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We use machine learning to classify rational two-dimensional conformal field theories. We first use the energy
spectra of these minimal models to train a supervised learning algorithm. We find that the machine is able to
correctly predict the nature and the value of critical points of several strongly correlated spin models using
only their energy spectra. This is in contrast to previous works that use machine learning to classify different
phases of matter, but do not reveal the nature of the critical point between phases. Given that the ground-state
entanglement Hamiltonian of certain topological phases of matter are also described by conformal field theories,
we use supervised learning on Réyni entropies, and find that the machine is able to identify which conformal
field theory describes the entanglement Hamiltonian with only the lowest few Réyni entropies to a high degree
of accuracy. Finally, using autoencoders, an unsupervised learning algorithm, we find a hidden variable that has
a direct correlation with the central charge and discuss prospects for using machine learning to investigate other
conformal field theories, including higher-dimensional ones. Our results highlight that machine learning can be
used to find and characterize critical points and also hint at the intriguing possibility to use machine learning to
learn about more complex conformal field theories.

Introduction.— Conformal field theories (CFT), which are
quantum field theories with conformal invariance, appear in
many areas of physics including condensed matter, statisti-
cal physics, and string theory [1, 2]. This procedure turns
out to be especially powerful in two spacetime dimensions
(one spatial dimensional and one temporal dimension), where
the conformal group is infinite-dimensional, and certain two-
dimensional CFTs may be classified by a finite number of pri-
mary fields [1, 2]. These CFTs, which are realized in a number
of physically relevant systems, including the low-energy the-
ory of the quantum critical point of the transverse-field Ising
model [3], the edge states (along with the ground-state en-
tanglement Hamiltonian) of fractional quantum Hall systems
[4, 5], and the Polyakov action describing the world sheet in
string theory [6], are important for being rare examples of ana-
lytically tractable strongly-interacting quantum field theories.

Therefore, given some data of a quantum system, it is im-
portant to identify whether that system is described by a CFT.
This data, obtained from either experimental measurements
or numerical simulations, could be the few lowest energy lev-
els of a given Hamiltonian or Rényi entanglement entropies,
which can be measured by probing multiple copies of the sys-
tem’s state [7–11]. In particular, it is interesting to ask if this
information can be used to detect whether a system is at a
critical point, and what kind of CFT describes it the best. To
address this question, we turn to machine learning.

Machine learning has been increasingly used to study a
wide range of problems in different areas of physics over the
past few years [12]. Notable examples include: classifying
phases of matter [13–15], studying non-equilibrium dynam-
ics of physical systems [16–18], studying the string theory
landscape [19] and AdS/CFT correspondence [20], simulating
dynamics of quantum systems[21], quantum state tomogra-
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FIG. 1. Schematic illustration of the machine-learning algorithms
to identify different CFTs. The pre-processed energy spectrum or
Renyi entropies are stored into a vector that serves as an input to
the algorithms. We consider two scenarios: supervised learning, and
unsupervised learning. In the former, labels of the CFT class are pro-
vided to a neural network classifier, which predicts the CFT theory
that describes the given CFT data. In the latter, we use an autoen-
coder neural network, which learns an efficient representation of the
energy spectra. The first half of the network acts as an encoder that
maps the input to a single scalar variable ω, and the second half de-
codes ω and reconstructs the original input. We find that ω is directly
correlated to the central charge.

phy [22, 23], and augmenting capabilities of quantum devices
[24, 25].

In this work, we use both unsupervised and supervised ma-
chine learning to investigate various two-dimensional CFTs,
as sketched in Fig.1. For supervised learning, we use a deep
neural network. Our first training data set is the lowest energy
levels of exactly-solvable two-dimensional CFTs. The chosen
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CFT models include the well-known Ising critical point and
SU(2)k anyonic chain parafermonic model (see Table I for a
full list). We then ask the machine to locate and predict the
nature of critical points of quantum spin-chains to high ac-
curacy. By looking at the confidence of the network, we are
able to correctly identify the value of the critical point. Re-
markably, our approach requires a single system size, whereas
common methods (such as entanglement scaling [26]) require
finite-size scaling. Given that the entanglement spectra (ES)
of various topological phases of matter are also described by
CFTs [5, 27], we train our network with the lowest few Réyni
entropies. While the relationship between Réyni entropies and
ES is non-linear and requires all Réyni entropies to solve for
the ES exactly, we are able to extract the CFT that describes
the ES of two different spin-ladder systems to high accuracy
with only having access to the lowest few Réyni entropies.
Finally, we use the autoencoder algorithm [28], i.e. an unsu-
pervised learning algorithm, and we find that the value of the
hidden variable is directly related to the central charge. This
gives us a hint that the machine can detect the complexity of
CFTs.

