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Motivated by recent experimental demonstrations of Floquet topological insulators, there have
been several theoretical proposals for using structured light, either spatial or spectral, to create
other properties such as flat band and vortex states. In particular, the generation of vortex states in
a massive Dirac fermion insulator irradiated by light carrying nonzero orbital angular momentum
(OAM) has been proposed [Kim et al. Phys. Rev. B 105, L081301(2022)]. Here, we evaluate
the orbital magnetization and optical conductivity as physical observables for such a system. We
show that the OAM of light induces nonzero orbital magnetization and current density. The orbital
magnetization density increases linearly as a function of OAM degree, and non-linearly as a function
of the frequency of the light field. In certain regimes, we find that orbital magnetization density
is independent of the system size, width, and Rabi frequency of light. Furthermore, we study the
optical conductivity for various types of electron transitions between different states such as vortex,
edge, and bulk that are present in the system. Based on conductance frequency peaks, a scheme for
the detection of vortex states is proposed.

I. INTRODUCTION

A class of condensed matter systems which have gained
much attraction in recent years are periodically driven
materials, known as Floquet systems, that have resulted
a new paradigm for realizing exotic quantum phases of
matter [1–8], and some of them have been experimen-
tally realized via optical tools in the last few years [9–11].
Furthermore, there have been recent experimental de-
velopments in spatial manipulation of optical beams for
controlling ultra atomic systems [12–17]. Potentially, ap-
plying similar techniques to electronic systems can yield
new possibilities for engineering novel quantum phases of
matter.In particular, in a recent work [18], it was shown
that linearly (LP) or circularly polarized (CP) light with
nonzero orbital angular momentum (OAM) [19], can cre-
ate vortex states in a two dimensional semiconductor.

More generally, it is intriguing to investigate whether
the application of structured light, spatial [18, 20, 21] or
spectral [22], can lead to interesting topological features,
and which physical observables could reveal the proper-
ties of bulk, edge, and vortex states in such driven topo-
logical systems. For example, the frequency-dependence
of the optical conductivity provides valuable information
about charge carriers and elementary excitations in the
dynamical responses. In particular, the real part of the
dynamic Hall conductivity describes the reactive carrier
response dynamics, and its imaginary part provides the
dissipative response [23–37]. Additionally, orbital mag-
netization, defined by the magnetization arising from or-
bital motion of electrons, and its origin can yield insight-
ful picture about the electronic properties of system [38–
47].

In this work, we evaluate the optical conductivity and
orbital magnetization of a semiconductor driven with
structured light, as proposed in [18]. To study the Hall
conductivity, we follow a finite lattice derivation of dy-
namical conductivities via Kubo formalism [23, 48–50],
and we separate the contributions of different types of
transitions determined by their initial and final states.

This allows us to propose an experimental scheme to mea-
sure different contributions to the optical conductivity
and to find the experimental signatures of vortex states
as shown schematically in Fig. 1. Specifically, by tuning
the chemical potential and the probe field frequency, we
can measure the conductivity contribution arising only
from the transition between two vortex states. By fur-
ther tuning the frequency of the probe field, we can also
measure other possible contributions from transitions be-
tween bulk, edge, and vortex states Fig. 1(c). Since the
gap is set by the Rabi frequency, Ω0, the relevant en-
ergy scale for bulk-bulk transition is Ω0 while the energy
difference between vortex-vortex and edge-edge is given
by the light width and system size, respectively. For
example, among different types of transitions, vortex-
vortex and edge-edge transitions occur at lower probe fre-
quencies compared to those required for detection of the
bulk-bulk contributions. The vortex-bulk and edge-bulk
transitions need probe frequencies between these two fre-
quency regimes.
Moreover, we study the orbital magnetization and cur-

rent density of our Floquet system. We show that the or-
bital magnetization increases with frequency and OAM
of light, for both LP and CP light. Furthermore, we
illustrate that orbital magnetization density is indepen-
dent of the Rabi frequency and light width. Finally, we
demonstrate that in our setting the orbital magnetiza-
tion density is an intensive quantity because we assume
that the light profile covers the entire system.
The orbital magnetization and current density induced

by driving the system can be detected based on sensi-
tive magnetometers such as superconducting quantum
interference devices (SQUIDs) [51] and nitrogen-vacancy
(NV) centers [52–55]. We find that the CP light can cre-
ate a rotating current density around the center of the
light beam in a vortex state, while the density of current
is localized along with the polarization of the LP light.
In section II, we review the theoretical background of

our driven model. Next, in section III, we review the
Kubo formalism of dynamical conductivities for finite-
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FIG. 1. (a) Schematic for the driven 2D semiconductor illuminated by light carrying OAM with vorticity m = 1. The light
beam’s frequency is ω. This laser field opens up an energy gap in the rotating frame while creating several midgap (vortex)
states. The schematic profile of electrons in a vortex state is shown as the red circle around the light beam’s center. Additionally,
a setup for measurement of longitudinal and Hall conductivity of the driven system using a prob field with frequency ω′ and a
detector to measure the conductivity is shown. (b) In the rotating frame, coupling the laser field with the semiconductor with
gap 2M and detuning δ = ω − 2M , introduces the hybridization radius k0 and the Floquet gap 2Ω0 with the thickness kδ. (c)
The energy dispersion is plotted as a function of pseudo-OAM l as it becomes a good quantum number regarding the vorticity
of light. The bulk, vortex, and edge states are shown in blue area, red, and green dots, respectively.

