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Long-range correlated errors can severely impact the performance of NISQ (noisy intermediate-
scale quantum) devices, and fault-tolerant quantum computation. Characterizing these errors is
important for improving the performance of these devices, via calibration and error correction,
and to ensure correct interpretation of the results. We propose a compressed sensing method for
detecting two-qubit correlated dephasing errors, assuming only that the correlations are sparse (i.e.,
at most s pairs of qubits have correlated errors, where s � n(n − 1)/2, and n is the total number
of qubits). In particular, our method can detect long-range correlations between any two qubits in
the system (i.e., the correlations are not restricted to be geometrically local).

Our method is highly scalable: it requires as few as m = O(s logn) measurement settings, and
efficient classical postprocessing based on convex optimization. In addition, when m = O(s log4 n),
our method is highly robust to noise, and has sample complexity O(max(n, s)2 log4(n)), which can
be compared to conventional methods that have sample complexity O(n3). Thus, our method is

advantageous when the correlations are sufficiently sparse, that is, when s ≤ O(n3/2/ log2 n). Our
method also performs well in numerical simulations on small system sizes, and has some resistance
to state-preparation-and-measurement (SPAM) errors. The key ingredient in our method is a new
type of compressed sensing measurement, which works by preparing entangled Greenberger-Horne-
Zeilinger states (GHZ states) on random subsets of qubits, and measuring their decay rates with
high precision.

I. INTRODUCTION

The development of noisy intermediate-scale
quantum information processors (NISQ devices) has
the potential to advance many areas of computa-
tional science [1]. An important problem is the char-
acterization of noise processes in these devices, in
order to improve their performance (via calibration
and error correction), and to ensure correct inter-
pretation of the results [2]. The challenge here is
to characterize all of the noise processes that are
likely to occur in practice, using some experimental
procedure that is efficient and can scale up to large
numbers of qubits.

Compressed sensing [3] offers one approach to
solving this problem. Here one uses specially-
designed measurements (and classical postprocess-
ing) to learn an unknown signal that has some pre-
scribed structure. For example, the unknown sig-
nal can be a sparse vector or a low-rank matrix,
the measurements can consist of random projections
sampled from various distributions, and the classical

postprocessing can consist of solving a convex opti-
mization problem (e.g., minimizing the `1 or trace
norm), using efficient algorithms. This approach
has been used in several previous works on quan-
tum state and process tomography, and estimation
of Hamiltonians and Lindbladians [4–8].

From a theoretical perspective, one of the main
challenges in this line of work is to design mea-
surements that have the mathematical properties
needed for compressed sensing, and can be imple-
mented efficiently on a quantum device. There has
been a substantial amount of work in this area,
which can be broadly classified into two approaches:
“sparsity-based” and “low-rank” compressed sens-
ing. For compressed sensing of “low-rank” objects
(e.g., low-rank density matrices and quantum pro-
cesses), there seem to be a few natural choices
for measurements, including random Pauli measure-
ments, and fidelities with random Clifford opera-
tions [4, 8, 9]. For compressed sensing of “sparse”
objects (e.g., sparse Hamiltonians, Lindbladians, or
Pauli channels), however, the situation is more com-
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plicated, as a larger number of different measure-
ment schemes and classical postprocessing methods
have been proposed, and the optimal type of mea-
surement seems to depend on the situation at hand
[5, 6, 10]. This complicated state of affairs can be ex-
plained in part because “sparsity” occurs in a wider
variety of situations than “low-rankness.”

In this paper, we extend the theory of “sparsity-
based” quantum compressed sensing, and apply it
to a physical problem that is relevant to the devel-
opment of NISQ devices: detecting long-range cor-
related dephasing errors. We use a simple model of
correlated dephasing, which is described by a Marko-
vian master equation:

dρ

dt
= L(ρ) =

n∑
j,k=1

cjk
(
ZkρZj −

1

2
{ZjZk, ρ}

)
. (I.1)

Here the system consists of n qubits, and Zj and Zk
are Pauli σz operators that act on the j’th and k’th
qubits, respectively. The noise is then completely
described by the correlation matrix C = (cjk) ∈
Rn×n, see Fig. I.1(a) and (b). (We will also consider
generalizations of this model with complex coeffi-
cients cjk, and an additional environment-induced
Hamiltonian.)

Here, the diagonal elements cjj show the rates at
which single qubits dephase, and the off-diagonal el-
ements cjk show the rates at which pairs of qubits
undergo correlated dephasing. Typically, the diago-
nal of C will be nonzero, while the off-diagonal part
may be dense or sparse, depending on the degree of
connectivity between the qubits and their environ-
ment.

This master equation describes a number of phys-
ically plausible scenarios, such as spin-1/2 particles
coupling to a shared bosonic bath [11] (see Appendix
A). It has also been studied as an example of how
collective decoherence can affect physical implemen-
tations of quantum computation [12–15] and quan-
tum sensing [16, 17].

This model of correlated dephasing is quite dif-
ferent from other models of crosstalk that are based
on quantum circuits or Pauli channels [10, 18–20].
Roughly speaking, our model describes crosstalk
that arises from the physical coupling of the qubits
to their shared environment. This has a different
character from crosstalk that arises from performing
imperfect two-qubit gates, or correlated errors that
result when the physical noise processes are sym-
metrized by applying quantum operations such as
Pauli twirls. Nonetheless, there are intriguing par-
allels between our results, and some of these other
works, particularly on the estimation of sparse Pauli

channels [10]. We will discuss this later in this sec-
tion.

In this paper, we show how our model of correlated
dephasing can be learned efficiently when the off-
diagonal part of the correlation matrix C is sparse.
We assume that C has at most s � n(n − 1)/2
nonzero entries above the diagonal, but these en-
tries may be distributed arbitrarily; in particular,
long-range correlated errors are allowed. (Note that
physical constraints imply that C is positive semidef-
inite, hence C = C† [21].)

This model is applicable in a number of scenar-
ios, including experimental NISQ devices, which are
often engineered to have long-range interactions, in
order to perform quantum computations more effi-
ciently [22]; the execution of quantum circuits on
distributed quantum computers, where long-range
correlations are generated when qubits are moved
or teleported from one location to another [23]; and
quantum sensor arrays, where a detection event at
a location (j, k) in the array may be registered as a
pairwise correlation between a qubit that is coupled
to row j and a qubit that is coupled to column k in
the array.

Our main technical contribution is a new method
for performing compressed sensing of the coupling
matrix C. At a high level, our method works by per-
forming m = O(s log n) or m = O(s log4 n) random
linear measurements of the coupling matrix C, where
each measurement can be understood as a general-
ized Ramsey measurement[24, 25] (Fig. I.1(c) and
(d)). At an abstract level, each measurement has
the following form: choose two vectors a,b ∈ {0, 1}n
uniformly at random, and estimate the quantity
rTCr, where r = b− a ∈ {1, 0,−1}n.

These kinds of measurements can be realized
experimentally, using techniques from noise spec-
troscopy and quantum sensing [16, 17, 25]: prepare
an n-qubit state |ψab〉 = 1√

2
(|a〉+|b〉) ∈ (C2)⊗n (as-

suming a 6= b), and allow it to evolve according to
equation (I.1) for some time t to get a state ρ(t). A
straightforward calculation shows that ρ(t) has the
form

ρ(t) =
1

2

(
|a〉〈a|+e−Γabt|a〉〈b|+e−Γabt|b〉〈a|+|b〉〈b|

)
,

(I.2)
where the off-diagonal elements decay exponentially
at a rate Γab = 2rTCr. One can estimate Γab from
experiments, which then gives us the desired quan-
tity rTCr.

This data can be viewed as an estimate of the vec-
tor Φ(C) returned by the “measurement operator”

Φ : C 7→ [(r(1))TCr(1), . . . , (r(m))TCr(m)], (I.3)
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FIG. I.1. Illustration of the noise model and the pro-
tocol. (a) The qubits experience correlated Markovian
dephasing. The red lines correspond to non-zero cij ,
indicating correlated noise affecting the pairs of qubits
connected by those lines. (b) The C matrix correspond-
ing to the correlation graph in panel (a). The diagonal
elements correspond to single qubit dephasing whereas
the off-diagonal elements indicate correlated dephasing
noise. (c) Single qubit Ramsey spectroscopy. The plot
shows the overlap P+, which decays exponentially (to-
wards 1/2) with decay rate Γ, as a function of time t. The
inset shows the Ramsey protocol, where a superposition
of qubit states is prepared with the first Hadamard gate
H, the system undergoes dephasing (represented by the
noise channel Et) for time t, and the second H followed by
a measurement in the computational basis measures the
overlap P+. (d) The generalized measurement protocol
involves generating vectors a and b whose elements are
randomly chosen from {0, 1}. The operation Uab pre-
pares the state 1√

2
(|a〉+ |b〉). The system evolves under

dephasing noise for time t, represented by Et. Finally,
we apply U†ab and perform a computational basis mea-
surement. The probability of obtaining the outcome 0,
Pab, decays exponentially (towards 1/2) as t increases.
By measuring the decay rate Γab for various a’s and b’s
we can recover C.

where r(1), . . . , r(m) are random vectors sampled in-
dependently from the same distribution as r. Given
a (noisy) estimate of Φ(C), the matrix C can then
be reconstructed (up to some small error) by using
techniques from compressed sensing, e.g., by solving

a convex optimization problem such as constrained
`1-minimization or `1-regularized least-squares re-
gression [26]. We describe the complete method in
Sections II and III.

Numerical simulations show that our method per-
forms well, and readily scales up to 128 qubits or
more (see Fig. I.2 and Section IV). But the reasons
for this success are not at all obvious, because our
method is substantially different from previous work
on quantum compressed sensing. In particular, the
linear measurement C 7→ rTCr has an unusual form:
it is an inner product between C and a random rank-
1 matrix rrT . In the context of compressed sensing,
this means that our method does not fit into the
framework of Gaussian (or sub-Gaussian) random
measurements [27], because of this rank-1 structure
(or more concretely, because the matrix rrT only
involves n rather than n2 independent random vari-
ables).

In the context of sparse Hamiltonian estima-
tion, this means that the theoretical analysis of
our method requires different, considerably stronger
techniques than those shown in [5, 6]. (In particular,
our method requires probabilistic proof techniques
that account for correlations between related ran-
dom variables, such as “generic chaining” [28–30],
in contrast to simpler techniques that neglect such
correlations, such as the union bound used in [5, 6].)

Instead, our method turns out to have surprising
connections to random Fourier measurements (and
random measurements in incoherent bases) in com-
pressed sensing [28, 29, 31, 32] (see also [27, 30, 33]).
The key observation is that the off-diagonal elements
of the matrix rrT (subject to a suitable normaliza-
tion condition) are random variables that are cen-
tered around 0 and bounded independent of the di-
mension n. These properties do not hold for the
diagonal elements of rrT , but those diagonal ele-
ments are irrelevant, because we are only trying to
detect the off-diagonal part of C, which encodes cor-
relations between different qubits. These observa-
tions imply that our method fits into the theoretical
framework of compressed sensing using “bounded or-
thonormal systems” [28–32].

Using this theoretical framework, we prove sev-
eral results about the accuracy of our compressed
sensing method, and the physical resources needed
to implement it in an experiment. In Section V,
we show two different recovery guarantees for our
method. First, we prove a “RIPless” recovery guar-
antee (Section V E), which shows that our method
can reconstruct C accurately when the number of
measurement settings is m = O(s log n), just slightly
above the information-theoretic lower bound. (Here,
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FIG. I.2. Scaling of the reconstruction error ‖W (opt) − C‖∞ under various circumstances. Here W (opt) denotes the
estimate of C obtained via compressed sensing. The solid lines are the average errors over 100 random instances of the
problem, and the shaded region is their 95% confidence interval obtained by bootstrapping. (a) The reconstruction
error as a function of the number of measurement settings m (assuming noiseless measurements) for various values of
sparsity s (and n = 64 qubits). The errors go through a phase transition whose location mc scales linearly with s. (b)
The reconstruction error as a function of the number of measurement settings m (assuming noiseless measurements)
for various numbers of qubits n (and sparsity s = 12). The phase transition point mc scales logarithmically with n.
(c) The reconstruction error as a function of the number of measurement settings m, for different values of added
noise strength σε, with fixed parameters (n, s) = (64, 12). The inset shows that the recovery errors (when m > mc,
i.e., after the transition point) scale linearly with σε, as expected. See Section IV for details.

the “RIP” refers to the restricted isometry property,
a standard proof technique in the theory of com-
pressed sensing.)

Second, we prove a “RIP-based” recovery guar-
antee (Section V F), which shows that the recovery
of C using our method is highly robust to noise in
the measurements, provided that m is slightly larger,
say m = O(s log4 n). In addition, the “RIP-based”
result shows universal recovery, meaning that a sin-

gle fixed measurement operator Φ is capable of re-
covering all possible sparse matrices C (up to some
unavoidable error due to the noise in the measure-
ments).

In Section VI, we study the performance of our
compressed sensing method, and compare it to the
naive method where one measures each element of
C independently. We can make a rigorous compar-
ison, since we have error bounds for each of these
methods. These can be summarized as follows:

Naive: ‖Ĉ − C‖F ≤ O(
√
n(δ1 + δ2)‖diag(C)‖2 + δ2‖C ′‖F ), (I.4)

RIP-based: ‖W (opt) − C‖F ≤ O(
√
nδ1‖diag(C)‖2 + δ2(

√
n‖diag(C)‖2 +

√
2s‖C ′‖F )), (I.5)

RIPless: ‖W (opt) − C‖F ≤ O(s log5/2(n)[δ1‖diag(C)‖∞
√
sn log(n) + δ2

√
n‖diag(C)‖2 + δ2

√
2s‖C ′‖F ]).

(I.6)

Here Ĉ is the estimate of C using the naive method,
and W (opt) is the estimate of C using compressed
sensing. (This is a simplification of the notation
used in Section VI, which defines separate estima-
tors for the diagonal and off-diagonal parts of C.)
We write diag(C) to denote the diagonal of C, and
C ′ to denote the off-diagonal part of C. We set

m = O(s log4 n) for the RIP-based bound, and
m = O(s log n) for the RIPless bound. We then use
(II.30) to bound the error in estimating diag(C), and
(II.31), (V.48) and (V.39) to bound the error in es-
timating C ′. Finally, δ1 and δ2 are parameters that
control the accuracy of the single-qubit and multi-
qubit spectroscopy procedures. Using this theory,
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Reconstruction # meas. Total sample

method settings m complexity

Naive method O(n2) O(n3/δ2)

CS (RIP-based) O(s log4 n) O(max(n, s)2 log4(n)/δ2)

CS (RIPless*) O(s logn) O(s3 max(n, s) log6(n)/δ2)

FIG. I.3. Sample complexity of different methods for reconstructing a correlation matrix C, of size n × n, with
2s nonzero elements off the diagonal. The naive method is to measure each element of C separately. “CS” refers
to the compressed sensing method, and “RIP-based” and “RIPless” refer to different analytical bounds on the
accuracy of the reconstruction of C. The asterisk (*) indicates that the results using the RIPless bound hold under a
technical assumption that the diagonal of C does not have any unusually large elements, see equation (VI.10). The
different methods are parameterized in such a way that they reconstruct the diagonal of C up to an additive error
of size δ‖diag(C)‖2, and they reconstruct the off-diagonal part of C up to an additive error of size δ‖C‖F . Each
method makes use of single-qubit spectroscopy (with n experimental configurations or “measurement settings”), as
well as multi-qubit spectroscopy (with m measurement settings, where m varies between O(n2) and O(s logn)).
The total sample complexity, shown in the table, includes both single-qubit and multi-qubit spectroscopy; for a
more detailed accounting, see Figure VI.1. For the CS method, the number of measurement settings can be as low as
m = O(s logn), using the RIPless bound, but the best sample complexity is achieved when m = O(s log4 n), using the
RIP-based bound. This sample complexity, O(max(n, s)2 log4(n)), compares favorably with the sample complexity of
the naive method, which is O(n3); we see that compressed sensing has an advantage over the naive method whenever

s ≤ O(n3/2/ log2 n). See Section VI for details.

we can prove rigorous bounds on the sample com-
plexity that is required for each method to recon-
struct C with comparable accuracy. The results are
summarized in Figure I.3.

For the compressed sensing method, the num-
ber of measurement settings can be as low as
m = O(s log n), using the RIPless bound, but
the best sample complexity is achieved when m =
O(s log4 n), using the RIP-based bound. This sam-
ple complexity, O(max(n, s)2 log4(n)), compares fa-
vorably with the sample complexity of the naive
method, which is O(n3). Thus we see that com-
pressed sensing has an advantage over the naive
method whenever s ≤ O(n3/2/ log2 n).

Our method has some similarities with more
recent work on phase retrieval, particularly the
PhaseLift algorithm, although there are significant
differences [34–38] (see also [8, 39]). We discuss
this in detail in Section III B. We are not aware of
any previous work on phase retrieval that directly
addresses the situation studied in this paper; how-
ever, it is an interesting question whether techniques
based on phase retrieval can be used to re-derive or
improve on our results.

Our method has a second novel feature, which
concerns the estimation of the decay rate Γab =
2rTCr. In Sections II B and VII, we show a pro-
cedure for estimating Γab with high precision (i.e.,
with small multiplicative error), by allowing the sys-
tem to evolve for a time t ∼ 1/Γab. Here the time t
is chosen by an adaptive procedure that starts with

an initial guess τ0 and converges (provably) after
∼ |log(Γabτ0)| steps (see Fig. VII.1). To achieve
high precision, we treat the time evolution operator
etL exactly, in contrast to previous work on sparse
Hamiltonian estimation [5, 6], which used a linear
approximation that is only valid for short times t.

This feature of our method is helpful in ex-
perimental setups where measurements are time-
consuming and the values of Γab span several or-
ders of magnitude, thus making it difficult to deter-
mine the appropriate evolution time and accurately
measure the decay rates using conventional meth-
ods. This feature can also be used as a standalone
technique to estimate the relaxation (T1) and deco-
herence (T2) times of any quantum system [25].

In Section VIII, we show that since our method re-
lies on estimating exponential decay rates, it can be
made at least partially robust to state-preparation-
and-measurement (SPAM) errors (see Fig. VIII.1).
This follows by some of the same approaches used in
randomized benchmarking and gate set tomography
[40–42].

