε/(2π) ≈ 50 MHz, the crossover can still be well identi-
fied even in this small system. Although scaling to larger
lattices leads to a higher probability of error (a common
problem in quantum simulators) due to photon loss, a
global order parameter such as the total magnetization
is robust with respect to individual decay processes. Fur-
thermore, a post-selection of measurements [56], together
with optimized pulses can be employed to increase the fi-
delity of the transition.

B. String dynamics

As we have mentioned above, experimentally observing
the dynamics of strings would give access to open ques-
tions about confinement in lattice gauge theories. In par-
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FIG. 15: Ground-state flux distribution in a lattice of five
plaquettes. For J/V = −1 (a) the electric flux propagates
from charge to anticharge through the center of the lattice,
while for J/V = 0.1 (b) it propagates along the edges.

ticular, performing time-resolved measurements would
show the fluctuations of an initially-prepared string, and
the formation of strands, a problem that, even for rel-
atively small lattices, is challenging to simulate classi-
cally. In Fig. 15 we show two particular examples of the
ground-state distribution of flux, for a lattice of five pla-
quettes. Here we have created a charge-anticharge pair
at the edges (achieved by a violation of the Gauss law by
initially exciting/de-exciting the corresponding qubits).
For J/V = −1 [Fig. 15(a)] the electric flux propagates
from charge to anticharge mainly through the center of
the lattice, while for J/V = 0.1 [Fig. 15(b)] it propagates
along the edges of the system. This effect corresponds
to a flux fractionalization into different strands, as it was
observed in [46, 48]. Experimentally, it would be inter-
esting to investigate the time-dependence of this process,
as well as the behavior as the ratio J/V is varied.

Effect of dissipation on string dynamics

In order to measure the ground-state flux distribution
shown in Fig. 15, an experimental protocol may consist
on initially preparing a product state, ground state of
the Hamiltonian (11) for J = 0, which corresponds to
an antiferromagnet (ferromagnet) for V > 0, (V < 0).
In the minimal lattice of Fig. 12, this initial gauge in-
variant configuration is precisely the state ∣a⟩, where a
string propagates from charge to anticharge along the
edges of the lattice. In the lattice of Fig. 15, an equiv-
alent string configuration — compatible with the Gauss
law — can be initially prepared as a product state. By
appropriately choosing the signs of the two-body Ising
interactions in the lattice, this can be chosen equivalent
to the ground state of the Hamiltonian (11). The highly-
entangled ground state for J ≠ 0 can then be reached by
adiabatic evolution, with e.g. a sweep of the form shown
in section V A. During this protocol, it would be inter-
esting to monitor the string dynamics as the ratio J/V
is varied. Notably, a common problem in quantum simu-
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FIG. 16: Effect of dissipation in a minimal lattice of two
plaquettes [c.f. Fig. 12]. Here we have initially prepared the
state ∣a⟩ of Fig. 12, and swept the parameters according to
J = 30 MHz× sin2(vt), V = 30 MHz× cos2(vt), with a constant
speed v/(2π) = 2π× 2 MHz/µs. On the vertical axis we show
∆P ≡ PΓ=0 − PΓ≠0 [see. Eq. (39)] for different values of the
qubit relaxation rate Γ. Although the probability of error
to obtain the desired ground state for J ≠ 0 increases with
time due to excitation decay, it remains of the order of 2% for
realistic relaxation rates.

lation is that the probability of reaching the appropriate
ground state depends both on the system size and the
qubit decoherence rates. This effect can be quantified by

P ≡ ∣⟨ψGS(t)∣ρ(t)∣ψGS(t)⟩∣2, (39)

where ρ(t) and ∣ψGS(t)⟩ are the system density operator
and the ground-state wavefunction at time t, respectively.
We can then define ∆P ≡ PΓ=0−PΓ≠0, which gives us the
probability of error due to qubit decay. Fig. 16 shows
∆P for the system of Fig. 12, starting in the state ∣a⟩,
and during the adiabatic passage J = J0 sin2(vt), V =
V0 cos2(vt), for a constant speed v, and amplitudes J0,
V0. As the relaxation rate Γ is increased, so does the
probability of error during the transition. However, for
state-of-the-art values, Γ/(2π) ∼ 20 kHz, the probability
of error to obtain the desired ground state at finite J
remains of the order of 2%.