size systems. We present the results for Hall and lon-
gitudinal conductivities as a function of the probe field
frequency and different light vorticities and polarizations.
In section IV, the orbital magnetization and current den-
sity are introduced for LP and CP light beams. Section
V presents a discussion of the outlook for future research
directions.

II. ELECTRONIC FLOQUET VORTEX STATES
OF THE DRIVEN SYSTEM

In this section, we review our driven system Hamilto-
nian and the energy spectrum. It is shown that shin-
ing light carrying nonzero OAM on a two dimensional
semiconductor results in vortex states near resonant and
weak field regime [18]. Specifically, by considering a spin-
less massive Dirac 2D semiconductor described by the
Hamiltonian H0 = (vkx, vky,M) · σ, the rotating wave
approximation (RWA) for the driven system by light with
OAM can be applied. We set ~ = e = 1 for all calcula-
tions, except when these parameters are explicitly deter-
mined. Here, M is half of the band gap and v is the
Fermi velocity. A light beam with frequency ω which
carries a nonzero OAM is shined on a semiconductor
slab, as depicted in Fig. 1(a), and its vector potential
is denoted by A(r, t) = A0(r)eimφeiωtx̂ + c.c.. We as-
sume that the laser field satisfies the paraxial approxima-
tion, meaning that A0(r) = Amax

[
1− exp{−r2/(2ξ2)}

]
varies smoothly over the length scale of light width ξ.
The radial part A0(r)eimφ, where r =

√
x2 + y2 and

φ = arctan(y/x), has integer vorticity m, represent-

ing the OAM of the laser field. Because of the vor-
tex structure of the field, A0(r) vanishes at r = 0,
for nonzero values of m. The applied laser field hy-
bridizes the valence and the conduction bands, opening
the energy gap around the resonance ring of momentum,
|k| = k0 = v−1

√
ω2/4−M2 where ω > 2M within the

small detuning regime δ = ω − 2M � ω. Starting with
the minimal coupling, one can replace the wave vector
k with k + eA(r, t). To obtain the Floquet Hamiltonian
from the time-periodic form H(t) = H0 +evA(r, t) ·σ, we
can use the RWA where we neglect fast oscillating terms
in the time dependent Hamiltonian. As it is discussed in
the appendix A and shown with more details in reference
[18], the final form of the Hamiltonian for the LP light
reads as follows

HRWA = δ

2

(
k2

k2
0
− 1
)
σz +

[
Ω(r)e−imφσ+ + H.c.

]
+O

(
Ω0

√
δ

M

)
, (1)

where Ω(r) = evA(r) and Ω0 = limr→∞Ω(r). After nu-
merical diagonalization of the Hamiltonian, the disper-
sion of the Floquet system for the LP light with OAM
can be acquired, as depicted in Fig. 2(a) for m = 1. The
RWA Hamiltonian for the case of CP is derived in the
Appendix B, and the corresponding energy dispersion is
shown in Fig. 2(b). As can be observed from Fig. 2,
there are |m| number of vortex state branches in the en-
ergy versus pseudo angular momentum diagram.
Based on the formalism followed in previous studies
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[18, 56], here we present an estimation of the energy dif-
ference between subsequent vortex states. One can show
that the energy separation between vortex states in the
low energy regime is given as follows

ω0 =
∫∞

0
Ω(r)
r e
−(2k0/δ)

∫ r
0

Ω(r′)dr′
dr

k0
∫∞

0 e
−(2k0/δ)

∫ r
0

Ω(r′)dr′
dr

. (2)

We note that this physical quantity is system size-
independent and fully determined by the bulk proper-
ties of the system and the radial profile of the irradiating
beam. Therefore, its value remains the same in the ther-
modynamic limit. Here, we demonstrate how the energy
difference between vortex states can be calculated based
on properties of the shining light such as ω, δ, and Ω0.
By considering the following form for the radial beam
profile

Ω(r) =
{

Ω0(r/ξ)q for r ≤ ξ
Ω0 for r > ξ

, q ≥ 1. (3)

Then, it can be shown that ω0 can be approximated
by the following expression

ω0 'Ω0(k0ξ)−1(kδξ)−(q−1)/(q+1), (4)

where, kδ ≡ k0Ω0/δ. Therefore, the energy separations
ω0 depends on the applied light beam properties such as
its frequency ω, and the radial profile including parame-
ters ξ for the light width, Ω0 for the intensity, and q for
the light shape. From the approximate energy separa-
tion between subsequent vortex states, we can estimate
the number of vortex states in one branch as follows

2Ω0/ω0 ' k0ξ(kδξ)(q−1)/(q+1). (5)

For q ≥ 1, one can further simplify this estimation by
determining the lower bound of 2Ω0/ω0 ' k0ξ. Since we
are in the small detuning regime ξ−1 � k0 �M/v, there
are many vortex states in a vortex branch as 2Ω0/ω0 � 1.