Machine learning and CFT basics.—We first review the
CFT knowledge needed to generate our training data (see
Ref. [1] for a detailed review of CFTs and Ref. [28] for ma-
chine learning), which is taken to be the lowest twenty energy
levels of a finite-size model. We take our system to have peri-
odic boundary conditions, although our approach can be read-
ily generalized to include other boundary conditions. In this
work, we restrict ourselves to rational CFTs (RCFTs), which
only contain a finite number of primary fields, and we fur-
thermore focus on CFTs with field content such that they are
modular invariant (see the Supplementary Material A for def-
initions and details). Our methods may easily be applied to
CFTs with non-modular invariant field content.

The discrete energy levels (in units of 2π/L, where L is
the length of the system, and ~ = 1) of a generic finite one-
dimensional model which flows to a CFT is given by [1]

E = E1L+ E0 +
2πv

L

(
− c

12
+ hL + hR

)
, (1)

where E1, E0, and v are non-universal constants, and c is the
central charge of the CFT. We are also omitting subleading
dependence on L due to corrections to the scaling limit. Here,
hL = h

(0)
L + mL and hR = h

(0)
R + mR, where h(0)

L , h
(0)
R

correspond to scaling dimension of the primary fields and mL

and mR are non-negative integers describing the descendant
fields.

As a definite example, we now discuss the structure of the
primary descendant fields for the critical Ising model, the sim-
plest non-trivial CFT and an example of a Virasoro minimal
model. With modular invariance imposed, there are three pri-
mary fields for this model, h(0)

L,R = 0, 1
16 and 1

2 . The number
of descendant fields can be calculated by expanding the so-
called character function, as reviewed in the Supplementary
Material . Upon doing so, one finds the lowest ten energy
levels of this CFT (with the ground state energy set to zero)

Model Class Central charge
(A3, A2) - Ising 0 • 1/2

(A4, A3) - Tricritical 1 • 7/10
(D4, A4) 2 • 4/5
(A6, D4) 3 • 6/7

Z4 parafermion 4 • 1
Z5 parafermion 5 • 8/7
Z6 parafermion 6 • 5/4

N = 1 SCFT, k = 5 7 • 81/70
N = 1 SCFT, k = 7 8 • 55/42

(Ak+1, Ak), k = 5− 8 9− 12 1− 6/(k(k + 1))

TABLE I. List of all conformal field theories, i.e. classes, we include
in our supervised training. We use color dots to indicate the CFT
shown in Figs. 2 and 3.

are 2πv
L × {0,

1
8 , 1,

9
8 ,

9
8 , 2, 2, 2, 2,

17
8 }. The energy spectrum

of some of the other models we consider are discussed in the
Supplemental Material, and the list of all CFTs we consider
for unsupervised learning is given in Table I. We stress that
this is by no means a complete list of RCFTs, as there are
actually an infinite number of them.

We use a neural network to classify the input CFT spectra
into their corresponding CFT classes (see Fig. 1). Specifi-
cally, we use the following neural network architecture with
the input and output being the first 15 energy levels and their
corresponding CFT class labels from the 13 CFT classes in

Table I: R15 R5 R13 R13linear relu softmax . The layers
are represented by their domain and the expressions above the
arrows indicate the activation functions of each layer. To train
the network we take samples of the energy spectra of different
CFT classes and add a noise term drawn randomly from the
uniform distribution in (−ε, ε). This is physically motivated
by the existence of experimental measurement errors or sub-
leading corrections to Eq. (1). It also serves as a form of data
augmentation than can prevent overfitting [28]. We also pre-
process the input such that the ground state energy is set to
zero and the other energies are rescaled so that largest energy
level is 1. This removes the contributions of the non-universal
constants in the input data (see Supp. Mat.). We then opti-
mize the categorical cross entropy over 3000 samples for each
class with ε = 0.1. The optimization is performed using the
Adam optimizer with hyperparameters given in Ref. [29] in
2000 epochs with the batch size set to 128.