VI. CONCLUSIONS AND OUTLOOK

In this work we have proposed an analog quantum
simulator — based on small-scale superconducting cir-
cuit lattices — to engineer gauge invariant interac-
tions. Specifically, we have shown how to construct ring-
exchange couplings and four-body spin interactions in
two spatial dimensions. Models involving such interac-
tions are particularly relevant in the context of U(1)
quantum link models, quantum dimer physics, and spin
ice. The characteristics of electric flux strings can be
studied as well. This gives access to confinement proper-

ties, and to real-time dynamics in gauge invariant mod-
els. More generally, simulating gauge invariant interac-
tions constitutes a toolbox to study open problems in
quantum field theories. As we have shown, for state-of-
the-art superconducting circuits, and under realistic dis-
sipative conditions, competing phases and the dynamics
of confining strings can be investigated in small circuit
lattices. The experimental realization of the gauge in-
variant models presented here, may thus address open
questions in condensed matter and high-energy physics,
and represents a first step towards the investigation of
more complex interactions, such as the quantum simula-
tion of non-Abelian gauge theories.
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Appendix A: Eigenstates for one plaquette

The energies and eigenstates of the microscopic Hamiltonian (13) for one plaquette are

E0 = −2ε −Ω, ∣ψ0⟩ = ∣ ↓↓↓↓⟩.
E1 = −ε − 2µ, ∣ψ1⟩ = (∣ ↓↓↓↑⟩ − ∣ ↓↓↑↓⟩ + ∣ ↓↑↓↓⟩ − ∣ ↑↓↓↓⟩)/2.

E2 = −ε, ∣ψ2⟩ ≈ (∣ ↑↓↓↓⟩ − ∣ ↓↓↑↓⟩)/
√

2.

E3 = −ε, ∣ψ3⟩ = (∣ ↓↑↓↓⟩ − ∣ ↓↓↓↑⟩)/
√

2.

E4 = −ε + 2µ, ∣ψ4⟩ = (∣ ↓↓↓↑⟩ + ∣ ↓↓↑↓⟩ + ∣ ↓↑↓↓⟩ + ∣ ↑↓↓↓⟩)/2.

E5 =
1

2
(Ω −

√
Ω2 + 32µ2) ≈ −2J, ∣ψ5⟩ ≈ −

1

2
√

1 + 8(µ/Ω)2
(∣ ↑↑↓↓⟩ + ∣ ↑↓↓↑⟩ + ∣ ↓↓↑↑⟩)

+ (µ/Ω)2

2
√

1 + 8(µ/Ω)2
(∣ ↑↓↑↓⟩ + ∣ ↓↑↓↑⟩).

E6 = 0, ∣ψ6⟩ ≈ (∣ ↑↑↓↓⟩ − ∣ ↑↓↓↑⟩)/
√

2.

E7 = 0, ∣ψ7⟩ ≈ (∣ ↑↑↓↓⟩ − ∣ ↓↑↑↓⟩)/
√

2.

E8 = 0, ∣ψ8⟩ ≈ (∣ ↑↑↓↓⟩ − ∣ ↓↓↑↑⟩)/
√

2.

E9 = Ω, ∣ψ9⟩ ≈ (∣ ↑↓↑↓⟩ − ∣ ↓↑↓↑⟩)/
√

2.

E10 =
1

2
(Ω +

√
Ω2 + 32µ2) ≈ Ω + 2J, ∣ψ10⟩ ≈ [1/

√
2 − 2

√
2(µ/Ω)2](∣ ↑↓↑↓⟩ + ∣ ↓↑↓↑⟩)

+
√

2(µ/Ω)(∣ ↑↑↓↓⟩ + ∣ ↑↓↓↑⟩ + ∣ ↓↑↑↓⟩ + ∣ ↓↓↑↑⟩).
E11 = ε − 2µ, ∣ψ11⟩ = (∣ ↑↑↑↓⟩ − ∣ ↑↑↓↑⟩ + ∣ ↑↓↑↑⟩ − ∣ ↓↑↑↑⟩)/2.

E12 = ε, ∣ψ12⟩ ≈ (∣ ↑↓↑↑⟩ − ∣ ↑↑↑↓⟩)/
√

2.

E13 = ε, ∣ψ13⟩ = (∣ ↓↑↑↑⟩ − ∣ ↑↑↓↑⟩)/
√

2.

E14 = ε + 2µ, ∣ψ14⟩ = −(∣ ↑↑↑↓⟩ + ∣ ↑↑↓↑⟩ + ∣ ↑↓↑↑⟩ + ∣ ↓↑↑↑⟩)/
√

2.