Finally in Section IX we sketch a generalization of
our method that includes unitary evolution accord-
ing to some Hamiltonian HS , and allows the matrix
C to have complex entries cjk. We show how a sim-
ilar approach can be used to estimate the Hamilto-
nian HS , as well as the imaginary part of cjk.

It is interesting to compare our method with the
recent work of [10] on estimation of sparse Pauli
channels. At a technical level, these two works are
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very different: they are measuring different types
of noise (correlated dephasing versus Pauli errors),
using different types of measurements (generalized
Ramsey spectroscopy versus quantum Clifford cir-
cuits), and different reconstruction algorithms (con-
vex optimization over a continuous domain, versus
a combinatorial “peeling decoder”).

But from a broader perspective, these two meth-
ods do share certain general features. Both methods
assume that the noise is sparse (albeit with very dif-
ferent mathematical representations), meaning that
the noise is supported on a subset S of the domain,
where S is small, but unknown. Both methods avoid
making additional assumptions about the structure
of S (e.g., in our work, S is allowed to contain long-
range correlations, and in [10], S is allowed to con-
tain high-weight Pauli errors). Finally, both meth-
ods utilize measurements of “decay rates” (albeit
with very different types of experiments), in order
to obtain results that are robust in the presence of
state preparation and measurement (SPAM) errors.

This suggests that similar techniques, for SPAM-
robust estimation of sparse noise models, can be
used to characterize other kinds of correlated noise
processes in many-body quantum systems.

A. Notation

In this paper we use the following notation: Vec-
tors are written in boldface, and matrices are de-
noted by capital letters. For a vector v, ‖v‖p de-
notes the `p norm (we will be mainly interested in
the cases p = 1, 2,∞).

For a matrix M , ‖M‖F = (
∑
jk|Mjk|2)1/2 de-

notes the Frobenius norm (i.e., the Schatten 2-norm,
or the `2 norm of the vector containing the entries
of M), ‖M‖ denotes the operator norm (i.e., the
Schatten ∞-norm), ‖M‖tr denotes the trace norm
(i.e., the Schatten 1-norm, or the nuclear norm), and
‖M‖`1 =

∑
jk|Mjk| denotes the `1 norm of the vec-

tor containing the entries of M .
Given an n×n matrix M , let uvec(M) = (Mij)i<j

denote the vector (of dimension n(n−1)/2) contain-
ing the entries in the upper-triangular part of M ,
excluding the diagonal.

Asymptotic bounds are written using big-O no-
tation, such as O(s log n). Polylogarithmic factors
are written in a compact way as follows: logc n =
(log n)c. A “universal constant” is a quantity whose
value is fixed once and for all, and does not depend
on any other variable.

Statistical estimators are written with a hat super-

script, e.g., Γ̂ is a random variable that represents
an estimator for some unknown quantity Γ. For a
random variable Γ̂, ‖Γ̂‖ψ2

denotes the sub-Gaussian

norm, and ‖Γ̂‖ψ1
denotes the subexponential norm,

in the sense of [27].

II. GENERALIZED RAMSEY
SPECTROSCOPY

We begin by describing a general form of Ram-
sey spectroscopy using entangled states on multiple
qubits. We will also describe a simple method for
directly measuring the correlation matrix C, by per-
forming spectroscopy on every pair of qubits. This
simple method serves as a baseline for measuring
the performance of our compressed sensing method,
which we will introduce in Section III.

Here we assume that the entries in the matrix C
are real (i.e., with imaginary part equal to zero).
This holds true in a number of important cases, for
instance, when the qubits are coupled to a bath at
high temperature (see Appendix A). When C is com-
plex, it can be handled using a generalization of our
method, described in Section IX.

Note that physical constraints imply that C is pos-
itive semidefinite [21]; hence we have C = CT in the
real case, and C = C† in the complex case.

A. Dephasing of Entangled States

We begin by describing a procedure that allows
us to measure certain linear functions of the correla-
tion matrix C. This procedure is very general, and
includes single- and two-qubit Ramsey spectroscopy
as special cases. Consider an n-qubit state of the
form

|ψab〉 =
1√
2

(|a〉+ |b〉) ∈ (C2)⊗n, (II.1)

where a,b ∈ {0, 1}n, a 6= b, |a〉 = |a1, a2, . . . , an〉
and |b〉 = |b1, b2, . . . , bn〉. By choosing a
and b appropriately, one can make |ψab〉 be
a single-qubit |+〉 state, a two-qubit Bell state,
or a many-qubit Greenberger-Horne-Zeilinger state
(GHZ state) (while the other qubits are in a tensor
product of |0〉 and |1〉 states).

Say we prepare the state |ψab〉, then allow it to
evolve for time t under the Lindbladian (I.1). Let
ρ(t) be the resulting density matrix. As can be seen
in Eq. (I.2), the coherences (that is, the off-diagonal
elements |a〉〈b|) of ρ(t) decay as exp(−Γabt), where

6



the decay rate Γab ∈ R is defined so that L(|a〉〈b|) =
−Γab|a〉〈b|. This decay rate can be estimated by
allowing the system to evolve for a suitable amount
of time t, and then measuring in the basis 1√

2
(|a〉 ±

|b〉) (see Section II B for details).
The decay rate Γab tells us a certain linear func-

tion of the correlation matrix C, which can be writ-
ten explicitly as follows. Let αi = (−1)ai and
βi = (−1)bi denote the expectation values of Zi cor-
responding to the states |a〉 and |b〉, respectively. In
addition, define the vectors α = (α1, . . . , αn) and
β = (β1, . . . , βn). We can then see that

Γab = −
∑
ij

cij [αiβj − 1
2αiαj −

1
2βiβj ] (II.2)

= 2rTCr, (II.3)

where we recall the definition of r,

r = b− a, (II.4)

we note that r = α−β
2 , and we use the fact that

C = CT to symmetrize the equation.
Single-qubit Ramsey spectroscopy (Fig. I.1(c)) is

a special case of this procedure, where we set a =
(0, 0, . . . , 0) and b = (0, . . . , 0, 1, 0, . . . , 0) (where the
1 appears in the j’th position). Then |ψab〉 is a |+〉
state on the j’th qubit, and Γab = 2cjj tells us the
rate of dephasing on the j’th qubit.

Two-qubit generalized spectroscopy is another
special case, where we set a = (0, 0, . . . , 0) and
b = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) (where the 1’s
appear in the j’th and k’th positions). Then |ψab〉
is a maximally-entangled state on qubits j and k,
and Γab = 2(cjj + cjk + ckj + ckk) gives us informa-
tion about the rate of correlated dephasing on qubits
j and k.

B. Estimating Decay Rates

There are many possible ways to estimate the de-
cay rate Γab. For concreteness, we describe one sim-
ple and rigorous method here:

1. Choose some evolution time t ≥ 0 such that
1
2 ≤ Γabt ≤ 2.

This can be done in various ways, for instance,
by starting with an initial guess t = τ0 and
performing binary search, using ∼ |log(Γabτ0)|
trials of the experiment (see Section VII for
details).

2. Repeat the following experiment Ntrials times:
(we can set Ntrials using equation (II.11) be-
low)

(a) Prepare the state |ψab〉 = 1√
2
(|a〉 + |b〉),

allow the state to evolve for time t, then
measure in the basis 1√

2
(|a〉 ± |b〉).

Let N+ and N− be the number of 1√
2
(|a〉 +

|b〉) and 1√
2
(|a〉 − |b〉) outcomes, respectively.

Note that the probabilities of these outcomes
are given by P+ = 1

2 (1 + e−Γabt) and P− =
1
2 (1− e−Γabt).

3. Define:

∆ =
N+ −N−
Ntrials

. (II.5)

Note that ∆ is an unbiased estimator for
P+ − P−, that is, E(∆) = P+ − P− = e−Γabt.
This motivates our definition of an estimator
for Γab:

Γ̂ab = −1

t
ln(∆). (II.6)

We now state some bounds on the accuracy of
the estimator Γ̂ab. To do this, we introduce the
notion of a sub-Gaussian random variable (roughly
speaking, a random variable whose moments and tail
probabilities behave like those of a Gaussian distri-
bution) [27]. Formally, we say that a real-valued
random variable X is sub-Gaussian if there exists a
real number K2 such that,

for all p ≥ 1, (E(|X|p))1/p ≤ K2
√
p. (II.7)

The sub-Gaussian norm of X, denoted ‖X‖ψ2
, is

defined to be the smallest choice of K2 in (II.7), i.e.,

‖X‖ψ2 = sup
p≥1

p−1/2(E(|X|p))1/p. (II.8)

In addition, it is known that X is sub-Gaussian if
and only if there exists a real number K1 such that,

for all t ≥ 0, Pr[|X| > t] ≤ exp(1− t2/K2
1 ). (II.9)

The smallest choice of K1 in (II.9) is equivalent
to the sub-Gaussian norm ‖X‖ψ2

, in the following
sense: there is a universal constant c such that, for
all sub-Gaussian random variables X, the smallest
choice of K1 in (II.9) differs from ‖X‖ψ2

by at most
a factor of c.
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We now show that Γ̂ab − Γab is a sub-Gaussian
random variable, whose sub-Gaussian norm is
bounded by

‖Γ̂ab − Γab‖ψ2 ≤ C0
Γab√
Ntrials

, (II.10)

where C0 is a universal constant. (This 1/
√
Ntrials

scaling is familiar from classical statistics, and is not
novel. The novelty of this paper will appear later,
when we analyze the sample complexity of our com-
pressed sensing estimators, in Section VI.)

In particular, the accuracy of Γ̂ab can be con-
trolled by setting Ntrials appropriately: for any δ > 0
and ε > 0, if we set

Ntrials ≥ 2
δ2 ln( 2

ε ), (II.11)

then Γ̂ab satisfies the following error bound: with
probability at least 1− ε,

|Γ̂ab − Γab| ≤ 2δe2Γab. (II.12)

This shows that the error in Γ̂ab is at most a small
fraction of the true value of Γab, independent of the
magnitude of Γab.

We can also use this to derive an error bound that
involves Γ̂ab rather than Γab, and hence can be com-
puted from the observed value of Γ̂ab. To show such
an error bound, use the triangle inequality to write
|Γ̂ab − Γab| ≤ 2δe2(|Γ̂ab|+ |Γ̂ab − Γab|), and divide
by (1− 2δe2) to get:

|Γ̂ab − Γab| ≤
2δe2

1− 2δe2
|Γ̂ab|. (II.13)

It remains to prove (II.10) and (II.12). First use
Hoeffding’s inequality to show that ∆ is close to its
expectation value:

Pr[|∆− (P+ − P−)| ≥ δ] ≤ 2 exp(−Ntrialsδ
2/2).
(II.14)

When |∆− (P+ −P−)| ≤ δ, we can bound the error

in Γ̂ab as follows: (using the fact that P+ − P− =
e−Γabt ≥ e−2 and t ≥ 1

2Γab
)

−Γ̂ab ≤
1

t
ln(P+ − P− + δ)

≤ 1

t
[ln(P+ − P−) + δe2]

≤ −Γab + 2Γabδe
2,

(II.15)

−Γ̂ab ≥
1

t
ln(P+ − P− − δ)

≥ 1

t
[ln(P+ − P−)− δe2]

≥ −Γab − 2Γabδe
2.

(II.16)

Hence we have:

Pr[|Γ̂ab − Γab| ≥ 2δe2Γab] ≤ 2 exp(−Ntrialsδ
2/2).
(II.17)

This implies (II.10) and (II.12).

C. Direct Estimation of the Correlation
Matrix

There is a simple way to estimate the correlation
matrix C directly, by performing single-qubit spec-
troscopy to measure the diagonal elements cjj , and
performing two-qubit spectroscopy to measure the
off-diagonal elements cjk. We describe this method
here. We will use this method as a baseline, to
measure the performance of the compressed sensing
method that we will introduce in Section III.

For simplicity, we consider the case where C is
real. Since C is positive definite, this implies that
cjj ≥ 0 and cjk = ckj .

First, we estimate the diagonal elements cjj , for
j = 1, . . . , n, as follows:

1. Let a = (0, 0, . . . , 0) and b =
(0, . . . , 0, 1, 0, . . . , 0) (where the 1 appears
in the j’th position).

2. Construct an estimate Γ̂ab of the decay rate
Γab = 2cjj (for instance, by using the proce-

dure in Section II B). Define gj = Γ̂ab/2.

To write this in a compact form, we define

diag(C) = (c11, . . . , cnn), (II.18)

that is, the diagonal of C. We then define

g = (g1, . . . , gn), (II.19)

and we view this as an estimator for diag(C).
Next, we estimate the off-diagonal elements cjk,

for 1 ≤ j < k ≤ n, as follows:

1. Let a = (0, 0, . . . , 0) and b =
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) (where the
1’s appears in the j’th and k’th positions).

2. Construct an estimate Γ̂ab of the decay rate
Γab = 2(cjj+2cjk+ckk) (for instance, by using
the procedure in Section II B). Define hjk =
1
4 Γ̂ab − 1

2gj −
1
2gk.

To write this in a compact form, we define C ′ to
be the matrix C with the diagonal entries replaced
by zeroes,

C ′jk =

{
cjk if j 6= k,

0 if j = k.
(II.20)
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We call this the “off-diagonal part” of C. We then

construct an estimator Ĉ ′ for C ′, as follows:

Ĉ ′jk =


hjk if j < k,

hkj if j > k,

0 if j = k.

(II.21)

We can analyze the accuracy of these estimators
as follows. Choose two parameters δ1 and δ2. Sup-
pose that, during the measurement of the diagonal
elements cjj , the decay rates Γab are estimated with
accuracy

‖Γ̂ab − Γab‖ψ2 ≤ δ1Γab, (II.22)

and during the measurement of the off-diagonal el-
ements cjk, the decay rates Γab are estimated with
accuracy

‖Γ̂ab − Γab‖ψ2
≤ δ2Γab. (II.23)

Bounds of the form (II.22) and (II.23) can be ob-
tained from equation (II.10), by setting Ntrials ∼
1/δ2

1 and Ntrials ∼ 1/δ2
2 , respectively. Here, we are

neglecting to count those trials of the experiment
that are used to choose the evolution time t, because
the number of those trials grows only logarithmically
with Γab. We allow δ1 and δ2 to be different, because
in many experimental scenarios, measurements of cjj
take less time than measurements of cjk.

Using (II.22) and (II.23), we can easily show
bounds on the accuracy of gj and hjk:

‖gj − cjj‖ψ2 ≤ δ1cjj , (II.24)

‖hjk−cjk‖ψ2
≤ δ2cjk+ 1

2 (δ1+δ2)(cjj+ckk). (II.25)

These bounds on the sub-Gaussian norm imply
bounds on the moments, such as E|X| ≤ ‖X‖ψ2

and
E(X2) ≤ 2‖X‖2ψ2

(see [27] for details).
We now use these results to bound the accuracy

of the estimators g and Ĉ ′. For g, we have the fol-
lowing bounds, using the `1 and `2 norms:

E(‖g − diag(C)‖1) ≤ δ1‖diag(C)‖1, (II.26)

E(‖g − diag(C)‖22) ≤ 2δ2
1‖diag(C)‖22. (II.27)

For Ĉ ′, we have the following bounds, using the
`1 vector norm and the Frobenius matrix norm:

E(‖Ĉ ′ − C ′‖`1)

≤ 2
∑
j<k

(δ2cjk + 1
2 (δ1 + δ2)(cjj + ckk))

= δ2
∑
j 6=k

cjk + 1
2 (δ1 + δ2)

∑
j 6=k

(cjj + ckk)

≤ (n− 1)(δ1 + δ2)‖diag(C)‖`1 + δ2‖C ′‖`1 ,
(II.28)

E(‖Ĉ ′ − C ′‖2F )

≤ 2
∑
j<k

2[δ2cjk + 1
2 (δ1 + δ2)(cjj + ckk)]2

≤ 2
∑
j<k

6[δ2
2c

2
jk + 1

4 (δ1 + δ2)2c2jj + 1
4 (δ1 + δ2)2c2kk]

≤ 6δ2
2‖C ′‖2F + 3

2 (δ1 + δ2)2
∑
j 6=k

(c2jj + c2kk)

≤ 3(n− 1)(δ1 + δ2)2‖diag(C)‖22 + 6δ2
2‖C ′‖2F .

(II.29)

Note that, in the second step of (II.29), we used the
fact that for any real numbers a1, a2, a3, (a1 + a2 +
a3)2 ≤ 3(a2

1 + a2
2 + a2

3).
These are bounds on the expected error of g and

C̃ ′. One can then use Markov’s inequality to prove
bounds that hold with high probability. For in-
stance, using (II.27), we get that with probability
at least 1− η,

‖g − diag(C)‖2 ≤ 1√
η

√
2δ1‖diag(C)‖2, (II.30)

and using (II.29), we get that with probability at
least 1− η,

‖Ĉ ′ − C ′‖F
≤ 1√

η [3(n− 1)(δ1 + δ2)2‖diag(C)‖22 + 6δ2
2‖C ′‖2F ]1/2

≤ 1√
η [
√

3
√
n− 1(δ1 + δ2)‖diag(C)‖2 +

√
6δ2‖C ′‖F ].

(II.31)

In fact, one can prove tighter bounds on the failure
probability, by replacing Markov’s inequality with a
sharp concentration bound for sub-Gaussian random
variables [27]. However, these tighter bounds are not
needed for the purposes of this paper.

The bounds (II.30) and (II.31) give a rough sense
of how well this estimator performs. In particular,
these bounds show that the error in estimating C ′

depends on the magnitude of diag(C), as well as the
magnitude of C ′. This is due to the fact that our
procedure for estimating the off-diagonal matrix ele-
ment cjk also involves the diagonal matrix elements
cjj and cjk. Later in the paper, we will use these
bounds as a baseline to understand the performance
of our compressed sensing estimators (see Section
VI).