III. OPTICAL CONDUCTIVITY

Here, the optical conductivity of the system described
in the previous section is calculated. With the obtained
wave functions in the form of Bessel functions and energy
spectrum, we can calculate the longitudinal and Hall op-
tical conductivities via Kubo formalism in the real space
configuration in polar coordinate. To measure the dy-
namical conductivity, we apply a weak, linearly polarized
AC probe field that is normal to the surface of the semi-
conductor, as it is shown schematically in Fig. 1(a). Here,
we review the real space expression for the dynamical
conductivity. We note that, due to the vortex structure

FIG. 2. Dispersion of energy versus pseudo-OAM for vor-
ticities (a) m = 1 of LP light and (b) m = 2 of CP
light. We set ω = 2.05M , Amax = 0.03M(ev)−1, A0(r) =
Amax

[
1− exp{−r2/(2ξ2)}

]
, and ξ = 20kδ. We use the disk

sample radius R = 10ξ. As shown in these two examples,
the number of vortex state branches can be determined by
|m|. The bulk and vortex states are bolded in blue and red,
respectively. For the CP light in (b), edge states are colored
in green. The spatial profile of electronic densities are shown
in the inset. Three contributions V-V, V-B, and B-B can be
considered for the Hall and longitudinal conductivities of LP
light. In addition, two more contributions E-E and E-B are
also possible for the CP light.

of the laser field, the translational symmetry is explicitly
broken, and all the calculations of Hall and longitudinal
conductivities should be performed on a disc with finite
radius R. We assume that the non-perturbed Hamilto-
nian is labeled by H0. We consider a time-dependent
perturbation H = H0 + H ′(t) and apply the Liouville-
von Neumann equation i~∂tρ = [H, ρ] for the density
matrix ρ = ρ0 + δρ in the linear response regime. Rela-
tions H0 |α〉 = εα |α〉, ρ0 |α〉 = nα(ε) |α〉 can be used in
Liouville-von Neumann equation, where nα is the Fermi-
Dirac distribution. In other words, we assume that the
system is thermalized in the rotating frame. With the as-
sumption of sinusoidal time dependence of H ′(t) ∝ eiω

′t,
we have ~ω′δρ = [H ′, ρ0] + [H0, δρ], where ω′ is the fre-
quency of the prob field. Thus the components of δρ can
be obtained as follows

〈β|δρ|α〉 = nβ − nα
(εβ − εα)− ~ω′ − iη 〈β|H

′|α〉 , (6)



4

where µ, ν ∈ {x, y }, η is the quasiparticle lifetime broad-
ening, α(β) is a collective label for the relevant quantum
state including the band index n, pseudo-OAM l, and the
type of the state from the set {bulk, vortex, edge }.

We can rewrite the perturbation H ′ = eAµppµ/m =
evµEµ/(iω′), where e > 0 is the elementary charge
and Einstein summation rule is applied. Using
Heisenberg equation of motion for time-dependent per-
turbations, one obtains 〈β| vµ |α〉 = 〈β| ẋµ |α〉 =
〈β| [xµ, H] |α〉 /(i~) ≈ 〈β|xµ |α〉 (εα − εβ)/(i~). The sin-
gle particle current density operator is defined as jµ =
1
A

δH
δAµp (r) = (−e)vµ/A, where A is the area of the two

dimensional system (here, A = πR2), and the aver-
age paramagnetic current density can be calculated as
Jµ = Tr[jµδρ]. By substituting the previous relations
into the average current density, we get

Jµ =
∑
αβ

〈β|δρ|α〉 〈α|jµ|β〉 (7)

= −2π
~
σ0
∑
αβ

(nβ − nα)ε2βα
εβα − ~ω′ − iη

〈α|xa|β〉 〈β|xb|α〉
A

Aν ,

where εβα ≡ εβ − εα is the energy difference between fi-
nal (β) and initial (α) transition states and σ0 ≡ e2/h
is the quantum of conductance. The paramagnetic cur-
rent correlation function Πµν(ω′) defined by the equation
Jµ = Πµν(ω′)Aν is as follows

Πµν(ω′) = −2π
~
σ0
∑
αβ

(nβ − nα)ε2βα
εβα − ~ω′ − iη

〈α|xµ|β〉 〈β|xν |α〉
A

.