Critical spin-chains.— We now use the network trained
on ideal CFT energy spectra with added noise, to make pre-
dictions for two physical models. Specifically, we feed the
machine energy spectra from two many-body quantum spin
models obtained using exact diagonalization. By analyzing
the output of the machine, we are able to predict the location
of the critical point and the type of CFT that describes it.

We first consider the transverse-field Ising model, HI(h) =

−
∑L
i=1 σ

z
i σ

z
i+1−h

∑L
i=1 σ

x
i . Here, σiα are the Pauli matrices

on site i and h is a global magnetic field. For h = 1, the low-
energy theory of HI is a CFT whose central charge is c = 1/2
(minimal model (A3, A2)). We perform exact diagonalization
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FIG. 2. Predictions of our supervised machine learning approaches
on the spectrum data transverse field Ising model as a function of the
transverse field h. (a) The confidence, i.e entropy, S, of the neural
network. (b) The Gaussian distance, d2, between the energy spec-
trum of HISING and the energy spectrum of the first 9 CFTs in Ta-
ble I. The numbers in the legend refer to the CFT class.

FIG. 3. Predictions of our supervised machine learning approaches
on a spin model composed of the transverse field Ising Hamiltonian
with h = 1 (see Fig. 2) with added three-body interaction terms that
are controlled by a parameter λ. (a) The entropy of probabilities, S,
of the neural network. (b) The Gaussian distance, d2, between the
energy spectrum of HT and the energy spectrum of the first 9 CFTs
in Table I. The numbers in the legend refer to the CFT class.

(for L = 22) for different h and feed the energy spectrum
into the network. In Fig. 2a, we observe that the entropy S of
the output layer, S = −

∑
i pi ln pi, where pi corresponds to

the i th value of the output softmax layer, is minimal at h =
1 and has a large probability of being described by minimal
model (A3, A2). This indicates that the network has not only
correctly predicted the location of the critical point for this
model, but also the nature of the critical point.

Before moving on to the next model, we discuss another

quantitative approach to identifying CFTs from energy spec-
tra. We consider a clustering algorithm, using the Gaus-
sian kernel of the euclidean distance, i.e., d2(x, cm) =

e−||x−cm||
2
2 , where x is the input spectra and cm is the cen-

ter of the m’th cluster [28]. In our work, the ideal center of
clusters is known from the CFT theory. Therefore, given an
energy spectra, we calculate and compare the kernel on the
rescaled input and the cluster centers of each CFT. In Fig. 2b,
we plot d2 for the Ising model and various CFTs. We ob-
serve that d2 is peaked around the critical point for only the
Ising model (Fig 2b), similar to the neural network approach
(Fig 2a). However, we believe the neural network approach
will be more reliable as it does not rely on a single energy
spectrum.

We now move to a more complicated model, which has two
critical points described by different CFTs and both two-body
and three-body interactions. The Hamiltonian of this model,
originally introduced in Ref. [30], is given byHT = 2HI(1)+
λH3, where H3 =

∑
j σ

x
j σ

z
j+1σ

z
j+2 + σzjσ

z
j+1σ

x
j+2. For

λ = 0, this model is described by minimal model (A3, A2)
as discussed above. When λ ≈ 0.856, the low-energy the-
ory of this model is described by a different minimal model,
(A4, A3). Again, we feed the network the many-body energy
spectrum for various λ. In Fig. 3a we observe that the ma-
chine is correctly able to identify the location and underlying
CFTs of the two critical points with high accuracy. Similar
results are seen for the Gaussian kernel method (Fig. 3b).

Rényi Entropies.— We now consider training with Réyni
entropies. This is motivated by the fact that the (bipartite real-
space) entanglement Hamiltonian, He, of two-dimensional
topological phases is often described by (either chiral or non-
chiral) one-dimensional CFTs [5, 27]. Unfortunately, it is hard
to experimentally measure the eigenvalues of He, i.e. the ES
(although there are various theoretical proposals on how to do
so [31]). Instead, one typically measures the Réyni entropy
by preparing multiple copies of the state and interfering them
[9]. Furthermore, one can calculate Sn with quantum Monte
Carlo, making the calculation of entanglement more manage-
able for larger systems [11, 32]. We will demonstrate that,
given a critical He [33], one can train neural-networks with
Réyni entropies to correctly identify the underlying CFT.