E15 = 2ε −Ω, ∣ψ15⟩ = ∣ ↑↑↑↑⟩.
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C. Gross, I. Bloch, and S. Kuhr, Nature Phys. 9, 235
(2013).

http://pra.aps.org/abstract/PRA/v86/i2/e023837
http://pra.aps.org/abstract/PRA/v82/i4/e043811
http://pra.aps.org/abstract/PRA/v82/i4/e043811
http://www.sciencemag.org/content/336/6085/1130
http://www.sciencemag.org/content/336/6085/1130
http://onlinelibrary.wiley.com/doi/10.1002/andp.201300104/full
http://prd.aps.org/abstract/PRD/v10/i8/p2445_1
http://prd.aps.org/abstract/PRD/v11/i2/p395_1
http://books.google.at/books/about/Quantum_Chromodynamics_on_the_Lattice.html?id=l2hZKnlYDxoC&redir_esc=y
http://books.google.at/books/about/Quantum_Chromodynamics_on_the_Lattice.html?id=l2hZKnlYDxoC&redir_esc=y
http://books.google.at/books/about/Quantum_Chromodynamics_on_the_Lattice.html?id=l2hZKnlYDxoC&redir_esc=y
http://rmp.aps.org/abstract/RMP/v51/i4/p659_1
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.78.17
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.78.17
http://books.google.at/books/about/Introduction_to_Frustrated_Magnetism.html?id=utSV09ZuhOkC&redir_esc=y
http://books.google.at/books/about/Introduction_to_Frustrated_Magnetism.html?id=utSV09ZuhOkC&redir_esc=y
http://www.nature.com/nature/journal/v464/n7286/full/nature08917.html
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.040402
http://www.nature.com/nphys/journal/v6/n5/abs/nphys1614.html
http://pra.aps.org/abstract/PRA/v83/i3/e033625
http://prl.aps.org/abstract/PRL/v107/i27/e275301
http://prl.aps.org/abstract/PRL/v107/i27/e275301
http://prl.aps.org/abstract/PRL/v109/i17/e175302
http://prl.aps.org/abstract/PRL/v109/i17/e175302
http://prl.aps.org/abstract/PRL/v109/i12/e125302
http://prl.aps.org/abstract/PRL/v109/i12/e125302
http://prl.aps.org/abstract/PRL/v110/i5/e055302
http://prl.aps.org/abstract/PRL/v110/i5/e055302
http://www.sciencedirect.com/science/article/pii/S0003491612001819
http://prl.aps.org/abstract/PRL/v110/i12/e125303
http://prl.aps.org/abstract/PRL/v110/i12/e125303
http://prl.aps.org/abstract/PRL/v110/i12/e125304
http://prl.aps.org/abstract/PRL/v110/i12/e125304
http://www.nature.com/ncomms/2013/131028/ncomms3615/full/ncomms3615.html
http://www.nature.com/ncomms/2013/131028/ncomms3615/full/ncomms3615.html
http://pra.aps.org/abstract/PRA/v88/i2/e023617
http://pra.aps.org/abstract/PRA/v88/i2/e023617
http://arxiv.org/abs/1404.5326
http://www.nature.com/nature/journal/v415/n6871/full/415503a.html
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.041018
http://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.041018
http://prl.aps.org/abstract/PRL/v111/i11/e110504
http://prl.aps.org/abstract/PRL/v111/i11/e110504
http://www.sciencedirect.com/science/article/pii/0370269381907632
http://www.sciencedirect.com/science/article/pii/055032139090646U
http://www.sciencedirect.com/science/article/pii/055032139090646U
http://www.sciencedirect.com/science/article/pii/S0550321397800417
http://www.sciencedirect.com/science/article/pii/S0550321397800417
http://www.sciencemag.org/content/235/4793/1196.abstract
http://iopscience.iop.org/1742-5468/2013/12/P12010
http://iopscience.iop.org/1742-5468/2013/12/P12010
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=187
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=187
http://arxiv.org/abs/1406.2077
http://www.nature.com/nphys/journal/v8/n4/full/nphys2232.html
http://www.nature.com/nphys/journal/v8/n4/full/nphys2232.html
http://prl.aps.org/abstract/PRL/v61/i20/p2376_1
http://prl.aps.org/abstract/PRL/v61/i20/p2376_1
http://pra.aps.org/abstract/PRA/v76/i4/e042319
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.77.180502
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.014516
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.014516
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.163605
http://www.nature.com/nphys/journal/v9/n4/full/nphys2561.html
http://www.nature.com/nphys/journal/v9/n4/full/nphys2561.html

	I Introduction
	II Quantum link and quantum dimer models
	A U(1) Quantum link models
	B Quantum dimer models
	C Confinement and string dynamics
	D Building blocks for simulating static and dynamical properties of quantum link models

	III Superconducting circuit implementation
	A General approach
	B Circuit model
	C Parameters and tunablity
	D Rokhsar-Kivelson model

	IV Probing Ring-Exchange Interactions
	A Spectroscopy
	B Dynamics

	V Probing string dynamics
	A Finite-size crossover
	 Disorder

	B String dynamics
	 Effect of dissipation on string dynamics


	VI Conclusions and outlook
	 Acknowledgements
	A Eigenstates for one plaquette
	 References