III. LEARNING SPARSE CORRELATIONS
VIA COMPRESSED SENSING

Our main contribution in this paper is an effi-
cient method for learning the off-diagonal part of
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the correlation matrix C, under the assumption that
it is sparse, i.e., the part of C that lies above the
diagonal has at most s nonzero elements, where
s � n(n − 1)/2. (Since C is Hermitian, it is suf-
ficient to learn the part that lies above the diagonal;
this then determines the part that lies below the di-
agonal.)

For simplicity, we first consider the special case
where the entries in the matrix C are real (i.e., with
zero imaginary part), which occurs in a number of
physical situations (for example, when the system is
coupled to a bath at high temperature, see Appendix
A). Later in Section IX we will show how our method
can be extended to handle complex matrices C.

Our method consists of two steps: first, we per-
form single-qubit Ramsey spectroscopy in order to
learn the diagonal elements of C; second, we apply
techniques from compressed sensing (e.g., random
measurements, and `1-minimization) in order to re-
cover the off-diagonal elements of C.

A. Random Measurements of the Correlation
Matrix

We now describe our method in more detail.
First, we estimate each of the diagonal elements
cjj , for j = 1, . . . , n, using single-qubit Ramsey
spectroscopy, as described in Fig. I.1(c). Let g =
(g1, . . . , gn) ∈ Rn be the output of this procedure
(this is the same notation used in Section II C). We
can view g as an estimate of a “sensing operator”
that returns the diagonal elements of the matrix C,

g ≈ diag(C) = (c11, c22, . . . , cnn). (III.1)

(Note that cjj ≥ 0, since C is positive semidefinite.)
In order to estimate the off-diagonal part of C, we

will use a compressed sensing technique, which in-
volves a certain type of generalized Ramsey measure-
ment with random GHZ-type states, see Fig. I.1(d).
First, we choose a parameter m, which can be
roughly m ∼ s log n or m ∼ s log4 n, which con-
trols the number of different measurements. (The
particular choice of m is motivated by the theo-
retical recovery guarantees in Section V.) Now, for
j = 1, . . . ,m, we perform the following procedure:

1. Choose vectors a,b ∈ {0, 1}n uniformly at ran-
dom. As in equation (II.4), define

r = b− a. (III.2)

2. Prepare the state |ψab〉 = 1√
2
(|a〉+ |b〉). This

is a GHZ state on a subset of the qubits, with

some bit flips. It can be created by preparing
those qubits i where ai = bi in the state |ai〉,
preparing those qubits i where ai 6= bi in a
GHZ state, and applying a Pauli X operator
on those qubits i where ai > bi. (This requires
a quantum circuit of depth dlog2(n)e+ 2.)

3. Construct an estimate Γ̂ab of the decay rate
Γab = 2rTCr (for instance, using the proce-

dure in Section II B). Define hj = Γ̂ab.

Let h = (h1, . . . , hm) ∈ Rm be the output of the
above procedure. Again, we can view h as an esti-
mate of a “sensing operator” Φ : Rn×n → Rm that
is applied to the matrix C,

h ≈ Φ(C) =
[
Φj(C)

]
j=1,...,m

(III.3)

Φj(C) = 2(r(j))TCr(j) (III.4)

where r(1), r(2), . . . , r(m) ∈ {1, 0,−1}n are indepen-
dent random vectors chosen from the same distribu-
tion as r (described above). Note that Φj(C) ≥ 0,
since C is positive semidefinite. The factor of 2 is
chosen to ensure that Φ has a certain isotropy prop-
erty, which will be discussed in Section V D.

B. Reconstructing the Correlation Matrix

We now show how to reconstruct the correlation
matrix C ∈ Rn×n. We are promised that C is pos-
itive semidefinite, due to physical constraints [21],
and its off-diagonal part is sparse, with at most
s � n(n − 1)/2 nonzero elements above the di-
agonal. In general, this sparsity constraint leads
to an optimization problem that is computation-
ally intractable. However, in this particular case,
this problem can be solved using a strategy from
compressed sensing: given g ≈ diag(C) ∈ Rn and
h ≈ Φ(C) ∈ Rm, we will recover C by solving a con-
vex optimization problem, where we minimize the
`1 (vector) norm of the off-diagonal part of the ma-
trix. We will show that this strategy succeeds when
m ≥ c0s log n, and is highly robust to noise when
m ≥ c0s log4 n, where c0 is some universal constant.

We now describe this approach in more detail.
First, we consider the case where the measurements
are noiseless, i.e., g = diag(C) and h = Φ(C). We
solve the following convex optimization problem:

Find W ∈ Rn×n that minimizes
∑
i 6=j

|Wij |,

such that:

(III.5)
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diag(W ) = g, (III.6)

Φ(W ) = h, (III.7)

W � 0. (III.8)

Here, W � 0 means that W is positive semidefinite,
which implies that W = WT . As a sanity check,
note that W = C is a feasible solution to this prob-
lem. (Recall that C is positive semidefinite.)

We remark that this scheme bears some resem-
blance to the PhaseLift algorithm for phase retrieval
[34–38]. In phase retrieval, one wishes to estimate
an unknown vector x from measurements of the form
|rTx|2. The PhaseLift algorithm works by “lifting”
the unknown vector x to a matrix X = xxT , so that
the problem becomes one of learning a rank-1 ma-
trix X from measurements of the form rTXr; then
one solves a convex relaxation of this problem. In
cases where the unknown vector x is sparse (“com-
pressive phase retrieval”), variants of the PhaseLift
algorithm (as well as other approaches) can also be
used [35–37].

The main difference between our method and
PhaseLift is that, in our method, the unknown ma-
trix C is almost always full-rank (because every
qubit has a nonzero dephasing rate), whereas in
PhaseLift, the unknown matrix X has rank 1. In our
situation, physical constraints imply that C is posi-
tive semidefinite, so it can be factored as C = BBT ,
which is superficially similar to X = xxT ; however,
an important difference is that B is a square matrix,
whereas x is a vector. Methods like PhaseLift have
been extended to handle low-rank matrices X, albeit
without taking advantage of sparsity [38], and it is
an interesting question whether one can use this ap-
proach to re-derive or improve on our method, where
sparsity plays a crucial role.

C. Reconstruction from Noisy Measurements

In the case where the measurements of g and h
are noisy, we need to modify the above convex opti-
mization problem, by relaxing the constraints (III.6)
and (III.7). This leads to some technical compli-
cations, due to the fact that we are reconstructing
two variables that have different characteristics: the
diagonal part of C (which is not sparse), and the
off-diagonal part of C (which is sparse).

To deal with these issues, we propose two differ-
ent ways of performing this reconstruction, when

the measurements are noisy: (1) simultaneous re-
construction of both parts of C, and (2) sequential
reconstruction of the diagonal part of C, followed by
the off-diagonal part of C. The former approach is
arguably more natural, but the latter approach al-
lows for more rigorous analysis of the accuracy of
the reconstruction (see Section V).

Suppose we have bounds on the `2 norms of the
noise terms (which we denote u and v), that is,

g = diag(C) + u, ‖u‖2 ≤ ε1, (III.9)

h = Φ(C) + v, ‖v‖2 ≤ ε2. (III.10)

(We do not assume anything about the distribution
of u and v. We will describe how to set ε1 and ε2
below, for some typical measurement procedures.)

Simultaneous reconstruction of the diagonal and
off-diagonal parts of C: Here we relax the con-
straints (III.6) and (III.7) in the simplest possible
way, by replacing them with:

‖diag(W )− g‖2 ≤ ε1, (III.11)

‖Φ(W )− h‖2 ≤ ε2. (III.12)

This leads to a convex optimization problem that
attempts to reconstruct both the diagonal part of C,
which is not necessarily sparse, and the off-diagonal
part of C, which is assumed to be sparse. (Note that
W = C is a feasible solution to this problem.) This
method often works quite well in practice.

Unfortunately, the behavior of this reconstruction
algorithm can be complicated, because it involves
two different estimators (an `1-regularized estimator
for the off-diagonal part of C, and a least-squares es-
timator for the diagonal part of C). These two esti-
mators are coupled together (through the constraint
on Φ(W ), and the positivity constraint W � 0).

Therefore, this method can behave quite differ-
ently, depending on whether the dominant source of
error is g or h. When g is the dominant source of
error, this method will behave like a least-squares
estimator, whose accuracy scales according to the
dimension n; when h is the dominant source of er-
ror, this method will behave like an `1-regularized
estimator, whose accuracy scales according to the
sparsity s (neglecting log factors). From a theoret-
ical point of view, this makes it more difficult to
prove recovery guarantees for this method.

Sequential reconstruction of the diagonal part of
C, followed by the off-diagonal part of C: In prac-
tice, one is often interested in the regime where g is
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known with high precision, and h is the dominant
source of error. This is because measurements of
g are relatively easy to perform, because they only
require single-qubit state preparations and measure-
ments; whereas measurements of h are more costly,
because they require the preparation and measure-
ment of entangled states on many qubits. So mea-
surements of g can often be performed more quickly,
and measurements on different qubits can be per-
formed simultaneously in parallel; hence one can re-
peat the measurements more times, to obtain more
accurate estimates of g.

In this regime, it is natural to try to recover the
diagonal part of C directly from g, and then use `1-
minimization to recover only the off-diagonal part
of C. This leads to a convex optimization problem
which is arguably less natural, but it makes it easier
to prove rigorous guarantees on the accuracy of the
reconstruction of C (see Section V).

We now describe this approach in detail. We take
the convex optimization problem ((III.5)-(III.8)) for
the noiseless case, and we relax the last two con-
straints to get:

Find W ∈ Rn×n that minimizes
∑
i 6=j

|Wij |,

such that:

(III.13)

diag(W ) = g, (III.14)

‖Φ(W )− h‖2 ≤ ε2 + ε1
√
mn, (III.15)

d(W,K+) ≤ ε1, and W = WT . (III.16)

Here K+ = {W ′ ∈ Rn×n | W ′ � 0} denotes the
(real) positive semidefinite cone, and we define

d(W,K+) = min
W ′∈K+

‖W −W ′‖F (III.17)

to be the minimum distance from W to a point W ′

in K+, measured in Frobenius norm; note that this
is a convex function. While this convex optimization
problem looks complicated, it follows from a simple
underlying idea: since the diagonal elements of W
are fixed by the constraint (III.14), this is simply an
`1-regularized estimator for the sparse, off-diagonal
part of W .

The attentive reader will notice two potential con-
cerns with this approach. First, in general, C will
not be a feasible solution to this convex optimization
problem, since the diagonal elements of C will not
satisfy (III.14). However, we claim that C lies close

to a feasible solution. To see this, let C̃ be the ma-
trix whose off-diagonal elements agree with C, and
whose diagonal elements agree with g. Then C is

within distance ε1 of C̃ (in Frobenius norm), and we

claim that C̃ is a feasible solution. To see this, we

can check that C̃ satisfies the constraints (III.14),
(III.15) and (III.16), since we have:

‖Φ(C̃)− Φ(C)‖2 = ‖Φ(diag(g − diag(C)))‖2
≤ (m‖g − diag(C)‖21)1/2

≤ ε1
√
mn.

(III.18)

(Here, we wrote C̃ in a compact form, C̃ = C +
diag(g − diag(C)), where the diag(·) notation has
the following meaning: for a matrix M , diag(M) is
the vector containing the entries Mjj that lie along
the diagonal of M ; and for a vector v = (v1, . . . , vn),
diag(v) is the diagonal matrix with v1, . . . , vn along
the diagonal.)

Second, the reader will notice that the optimal
solution W may violate the positivity constraint
(III.8), making it un-physical. (Similar issues can
arise when performing quantum state and process
tomography.) However, W can be easily corrected to
get a physically-admissible solution. This follows be-
cause equation (III.16) shows that W lies within dis-
tance ε1 of a physically-admissible solution W ′ � 0,
and this solution W ′ can be obtained by truncating
the negative eigenvalues of W .

Finally, we remark that there are different ways
of relaxing the positivity constraint (III.8), and
(III.16) is not the strongest possible choice. For
instance, we could have used a stronger constraint
than (III.16), such as: d′(W,K+) ≤ ε1, where we de-
fine d′(W,K+) = minW ′∈K+

‖diag(W−W ′)‖2. How-
ever, the constraint (III.16) may be simpler to im-
plement using numerical linear algebra software.

Since these are convex optimization problems,
they can be solved efficiently (both in theory and in
practice), for instance by using interior point algo-
rithms. Nonetheless, some care is needed to ensure
that these algorithms can scale up to solve very large
instances of these problems. In particular, enforcing
the positivity constraint (III.8), and its relaxed ver-
sion (III.16), can be computationally expensive.

D. Omitting the Positivity Constraint

The theoretical analysis in Section V shows that
C can be reconstructed by solving the convex opti-
mization problem (III.13)-(III.16). We remark that
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this analysis holds even without the positivity con-
straint (III.16). It is easy to check that the positiv-
ity constraint is not used in Section V, and indeed,
most of the theory of compressed sensing applies to
all sparse signals, not just positive ones, although
positivity can be helpful in certain situations [43].

This observation has a practical consequence: by
omitting the positivity constraint (III.16), one can
make the convex optimization problem simpler, and
thus easier to solve in practice (e.g., by using second-
order cone programming, rather than semidefinite
programming) [44]. One can then take the resulting
solution, and project it onto the positive semidef-
inite cone, as is sometimes done in quantum state
tomography [45, 46], without increasing the error (in
Frobenius norm). This technique may be useful for
scaling up our method to extremely large numbers
of qubits.

E. Setting the Error Parameters ε1 and ε2

Next, we describe how to set the parameters ε1
and ε2 in equations (III.9) and (III.10). We will use
an approach that is similar to the one in Sections
II B and II C.

First, we consider ε1, which bounds u, the error in
g. Note that, when gj is estimated using the proce-
dure in Section II B, we also obtain large-deviation
bounds on uj . In particular, for some δ1 > 0, we
have that:

‖uj‖ψ2 ≤ δ1cjj , (III.19)

where ‖·‖ψ2
is the sub-Gaussian norm (in the sense

of [27]). (This bound can be obtained from equa-
tion (II.10), by setting Ntrials ∼ 1/δ2

1 . Here, we are
neglecting to count those trials of the experiment
that are used to choose the evolution time t, because
the number of those trials grows only logarithmically
with Γab.)

This implies that ‖u‖22 is a subexponential random
variable, whose subexponential norm (in the sense
of [27]) is at most 2δ2

1‖diag(C)‖22. This implies that
‖u‖2 is bounded with high probability: for any τ ≥
1,

Pr[‖u‖2 ≥ τδ1‖diag(C)‖2] ≤ e · exp(−τ2/2c),
(III.20)

where c > 0 is some universal constant. We then
choose τ to be a sufficiently large constant, so that
the failure probability is small. (Note that in some
cases, one can prove stronger bounds, by taking ad-
vantage of the fact that the coordinates of u are

independent, and using a Bernstein-type inequality
[27]. This bound is stronger when the diagonal ele-
ments of C satisfy ‖diag(C)‖∞ � ‖diag(C)‖2, i.e.,
when u has many independent coordinates with sim-
ilar magnitudes.)

The above bound does not immediately tell us how
to set ε1, because the bound depends on diag(C),
which is not known exactly. Instead, we now derive a
bound that depends on g, which is known explicitly,
and can be used to set ε1. To do this, we assume
that δ1 is sufficiently small so that τδ1 < 1/4. With
high probability, we have

‖u‖2 ≤ τδ1‖diag(C)‖2
≤ τδ1(‖g‖2 + ‖u‖2)

≤ τδ1
1− τδ1

‖g‖2 =: ε1,

(III.21)

where we used the triangle inequality, and some al-
gebra. This tells us how to set ε1 so that equation
(III.9) holds.

We remark that ε1 can also be bounded in terms
of diag(C), as follows:

ε1 ≤
τδ1

1− τδ1
(‖diag(C)‖2 + ‖u‖2)

≤ τδ1
1− τδ1

(1 + τδ1)‖diag(C)‖2

≤ 2τδ1‖diag(C)‖2.

(III.22)

We will use this bound in Section V, when we ana-
lyze the accuracy of our estimate of C.

Next, we consider ε2, which bounds v, the error
in h. We use the same approach as above. When hj
is estimated using the procedure in Section II B, we
obtain a bound on the sub-Gaussian norm of vj : for
some δ2 > 0,

‖vj‖ψ2
≤ δ2Φj(C). (III.23)

(This bound can be obtained from equation (II.10),
by setting Ntrials ∼ 1/δ2

2 . We allow δ2 to be different
from δ1, because the measurements used to estimate
hj are more costly than the measurements used to
estimate gj , hence one may prefer to use different
values for Ntrials in each case.)

This implies that ‖v‖22 is a subexponential random
variable, hence ‖v‖2 is bounded with high probabil-
ity: for any τ ≥ 1,

Pr[‖v‖2 ≥ τδ2‖Φ(C)‖2] ≤ e·exp(−τ2/2c), (III.24)

where c > 0 is some universal constant. We then
choose τ to be a sufficiently large constant, so that
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the failure probability is small. (Note that, for typ-
ical choices of Φ(·), we expect that ‖Φ(C)‖∞ �
‖Φ(C)‖2. This implies that v has many indepen-
dent coordinates with similar magnitudes. When
this occurs, one can prove a stronger bound using a
Bernstein-type inequality [27]. For simplicity, we do
not use this more elaborate bound here.)

The above bound does not immediately tell us
how to set ε2, because the bound depends on Φ(C),
which is not known exactly. Instead, we now derive
a bound that depends on h, which is known explic-
itly, and can be used to set ε2. To do this, we assume
that δ2 is sufficiently small so that τδ2 < 1/4. With
high probability, we have

‖v‖2 ≤ τδ2‖Φ(C)‖2
≤ τδ2(‖h‖2 + ‖v‖2)

≤ τδ2
1− τδ2

‖h‖2 =: ε2.

(III.25)

This tells us how to set ε2 so that equation (III.10)
holds.

Finally, we remark that ε2 can also be bounded in
terms of ‖C‖`1 , as follows:

ε2 ≤
τδ2

1− τδ2
(‖Φ(C)‖2 + ‖v‖2)

≤ τδ2
1− τδ2

(1 + τδ2)‖Φ(C)‖2

≤ 2τδ2‖Φ(C)‖2
≤ 2τδ2

√
m‖Φ(C)‖∞

≤ 4τδ2
√
m‖C‖`1 .