The n-th Réyni entropy is defined as Sn = 1
1−n ln TrρnA,

where ρA is the reduced density matrix and n is some positive
integer not equal to one. The ES (eigenvalues of − ln(ρA))
can be obtained with knowledge of Sn for all n. In practice
one can obtain an estimate of ES with only a finite number
of Sn [7, 32]. In these approaches, the ES is obtained from
the roots of a polynomial equation, whose coefficients are re-
lated to Réyni entropies through Newton’s identities. How-
ever, root-finding algorithms are sensitive to errors in the co-
efficients, making such schemes unstable in the presence of
errors in Sn measurements [34]. We approach this problem
using machine-learning.

If He is a CFT, the ith ES level is given by εi = ε0 +
ε1L + 2πv

L ni, where ni is the universal part of the spectrum
(see Eq. (1)). We remind the reader ni is different set of num-
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FIG. 4. Probability of the neural network predicting the correct
CFT of the entanglement Hamiltonian for the square (triangle) Ising
model, depicted with square (diamond), as a function of number of
Réyni entropies included in training samples. The overall accuracy
of the network is benchmarked using the test data, shown as dark
blue circles.

bers for each respective CFT. Sn, which is only a function of
v
L (for a given CFT), can then be written as

Sn = (1− n)−1 ln[(
∑
i=0

e−n
2πv
L ni)/(

∑
i=0

e−
2πv
L ni)n]. (2)

We restrict the sum in Eq. (2) to the lowest 100 ES levels. For
training, we consider a finite range of v

L ∈ (0.2, 10). This
range is chosen not to include large (small) v

L where excited
state information is washed out (choice of cut-off plays an
important role). Also, note that for larger n, Sn becomes less
dependent on the cut-off by definition. Thus, in the chosen
range of v

L , the choice of cut-off, i.e. simply truncating the
sum, has little effect on our results.

Instead of each sample being a vector of energy lev-
els as in the previous section, it is a vector of Réyni en-
tropies, (S2, S3, . . . ). Here, we include up to 28 Réyni
entropies, starting with S2. We train our machine with
10000 different samples for each CFT class (same classes
used for energy spectrum training). We generate the data
uniformly by randomly choosing v

L . We obtain a train-
ing accuracy of up to 94 % depending on the number
of Sα included. Generally, upon increasing the number
of Sα included, the accuracy increases (see Fig. 4). We
now describe the training process. The network architec-

ture is: Rn R100 R20 R15 R13 R13relu relu relu relu softmax

where n is the number of Réyni entropies we use. Similar
to the classification of the energy spectra, we train the net-
work by optimizing the cross-entropy using the Adam opti-
mizer [29], this time with 500 epochs and batch size set to
128.

We now test our model on two exactly-solvable systems
[27]. The (unnormalized) ground state of these two models,
which can be regarded as quantum spin ladders, can be writ-
ten as |ψ(z)〉 =

∑
τ,σ[T (z)]τ,σ|τ〉|σ〉. For the square ladder

model,

[T (z)]τ,σ =

L∏
i=1

z(σi+τi)/2f(σ, τ), (3)

and for the triangle ladder model,

[T (z)]τ,σ =

L∏
i=1

z(σi+τi)/2f(σ, τ)(1− σiτi+1). (4)

Here, σi and τi are either 0 or 1 and f(σ, τ) = (1−σiτi)(1−
σiσi+1)(1 − τiτi+1). We then trace out one of the legs of
the ladder. The spectrum of ρA is identical to the spectrum
of the following matrix, M = 1

Ξ(z) [T (z)]TT (z), where Ξ(z)

ensures ρA is properly normalized. One can interpret T (z) as
the transfer matrix of certain two-dimensional classical mod-
els with known critical points. Hence, if T (z) is critical, He

will be critical [27]. The critical point of the square (triangle)
ladder is zc ≈ 3.8(11.1). The critical theories of the square
and the triangle ladder models are described by minimal mod-
els (A3, A2) and (D4, A4) respectively. We numerically cal-
culate Sn (from M ) at zc for L = 18 and use these numerical
results as input into our trained neural-network. We remark-
ably find that the neural-network correctly predicts the CFT
that describes He for both models with high accuracy. As ex-
pected, this accuracy generally increases as one increases the
number of Sα included in the training set (see Fig. 4).