(8)

Therefore, the following final equation for the dynam-
ical conductivity can be acquired

σµν(ω′) =Πµν(ω′)−Πµν(0)
iω′

=2πi
A
σ0
∑
αβ

(nβ − nα)ε̃βα
ε̃βα − ω′ − iη 〈α|xµ|β〉 〈β|xν |α〉,

(9)

where ε̃βα ≡ εβα/~.
We set η = 9.6×10−6 and η = 5.6×10−7 for irradiating

light carrying OAM with LP and CP, respectively. The
reason we need to use different values for η is due to the
different Hamiltonian energy scales for the LP and CP
cases as shown in Eq. (1) and Eq. (B1). The matrix ele-
ments in Eq. (9) capture the transition processes among
the bulk, edge, and vortex states. There are five types of
transitions, i.e., edge-to-edge (E-E), edge-to-bulk (B-E),
vortex-to-vortex (V-V), vortex-to-bulk (V-B), and bulk-
to-bulk (B-B). In the system, the V-E transition is not
possible because vortex and edge states’ branches are lo-
cated in separate ranges of pseudo-OAM l in the disper-
sion, sufficiently far from each other so that the transi-
tion rule, l′ = l ± 1, cannot be obeyed. Using the wave

functions’ expressions in Eq. (A3), we obtain the follow-
ing matrix form with corresponding transition rules for
various contributions. We note that the transition rules
l = l′± 1 are obtained by integrating the angular part of
terms 〈α|xµ|β〉.

〈
ψS
′

l′n′

∣∣∣ x̂ ∣∣∣ψSln〉 = T S
′S

l′n′,ln(δl,l′+1 + δl,l′−1)〈
ψS
′

l′n′

∣∣∣ ŷ ∣∣∣ψSln〉 = T S
′S

l′n′,ln(iδl,l′+1 − iδl,l′−1), (10)

where δl,l′ is the Kronecker delta symbol, S′, S ∈
{B,E,V } represents the bulk, edge, and vortex states,
and T S′Sl′n′,ln is a dimensionless radial integration part de-
rived by

T S
′S

l′n′,ln =
∫ R

0
drr2(un,l,+(r)un′,l′,+(r)+un,l,−(r)un′,l′,−(r)).

(11)
In Fig. 3 and Fig. 4, different contributions of the op-

tical conductivity (Hall and longitudinal) for LP and CP
light beams are shown, respectively. Fig. 3(a) is illustrat-
ing the electronic transfer among different types of states
that includes V-V, V-B, E-E, E-B, and B-B transitions,
which is shown in red, gray, green, orange, and blue, re-
spectively. According to the transition rule obtained in
the Kubo formalism in Eq. (10), it can be seen that
V-V transition occurs only between a state below and a
state above the Fermi level. Thus, there is only one res-
onance peak in m = 1 for V-V in Fig. 3, corresponding
to the energy difference between two subsequent vortex
states that can be approximated by ω0 as discussed in
section II. We also note that since the two vortex states
at zero energy are particle-hole symmetric to each other
as we showed below Eq. (A4), the radial parts of their
wave functions cancel each other out. As a result, the
intensity of the V-V transition at zero energy vanishes.
Therefore, we need to change the chemical potential to
select two vortex states far from the zero energy so that
the transition between two subsequent vortex states be-
comes nonzero. Despite the behavior of V-V transitions
for m = 1, there are many peaks in the V-B contri-
butions. In Fig. 3, the V-B has several peaks because
of several transitions between vortex states in the gap
and possible bulk states, corresponding to transition fre-
quencies between these states which for our parameters is
around the energy ω′ ∼ Ω0/4. The B-B contribution has
even more peaks in comparison to the case of V-B since
the bulk transitions scale with the system’s area. The
location of peaks covers energy differences in the range
2Ω0 < ω′ and decays for higher probe frequencies.

The V-V transition for the light carrying OAM with
CP shown in Fig. 4 has very similar behavior to the LP
light, where the peaks for σxx/xy occur at resonance with
the energy difference between two vortex states, ω0. We
note that energy scales for CP light are smaller than
LP light by a factor of v2/2M as it is demonstrated in
the Hamiltonian in Eq. (B1). As can be observed from
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FIG. 3. (a) Schematic of energy dispersion illustrating that tuning the probe field frequency through different regimes can
measure different optical conductivity contributions. The bulk, vortex, and edge states are shown in blue areas, red, and green
dots, respectively. Transitions between V-V, V-B, E-E, E-B, and B-B are shown in red, gray, green, orange, and blue arrows,
respectively. The corresponding location of each type of transition for Re(σxx) is shown below schematically, for a system
driven by LP light. (b) Numerical results for the longitudinal and (c) the Hall conductivity of LP light σxy and σxx, versus
probe frequency ω′ for contributions from different types of transitions. Parameters here are the same as shown in Fig. 2 and
the vorticity of light is m = 1. Blue and red lines correspond to the real and imaginary parts of conductivity, respectively.