(III.26)

We will use this bound in Section V, when we ana-
lyze the accuracy of our estimate of C.

IV. NUMERICAL EXAMPLES

We use numerical simulations to test how well our
method performs on realistic system sizes, with dif-
ferent levels of sparsity, and when the data contain
statistical fluctuations due to finite sample sizes. We
find that our method performs well overall (see Fig-
ure I.2).

We numerically simulate the protocol for ran-
domly chosen C matrices (see Appendix B for de-
tails). In these examples we assume that the diag-
onal elements of C are known, that is, ε1 = 0 in
Eq. (III.11). We then solve the convex optimiza-
tion problem given by (III.5)-(III.7) using CVXPY,
a convex optimization package for Python [47, 48].

We first investigate the case of noiseless measure-
ments, corresponding to ε2 = 0 in Eq. (III.12). In
Fig. I.2(a) we show the recovery error as a function of
the number of measurements, m, for a fixed number
of qubits, n, and various choices of the off-diagonal
sparsity, s. The sharp transition in the recovery er-
ror as a function of m is evident. Moreover, as shown
in the inset of Fig. I.2(a), the transition point mc,
which we define as the point where ‖C −W (opt)‖∞
drops below 0.25,

scales linearly with s, consistent with our analyti-
cal results. In Fig. I.2(b) we fix s, vary n, and study
the recovery error as a function of m. Again, we ob-
serve a phase transition as m increases. In this case,
mc scales polynomially with log(n) as suggested in
the inset of Fig. I.2(b).

We then investigate the effect of noisy measure-
ments on the recovery error. We generate random
C matrices, with a fixed number of qubits n and
sparsity s. We simulate noise by adding a random
vector e, whose entries are independent Gaussian
random variables with mean 0 and standard devia-
tion σε, to measurement vector h. We now replace
(III.7) in the previous convex program with (III.12)
and choose ε2 =

√
mσε. The scaling of the recon-

struction error ‖W (opt) −C‖∞ as a function of σε is
shown in Fig. I.2 (c). The recovery error after the
phase transition point scales linearly with σε, con-
sistent with our analytical bounds.

V. RECOVERY GUARANTEES

In this section we will study the convex optimiza-
tion problem (III.13)-(III.16), and prove rigorous re-
covery guarantees that show that the optimal solu-
tion W (opt) is close to the true correlation matrix
C, provided that m ≥ c0s log n (and with better
robustness to noise, when m ≥ c0s log4 n). Here,
m is the dimension of the measurement vector h, s
is the sparsity (the number of nonzero elements) in
the off-diagonal part of the matrix C, and c0 is some
universal constant.

Actually, we will prove two different results: a
non-universal recovery guarantee, using the “RIP-
less” framework of [32], as well as a universal re-
covery guarantee, using RIP-based techniques [27–
31, 33]. Here, RIP refers to the “restricted isom-
etry property,” a fundamental proof technique in
compressed sensing. There are different advantages
to the RIPless and RIP-based bounds: the RIPless
bounds require slightly fewer measurements, while
the RIP-based bounds are more robust when the
measurements are noisy.
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Along the way, we will introduce two vari-
ants of the problem (III.13)-(III.16): constrained
`1-minimization and the LASSO (“least absolute
shrinkage and selection operator”). Generally speak-
ing, recovery guarantees that hold for one of these
problems can be adapted to the other one, with mi-
nor modifications. Here, we follow [32] and prove a
RIPless bound for the LASSO, and we follow [30, 33]
and prove a RIP-based bound for constrained `1-
minimization.

A. Simplifying the Problem

We start with the convex optimization problem
(III.13)-(III.16). We first remove the positivity con-
straint d(W,K+) ≤ ε1; this change should only hurt
the accuracy of the solution W (opt). We also change
the objective function to sum over all i < j rather
than all i 6= j; since W is symmetric, this merely
changes the objective function by a factor of 2. Fi-
nally, we shift the variable W by subtracting away
diag(g), so that its diagonal elements are all zero.
In similar way, we shift the measurement vector h
to get

h′ = h− Φ(diag(g)). (V.1)

This gives us an equivalent problem:

Find W ∈ Rn×n that minimizes
∑
i<j

|Wij |,

such that:

(V.2)

diag(W ) = 0, (V.3)

‖Φ(W )− h′‖2 ≤ ε2 + ε1
√
mn, (V.4)

W = WT . (V.5)

We will use the following notation. We define an
operation diag(·) that has two meanings: given an
n× n matrix M , diag(M) returns an n-dimensional
vector containing the diagonal elements of M ; and
given an n-dimensional vector v, diag(v) returns an
n×n matrix that contains v along the diagonal, and
zeroes off the diagonal.

Let us define C ′ to be the off-diagonal part of the
correlation matrix C, that is, C ′ is the matrix whose
off-diagonal elements match those of C, and whose
diagonal elements are zero. We can write this con-
cisely as:

C ′ = C − diag(diag(C)). (V.6)

We can view h′ as a measurement of C ′, with addi-
tive error z,

h′ = Φ(C ′) + z. (V.7)

We want to show that the solution W (opt) is an ac-
curate estimate of C ′. Note that we can write the
error term z in the form

z = h′ − Φ(C ′)

= h− Φ(C)− Φ(diag(g − diag(C)))

= v − Φ(diag(u)),

(V.8)

where u and v are the noise terms in (III.9) and
(III.10). Then we can bound z using (III.10) and
(III.18),

‖z‖2 ≤ ε2 + ε1
√
mn. (V.9)

It will be convenient to write

D = {W ∈ Rn×n |WT = W, diag(W ) = 0}
(V.10)

to denote the subspace of symmetric matrices whose
diagonal elements are all 0. Let uvec : D →
Rn(n−1)/2 denote the linear operator that returns
the upper-triangular part of W ,

uvec : W 7→ (Wij)i<j . (V.11)

Let us write ΦD : D → Rm to denote the measure-
ment operator Φ restricted to act on the subspace
D (this definition will be useful later, when we work

with the adjoint operator Φ†D). Then we can rewrite
our problem (V.2)-(V.5) in a more concise form:

Find W ∈ D that minimizes ‖uvec(W )‖1,

such that:
(V.12)

‖ΦD(W )− h′‖2 ≤ ε2 + ε1
√
mn. (V.13)

B. LASSO Formulation

In the following discussion, we will also consider a
variant of our problem, the LASSO [49]:

Find W ∈ D that minimizes:
1
2‖ΦD(W )− h′‖22 + λ‖uvec(W )‖1. (V.14)

This can be viewed as a Lagrangian relaxation of
the previous problem ((V.12)-(V.13)), or as an `1-
regularized least-squares problem. In addition, the
convex optimization problems that were described
earlier in Section III C can also be relaxed into a
LASSO-like form, in a similar way. The choice of
the regularization parameter λ requires some care.
We will discuss this next.
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C. Setting the Regularization Parameter λ

In general, the regularization parameter λ controls
the relative strength of the two parts of the objective
function in (V.14). When the noise in the measure-
ment of h′ is strong, then λ must be set large enough
to ensure that the `1 regularization term still has the
desired effect. However, if λ is too large, it strongly
biases the solution W (opt), making it less accurate.

Here, we sketch one approach to setting λ, follow-
ing the analysis in [32]. Our goal is to ensure that
the solution W (opt) converges to (a sparse approx-
imation of) the true correlation matrix C. To do
this, we must set λ large enough to satisfy two con-
straints, which involve the noise in the measurement
of h′ (see equation (IV.1) and the equation below
(IV.2) in [32]). When these constraints are satis-
fied, the error in the solution W (opt) is bounded by
equation (IV.2) in [32]. (Note that this error bound
grows with λ, hence one should choose the smallest
value of λ that satisfies the above constraints.)

We now show in detail how to carry out the above
calculation, in order to set λ. First, we give precise
statements of the two constraints on λ:

‖uvec(Φ†Dz)‖∞ ≤ λ, (V.15)

‖uvec(Φ†D,T c(I − P )z)‖∞ ≤ λ. (V.16)

Here, z is the noise term in the measurement of h′ in

equation (V.7); Φ†D : Rm → D is the adjoint of the
measurement operator ΦD; T ⊂ {(j, j′) | 1 ≤ j <
j′ ≤ n} is the support of (a sparse approximation
of) the true correlation matrix C; ΦD,T is the sub-
matrix of ΦD that contains those columns of ΦD
whose indices belong to the set T ; P is the projection
onto the range of ΦD,T ; T c is the complement of
the set T ; and ΦD,T c is the sub-matrix of ΦD that
contains those columns of ΦD whose indices belong
to the set T c.

In order to set λ, we need to compute the quanti-
ties in equations (V.15) and (V.16), and to do this,
we need to have some bounds on the noise z. We now
demonstrate two ways of obtaining such bounds.

One straightforward way is as follows. We can use
equation (V.8) to write

z = v − Φ(diag(u)), (V.17)

where u and v are the noise terms in the measure-
ments of g and h, respectively. Also, recall that
we previously showed bounds on u and v in Sec-
tion III E, see equations (III.21) and (III.25). These
imply bounds on z, via an elementary calculation.

However, one can get better bounds on z by using
a more sophisticated approach, starting with bounds
on the sub-Gaussian norms of uj and vj , such as
equations (III.19) and (III.23). We describe this lat-
ter approach in detail.

We assume that g and h are measured using the
procedures described in Sections II B and III E. Then
equations (III.19) and (III.23) give us bounds on the
sub-Gaussian norms of uj and vj :

‖uj‖ψ2
≤ δ1cjj , (V.18)

‖vj‖ψ2
≤ δ2Φj(C). (V.19)

Using these bounds, we can then set λ so that
it satisfies (V.15) and (V.16) with high probability.
More precisely, let us set

λ :=
(
ε′′′1 · 4

√
mn+ ε′′′2

)
4
√
m(1 +

√
2)
√

ln(n)/c′,
(V.20)

where

ε′′′1 :=
δ1

1− ε′′1
‖g‖∞, ε′′1 := 2

√
ln(n)/c0 δ1, (V.21)

ε′′′2 :=
δ2

1− ε′′2
‖h‖∞, ε′′2 := 2

√
ln(m)/c0 δ2.

(V.22)
Here we are assuming that δ1 and δ2 are suffi-
ciently small (for instance, δ1 . 1/

√
ln(n) and δ2 .

1/
√

ln(n)) to ensure that ε′′1 < 1/2 and ε′′2 < 1/2.
Also, here c′ and c0 are universal constants (which
are defined in the proof below).

Now let the correlation matrix C and measure-
ment operator ΦD be fixed, and note that the noise
term z is stochastic. Then we claim that, with
high probability (over the random realization of z),
equations (V.15) and (V.16) will be satisfied; here
the failure probability is at most (e/n3) + (e/m3) +

(2e/n1+2
√

2). We prove this claim in Appendix C.
Finally, we have the following simple upper

bounds on ε′′′1 , ε′′′2 and λ (these follow from the defini-
tions of ε′′′1 and ε′′′2 , the definitions of g and h, equa-
tions (C.4) and (C.7), and the definition of Φ(·)):

ε′′′1 ≤ 3δ1‖diag(C)‖∞, (V.23)

ε′′′2 ≤ 6δ2‖C‖`1 , (V.24)

λ ≤ O
(√

m ln(n)
(
δ1‖diag(C)‖∞

√
mn+ δ2‖C‖`1

))
.

(V.25)

We will make use of these bounds later, when we
analyze the accuracy of our estimate of C.
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D. Isotropy and Incoherence of the
Measurement Operator

We will show that the rows of the measurement
operator ΦD have two properties, isotropy and in-
coherence, which play a fundamental role in com-
pressed sensing (see, e.g., [27, 32]). Let Q be the
matrix (of size m by n(n− 1)/2) that represents the
action of ΦD (using the fact that the subspace D
is isomorphic to Rn(n−1)/2); that is, Q and ΦD are
related by the equation:

ΦD(C) = Q · uvec(C), ∀C ∈ D. (V.26)

The rows of Q are chosen independently at random,
and each row has the form

q = 4 uvec(rrT ) ∈ Rn(n−1)/2, (V.27)

where r is sampled from the distribution described
in (III.2). We say that q is centered if it has mean
E(q) = 0, and we say that q is isotropic if its co-
variance matrix is the identity:

E(qqT ) = I. (V.28)

It is straightforward to check that q is centered and
isotropic (up to a normalization factor of 2), since:

E[rirj ] = 0 i < j

E[rirjrkrl] = 0 i < j and k < l and {i, j} ∩
{k, l} = ∅

E[rirjrkrl] = 0 i < j and k < l and |{i, j} ∩
{k, l}| = 1

E[rirjrkrl] = 1
4 i < j and k < l and i = k and

j = l

.

(V.29)

(Note that in the last line of Eq. V.29, we cannot
have a case with i = l and j = k, as the requirements
of i < j and k < l lead to a contradiction.)

In addition, we say that q is incoherent with pa-
rameter µ > 0 if, with probability 1, all of its coor-
dinates are small:

‖q‖2∞ ≤ µ. (V.30)

In order for this to be useful for compressed sensing,
one needs µ to be small, say, at most polylogarithmic
in the dimension of q. In our case, it is easy to see
that q is incoherent with parameter µ = 16.

E. Non-universal (RIPless) Recovery
Guarantee

We begin by proving a non-universal recovery
guarantee, using the “RIPless” framework of [32],
which in turn relies on the isotropy and incoherence
properties shown in the preceding section.

Let C ∈ Rn×n be a correlation matrix, and let
C ′ ∈ D be its off-diagonal part (see equation (V.6)).
We will assume that C ′ is approximately s-sparse,
i.e., there exists a matrix C(s) ∈ D that has at most
s nonzero entries above the diagonal, and that ap-
proximates C ′ in the (vector) `1 norm, up to an error
of size ηs. This can be written compactly as:

‖uvec(C ′ − C(s))‖1 ≤ ηs, (V.31)

where uvec(·) was defined in equation (V.11). (Re-
call that both C ′ and C(s) are symmetric, with all
zeroes on the diagonal. Hence it suffices to consider
those matrix entries that lie above the diagonal.)

We now choose the measurement operator Φ at
random (see equation (III.4)). We assume that m
(the dimension of h) satisfies the bound:

m ≥ c̃0(1 + β) · 4s log n(n−1)
2 . (V.32)

Here, c̃0 is a universal constant, and β > 0 is a
parameter that can be chosen freely by the experi-
menter. Note that m scales linearly with the spar-
sity s, but only logarithmically with the dimension
n of the matrix C. This scaling is close to optimal,
in an information-theoretic sense. This is one way
of quantifying the advantage of compressed sensing,
when compared with measurements that do not ex-
ploit the sparsity of C.

We measure g ≈ diag(C) and h ≈ Φ(C), and
we calculate h′ (see equation (V.1)). We let δ1 and
δ2 quantify the noise in the measurements of g and
h, as described in equations (V.18) and (V.19). We
then solve the LASSO problem in (V.14), setting the
regularization parameter λ according to (V.20). Let
W (opt) be the solution of this optimization problem.

We now have the following recovery guarantee,
which shows that W (opt) gives a good approximation
to C ′, in both the Frobenius (`2) norm, and the vec-
tor `1 norm. This follows directly from Theorem 1.2
in [32] (and the extension of that theorem to more
general classes of noisy measurements in Section IV
in [32]).

Theorem V.1 For any correlation matrix C satis-
fying the sparsity condition (V.31), with probability
at least 1− 12

n(n−1)−6e−β (over the random choice of

the measurement operator Φ, with m set according
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to (V.32)), the solution W (opt) is close to C ′, with
an error that is bounded by:

‖W (opt) − C ′‖F ≤
√

2c(1 + α)

[
ηs√
s

+ λ
√
s

]
,

(V.33)

‖W (opt) − C ′‖`1 ≤ 2c(1 + α)
[
ηs + λs

]
, (V.34)

where c is a universal constant, and α ≤
log3/2

(n(n−1)
2

)
.

In these bounds, the first term upper-bounds the
error that results from approximating C ′ by a sparse

matrix, and the second term upper-bounds the error
due to noise in the measurements of g and h.

To make the second term more transparent, we
can combine it with the bound on λ from equation
(V.25):

λ ≤ O
(√

m ln(n)
(
δ1‖diag(C)‖∞

√
mn+ δ2‖C‖`1

))
,

(V.35)
where δ1 and δ2 quantify the noise in the measure-
ments of g and h, as described earlier.

Also, it is useful to consider the special case where
C ′ is exactly s-sparse, so ηs = 0, and where we use
as few measurement settings as possible, by setting
m = O(s log n). In this case, we have:

‖W (opt) − C ′‖F ≤ O(log3/2(n)λ
√
s) (V.36)

≤ O(
√
s log3/2(n)

√
m log(n) · [δ1‖diag(C)‖∞

√
mn+ δ2‖C‖`1 ]) (V.37)

≤ O(s log5/2(n)[δ1‖diag(C)‖∞
√
sn log(n) + δ2‖C‖`1 ]) (V.38)

≤ O(s log5/2(n)[δ1‖diag(C)‖∞
√
sn log(n) + δ2

√
n‖diag(C)‖2 + δ2

√
2s‖C ′‖F ]). (V.39)

This can be compared with the error bound (II.31)
for the naive method, and the RIP-based error
bound (V.48) for compressed sensing. Generally
speaking, compressed sensing has an advantage over
the naive method when s is small, and the RIP-
less bound is useful in the regime between m =
O(s log n) and m = O(s log4 n), where the RIP-
based bound does not apply. (When m is O(s log4 n)
or larger, the RIP-based bound applies, and gives
better results than the RIPless bound.) We will
carry out a more detailed comparison between the
naive method and compressed sensing in Section VI.

F. Universal (RIP-based) Recovery Guarantee

Next, we prove a universal recovery guarantee, us-
ing an older approach based on the restricted isom-
etry property (RIP) [27–31, 33]. This also relies
on the isotropy and incoherence properties shown
above. As these techniques are fairly standard in
compressed sensing, we will simply sketch the proof.

First, we set the number of measurement settings
to be

m ≥ c0s log4 n, (V.40)

where s is the sparsity parameter, and c0 is some uni-
versal constant. (Note that m is slightly larger, by

a poly(log n) factor, compared to the RIPless case.)
Also, recall that D is the subspace of symmetric ma-
trices whose diagonal elements are all 0 (see equa-
tion (V.10)), and ΦD is the measurement operator
restricted to act on this subspace.