Unsupervised Learning.— We now turn to using unsuper-
vised learning to explore two-dimensional CFTs. Our data
consists of three families of CFTs (see Fig. 5 for the list of
CFTs used for unsupervised training). We use autoencoders
[35] to find a compressed representation of the CFTs (see
Fig. 1). Previously, autoencoders have been able to detect
the order parameter, i.e. magnetization, in the Ising model
[14]. The autoencoder is comprised of an encoder function
ω = f(x) and a decoder function r = g(ω), where the hidden
variable ω encodes a compressed representation of the input
x. The hidden variable is used by the decoder to find the re-
construction r. By restricting the dimension of ω, the network
only approximately reconstructs the input, however, it learns
the important features of the training data and encodes it in
ω. Each class has 100 examples which consists of the lowest
100 energies of the CFT (with same noise added as our energy
based classification section.)

We train different autoencoders on a set of energies cor-
responding to different CFT classes by minimizing C =

1
Nm

∑
m||rm−xm||22,where the sum is taken overNm exam-

ples in the training set. The xm is a input of the first layer and
rm is a output of the last layer. x contains the first 100 energy
levels. We use the following architecture for the autoencoder:

R100 R5 Rh R5 R100,
relu sigmoid relu sigmoid

where
h is the dimension of the hidden variable ω. We train the net-
work by optmizing C, using the Adam optimizer with 2000
epochs and batch sizes equals to 256. We consider the sim-
pliest case of h = 1 and show the value of ω for different
CFT spectra in Fig. 5. We observe that within a single fam-
ily of CFTs, the magnitude of the hidden variable has positive
correlation with k, and hence the central charge.

Finally, we note recent work used supervised machine
learning to investigate CFT correlation functions and the
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FIG. 5. Unsupervised learning: The hidden variable as a function
of the central charge for different CFT families (different colors and
markers). We observe that within a family, the one-dimensional hid-
den variable ω is a monotonous function of the central charge.

emergence of conformal invariance [36]. Recently, it is been
demonstrated that for the specific conformal field theory like
Ising CFT, one can use an unsupervised learning method to
classify them without dimensional reduction [37, 38]. How-
ever, the information of the critical point should be known in
advance which is different from our work. Our work specifies
conformal field theory by using the hidden variable when re-
stricting to a single-family without knowing the critical point
in advance. In the future, it would be interesting to include
correlation functions in our unsupervised training to see if
could distinguish different families of CFTs.

Discussion.— We have investigated possible applications
of machine learning for CFTs. By supervised training with
two-dimensional CFT energy spectra and Réyni entropy, we
find our network can identify the critical points of many-body
models to high-accuracy. In the case of energy spectra, our
network is also able predict the location of critical points. For
the unsupervised learning part, we see that the latent variable
increases with the central charge of the CFT (for a given CFT
family) suggesting that machine learning can detect the com-
plexity of CFTs.

There are several directions where our work can be read-
ily extended. For example, the entanglement Hamiltonian of
a CFT can always be written in terms of the boost operator
[39, 40], to which our methods may be applied. For critical
one-dimensional systems, the entanglement spectra for partic-
ular entanglement cuts correspond with the spectra of bound-
ary CFTs [41–43], which are also known [44–46]. We be-
lieve the methods developed in this Letter can be straight for-
wardly extended to these CFTs. Including more complicated
two-dimensional CFTs in the energy spectrum training pro-
cess (such as non-unitary CFTs [47–50], floquet CFTs [51–
53], CFTs with continuous scaling dimensions [41], and the
product of two CFTs [54]) would also be a worthwhile avenue
to pursue.