FIG. 4. The optical conductivities, Hall (σxy) and longitudinal (σxx), for CP light, versus probe frequency ω′ and vorticity
m = 1 for different types of transitions. Parameters are the same as in Fig. 2. Blue and red lines indicate the real and imaginary
parts of optical conductivity, respectively.

Fig. 4, for the case of CP light, the E-E contribution to
the Hall conductivity is dominant. The E-E contribu-
tion reaches the value ∼ 1.95 as ω′ → 0, corresponding
to the quantized Hall conductance, according to the ex-
isting two chiral edge modes and Chern number two for
topological Floquet insulator. In the E-B contribution
of CP light, similar to the case of LP light, there are
more possible transitions than the cases of V-V and E-E
as shown in Fig. 4. The V-B transition for the LP light
shown in Fig. 3 has distinct peaks because of the more

separate vortex states (larger ω0) in the gap of the driven
system in comparison to the case of CP light. The B-B
transition for CP illumination has more resonance peaks
than all other transition types. Similarly, the reason is
that more possible electron transfers obeying transition
rules between bulk states are available in comparison to
other contributions. For the CP light, most B-B peaks
occur around frequency range v4Ω0/2M < ω′ and decay
exponentially at higher frequencies.
Different types of transitions are also discussed for the
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OAM of light m = 2 for the LP light in the Appendix C
and Fig. 10. Most of the contributions are very similar to
the case of m = 1, except the V-V transition for vortic-
ity m = 2 has more peaks for electron transfer between
vortex states. This is because, for m = 2, transitions
between vortex branches are also possible and introduce
more peaks as it is depicted in Fig. 10.

We note that it is not possible to measure the optical
conductivity of vortex states locally. This is because the
wavelength of the probe field for V-V transition is of the
order of λ ∼ 1

ω0
� R, the system size, and thus larger

than the radius of localized electronic density in a vortex
state that is located around the center of the light as
shown schematically in Fig. 1(a).

However, we can show that it is possible to distin-
guish transitions between different types of states spec-
trally. To separate different contributions of conductiv-
ity in experiments, one can use the optical conductivity
measurements by tuning the probe field frequency prop-
erly. To detect vortex states and measure their contribu-
tions to the dynamical conductivity, the chemical poten-
tial should be tuned to be in the bulk gap of the driven
system and not exactly at energy zero. The reason for
the latter condition is because of the vanishing amplitude
of the transitions between vortex states above and below
the energy zero as their radial integration in Eq. (11)
vanishes. By tuning the probe field frequency ω′ to be
less than the bulk gap, one can remove any bulk contribu-
tions as shown by the red transition in Fig. 3(a). Then to
measure the B-V contribution, the probe frequency can
be tuned to include B-V contributions as illustrated in
Fig. 3(a) in gray transition. After measuring the contri-
bution of V-V and V-B, by choosing the probe frequency
to be equal or higher than the bulk gap, B-B contribution
can be possible and measured as shown with blue tran-
sition in Fig. 3(a). We note that the amplitudes of V-V
transitions are system size-dependent and they decrease
as the radius of the system, R, increases. However, here
we use this finite-size effect to acquire the signature of
the vortex states in the optical conductivity. We can also
tune Rabi frequency Ω0 and light width ξ to change the
intensity of optical conductivity. As it is shown in Fig. 5,
the optical conductivity can increase as a function of light
width and decrease when the Rabi frequency increases.

To verify the experimental feasibility of the optical con-
ductivity measurements in our system, we note that real-
izing our Floquet system, similar to other recent studies
[10, 11], requires strong laser fields. While so far the ex-
periments have been performed on gapped states, we use
their numbers as a guide for our proposal in semiconduc-
tors. The intense fields pump a considerable amount of
energy into the system, and therefore can quickly heat
the system. Therefore, in such settings where Floquet
states have been shown to survive for around 1ps, our
proposed vortex states can be created transiently. Cor-
respondingly, to measure the physical signatures of these
states, one needs to consider an ultrafast measurement
protocol. The typical vector potential and detuning that

FIG. 5. (a) Optical conductivity as a function of light width ξ,
and (b) as a function of Rabi frequency Ω0 for V-V transition
of LP light as it is depicted in Fig. 3(c).

we have assumed in our proposal are A0 = 0.015M(ev)−1

and δ = 0.1M . This value corresponds to the Rabi fre-
quency Ω0 = evA0 = 3.6THz for a semiconductor band
gap M ∼ 1eV and Fermi velocity v ∼ 105m/s. The
corresponding intensity for a such a Rabi frequency is
I = cε0

2 ω
2A2 = 2.1 × 1012W/m2 that is close to the in-

tensity used in Ref. [11], where c is the speed of light
and ε0 is the dielectric permittivity of vacuum. Based on
Fig. 3 and Fig. 4, optical conductivity peaks in our sys-
tem occur in the range of probe frequencies ω′ ∼ 1

100Ω0
to ω′ ∼ Ω0. Here, the inverse of the probe frequency can
be compared with the duration of the recent ultrafast
DC measurement of anomalous Hall conductivity in the
driven graphene [11]. The inverse of probe frequencies in
optical conductivity can be within the range 30 − 1000
fs and are less than the duration of such experiments.
Therefore, we conclude that our measurement scheme for
optical conductivity of different types of transitions is ex-
perimentally achievable.