We claim that, with high probability (over the
random choice of ΦD), the normalized measurement
operator ΦD/

√
m satisfies the RIP (for sparsity level

2s). To see this, we recall the isotropy and incoher-
ence properties shown above. These properties im-
ply that the measurement operator ΦD is sampling
at random from a “bounded orthonormal system.”
Such operators are known to satisfy the RIP, via a
highly nontrivial proof [28, 29]; a recent exposition
can be found in Chapter 12 in [30].

From this point onwards, we let the measurement
operator ΦD be fixed. We will show that ΦD is ca-
pable of reconstructing the off-diagonal parts of all
sparse matrices C, i.e., ΦD can perform “universal”
recovery.

As in the previous section, let C ∈ Rn×n be a cor-
relation matrix, and let C ′ ∈ D be its off-diagonal
part (see equation (V.6)). We will assume that C ′

is approximately s-sparse, i.e., there exists a matrix
C(s) ∈ D that has at most s nonzero entries above
the diagonal, and that approximates C ′ in the (vec-
tor) `1 norm, up to an error of size ηs. This can be
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written compactly as:

‖uvec(C ′ − C(s))‖1 ≤ ηs, (V.41)

where uvec(·) was defined in equation (V.11). (Re-
call that both C ′ and C(s) are symmetric, with all
zeroes on the diagonal. Hence it suffices to consider
those matrix entries that lie above the diagonal.)

We measure g ≈ diag(C) and h ≈ Φ(C), and
we calculate h′ (see equation (V.1)). We assume
that the noise in the measurements of g and h is
bounded by δ1 and δ2, as described in (III.19) and
(III.23). We then solve the `1-minimization problem
in (V.12) and (V.13), setting the parameters ε1 and
ε2 according to (III.21) and (III.25). Let W (opt) be
the solution of this problem.

We now have the following recovery guarantee,
which shows that W (opt) gives a good approxima-
tion to C ′, in the Frobenius (`2) norm, and in the `1
vector norm. This follows directly from Theorem 1.9
in [33], and Theorem 6.12 in [30]. (There is one sub-
tle point: the convex optimization problem in (V.12)
and (V.13) uses the unnormalized measurement op-
erator ΦD, while the error bounds in [30, 33] apply
to the normalized measurement operator ΦD/

√
m.

Hence, the noise is smaller by a factor of
√
m in

these error bounds.)

Theorem V.2 With high probability (over the
choice of the measurement operator Φ, with m set

according to (V.40)), for all correlation matrices C
(satisfying the sparsity condition (V.41)), the solu-
tion W (opt) satisfies the following error bounds:

‖W (opt)−C ′‖F ≤ c1
ηs√
s

+c2

( ε2√
m

+ε1
√
n
)
, (V.42)

‖W (opt) − C ′‖`1 ≤ c1ηs + c2
√
s
( ε2√

m
+ ε1
√
n
)
,

(V.43)
where c1 and c2 are universal constants.

In these bounds, the first term upper-bounds the
error that results from approximating C ′ by a sparse
matrix, and the second term upper-bounds the error
due to noise in the measurements of g and h.

In order to apply these bounds, one needs to know
the values of ε1 and ε2. These can be obtained from
Section III E, equations (III.22) and (III.26):

ε1 ≤ O(δ1‖diag(C)‖2), (V.44)

ε2 ≤ O(δ2
√
m‖C‖`1). (V.45)

Also, it is useful to consider the special case where
C ′ is exactly s-sparse, so ηs = 0, and where we use
as few measurement settings as possible, by setting
m = O(s log4 n). In this case, we have:

‖W (opt) − C ′‖F (V.46)

≤ O(
√
nδ1‖diag(C)‖2 + δ2‖C‖`1) (V.47)

≤ O(
√
nδ1‖diag(C)‖2 + δ2(

√
n‖diag(C)‖2 +

√
2s‖C ′‖F )). (V.48)

This can be compared with the error bound (II.31)
for the naive method, and the RIPless error bound
(V.39) for compressed sensing. Generally speaking,
compressed sensing has an advantage over the naive
method when s is small, and the RIP-based bound
has better scaling (as a function of n, s, diag(C) and
C ′) than the RIPless bound, although it requires
m to be slightly larger. We will carry out a more
detailed comparison between the naive method and
compressed sensing in Section VI.

VI. PERFORMANCE EVALUATION

In this section we study the performance of our
compressed sensing method, for a typical measure-
ment scenario. We consider both the accuracy of the
method, and the experimental resources required to
implement it. We investigate the asymptotic scaling
of our method, and compare it to the naive method,
direct estimation of the correlation matrix, intro-
duced in Section II C.

Overall, we find that our compressed sensing
method has asymptotically better sample complex-
ity, whenever the off-diagonal part of the correlation
matrix C is sufficiently sparse. In particular, for
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a system of n qubits, our method is advantageous
whenever the number of correlated pairs of qubits,
s, is at most O(n3/2) (ignoring log factors). These
results are summarized in Figure VI.1.

We now explain these results in detail. We let C ′

be the off-diagonal part of the correlation matrix C,
that is, C ′ is the matrix whose off-diagonal elements
match those of C, and whose diagonal elements are
zero. We are promised that C ′ has at most s nonzero
elements above the diagonal (and, by symmetry, at
most s nonzero elements below the diagonal). Our
goal is to estimate both C ′ and diag(C).

Compressed sensing allows the possibility of ad-
justing the number of measurement settings, m, over
a range from ∼ s log n to n2. (Note that m ∼ s log n
is just slightly above the information-theoretic lower
bound, while m = n2 is the number of measurement
settings used by the naive method.) Compressed
sensing works across this whole range, but the error
bounds vary depending on m. There are two cases:
(1) For m & s log4 n, both the RIP-based and RIP-
less error bounds are available, and the RIP-based
error bounds are asymptotically stronger. (2) For m
between ∼ s log n and ∼ s log4 n, only the RIPless
error bound is available.

To make a fair comparison between compressed
sensing and the naive method, we need to quantify
the accuracy of these methods in a consistent way.
This is a nontrivial task, because the error bounds
for the different methods have different dependences
on the parameters n, s, diag(C) and C ′; this can be
seen by comparing equation (II.31), and Theorems
V.1 and V.2.

We choose a simple way of quantifying the accu-
racy of all of these methods: given some δ > 0, we

require that each method return an estimate Ĉ ′ that
satisfies

‖Ĉ ′ − C ′‖F ≤ δ‖C‖F . (VI.1)

Here, we use the Frobenius matrix norm, which is
equivalent to the vector `2 norm. We write C (rather
than C ′) on the right hand side of the inequality, in
order to allow the recovery error to depend on both
the diagonal and the off-diagonal elements of C.

In addition, we require that each method return
an estimate g of diag(C) that satisfies

‖g − diag(C)‖2 ≤ δ‖diag(C)‖2. (VI.2)

For both compressed sensing as well as the naive
method, g is obtained in the same way, by perform-
ing single-qubit spectroscopy as in (II.19), and the
error in g satisfies the same bound (II.30).

We also need to account for the cost of imple-
menting each method using real experiments. This
cost depends on a number of factors. One factor
is the total number of experiments that have to be
performed, often called the sample complexity. This
is the number of measurement settings, times the
number of repetitions of the experiment with each
measurement setting. Another factor is the diffi-
culty of performing a single run of the experiment.
This involves both the difficulty of preparing entan-
gled states (random n-qubit GHZ states for the com-
pressed sensing method, and 2-qubit Bell states for
the naive method), and the length of time that one
has to wait in order to observe dephasing.

Here, we study a scenario where we expect our
compressed sensing method to perform well. We
consider an advanced quantum information proces-
sor, where n-qubit GHZ states are fairly easy to pre-
pare (using O(log n)-depth quantum circuits), and
dephasing occurs at low rates, so that the main cost
of running each experiment is the amount of time
needed to observe dephasing. In this scenario, it is
reasonable to use the sample complexity as a rough
measure of the total cost of implementing the com-
pressed sensing method, as well as the naive method.

We now calculate the sample complexity for three
methods of interest: (1) the naive method with
m = n2, (2) compressed sensing with m ∼ s log4 n,
and (3) compressed sensing with m ∼ s log n.
We find that method (2) outperforms the naive
method whenever s ≤ O(n3/2/ log2 n), and method
(3) outperforms the naive method whenever s ≤
O(n2/3/ log2 n).

In addition, for each of these methods, we show
the number of samples where single-qubit spec-
troscopy is performed, and the number of samples
where multi-qubit spectroscopy is performed. (Re-
call that all of these methods use single-qubit spec-
troscopy to estimate the diagonal of C, and then
use multi-qubit spectroscopy to estimate the off-
diagonal part of C.) Both of these numbers can
be important: multi-qubit spectroscopy is more ex-
pensive to implement on essentially all experimen-
tal platforms, and requires more samples when s is
large; but it is possible for single-qubit spectroscopy
to dominate the overall sample complexity, when s
is small.

A. Naive method with m = n2

As in Section II C, we use two parameters, δ1 and
δ2, to quantify the accuracy of the measurements, as
in equations (II.24) and (II.25). Then we get an es-
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Reconstruction method: Naive CS (RIP-based) CS (RIPless*)

Single-qubit

spectroscopy:

# of meas. settings n n n

# of samples per setting O(n/δ2) O(n/δ2) O(s3 log6(n)/δ2)

Total # of samples O(n2/δ2) O(n2/δ2) O(ns3 log6(n)/δ2)

Multi-qubit

spectroscopy:

# of meas. settings m O(n2) O(s log4 n) O(s logn)

# of samples per setting O(n/δ2) O(max(n, s)/δ2) O(s2 max(n, s) log5(n)/δ2)

Total # of samples O(n3/δ2) O(smax(n, s) log4(n)/δ2) O(s3 max(n, s) log6(n)/δ2)

Total sample

complexity: O(n3/δ2) O(max(n, s)2 log4(n)/δ2) O(s3 max(n, s) log6(n)/δ2)

FIG. VI.1. Sample complexity of different methods for reconstructing a correlation matrix C, of size n× n, with 2s
nonzero elements off the diagonal. The naive method is to measure each element of C separately. “CS” refers to the
compressed sensing method, and “RIP-based” and “RIPless” refer to different analytical bounds on the accuracy of
the reconstruction of C. The asterisk (*) indicates that the results using the RIPless bound hold under a technical
assumption that the diagonal of C does not have any unusually large elements, see equation (VI.10). The different
methods are parameterized in such a way that they reconstruct the diagonal of C up to an additive error of size
δ‖diag(C)‖2, and they reconstruct the off-diagonal part of C up to an additive error of size δ‖C‖F . Each method
makes use of single-qubit spectroscopy (with n experimental configurations or “measurement settings”), as well as
multi-qubit spectroscopy (with m measurement settings, where m varies between O(n2) and O(s logn)). The CS
method has lower sample complexity than the naive method, when s� n2. In particular, using the RIP-based bound
with m = O(s log4 n), the CS method is advantageous whenever s ≤ O(n3/2/ log2 n). Using the RIPless bound with

m = O(s logn), the CS method is advantageous whenever s ≤ O(n2/3/ log2 n).

timate Ĉ ′ of C ′, whose error is bounded by equation
(II.31): with probability at least 1− η,

‖Ĉ ′ − C ′‖2F
≤ 1

η [3(n− 1)(δ1 + δ2)2‖diag(C)‖22 + 6δ2
2‖C ′‖2F ].

(VI.3)

For simplicity, we set η to be some universal con-
stant, say η = 0.001. Now, given any δ > 0, we can
ensure that

‖Ĉ ′ − C ′‖2F ≤ δ2‖diag(C)‖22 + (δ2/n)‖C ′‖2F
≤ δ2‖C‖2F ,

(VI.4)

by setting δ1 = δ2 = O(δ/
√
n). This satisfies the

requirement (VI.1).
In addition, one can easily check that the estimate

g for diag(C) satisfies the requirement (VI.2).

Then the sample complexity is as follows (see
the discussion preceding (II.24) and (II.25)): the
method performs single-qubit spectroscopy on
O(n/δ2

1) = O(n2/δ2) samples, and multi-qubit spec-
troscopy on O(n2/δ2

2) = O(n3/δ2) samples. Hence
the total sample complexity is O(n3/δ2).

B. Compressed sensing with m ∼ s log4 n

Here we consider the `1-minimization problem in
(V.12) and (V.13), whose solution W (opt) satisfies
the RIP-based bound in Theorem V.2. We use
two parameters, δ1 and δ2, to quantify the accu-
racy of the measurements, as in equations (III.19)
and (III.23). Section III E then explains how to set
the parameters ε1 and ε2 that appear in (V.12) and
(V.13).

The estimator W (opt) satisfies the following error
bound (see Theorem V.2, and equation (V.48)):

‖W (opt) − C ′‖F ≤ O(
√
nδ1‖diag(C)‖2 + δ2(

√
n‖diag(C)‖2 +

√
2s‖C ′‖F )). (VI.5)
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Now, given any δ > 0, we can ensure that

‖W (opt) − C ′‖F ≤ 1√
2
δ‖diag(C)‖2 + 1√

2
δ‖C ′‖F

≤ δ‖C‖F ,
(VI.6)

by setting δ1 = O(δ/
√
n) and

δ2 = O(δ/
√

max(n, s)). (VI.7)

This satisfies the requirement (VI.1).
In addition, one can easily check that the estimate

g for diag(C) satisfies the requirement (VI.2).
Then the sample complexity is as follows (see

the discussion following (III.19) and (III.23)):
the method performs single-qubit spectroscopy on
O(n/δ2

1) = O(n2/δ2) samples, and multi-qubit spec-
troscopy on

O(m/δ2
2) ≤ O(smax(n, s) log4(n)/δ2) (VI.8)

samples. Hence the total sample complexity is at
most

O(max(n, s)2 log4(n)/δ2). (VI.9)

This is less than the sample complexity of the naive
method, provided the off-diagonal part of the cor-
relation matrix is sufficiently sparse, i.e., when s ≤
O(n3/2/ log2 n).

C. Compressed sensing with m ∼ s logn

Here we consider the LASSO optimization prob-
lem in (V.14), whose solution W (opt) satisfies the
RIPless bound in Theorem V.1. We use two pa-
rameters, δ1 and δ2, to quantify the accuracy of the
measurements, as in equations (III.19) and (III.23).

Section V C then explains how to set the LASSO
regularization parameter λ.

In the following, we assume that the diagonal ele-
ments of C satisfy a bound of the form

‖diag(C)‖∞ ≤ O
(

1√
n
‖diag(C)‖2

)
. (VI.10)

We will first discuss the situations when this assump-
tion holds; then we will use this assumption to get
a stronger error bound for W (opt).

Roughly speaking, the assumption (VI.10) says
that none of the diagonal elements cjj is too much
larger than the others. This is plausible for a quan-
tum system that consists of many qubits that are
constructed in a similar way.

In order to make this intuition more precise, we
can write (VI.10) in an equivalent form:

max
1≤j≤n

(c2jj) ≤ O
(

1
n

n∑
j=1

c2jj
)
, (VI.11)

which says that the largest c2jj is at most a constant

factor larger than the average of all of the c2jj . Also,
it is informative to consider how (VI.10) and (VI.11)
compare to the (arguably more natural) assumption
that

max
1≤j≤n

|cjj | ≤ O
(

1
n

n∑
j=1

|cjj |
)
. (VI.12)

In fact, (VI.12) is actually a stronger assumption, in
the sense that it implies (VI.10) and (VI.11), via the
Cauchy-Schwartz inequality.

The estimator W (opt) satisfies an error bound
given by Theorem V.1, and equation (V.39). Com-
bining this with our assumption (VI.10), we get the
following:

‖W (opt) − C ′‖F ≤ O(s log5/2(n)[δ1
√
s log(n)‖diag(C)‖2 + δ2

√
n‖diag(C)‖2 + δ2

√
2s‖C ′‖F ]). (VI.13)

Now, given any δ > 0, we can ensure that

‖W (opt) − C ′‖F ≤ 1√
2
δ‖diag(C)‖2 + 1√

2
δ‖C ′‖F

≤ δ‖C‖F ,
(VI.14)

by setting

δ1 = O

(
δ

s3/2 log3(n)

)
, (VI.15)
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and

δ2 = O

(
δ

s log5/2(n)
√

max(n, s)

)
. (VI.16)

This satisfies the requirement (VI.1).
In addition, one can easily check that the estimate

g for diag(C) satisfies the requirement (VI.2).
Then the sample complexity is as follows (see

the discussion following (III.19) and (III.23)): the
method performs single-qubit spectroscopy on

O(n/δ2
1) = O(ns3 log6(n)/δ2) (VI.17)

samples, and multi-qubit spectroscopy on

O(m/δ2
2) ≤ O(s3 max(n, s) log6(n)/δ2) (VI.18)

samples. Hence the total sample complexity is at
most

O(s3 max(n, s) log6(n)/δ2). (VI.19)

This is less than the sample complexity of the naive
method, provided the off-diagonal part of the cor-
relation matrix is sufficiently sparse, i.e., when s ≤
O(n2/3/ log2 n).

VII. CHOOSING THE EVOLUTION TIME t

We now discuss a technical detail involving the
physical implementation of our measurements of the
correlation matrix C. As described in Section II B,
this requires estimating certain decay rates Γab. To
do this, we prepare quantum states |ψab〉, allow
them to evolve for some time t, and then measure
them in an appropriate basis. This works well when
t is chosen appropriately, so that Γabt ∼ 1.

In this section, we sketch one way of choosing the
evolution time t such that 1

2 ≤ Γabt ≤ 2. The ba-
sic idea is to start with some initial guess for t (call
it τ0), then perform “binary search,” i.e., run a se-
quence of experiments, where one observes the de-
phasing of the state |ψab〉 for some time t, and after
each experiment, one adjusts the time t adaptively,
multiplying and dividing by factors of 2, in order to
get the “right amount” of dephasing. We claim that
this requires ∼ |log(Γabτ0)| experiments.