Finally, it would be extremely interesting to use machine-
learning techniques investigate higher-dimensional CFTs

where the conformal group is no longer infinite dimensional
and much less is understood about the structure of the en-
ergy spectrum. The most convenient geometry for exact di-
agonalization in 2+1D is the torus, where the low-energy
energy spectrum is a universal fingerprint of the universal-
ity class described by the CFT. Recent studies have obtained
the low-energy torus spectra for CFTs in several universality
classes, including the Wilson-Fisher CFTs and related Z2 con-
finement transitions [55–57], the fermionic chiral (or Gross-
Neveu) fixed points [58], and QED3 [59]. In principle, the
data obtained in these studies could be used as training data
for a generalization of the present work to 2+1D, including
the unsupervised learning portion. One could then imagine
training with both standard order parameters [13–15] and en-
ergy spectra to establish phase diagrams and the nature of crit-
ical points in higher-dimensions.
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Appendix A: Two-dimensional conformal field theories

In this section, we summarize the important aspects of
the two-dimensional CFTs relevant to the results presented in
this paper. Detailed discussions of two-dimensional CFTs can
be found in Refs. [1, 2, 60].

The Virasoro minimal models are the complete set of uni-
tary CFTs with a finite number of irreducible representations
under the Virasoro algebra; however, if a CFT is also invariant
under a larger symmetry group, it may be an RCFT by having
a finite number of irreducible representations under the ex-
tended symmetry algebra. This is the case for parafermionic
models and superconformal minimal models, which contain
conserved parafermionic and fermionic currents respectively.

The two-dimensional CFTs we consider may be specified
by a central charge, c, and a finite set of holomorphic and
anti-holomorphic fields, denoted by φhL(z) and φhR(z̄) re-
spectively. Here, we use complex coordinates z = x+ it and
z̄ = x − it to parametrize the two-dimensional coordinates
(x, t). The numbers (hL, hR), which are called the conformal
dimensions of the associated primary fields, are real numbers
which are generically independent. With this data, it is known
that the finite-size energy spectrum of a two-dimensional CFT
(in units of 2π/L) is given by Eq. (1), where the lowest states
correspond to primary fields, and the higher states are known
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as descendants. However, the degeneracy of the states corre-
sponding to primary operators and their descendants can be
nontrivial [61].

We now review the degeneracy structure of the energy spec-
trum. In this work, we simply present the result for the parti-
tion function and refer the reader to Ref. [1] for details. We
consider an RCFT on a torus with complex-valued periods
equal to ω1, ω2, and define the modular parameter of the torus
as τ = ω2/ω1. Then we can write the partition function of an
RCFT on the torus as [1]

Z(τ) =
∑
hL,hR

MhL,hRχhL(τ)χhR(τ̄), (A1)

where

χhL,R(τ) =

∞∑
n=0

dim(hL,R + n)qhL,R+n−c/24 (A2)

are the so-called characters associated with a given primary
operator φhL,R . Here, MhL,hR counts the number of occur-
rences of the primary φhL(z) × φhR(z̄) in the CFT, and we
use the parametrization q = e2πiτ .

The reason for considering the partition functon on the torus
is to demand that Z(τ) be left invariant under the modular
transformations τ → τ+1 and τ → −1/τ . This strongly con-
strains the structure of the spectrum investigated in the main
body of the paper. It is believed that only modular invari-
ant CFTs can be realized by a one-dimensional quantum lat-
tice model, although non-modular invariant CFTs may arise
as boundaries of two-dimensional lattice theories with bulk
topological order [62]. In the following we discuss the form
of χhL for the CFT families we are interested in.

1. Virasoro minimal models

In Virasoro minimal models, the central charge of the Vira-
soro algebra takes values of the type [63],

cp,q = 1− 6
(p− q)2

pq
, (A3)

where p, q are coprime integers such that p, q ≥ 2. Then the
allowed conformal dimensions of the (anti)holomorphic rep-
resentations are

hr,s =
(pr − qs)2 − (p− q)2

4pq
, with r, s ∈ N∗ (A4)

where

1 ≤ r ≤ q − 1 , 1 ≤ s ≤ p− 1 . (A5)

The (p, q) and (q, p) models are the same.
From the previous discussion, we know that the allowed

values of (hL, hR) and their degeneracies can be inferred by
the set of modular invariant partition functions on the torus.

The complete set of such partition functions has been entirely
worked out for the unitary minimal models using the so-called
ADE classification [64].