IV. ORBITAL MAGNETIZATION AND
CURRENT DENSITY

To further understand the effect of the vorticity of light
on the electronic system, we calculate the electronic cur-
rent density and orbital magnetization. Here, for the
wave functions of the quantum states, ψ(r) = 〈r|ψm,k〉,
the current density is given by

j(r) = −eψ†(r)∂HRWA

∂k ψ(r). (12)

As it is shown in Fig. 6(a), the current density of a vor-
tex state is highly localized around the center of the light
carrying nonzero OAM for both LP and CP laser fields.
In the case of linear polarization, the current density is
aligned linearly along the polarization of the light beam.
The width of this localization increases as ξ increases and
as we select the vortex states far from the zero energy.
The rotation of the current density for the CP case is
detected by the handedness of the beam. Then, we cal-
culate the orbital magnetization of occupied states in the
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FIG. 6. (a) Current density of vortex states, demonstrating
highly localized current density around the center of light for
the vortex states closest to the zero energy. (b) Current den-
sities for the vortex states far from the zero energy and near
the bulk states. Parameters for both (a) and (b) are the same
as Fig. 2, except ξ that is determined here separately.

FIG. 7. Orbital magnetization of the Floquet system, indi-
cating linear increase in the diagram of orbital magnetization
as a function of m for both CP and LP laser fields. Same set
of parameters as in Fig. 2 are used here.

presence of vortex states for different vorticities m. The
orbital magnetization is defined as follows

m = −e2
∑
εi<µ

〈ψi| r× v |ψi〉 , (13)

where summation is on occupied states, v = − i
~ [r, H]

and the disc area S = πR2 for r = (x̂, ŷ, ẑ). One can
write the following expression

Mz = ie

2S~
∑
εi<µ

〈ψi| (x̂[ŷ, H]− ŷ[x̂, H]) |ψi〉 . (14)

FIG. 8. The orbital magnetization as a function of the detun-
ing frequency of light beam carrying OAM with (a) LP, and
(b) CP for various light vorticities m. As can be observed,
the magnetization density increases with frequency of shining
light as it is incorporated in the detuning δ = ω − 2M . The
lines connecting data are shown for eye guidance.

The averaged magnetization density Mz can then be
defined as the magnetic moment m per unit area for a
2D system along the z-direction. As it is shown in Fig. 7,
the averaged magnetization density increases linearly as
a function of light vorticity m for both LP and CP cases.
Therefore, the orbital magnetization density reaches zero
for m = 0 for the LP light. However, there is a remain-
ing magnetization of CP light for vorticity m = 0 that
results from states hosting circular current density and
nonzero magnetic moments. We note that the circular
current density can also be observed among bulk and
edge states in the case of CP light. Additionally, the
averaged orbital magnetization density for the system is
independent of the Rabi frequency of light Ω0, the width
of light carrying OAM ξ, and disc’s radius R (intensive
quantity) as demonstrated in Fig. 9. It should be noted
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FIG. 9. The independence of orbital magnetization density
as a function of (a) Rabi frequency, Ω0, (b) light width, ξ,
with constant system size R, and (c) disc radius R, where the
light width ξ is constant.

that although in Fig. 9(c) the whole range for R is shown,
but small disc radius in the range R . 5ξ is not physical.
The orbital magnetization depends on the frequency

of the irradiating OAM light and increases non-linearly
with frequency increases, as shown in Fig. 8 for both
LP and CP. From a semiclassical point of view, elec-
tronic magnetization is determined by the angular speed
of electrons. Therefore, based on our results, we can
deduce that the effective angular speed of electrons in
our system is proportional to the light’s frequency and
vorticity, and is independent of the Rabi frequency and
width of the light. For the same semiconductor param-
eters described in the last paragraph of section III and
the sample radius of R = 10µm, the typical evaluated
magnetization Mz = 0.1(eM/~) yield a total magnetic
moment of µ =Mz×πR2 ' 109µB in terms of Bohr mag-
neton. Such a magnetic moment can be probed by sen-
sitive SQUID scanning microscopy measurements [51].

The nonzero magnetization would indicate the existence
of nonzero current densities as some examples are calcu-
lated in Fig. 6. To measure the magnetization spatially
with a nano-scale resolution, one can use the magnetom-
etry based on nitrogen vacancies (NV) center in the dia-
mond [52–55]. Finally, we also note that energy of vor-
tex states can be visible by angle-resolved photoemission
spectroscopy (ARPES) measurements as this method can
acquire the energy dispersion of the system [9, 10].