More precisely, we consider the following proce-
dure:

1. Fix some τ0 > 0; this is our initial guess for
the evolution time t.

2. For r = 1, 2, . . . , Ntrials, do the following: (we
set Ntrials according to equation (VII.9) below)

(a) Set s0 = 0 and t0 = 2s0τ0. (This is our
initial guess for t.)

(b) For j = 0, 1, 2, . . . , Nsteps − 1, do the fol-
lowing: (we set Nsteps according to equa-
tion (VII.5) below)

i. Prepare the state |ψab〉 = 1√
2
(|a〉 +

|b〉), allow the state to dephase for
time tj , then measure in the basis
1√
2
(|a〉 ± |b〉)

ii. If the measurement returns 1√
2
(|a〉+

|b〉), then set

sj+1 =

{
sj + 1 with probability e−1

e+1 ,

sj otherwise.
(VII.1)

If the measurement returns 1√
2
(|a〉−

|b〉), then set sj+1 = sj − 1.

iii. Set tj+1 = 2sj+1τ0. (This is our next
guess for t.)

(c) Define ξr to be the value of sj from the
last iteration of the loop, that is, ξr =
sNsteps

.

3. Compute the average ξ = 1
Ntrials

∑Ntrials

r=1 ξr.

Return t̂ = 2ξτ0. (This is our estimate for
t.)

This procedure can be described in an intuitive
way as follows. The inner loop of this procedure
(the loop indexed by j) can be viewed as a kind
of stochastic gradient descent, which behaves like a
random walk on real numbers of the form t = 2sτ0
(s ∈ Z) (see the dashed curves in Fig. VII.1(a)).

We will show that this random walk has a single
basin of attraction at a point t∗ = 2s

∗
τ0 that sat-

isfies Γabt
∗ ≈ 1, that is, s∗ ≈ − log2(Γabτ0). We

claim that the random walk converges to this point:
with high probability, the sequence s0, s1, s2, . . . will
reach the point s∗ after O(|s∗|) = O(| log(Γabτ0)|)
steps; after that point, the sequence will remain con-
centrated around s∗, with exponentially-decaying
tail probabilities (see Fig. VII.1(b)). This claim is
made precise in Section VII A, equations (VII.5) and
(VII.6).

Finally, the outer loop of this procedure (the loop
indexed by r) computes an estimate ξ of s∗, by av-
eraging over several independent trials (see the solid
curves in Fig. VII.1(a)). This then yields an esti-
mate t̂ of t∗. The required number of trials, and the
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FIG. VII.1. Choosing the evolution time t. (a) Tra-
jectories of the random walk. We start with an initial
guess τ0, that can either be shorter (orange) or longer
(blue) than the optimal time. The evolution time is then
stochastically halved or doubled over Nsteps iterations,
according to the algorithm outlined in Section VII. This
procedure is repeated (dashed curves) and the outcome
is averaged (solid curves) to obtain an estimate t̂. The
region in which 1

2
< Γabt̂ < 2 is shaded in green. (b)

The accuracy of the final estimate t̂, as a function of
the number of steps Nsteps and the starting point τ0.
The green shading shows the region where t̂ satisfies the
bound 1

2
< Γabt̂ < 2. We see that, at the boundary

of the green region, Nsteps scales logarithmically with
|Γabτ0|, as predicted by Eq. (VII.5).

accuracy of the resulting estimate t̂, are analyzed in
Section VII B, equations (VII.9) and (VII.10).

A. Convergence of the Random Walk

We now give a rigorous analysis of our procedure
for choosing t. We begin by describing the random
walk in more detail. We will work with the variables
sj , which are related to the tj via the identity tj =
2sjτ0. It is easy to see that s0 = 0, sj+1 ∈ {sj , sj −
1, sj + 1}, and

E[sj+1 | sj ] = sj + 1
2 (1 + e−Γabtj ) e−1

e+1 −
1
2 (1− e−Γabtj )

= sj + 1
e+1 (e1−Γabtj − 1).

(VII.2)

Hence the sequence s0, s1, s2, . . . can be viewed as
the trajectory of a random walk on a 1-dimensional
chain, beginning at s0, with transition probabilities
that vary along the chain. The expected behavior of

the random walk can be bounded as follows:

E[sj+1 | sj ]


≥ sj + µ when Γabtj ≤ 1√

2
,

≤ sj − µ when Γabtj ≥
√

2,

≈ sj + e−1
e+1 when Γabtj � 1,

≈ sj − 1
e+1 when Γabtj � 1,

(VII.3)
where µ is a numerical constant,

µ = 0.09. (VII.4)

Hence the random walk will tend to converge to-
wards some integer s∗ such that t∗ = 2s

∗
τ0 satisfies

1√
2
≤ Γabt

∗ ≤
√

2.

Note that the expected position of the random
walk moves towards s∗ at a rate that is lower-
bounded by µ. So, in order to go from s0 = 0 to
s∗ ≈ − log2(Γabτ0), we expect that the random walk
will take roughly 1

µ |s
∗| = 1

µ | log2(Γabτ0)| steps. It is

easy to see that the stationary distribution of the
random walk is centered around s∗, with exponen-
tially decaying tails; hence, once the walk reaches
s∗, it will remain concentrated around that point.

We now explain how to set the parameter Nsteps

so that, with high probability, after Nsteps steps,
the random walk will converge. Say we are given
an upper bound h on the magnitude of s∗, i.e., we
are promised that |s∗| ≤ h, or equivalently, we are
promised that 2−h ≤ Γabτ0 ≤ 2h. Then we will run
the random walk for a number of steps

Nsteps = h
µ + η, (VII.5)

where η ≥ 0. Here, h
µ is (an upper bound on) the

expected number of steps needed to reach s∗. We
take an additional η steps to ensure that the walk
does indeed reach s∗ with high probability (we will
show that the probability of failure decreases expo-
nentially with η).

We claim that, after Nsteps steps, the final posi-
tion of the walk is close to s∗, with exponentially
decaying tail probabilities: for any ` ≥ 1,

Pr[|sNsteps
− s∗| ≥ ` | s0 = 0]

≤ 16
µ2 exp(−µ(µ+1)

8 `+ µ2

4 )

+ 2 exp(− µ
16 min{µηh , 1}(`+ µη)).

(VII.6)

In particular, when η ≥ h
µ , this bound can be

slightly simplified:

Pr[|sNsteps
− s∗| ≥ ` | s0 = 0]

≤ 16
µ2 exp(−µ(µ+1)

8 `+ µ2

4 ) + 2 exp(− µ
16 (`+ µη)).

(VII.7)
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The bound (VII.6) is proved in Appendix D, using
martingale techniques.

B. Error Bound for t̂

We now explain how to set the parameter Ntrials,
and derive an error bound on our estimator t̂. The
bound (VII.6) implies that the random variables
ξr = sNsteps are sub-exponential (see [27], section
5.2.4), and their sub-exponential norms are bounded
by some constant ‖ξr‖ψ1

≤ K. Hence their average
ξ satisfies a Bernstein-type concentration inequality
(see [27], corollary 5.17): for every δ ≥ 0,

Pr[|ξ − s∗| ≥ δ] ≤ 2 exp(−cmin{ δ
2

K2 ,
δ
K }Ntrials),

(VII.8)
where c > 0 is a universal constant.

Now, for any ε > 0, we set

Ntrials = 1
c max{Kδ ,

K2

δ2 } log( 2
ε ). (VII.9)

Then we have the following error bound on our es-
timator t̂ = 2ξτ0: with probability ≥ 1− ε, we have
|ξ − s∗| < δ, which implies that

2−0.5−δ < Γabt̂ < 20.5+δ. (VII.10)

Assuming δ < 1/2, this implies that 1
2 < Γabt̂ < 2,

as desired.

VIII. EFFECT OF SPAM ERRORS

When the measurement protocols described in this
paper are implemented in an experiment, errors may
occur during state preparation and measurement
(SPAM errors). We investigate the effect of these
errors on estimating the decay rates Γab. Let ρ0 and
E0 denote the noiseless initial state and observable
of interest, respectively. We have

ρ0 = E0 = 1
2 (|a〉〈a|+ |b〉〈b|+ |b〉〈a|+ |a〉〈b|).

(VIII.1)
We consider error channels Es and Em that act on
state preparation and measurement operations as

ρ̃ = Es(ρ0) = ρ0 + δρ (VIII.2)

Ẽ = Em(E0) = E0 + δE, (VIII.3)

where ‖δρ‖tr ≤ εs and ‖δE‖ ≤ εm, and εs and εm
are small parameters. The outcome of the protocol
is now given by

P̃ab(t) = Tr[ẼEt(ρ̃)]. (VIII.4)

where Et = exp(Lt) is the evolution under the cor-
related dephasing noise (I.1).

We show that our protocol is robust against these
kinds of errors, and for short times t the decay of
P̃ab(t) is still dominated by Γab. Using Eqs. (VIII.2)
and (VIII.3) we find that

Tr[ẼEt(ρ̃)] = Tr[E0Et(ρ0)] (VIII.5)

+ Tr[E0Et(δρ)] + Tr[δEEt(ρ0)]

+ Tr[δEEt(δρ)]

The first term is the outcome without errors, and we
have

Tr[E0Et(ρ0)] =
1 + e−tΓab

2
. (VIII.6)

We can find the effect of errors on the second and
third terms, by considering the effect of Et on ρ1 and
E1. Specifically, we find

Tr[E0Et(δρ)] = ηs + ζse
−Γabt, (VIII.7)

Tr[δEEt(ρ0)] = ηm + ζme
−Γab , (VIII.8)

where ηs,m and ζs,m are constants that are deter-
mined by δρ and δE, for s and m, respectively.
Therefore, these terms decay with the same rate as
the first case and do not affect the exponential decay.
However, the last term can, in principle, contain dif-
ferent decay rates and can cause deviation from a
single exponential decay. We can bound the rate at
which R(t) = Tr[δEEt(δρ)] grows:

|Ṙ(t)| = | ∂∂tTr[δEEt(δρ)]| (VIII.9)

= |Tr[δEL(δρ)]| (VIII.10)

≤ 2εmεs(n+ s), (VIII.11)

see Appendix E for the proof. Therefore, we find

P̃ab(t) =
1

2
(1+ηs+ηm+(1+ζs+ζm)e−Γabt)+R(t),

(VIII.12)
The deviations from a single exponential decay
are attributed to R(t). Using Eqs. (VIII.11) and

(VIII.12) we can see that the decay rate of P̃ab(t)
is dominated by Γab for evolution times t .
1/(2εsεm(n+ s))−1.

We also use numerical simulations to investigate
the effect of SPAM errors on estimates of the decay
rate Γab. We simulate SPAM errors by applying
random error channels Es and Em, whose strengths
are controlled by a parameter ∆ (see Appendix B

for details). We then compare the decay of P̃ab(t)
with and without SPAM errors, for different values
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FIG. VIII.1. Exponential decay of P̃ab(t) when there
are SPAM errors. We simulate the decay of a 3-qubit
GHZ state. We choose a correlation matrix C with uni-
form single-qubit dephasing rate (cii = γ0) and nearest-
neighbor correlations ci,i±1 = γ0/4. The panels show

the decay of P̃ab(t) under different noise strengths: (a)
∆ = 0.01, (b) ∆ = 0.05, (c) ∆ = 0.1. (See Appendix B
for the precise definition of ∆.) The dashed lines show
the decay with no SPAM errors, and solid lines show the
decay with SPAM errors from randomly-sampled error
channels. The solid lines resemble the dashed lines for
short evolution times t.

of ∆. We observe that, for short times t, the decay
with SPAM errors matches the decay without SPAM
errors, i.e., the decay rate is dominated by Γab, see
Fig. VIII.1. This is consistent with our theoretical
analysis.

IX. GENERALIZATIONS

We now sketch how our method for learning sparse
correlated dephasing noise can be extended to the
most general case of the master equation (I.1), where
the matrix C is complex, and there is an additional
Hamiltonian term Hs.

A. Complex Decay Rates

The complete dynamics imposed by the environ-
ment on the system can have a coherent evolution
in addition to the decay. The evolution of the sys-
tem dρ

dt = L(ρ) is in general given by the Lindblad

generator

L(ρ) = −i[ρ,Hs]+
∑
l,m

clm

(
ZlρZm −

1

2
{ZlZm, ρ}

)
,

(IX.1)
where

Hs =
∑
l,m

rlmZlZm (IX.2)

is sometimes called the (generalized) Lamb shift
Hamiltonian, and C = (clm) is now a complex ma-
trix [11] (see Appendix A). We can decompose C
as

C = V + iT, (IX.3)

where the real and imaginary parts are separated
into V = (vlm), a real symmetric matrix, and
T = (tlm), a real skew-symmetric matrix, respec-
tively. Moreover, the Lamb shift Hamiltonian can
be encoded in the symmetric matrix R = (rlm).

We now show how the operator L acts on the off-
diagonal matrix elements |a〉〈b|. This involves “de-
cay rates” that depend on R, V and T in a sim-
ple way, although these “decay rates” now complex
rather than real. Specifically,

L(|a〉〈b|) = (−Γab + iΩab)|a〉〈b|, (IX.4)

where Γab and Ωab are real numbers that capture
the decay and oscillations of the matrix element, re-
spectively. We follow the convention defined in Sec-
tion II A for states |a〉 and |b〉. We remind the reader
that Zi|a〉 = αi|a〉, and similarly for |b〉 and βi.
Therefore, separating the real and imaginary part of
L(|a〉〈b|) we find that

Γab = −
∑
l,m

vlm(αlβm − 1
2αlαm −

1
2βlβm)

= 1
2 (α− β)TV (α− β), (IX.5)

where we used the fact that V is symmetric. Simi-
larly, we find

Ωab =−
∑
l,m

rlm (αlαm − βlβm)

+
∑
l,m

vlm
(
αlβm − 1

2αlαm −
1
2βlβm

)
= −(αTRα− βTRβ) + 1

2 (αTTβ − βTTα),
(IX.6)

where we used the fact that R and T , are symmet-
ric and skew-symmetric matrices, respectively. (See
Appendix A 2 for details.)
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Therefore, the coherences, that is, the |a〉〈b| ele-
ments of the density matrix ρ(t), exhibit both oscil-
lations (at a frequency Ωab) and exponential decay
(at a rate Γab) as a function of t. Note that it is
possible to measure both Γab and Ωab, by estimat-
ing the matrix elements of ρ(t) at different times t,
using the same types of Ramsey experiments out-
lined in Section II. (In particular, one can extract
these parameters using standard techniques for an-
alyzing spectral lines in atomic physics. Here, the
squared magnitude of the Fourier transform of the
measurement time series is a Lorentzian function,
the center of the Lorentzian peak gives the oscilla-
tion frequency, and the width of the peak gives the
decay rate [50].)

Given estimates of Γab and Ωab, we can extend
our compressed sensing method to recover both the
correlation matrix C and the Hamiltonian Hs. As
before, we use m ∼ s log n or m ∼ s log4 n mea-
surement settings; for each measurement setting,
we choose a and b uniformly at random in {0, 1}n.
From estimates of Γab, we can recover V , the real
part of C, exactly as before (this follows from equa-
tion (IX.5)). In a similar manner, given estimates of
Ωab, we want to recover T , the imaginary part of C,
as well as R, the matrix that encodes the Hamilto-
nian Hs. This is possible, because equation (IX.6)
represents a measurement of R and T that has the
needed isotropy and incoherence properties, as we
will show below.

B. Isotropy and Incoherence of the
Measurements Ωab

We consider Ωab, viewed as a measurement of R
and T in equation (IX.6), with a and b chosen uni-
formly at random in {0, 1}n. We show that this
random measurement has the same isotropy and in-
coherence properties as before, and hence our com-
pressed sensing method will still succeed using these
measurements. The incoherence property is easy to
see, but some work is required to show the isotropy
property.

The measurement Ωab acts on T and R as

Ωab =
[
αT βT

] [ −R 1
2T

− 1
2T R

][
α

β

]
. (IX.7)

Similar to the analysis in Section V D, it is advan-
tageous to consider the effect of measurements if we
enforce the symmetries of R and T . Note that T and
R are real skew-symmetric and symmetric matrices,

respectively. Moreveover, they are both traceless.
Therefore, we have

Ωab =
∑
i<j

(αiβj − βiαj)Tij + 2
∑
i<j

(αiαj − βiβj)Rij

(IX.8)
As before, let uvec be the linear operator that

returns the upper-triangular part of a matrix (not
including the diagonal elements), that is,

uvec : R 7→ (Rij)i<j . (IX.9)

Then Ωab can be expressed as

Ωab = q

[
uvec(T )

2 uvec(R)

]
, (IX.10)

similar to Eq. (V.26), where q is a row vector of the
form

q =
[
uvec(αβT − βαT ), uvec(ααT − ββT )

]
.

(IX.11)
Note that as described in Section III A, α and

β are chosen uniformly and independently at ran-
dom from {1,−1}n. It is then straightforward to see
that q in this case satisfies the incoherence property
(V.30) with µ = 1. Furthermore, one can check that
q is centered and isotropic (up to a normalization

factor of
√

2), since:
E[αiαj ] = E[αiβj ] = E[βiβj ] = 0

E[(αiβj − βiαj)(αkβl − βkαl)] = 2δikδjl

E[(αiαj − βiβj)(αkαl − βkβl)] = 2δikδjl

E[(αiβj − βiαj)(αkαl − βkβl)] = 0

,

(IX.12)

where it is assumed that i < j and k < l in all
cases. The second and the third lines in the above
equation capture the correlations in the measure-
ments of T and R, respectively, and the last line
captures the cross-correlations between the two mea-
surements (see Appendix F for more details).

X. OUTLOOK

In this paper we have demonstrated a new
paradigm for characterizing spatially-correlated
noise in many-body quantum systems, where one as-
sumes that the correlations are sparse, and one uses
compressed sensing to characterize them efficiently.
Our method applies to correlated dephasing noise,
and is capable of detecting long-range correlations,
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with provable recovery guarantees, even in the pres-
ence of SPAM errors.