As a definite example, we consider the Ising CFT (c =
1/2), in which case there is only a single modular invariant
choice of operators. If one expands the partition function in
terms of the parameters q = e2πiτ , q̄ = e−2πiτ̄ , the full energy
spectrum and its degeneracy can be read off from the coeffi-
cients and powers of the expansion. For the Ising CFT, the
partition function turns out to be diagonal, meaning one only
allows fields of the form φhL(z)×φhR(z̄) with hL = hR, and
we can read off the spectrum from the degeneracy of q alone.
Just giving the q-dependence, and keeping terms up to q5 and
the level-3 descendants, the expansion is

q
1
12 (1− 6

3(4) )Zising = 1 + 8
√
q + q + 2q9/8 + 4q2 (A6)

+ 3q17/8 + 5q3 +O
(
q25/8

)
.

This expression should be read as follows: with energies mea-
sured with respect to the ground state and in units of 2π/L, we
have unique states with E = 0, 1/8, 1, a two-fold degenerate
state with E = 9/8, a four-fold degenerate state with E = 2,
a three-fold degenerate state with E = 17/8, etc. This ex-
plains how the energy level structure of the Ising model given
in the main text was obtained.

2. Zk parafermion CFTs

Zk parafermion CFTs have a central charge given by c =
2(k−1)
k+2 [63]. The conformal dimensions of the primary fields

of these CFTs are

hr,s =
r(r + 2)

4(k + 2)
− s2

4k
, (A7)

where r = 0, 1, ..., k and s = −r + 2,−l + 4, ..., r. The
associated character is [65]

χ(r,s)(τ) = η(q)crs(q), (A8)

where crs(q) is given by

crs(q) =
∑∞
l,m=0(−1)l+mq(k+r)lm+ 1

2 (l+1)l+ 1
2 (m+1)m ×

q−
c−1
24

+hr,s

η(q)3

(
q

1
2 l(r+s)+

1
2m(r−s) −

q
1
2 l(2k−r−s+2)+ 1

2m(2k−r+s+2)+k−r+1

)
, (A9)

and η(q) is the Dedekind eta function. The partition function
is then given by

Z(τ) =

2k−1∑
s=0

k∑
r=0

|χr,s(τ)|2. (A10)

One may show that the theories for k = 1, 2, 3 correspond
to Virasoro minimal models, but for k ≥ 4 we have new
RCFTs. In this paper, we include parafermionic theories with
k = 4, 5, 6, 7. The energy spectra of these models can be
obtained by the q expansion of Eq. (A10).
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3. N = 1 superconformal minimal models

The N = 1 superconformal minimal models have central
charge c = 3

2 −
12

k(k+2) , with k ≥ 2 an integer [63]. The
scaling dimension of the primary field is

hr,s =
[(k + 2)r − ks]2 − 4

8k(k + 2)
+

1

32

(
1− (−1)r+s

)
. (A11)

where 1 ≤ r ≤ k − 1 and 1 ≤ s ≤ k + 1. Fields with r + s
even have a conformal dimensions are given by:

h
′

r,s = hr,s +
1

2
+ δr+s,2. (A12)

The characters and partition function for this case are much
more envolved, and we refer the readers to Refs. [66, 67] for
their explicit expressions.

Appendix B: Preprocess procedure

In this section, we discuss how to eliminate the non uni-
versal constants E0, E1, L, v. We refer to this procedure as
preprocessing. We have the following relation,

E = E1L+ E0 +
2πv

L

(
− c

12
+ hL + hR

)
. (B1)

LetHi be the i-th value of hL+hR, which is an integer. Notice
that the lowest level, H0, is zero for all CFTs investigated
in this work. Defining {X0, X1, ...Xn} as our non universal
energies, we have

Xi = E1L+ E0 +
2πv

L

(
− c

12
+Hi

)
. (B2)

We then have the energy differences from the ground state,

2πv

L
Hi = Xi − (E1L+ E0) +

2πv

L

c

12
. (B3)

We then rescale the highest shifted energy to be 1. This gives
a set of n preprocessed energies, {x0, x1, ...xn}, given by

xi =
Xi − (E1L+ E0) + 2πv

L
c
12

2πv
L Hn

=
Hi

Hn
. (B4)

We see that xi is independent of E0, E1, L, v.
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