V. DISCUSSION AND OUTLOOK

In this study, two physical observables – optical con-
ductivity and orbital magnetization – of the Floquet sys-
tem driven by a structured light carrying nonzero OAM
are calculated. While we only considered the modifica-
tion of the electronic band structure from the OAM light
beam, it is a stepping stone to adding electronic interac-
tions in the system which may realize novel many-body
states. In particular, the possibility of creating exotic
states in the presence of non-equilibrium superconduct-
ing phases in semimetals, semiconductors, and strongly
correlated materials [57–62] could be the subject of future
research.
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[−i∂φ,k2] = 0. Then

[−i∂φ, HRWA] = −m
(
Ω(r)e−imφσ+ −H.c.

)
,

[σz, HRWA] = 2
(
Ω(r)e−imφσ+ −H.c.

)
, (A2)

and we can immediately conclude [−i∂φ +
(m/2)σz, HRWA] = 0. Therefore, l is a conserved
quantity and we can block-diagonalize HRWA according
to l. Eigenstates of the effective Hamiltonian can be
acquired in the following form as vortex states

ψn,l(r) =
(
ei(l−m/2−1)φu+,n,l(r)
ei(l+m/2+1)φu−,n,l(r)

)
, (A3)

where, n is the band index, and m is the light vorticity
which determines the number of vortex states branches.
We can reach the following eigenvalue equations in de-
termining the eigenfunctions presented in Eq. (A3). The
eigenstates satisfy

En,lu±,n,l(r) = ∓ δ2

2k2
0

(
∂2
r + 1

r
∂r−

(l ∓m/2)2

r2 + k2
0

)
u±,n,l(r) + Ω(r)u∓,n,l(r).

(A4)

By changing l with −l here, we can show that ψn,−l(r) =
iσyψ

∗
|m|+1−n,l(r) and En,−l = −E|m|+1−n,l. Next, we

diagonalize the Hamiltonian numerically. We diagonalize
the Hamiltonian h(k) = (M/v2)HRWA(k) based on the
basis functions {u±,n(r)} such that[

∂2
r + 1

r
∂r −

l2±
r2 + k2

0 ± 2ε±,α
]
u±,α(r) = 0, (A5)

where l± = l ∓ (m/2 + 1). Eq. (A5) is the Bessel’s
differential equation and we simply find that u±,n(r) =
C±,nJl±(

√
2(µ± ε±,n)r). We note that u±,n(r) are con-

fined on the disc of radius R, obeying the boundary con-
dition u±,n(R) = 0 where eigenenergies ε±,n are set to
be bounded at r = 0. C±,n are normalization constants
and determined by the polar coordinate integral condi-
tion

∫ R
0 |u±,n(r)|2rdr = 1. Then we have√

(k2
0 ± 2ε±,α)R = z(l±)

n , (A6)

where z(ν)
n is the nth non-negative zero of the Bessel func-

tion of order ν, Jν(z). We take eigenfunctions near zero
energy with theN -smallest positive eigenenergies and the
N -largest negative eigenenergies for each u±,n(r) among
all infinite possible eigenfunctions u±,n(r). Now we can
calculate the Hamiltonian components as follows

Ms,s′ =
∫ ∞

0
u+,i0+s(r)Ω(r)u−,j0+s′(r)rdr,

where we label such eigenfunctions as n = i0 +1, · · · , i0 +
2N for u+,n(r) and n = j0 + 1, · · · , j0 + 2N for u−,n(r).
The block-diagonal components have the form (H+)s,s′ =

v2ε+,i0+sδs,s′/M and (H−)s,s′ = v2ε−,j0+sδs,s′/M , we fi-
nally have

H
(l)
eff,proj =

(
H+ M
M† H−

)
, (A7)

and we can diagonalize this 4N × 4N matrix to obtain
the low-energy spectrum and wavefunctions. We note
that since eigenstates of the Hamiltonian in Eq. (A7) are
obtained in the Bessel function basis u±, in order to re-
construct the eigenfunctions in the real space, we should
calculate the linear combination of u± with correspond-
ing coefficients obtained from Hamiltonian eigenstates.

Appendix B: Case of circularly polarized light

Here, we follow a similar approach to diagonalize the
RWA Hamiltonian for the CP light [18]. The vector po-
tential for CP light A(r, t) = A(r)ei(mφ+ωt)(x̂+ iŷ)+c.c.
yields to the following RWA Hamiltonian

HRWA = − ev3

2M2

[
(kx + iky)A0(r)eimφ(kx + iky)σ− + H.c.

]
+ v2

2M (k2 − k2
0)σz +O

(
v3k3

0
M2

)
= − δ

2M

[
(kx + iky)

k0
Ω(r)eimφ (kx + iky)

k0
σ− + H.c.