There are several possible generalizations of our
method. First, we expect that our method can be
applied to a larger class of Markovian noise pro-
cesses, whose Lindblad operators are Hermitian and
commuting. It may also be possible to combine
our methods with multi-qubit noise spectroscopy
[51], in order to estimate spatial correlations in non-
Markovian noise processes. Finally, it is an interest-
ing question whether our methods can be combined
with the more combinatorial techniques of [10] for
estimating sparse Pauli channels.

Our work touches on several other broad ques-
tions. First, we expect our protocol to be useful for
characterizing dephasing in the presence of weak re-
laxation processes, i.e., when the relaxation time is
much longer than the dephasing time. However, the
harder case of concurrent relaxation and dephasing
remains open, and is a subject of future research.

Also, while we use entangled states to probe the
correlations in the noise process, it is intriguing to
ask whether it is possible to achieve a similar scaling
using non-entangled states. This motivates the more
general question of whether entanglement can help
noise spectroscopy in the same way that it is helpful
in metrology [52].
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Appendix A: Sparse Correlated Dephasing

1. Microscopic Derivation

We consider a model of spatially correlated noise,
which is described by the following master equation:

dρ

dt
= L(ρ) = i[ρ,Hs]+

n∑
j,k=1

cjk

(
skρs

†
j − 1

2{s
†
jsk, ρ}

)
.

(A.1)
Here the system consists of n qubits, Hs is the sys-
tem Hamiltonian, and sj and sk are operators that
act on the j’th and k’th qubits, respectively. We
consider the case of dephasing noise, where Hs = 0,
and sj = Zj (the Pauli σz operator acting on the
j’th qubit). The noise is then fully described by the
matrix of coupling coefficients C = (cjk) ∈ Cn×n.
In order for the time evolution of the system to be
a completely positive map, the matrix C must be
positive semidefinite [21].

We will be interested in the case where the matrix
C is sparse, in the sense that most of the off-diagonal
elements are 0. This can arise when the qubits are
coupled to a bath, in such a way that most of the
time, different qubits are coupled to different degrees
of freedom in the bath, but occasionally it happens
that two or more qubits couple to the same degree
of freedom in the bath.

To motivate the above intuition, we follow
Ref. [14] and show how the master equation (A.1)
can be derived from a commonly-occurring micro-
scopic model. Here, multiple qubits are coupled to
a bosonic bath through the interaction Hamiltonian

HI(t) =
∑
l,k

Zl

(
glkb
†
k(t) + g∗lk bk(t)

)
, (A.2)

where bk(t) are bath operators. If the bath is quan-
tum mechanical, then bk(t) = e−iωktbk, where bk
is a bosonic annihilation operator corresponding to
the bath mode k, with frequency ωk. If the bath
is classical, then bk(t) is a stochastic variable corre-
sponding to the fluctuations of the external magnetic
field [51].

The time evolution operator is then given by [14]

UI(t) = exp[iΦωk
(t)] exp[

∑
l,k

Zl{ξlk(t)b†k − ξ
∗l
k (t)bk}]

(A.3)
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where

Φωk
(t) =

∑
l,k

|Zlglk|2
ωkt− sin(ωkt)

ω2
k

, (A.4)

ξlk = glk
1− eiωkt

ωk
. (A.5)

The phase term Φωk
(t) only appears when the bath

is quantum mechanical, and is the result of the non-
commutative nature of the bath operators. This
term is also known as the Lamb shift. We as-
sume that if qubit l at position xl is coupled to
the bath mode k, then the coupling is of the form
glk = gke

ik.xl , and if the qubit is not coupled to that
mode, then glk = 0.

Defining |a〉 = |a1, a2, . . . , an〉, |b〉 =
|b1, b2, . . . , bn〉, with am, bm ∈ {0, 1}, it follows
that

〈a|ρ(t)|b〉 = exp[− 1
2

∑
m,l

ṽm,l(t)(αm − βm)(αl − βl)]

(A.6)

× exp[i
∑
m,l

t̃m,l(t)(αmβl)]

× exp[−i
∑
m,l

r̃m,l(t)(αmαl − βmβl)]

× 〈a|ρ(0)|b〉, (A.7)

where we defined αm = (−1)am , βm = (−1)bm , and

ṽl,m(t) = 2
∑
k

|gk|2
1− cos(ωkt)

ω2
k

coth(βωk

2 ) cos(k.xl,m)

(A.8)

t̃l,m(t) = −2
∑
k

|gk|2
1− cos(ωkt)

ω2
k

sin(k.xl,m)

(A.9)

r̃l,m(t) = −
∑
k

|gk|2
ωkt− sin(ωkt)

ω2
k

cos(k.xl,m),

(A.10)

where xl,m = xl − xm. Note that t̃l,m(v) = ṽm,l(t),
t̃l,m(t) = −t̃m,l(t), and r̃l,m(t) = r̃m,l(t). Therefore,
it is illustrative to express Eq. (A.6) as [53]

dρ

dt
= i[ρ,

∑
l,m

rl,m(t)ZlZm]

+
∑
l,m

cl,m(t)
(
ZlρZm − 1

2{ZlZm, ρ}
)
,

(A.11)

where we defined c̃l,m(t) = 1
2 ṽl,m(t) − it̃l,m(t) and

ol,m(t) = ∂
∂t õl,m(t) for o ∈ {v, t, r, c}. We can see

that Eq. (A.11), is in the Lindblad form of Eq. (I.1),
but with time dependent coefficients.

It should be noted that vl,m(t), tl,m(t), and rl,m(t)
vanish if qubits m and n do not share a bath mode,
that is, if there does not exist any k such that glk
and gmk are both non-zero. Therefore, in cases where
only a few qubit pairs have shared bath modes, these
coefficients are sparse.

A special case that is extensively studied in the lit-
erature [12–14] is collective decoherence, where the
distance between the qubits is much smaller than
the wavelength of bath modes, exp(ik.xl,m) ≈ 1,
and consequently vl,m ≈ 0. In this limit, qubits that
are coupled to the same modes are maximally cor-
related.

Moreover, in the high-temperature limit, where
the temperature of the environment is much larger
than the energy of the highest-frequency bath
modes, the decaying part of the evolution due to t̃l,m
dominate the coherent evolution that comes from the
Lamb shift term r̃l,m [14]. In that limit, the deco-
herence dynamics is solely determined by the real
coefficients cl,m. This is similar to the case of a clas-
sical bath (with scalar stochastic bk’s), where again
the dynamics solely depend on real coefficients cl,m
without the Lamb shift Hamiltonian.

Finally, we note that within Born-Markov approx-
imation [11], the coefficients tl,m, vl,m, and rl,m are
time-independent and we recover Eq. I.1 with the
Lamb shift Hamiltonian Hs =

∑
l,m rl,mZlZm[11].

The validity of this approximation, depends on the
details of the bath and the time scales under which
the system is being studied.

In this work we assume that the Markovian ap-
proximation is valid and the master equation has
a time-independent generator L. In this regime,
Eq. (A.11) coincides with Eq. (IX.1).

2. Derivation of the Dynamics

In this section we present the full details of the
derivation of the dynamics under the master equa-
tion (IX.1). Note that L does not map |a〉〈b| to an-
other |a′〉〈b′|. Additionally, L is linear. Therefore
we can treat the evolution independently for each
element |a〉〈b| of the density matrix ρ, and obtain
ρ(t) =

∑
a,b〈a|ρ(0)|b〉 exp[(iΩabt− Γab)t]|a〉〈b|.
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L(|a〉〈b|) = −i[|a〉〈b|,
∑
l,m

rlmZlZm] +
∑
l,m

clm
(
Zl|a〉〈b|Zm − 1

2{ZlZm, |a〉〈b|}
)

(A.12)

=

−i∑
l,m

rlm (αlαm − βlβm) +
∑
l,m

clm
(
αlβm − 1

2αlαm −
1
2βlβm

) |a〉〈b|. (A.13)

We now use the symmetries of C and express the second sum as

∑
l,m

clm
(
αlβm − 1

2αlαm −
1
2βlβm

)
=
∑
l,m

(vlm + itlm)
(
αlβm − 1

2αlαm −
1
2βlβm

)
(A.14)

=
∑
l,m

1
2 (vlm + itlm)

(
αlβm − 1

2αlαm −
1
2βlβm

)
+
∑
l,m

1
2 (vlm − itlm)

(
αmβl − 1

2αmαl −
1
2βmβl

)
(A.15)

= vlm
2 (αlβm + αmβl − αlαm − βlβm) + itlm

2 (αlβm − αmβl) (A.16)

= − 1
2vlm(αl − βl)(αm − βm) + i

2 tlm(αlβm − αmβl) (A.17)

We express the above results compactly as
L(|a〉〈b|) = (−Γab + iΩab)|a〉〈b|, where

Γab =
1

2
(α− β)TV (α− β), (A.18)

Ωab =
1

2
(αTTβ − βTTα)− (αTRα− βTRβ).

(A.19)

Appendix B: Details of Numerical Simulations

1. Compressed Sensing of Correlated
Dephasing Noise

Here we provide some additional details about the
numerical simulations in Section IV.

Assume that we have n qubits, whose individual
dephasing rates is fully characterized. However, cor-
relations in noise cannot be observed in single qubit
measurements. We assume that there are s′ pairs of
qubits that are correlated. To generate a correlation
matrix C that is positive semidefinite with a con-
trollable number of non-zero off-diagonal elements
s = 2s′, we choose{

cii = 2 i = 1, . . . , n

cij = cji = 1
2 1 ≤ i ≤ s′ and j = i+ 1.

(B.1)

We then remove the spatial structure in the matrix
by randomly permuting the rows and columns of C,
that is we map cij to cπ(i),π(j) with π ∈ Sn. This
procedure ensures that the eigenvalues of C are non-
negative.

We then generate noiseless measurements by
choosing m samples of a and b. Finally, we assume
that the diagonal elements of C are known, and we
solve the convex optimization problem (III.5)-(III.7)
using CVXPY, a convex optimization package for
Python [47, 48]. The scaling of the reconstruction
error ‖W (opt)−C‖∞ as a function of m for different
values of n and s is illustrated in Fig. I.2 (a-b).

We also investigate the effect of noisy measure-
ments on the recovery error. We add a random vec-
tor e, whose entries are independent Gaussian ran-
dom variables with mean 0 and standard deviation
σε, to the measurement vector h. Therefore we re-
place the constraint (III.7) with (III.12). Addition-
ally, we assume that the diagonals of C are known
and hence ε1 = 0 in (III.11). We choose ε2 =

√
mσε

and solve the convex program. The scaling of the
reconstruction error ‖W (opt)−C‖∞ as a function of
σε is shown in Fig. I.2 (c).
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2. State Preparation and Measurement Errors

We provide some additional details about the sim-
ulations in Section VIII, showing the effects of SPAM
errors. We generate error channels Es and Em that
act on n qubits, by adding n auxiliary qubits in the
state |0〉⊗n, applying unitary operations Us and Um
on all 2n qubits, and tracing out the n auxiliary
qubits. We control the strength of these error chan-
nels by a parameter ∆, and we set Us = exp(i∆H)
where Hs is a Hermitian operator on 2n qubits.
To generate different error channels at random, we
choose Hs = 1

2 (Ms+M†s ), where elements of Ms are
complex numbers whose real and imaginary parts
are chosen uniformly at random from [0, 1]. We con-
struct Um in a similar way.

Appendix C: Setting the Regularization
Parameter λ

Here we show that, if λ is set according to equation
(V.20), then it satisfies equations (V.15) and (V.16).

In order to prove these bounds, we will want to use
Hoeffding-type large deviation bounds on u and v.
To this end, we first need to upper-bound the quan-
tities max1≤j≤n‖uj‖ψ2

and max1≤j≤m‖vj‖ψ2
. We

can do this as follows. First write

max
1≤j≤n

‖uj‖ψ2 ≤ δ1‖diag(C)‖∞, (C.1)

and

‖diag(C)‖∞ ≤ ‖g‖∞ + ‖u‖∞. (C.2)

We can upper-bound ‖u‖∞ by using the union
bound over all j ∈ {1, . . . , n}, and bounding each co-
ordinate uj using the definition of the sub-Gaussian
norm (see Definition 5.7 in [27]), as follows. Let
c0 > 0 be the universal constant in Definition 5.7 in
[27]. For any t ≥ 0, we have

Pr[‖u‖∞ > (t+ 1)
√

ln(n)/c0 δ1‖diag(C)‖∞]

≤
n∑
j=1

Pr[|uj | > (t+ 1)
√

ln(n)/c0 δ1‖diag(C)‖∞]

≤
n∑
j=1

Pr[|uj | > (t+ 1)
√

ln(n)/c0 δ1cjj ]

≤ n · e · exp(−(t+ 1)2 ln(n))

= e · n−t(t+2).

(C.3)

Now let t = 1. Then we have that

‖u‖∞ ≤ ε′′1‖diag(C)‖∞, ε′′1 := 2
√

ln(n)/c0 δ1,
(C.4)

with failure probability at most e/n3. Combining
this with (C.2) and (C.1), we get:

‖diag(C)‖∞ ≤
1

1− ε′′1
‖g‖∞, (C.5)

provided that ε′′1 < 1, and

max
1≤j≤n

‖uj‖ψ2
≤ δ1

1− ε′′1
‖g‖∞ =: ε′′′1 , (C.6)

which is our desired result. We can use a similar
argument to bound the vj , which yields:

‖v‖∞ ≤ ε′′2‖Φ(C)‖∞, ε′′2 := 2
√

ln(m)/c0 δ2,
(C.7)

with failure probability at most e/m3,

‖Φ(C)‖∞ ≤
1

1− ε′′2
‖h‖∞, (C.8)

provided that ε′′2 < 1, and

max
1≤j≤m

‖vj‖ψ2 ≤
δ2

1− ε′′2
‖h‖∞ =: ε′′′2 . (C.9)

We are now ready to prove (V.15). We will bound

‖uvec(Φ†Dz)‖∞, by splitting it into two terms, using
(V.17), as follows:

‖uvec(Φ†Dz)‖∞ ≤ ‖uvec(Φ†Dv)‖∞
+ ‖uvec(Φ†DΦ(diag(u)))‖∞.

(C.10)

We can bound the first term in (C.10) as follows:

‖uvec(Φ†Dv)‖∞ = max
1≤j<j′≤n

|eTj (Φ†Dv)ej′ |

= max
j<j′
|vTΦD(eje

T
j′)|

= max
j<j′
|vT ξ(j,j′)|,

(C.11)

where we defined

ξ(j,j′) = ΦD(eje
T
j′) ∈ Rm, 1 ≤ j < j′ ≤ n,

(C.12)
where ej denotes the j’th standard basis vector in

Rn. Note that the k’th entry of ξ(j,j′) is given by

ξ
(j,j′)
k = 4(r(k))Teje

T
j′r

(k) = 4r
(k)
j r

(k)
j′ , (C.13)
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hence ξ(j,j′) is bounded by

‖ξ(j,j′)‖2 ≤ 4
√
m. (C.14)

We can then upper-bound ‖uvec(Φ†Dv)‖∞, by us-
ing a union bound over all 1 ≤ j < j′ ≤ n, and a
Hoeffding-type large deviation bound (Proposition
5.10 in [27]). Let c′ > 0 be the universal constant
in Proposition 5.10 in [27]. Then for any t ≥ 0, we
have:

Pr[‖uvec(Φ†Dv)‖∞ > 4
√
m(t+

√
2)ε′′′2

√
ln(n)/c′]

≤
∑
j<j′

Pr[|vT ξ(j,j′)| > 4
√
m(t+

√
2)ε′′′2

√
ln(n)/c′]

≤ 1
2n(n− 1) · e · exp(−(t+

√
2)2 lnn)

≤ 1
2e · n

−t(t+2
√

2).

(C.15)

Now let t = 1. Then we have

‖uvec(Φ†Dv)‖∞ ≤ 4
√
m(1 +

√
2)ε′′′2

√
ln(n)/c′,

(C.16)

with failure probability at most 1
2e · n

−(1+2
√

2).
We now bound the second term in (C.10), using a

similar approach:

‖uvec(Φ†DΦ(diag(u)))‖∞
= max

1≤j<j′≤n
|eTj (Φ†DΦ(diag(u)))ej′ |

= max
j<j′
|uTΦ†GΦD(eje

T
j′)|

= max
j<j′
|uTΦ†Gξ

(j,j′)|,

(C.17)

where ΦG is the submatrix of Φ that contains those
columns of Φ that are indexed by the subset G =

{(j, j) | j = 1, . . . , n}. We can bound Φ†Gξ
(j,j′) in

the following way. For ` = 1, . . . ,m, let ν` ∈ Rn be
the `’th row of ΦG. Note that ν` can be written as

ν` = 4((r
(`)
1 )2, (r

(`)
2 )2, . . . , (r(`)

n )2), (C.18)

which implies that ‖ν`‖2 ≤ 4
√
n. We can then write

Φ†Gξ
(j,j′) =

∑m
`=1 ν`(ξ

(j,j′))`, which can be bounded
by:

‖Φ†Gξ
(j,j′)‖2 ≤

m∑
`=1

‖ν`‖2|(ξ(j,j′))`|

≤ 4
√
n‖ξ(j,j′)‖1

≤ 4
√
nm‖ξ(j,j′)‖2

≤ 16m
√
n.

(C.19)

We can then upper-bound ‖uvec(Φ†DΦ(diag(u)))‖∞
using a similar approach as before, i.e., using a union
bound over all 1 ≤ j < j′ ≤ n, and a Hoeffding-type
large deviation bound. This yields:

‖uvec(Φ†DΦ(diag(u)))‖∞

≤ 16m
√
n(1 +

√
2)ε′′′1

√
ln(n)

c′
, (C.20)

with failure probability at most 1
2e · n

−(1+2
√

2). Fi-
nally, we combine (C.10), (C.16) and (C.20) to prove
(V.15), as desired.

Next, we will prove (V.16), using the same ap-
proach we used to prove (V.15). We will bound

‖uvec(Φ†D,T c(I − P )z)‖∞, by splitting it into two

terms, using (V.17), as follows:

‖uvec(Φ†D,T c(I − P )z)‖∞
≤ ‖uvec(Φ†D,T c(I − P )v)‖∞
+ ‖uvec(Φ†D,T c(I − P )Φ(diag(u)))‖∞.

(C.21)

We can bound the first term in (C.21) as follows:

‖uvec(Φ†D,T c(I − P )v)‖∞
= max

(j,j′)∈T c
|eTj (Φ†D,T c(I − P )v)ej′ |

≤ max
j<j′
|vT (I − P )ΦD(eje

T
j′)|

= max
j<j′
|vT (I − P )ξ(j,j′)|,

(C.22)

where we defined ξ(j,j′) previously in equation
(C.12). Note that

‖(I − P )ξ(j,j′)‖2 ≤ ‖ξ(j,j′)‖2 ≤ 4
√
m, (C.23)

since P is a projector. We can then repeat the same
argument that led to equation (C.16). This yields:

‖uvec(Φ†D,T c(I−P )v)‖∞ ≤ 4
√
m(1+

√
2)ε′′′2

√
ln(n)

c′
,

(C.24)

with failure probability at most 1
2e · n

−(1+2
√

2).
We now bound the second term in (C.21), using a

similar approach:

‖uvec(Φ†D,T c(I − P )Φ(diag(u)))‖∞
= max

(j,j′)∈T c
|eTj (Φ†D,T c(I − P )Φ(diag(u)))ej′ |

≤ max
j<j′
|uTΦ†G(I − P )ΦD(eje

T
j′)|

= max
j<j′
|uTΦ†G(I − P )ξ(j,j′)|.

(C.25)
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We can bound Φ†G(I − P )ξ(j,j′) in the same way as
before:

‖Φ†G(I − P )ξ(j,j′)‖2 ≤
m∑
`=1

‖ν`‖2|((I − P )ξ(j,j′))`|

≤ 4
√
n‖(I − P )ξ(j,j′)‖1

≤ 4
√
nm‖(I − P )ξ(j,j′)‖2

≤ 16m
√
n.

(C.26)

We can then repeat the same argument that led to
equation (C.20). This yields:

‖uvec(Φ†D,T c(I − P )Φ(diag(u)))‖∞
≤ 16m

√
n(1 +

√
2)ε′′′1

√
ln(n)/c′,

(C.27)

with failure probability at most 1
2e · n

−(1+2
√

2). Fi-
nally, we combine (C.21), (C.24) and (C.27) to prove
(V.16), as desired.

Appendix D: Convergence of the Random Walk

Here we prove equation (VII.6), which shows the
convergence of the random walk that is used to
choose the evolution time t.

We will bound the upper tail probability,
Pr[sNsteps

≥ s∗ + ` | s0 = 0]. (The lower tail,
Pr[sNsteps

≤ s∗ − ` | s0 = 0], can be handled in a
similar way.)

The basic idea is to argue that, if sNsteps ≥ s∗ +
`, then the random walk must spend a significant
amount of time in the region above s∗, and this is
unlikely to happen, because the walk tends to drift
down towards s∗. More precisely, let us define the
events

E−1 =

(Nsteps−1∧
k=0

(sk ≥ s∗ + 1)

)
∧ (sNsteps

≥ s∗ + `),

(D.1)
and for 0 ≤ j ≤ Nsteps − 1,

Ej = (sj = s∗) ∧
(Nsteps−1∧

k=j+1

(sk ≥ s∗ + 1)

)
∧ (sNsteps ≥ s∗ + `).

(D.2)

That is, the event E−1 occurs if the walk is strictly
above s∗ at all times ≥ 0, and the walk ends at or
above s∗ + ` at time Nsteps. The event Ej occurs
if the walk touches s∗ at time j, the walk remains

strictly above s∗ after time j, and the walk ends at
or above s∗ + ` at time Nsteps. (Note that the event
Ej can only occur if j ≤ Nsteps − `, since it takes at
least ` steps for the walk to move from s∗ to s∗+ `.)
We can bound the upper tail probability in terms of
the events E−1 and Ej , as follows:

Pr[sNsteps
≥ s∗ + ` | s0 = 0]

≤ Pr[E−1 | s0 = 0] +

Nsteps−`∑
j=0

Pr[Ej | s0 = 0].

(D.3)

(Note that some of these events may occur with
probability 0. For instance, the event E0 (condi-
tioned on s0 = 0) can only occur if s∗ = 0. Sim-
ilarly, the event E−1 (conditioned on s0 = 0) can
only occur if s∗ ≤ −1.)

We now use martingale techniques to bound the
probabilities of the events E−1 and Ej . For j ≥ 1,
let us define random variables

zj = sj − E[sj | sj−1, . . . , s0]. (D.4)

Note that the zj form a martingale differ-
ence sequence with respect to the sj , that is,
E[zj | sj−1, . . . , s0] = 0, and the zj are bounded,
|zj | ≤ 2. In addition, for j′ ≥ 1, let us define ran-
dom variables

γj′ =

j′∑
j=1

zj . (D.5)

(We also define γ0 = 0.) Note that the γj
form a martingale with respect to the sj , that is,
E[γj | sj−1, . . . , s0] = γj−1, and the γj have bounded
differences, |γj − γj−1| ≤ 2.

Using these definitions, we can write the following
expression for sj′′ − sj′ (for any j′′ ≥ j′):

sj′′ − sj′ =

j′′∑
k=j′+1

zk + E[sk | sk−1, . . . , s0]− sk−1

= γj′′ − γj′ +

j′′∑
k=j′+1

E[sk | sk−1, . . . , s0]− sk−1.

(D.6)

Furthermore, via Azuma’s inequality, we have the
following large deviation bound: for any λ ≥ 0,

Pr[γj′′ − γj′ ≥ λ] ≤ exp(− λ2

8(j′′−j′) ). (D.7)
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We will now bound the probability Pr[E−1 | s0 =
0]. As noted earlier, this event implies that s∗ ≤ −1.
We know that s∗ ≥ −h, hence s0 ≤ s∗ + h. Using
equations (VII.3), (D.1) and (D.6), this implies:

`− h ≤ sNsteps
− s0

≤ γNsteps
− γ0 − µNsteps.

(D.8)

Hence, using (D.7), and the fact that Nsteps = h
µ +η,

we have:

Pr[E−1 | s0 = 0]

≤ Pr[γNsteps
− γ0 ≥ `− h+ µNsteps | s0 = 0]

≤ exp

(
− (`− h+ µNsteps)

2

8Nsteps

)
= exp

(
− (`+ µη)2

8(hµ + η)

)
≤ exp

(
− µη

16 max{hµ , η}
(`+ µη)

)
= exp(− µ

16 min{µηh , 1}(`+ µη)).

(D.9)

In a similar way, we can bound the probability

Pr[Ej | s0 = 0]. Suppose that the event Ej hap-
pens. Using equations (VII.3), (D.2) and (D.6), this
implies:

` ≤ sNsteps
− sj

≤ γNsteps
− γj − µ(Nsteps − j − 1).

(D.10)

Hence, using (D.7), and the fact that ` ≥ 1 ≥ µ, we
have:

Pr[Ej | s0 = 0]

≤ Pr[γNsteps
− γj ≥ `+ µ(Nsteps − j − 1) | s0 = 0]

≤ exp

(
− (`+ µ(Nsteps − j − 1))2

8(Nsteps − j)

)
≤ exp(−µ8 (`+ µ(Nsteps − j − 1))).

(D.11)

We can now bound the sum of these probabilities
as follows:

Nsteps−`∑
j=0

Pr[Ej | s0 = 0] ≤
Nsteps−`∑
j=0

exp(−µ8 (`+ µ(Nsteps − j − 1))) (D.12)

= exp(−µ8 `−
µ2

8 (Nsteps − 1))

Nsteps−`∑
j=0

exp(µ
2

8 j) (D.13)

= exp(−µ8 `−
µ2

8 (Nsteps − 1))
exp(µ

2

8 (Nsteps − `+ 1))− 1

exp(µ
2

8 )− 1
(D.14)

≤ exp(−µ8 `−
µ2

8 (Nsteps − 1)) 8
µ2 exp(µ

2

8 (Nsteps − `+ 1)) (D.15)

≤ 8
µ2 exp(−µ(µ+1)

8 `+ µ2

4 ). (D.16)

Finally, combining equations (D.3), (D.9) and
(D.12), we get the desired bound on the upper tail
Pr[sNsteps

≥ s∗+` | s0 = 0]. The bound on the lower
tail Pr[sNsteps

≤ s∗−` | s0 = 0] is proved in a similar
way. This completes the proof of (VII.6).

Appendix E: Bounding SPAM errors

We first give a derivation of equations (VIII.7)
and (VIII.8). Note that the evolution of E0 and
ρ0 is known. Additionally, we have Tr[E0Et(δρ)] =

Tr[E†t (E0)δρ], where E†t = exp(L†t) is the adjoint de-
phasing map, which coincides with Et in our case as

34



the Lindblad operators are all Hermitian. Therefore,

Tr[E0Et(δρ)] = Tr[E†t (|a〉〈a|)δρ] + Tr[E†t (|b〉〈b|)δρ] + Tr[E†t (|a〉〈b|)δρ] + Tr[E†t (|b〉〈a|)δρ] (E.1)

= Tr[|a〉〈a|δρ] + Tr[|b〉〈b|δρ] + e−ΓrtTr[|a〉〈b|δρ] + e−ΓrtTr[|b〉〈a|δρ] (E.2)

= ηs + ζse
−Γabt (E.3)

Tr[δEEt(ρ0)] = Tr[δEEt(|a〉〈a|)] + Tr[δEEt(|b〉〈b|)] + Tr[δEEt(|a〉〈b|)] + Tr[δEEt(|b〉〈a|)] (E.4)

= Tr[δE|a〉〈a|] + Tr[δE|b〉〈b|] + e−ΓrtTr[δE|a〉〈b|] + e−ΓrtTr[δE|b〉〈a|] (E.5)

= ηm + ζme
−Γab (E.6)

We see that both terms decay with the rate Γab.
Therefore, as noted in Section VIII, the outcome
of the protocol in the presence of error is given by
P̃ab(t) = 1

2 (1+ηs+ηm+(1+ζs+ζm)e−Γabt)+R(t),
where deviations form a single exponential decay
e−Γabt are captured in R(t) = Tr[δEEt(δρ)]. To
bound the growth of this term we have

|Ṙ(t)| = | ∂∂tTr[δEEt(δρ)]| (E.7)

= |Tr[δEL(δρ)]| (E.8)

≤ ‖δE‖‖L(δρ)‖tr (E.9)

≤ ‖δE‖‖
∑
ij

LiδρL
†
j − 1

2{L
†
jLi, δρ}‖tr

(E.10)

≤ ‖δE‖
∑
ij

‖LiδρL†j − 1
2{L

†
jLi, δρ}‖tr

(E.11)

≤ ‖δE‖‖δρ‖tr
∑
ij

2‖Li‖‖L†j‖ (E.12)

≤ 2εmεs(n+ s) (E.13)

where we used the Hölder’s inequality [54] in go-
ing from (E.8) to (E.9). Additionally, in deriving
(E.12) from (E.11) we used the fact that ‖AB‖tr ≤
‖A‖‖B‖tr, which we will prove in the following. Fi-
nally, the last line is obtained by noting that Li = Zi
in our problem and ‖Zi‖ = 1.

We can obtain ‖AB‖tr ≤ ‖A‖‖B‖tr, by first
showing that for any matrix A and B, σ(AB)i ≤
σmax(A)σi(B), where σi are the ordered singular val-

ues [55]. We then use that to obtain

‖AB‖tr =
∑
i

σi(AB) (E.14)

≤ σmax(B)
∑
i

σi(A) (E.15)

= ‖B‖‖A‖tr. (E.16)

To show that σ(AB)i ≤ σmax(A)σi(B), first note
that for Hermitian matrices A and B we have:

A ≥ B =⇒ λi(A) ≥ λi(B) (E.17)

where λi’s are ordered eigenvalues. We then show
that λi(AB) ≤ λmax(A)λi(B) if A ≥ 0 and B ≥ 0.

Note that λi(AB) = λi(B
1
2AB

1
2 ), which can be seen

by

AB|i〉 = λi|i〉 =⇒ B
1
2AB

1
2 (B

1
2 |i〉) = λi(B

1
2 |i〉)
(E.18)

Next, note that λmax(A)I − A ≥ 0. There-

fore, B
1
2 (λmax(A)I − A)B

1
2 ≥ 0. This is because

〈x|B 1
2 (λmax(A)I−A)B

1
2 |x〉 = 〈y|λmax(A)I−A|y〉 ≥

0 for all |y〉 = B
1
2 |x〉. We then obtain

B
1
2AB

1
2 ≤ B 1

2AB
1
2 +B

1
2 (λmax(A)I −A)B

1
2

= λmax(A)B

(E.19)

Therefore, B
1
2AB

1
2 ≤ λmax(A)B together with

(E.17) implies that

λi(AB) = λi(B
1
2AB

1
2 ) ≤ λmax(A)λi(B). (E.20)

Now for arbitrary square matrices A and B we have

σi(AB) =
√
λi(B†A†AB) =

√
λi(A†ABB†).

(E.21)
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Therefore, we can use (E.20) for positive-
semidefinite matrices A†A and BB† to obtain

λi(A
†ABB†) ≤ λmax(A†A)λi(BB

†). (E.22)

Since both sides of the inequality are positive, we
can take their square root to obtain

σi(AB) ≤ σmax(A)σi(B). (E.23)

Appendix F: Isotropy of the measurements Ωab

In this section we show that the random vectors
q in equation (IX.11) are centered and isotropic (up

to a normalization factor of
√

2), as claimed in equa-
tion (IX.12). Noting that αi and βi are chosen uni-
formly and independently at random from {−1, 1}
we find that

E[αiαj ] = E[αiβj ] = E[βiβj ] = 0, (F.1)

which shows that E[q] = 0.
To show that E(qqT ) = I, we have to consider

three types of correlations: (i) correlations between

the elements of uvec(αβT − βαT ), (ii) correlations

between the elements of uvec(ααT −ββT ), and (iii)
cross-correlations between these two types of ele-
ments.

We start with correlations of type (i). We consider

E[(αiβj − βiαj)(αkβl − βkαl)]
= E[αiβjαkβl−αiβjβkαl−βiαjαkβl+βiαjβkαl].

(F.2)

Similar to the analysis in Section V D, we consider
three different cases for how the sets of indices can
intersect. Note that in the following we assume i < j
and k < l, as we are only considering the off-diagonal
upper-triangular parts of V . If {i, j} ∩ {k, l} = ∅ we
have

E[αiβjαkβl−αiβjβkαl−βiαjαkβl +βiαjβkαl] = 0,
(F.3)

because of the symmetry of the terms. If |{i, j} ∩
{k, l}| = 1, without the loss of generality we assume
that i = k and find

E[αiβjαkβl] = E[α2
iβjβl] = E[βjβl] = 0

E[αiβjβkαl] = E[αiβiβjβl] = 0

E[βiαjαkβl] = E[βiαiαjβl] = 0

E[βiαjβkαl] = E[β2
i αjαl] = E[αjαl] = 0

.

(F.4)

Therefore, we find

E[αiβjαkβl−αiβjβkαl−βiαjαkβl +βiαjβkαl] = 0.
(F.5)

Note that if we had assumed j = l we would have
obtained the same results. Finally, when |{i, j} ∩
{k, l}| = 2, we have that i = k and j = l and find

E[αiβjαkβl − αiβjβkαl − βiαjαkβl + βiαjβkαl]

(F.6)

= E[α2
iβ

2
j − αiβiαjβj − αiβiαjβj + β2

i α
2
j ] (F.7)

= 2 (F.8)

Next we consider correlations of type (ii), that is,

E[(αiαj − βiβj)(αkαl − βkβl)]
= E[αiαjαkαl−αiαjβkβl−βiβjαkαl+βiβjβkβl],

(F.9)

where i < j and k < l. Similarly, we consider differ-
ent cases: If {i, j} ∩ {k, l} = ∅ we have

E[αiαjαkαl−αiαjβkβl−βiβjαkαl +βiβjβkβl] = 0,
(F.10)

because of the symmetries. If |{i, j} ∩ {k, l}| = 1,
without the loss of generality we assume that i = k
and find

E[αiαjαkαl] = E[α2
iαjαl] = E[αjαl] = 0

E[αiαjβkβl] = E[αiβiαjβl] = 0

E[βiβjαkαl] = E[βiαiβjαl] = 0

E[βiβjβkβl] = E[β2
i βjβl] = E[βjβl] = 0

.

(F.11)
Therefore, we find

E[αiαjαkαl−αiαjβkβl−βiβjαkαl +βiβjβkβl] = 0.
(F.12)

Finally, when |{i, j}∩ {k, l}| = 2, we have i = k and
j = l and find

E[αiαjαkαl − αiαjβkβl − βiβjαkαl + βiβjβkβl]

(F.13)

= E[α2
iα

2
j − αiβiαjβj − αiβiαjβj + β2

i β
2
j ] (F.14)

= 2. (F.15)

Finally, we consider cross-correlations of type
(iii), which are given by

E[(αiβj − βiαj)(αkαl − βkβl)]
= E[αiβjαkαl−αiβjβkβl−βiαjαkαl+βiαjβkβl],

(F.16)
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with i < j and k < l. If {i, j} ∩ {k, l} = ∅ we have

E[αiβjαkαl−αiβjβkβl−βiαjαkαl +βiαjβkβl] = 0,
(F.17)

because of the symmetries. If |{i, j} ∩ {k, l}| = 1,
without the loss of generality we assume that i = k
and find

E[αiβjαkαl] = E[α2
iβjαl] = E[βjαl] = 0

E[αiβjβkβl] = E[αiβjβiβl] = 0

E[βiαjαkαl] = E[βiαjαiαl] = 0

E[βiαjβkβl] = E[β2
i αjβl] = E[αjβl] = 0

.

(F.18)
Therefore, we find

E[αiβjαkαl−αiβjβkβl−βiαjαkαl +βiαjβkβl] = 0.
(F.19)

Finally, when |{i, j} ∩ {k, l}| = 2, we assume i = k
and j = l and find

E[αiβjαkαl − αiβjβkβl − βiαjαkαl + βiαjβkβl]

(F.20)

= E[α2
iβjαj − αiβiβ2

j − βiαiα2
j + β2

i αjβj ] (F.21)

= 0 (F.22)

Therefore, given all cases considered here we ar-
rive at equation (IX.12).
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