]
+δ

2

(
k2

k2
0
− 1
)
σz +O

(
δ

√
δ

M

)
. (B1)

We note that the CP laser field makes the system topo-
logical Floquet insulator with Chern number two far from
the center of the light. As a result, the system has edge
states that are localized at the boundary of the shin-
ing light. Similar to the LP light, it can be shown that
the pseudo-OAM l̂ = −i∂φ + (m/2 + 1)σz is a good
quantum number and the dispersion can be calculated
in terms of l. As it was shown for the linear polarization
laser field, we use [−i∂φ, kx] = iky, [−i∂φ, ky] = −ikx,
[−i∂φ, kx± iku] = ±(kx± iky), and [−i∂φ,k2] = 0, there-
fore

[−i∂φ, HRWA] (B2)

= −(m+ 2)v
2Ω(r)
2M2

[
(kx − iky)e−imφ(kx − iky)σ+ −H.c.

]
,

[σz, HRWA] = v2Ω(r)
M2

[
(kx − iky)e−imφ(kx − iky)σ+ −H.c.

]
,

that results in [−i∂φ+(m/2+1)σz, h] = 0. Therefore, we
block diagonalize the Hamiltonian HRWA along l. The
general form of the eigenstates of HRWA are as follows

ψl(r) =
(
eil+φu+(r), eil−φu−(r)

)T
, (B3)



11

where l± = l ∓ (m/2 + 1). With this form of wave func-
tions, the eigenvalue equation in the polar coordinate
reads as follows

(
ε+ β

2r2

)
u+(r)= −1

2

(
∂2
r + 1

r
∂r −

α2

r2 + k2
0

)
u+(r)

+Ω(r)
2M

(
∂2
r + 2l + 1

r
∂r + l+l−

r2

)
u−(r)

+Ω′(r)
2M

(
∂r + l−

r

)
u−(r),(

ε+ β

2r2

)
u−(r)= 1

2

(
∂2
r + 1

r
∂r −

α2

r2 + k2
0

)
u−(r)

+Ω(r)
2M

(
∂2
r −

2l − 1
r

∂r + l+l−
r2

)
u+(r)

+Ω′(r)
2M

(
∂r −

l+
r

)
u+(r), (B4)

where α =
√
l2 + (m/2 + 1)2 and β = l(m+ 2). Similar

to the case of LP light, we assume that the system is finite
size on a disc of radius R. We diagonalize the Hamilto-
nian in the basis functions {u±,α(r)} satisfying Eq. (A5).
We have the similar boundary condition u±,α(R) = 0 for
α ∈ N that yields to Bessel functions solutions and nor-
malization for Eq. (A5) as it was discussed in the main
text. Therefore, we have

ε±,α = ±1
2

(
z

(l±)
α

R

)2

∓ k2
0
2 . (B5)

Here, z(l±)
α is the αth zero of Bessel function with order

l±. Again, we can label the eigenfunctions as α = i0 +
1, · · · , i0 + 2N for u+,α(r) and α = j0 + 1, · · · , j0 + 2N
for u−,α(r) as we have truncated the Hamiltonian for the

N eigenfunctions below and N eigenfunctions above the
zero energy for the basis {u±,α(r)}, the same as Eq. (A7).
Now we can construct the effective projected Hamiltonian
by components of the following form

Ms,s′ =
∫ ∞

0

[
u+,i0+s(r)

v2Ω(r)
k2

0

{
∂2
ru−,j0+s′(r) (B6)

+2l + 1
r

∂ru−,j0+s′(r) + l+l−
r2 u−,j0+s′(r)

}
+u+,i0+s(r)

v2Ω′(r)
k2

0

{
∂ru−,j0+s′(r) + l−

r
u−,j0+s′(r)

}]
rdr.

Then, we can similarly build the Hamiltonian de-
fined in Eq. (A7), with block-diagonal terms of the
form (H+)s,s′ = v2ε+,i0+sδs,s′/M and (H−)s,s′ =
v2ε−,j0+sδs,s′/M . After diagonalizing the Hamiltonian,
one can acquire the dispersion as depicted in Fig. 2(b).
Similar to the case of LP light, there are |m| vortex state
branches.
Appendix C: Dynamical conductivities for the case

of m = 2

In this part, the optical conductivity as a function of
the probe field frequency for the LP light with OAM
m = 2 is presented. We can calculate the same con-
ductivities for the vorticity m = 2 similar to the case
of m = 1 as shown in Fig. 3 and discussed in the main
text. However, the V-V transition has more peaks com-
pared to the same transition form = 1, because there are
two chiral vortex branches with more available states for
electron transfer between inter-and intra-vortex branches
satisfying the transition rules. Consequently, more tran-
sitions are also possible for the V-B electronic transfers.
Similar to the light OAM m = 1, the B-B transition has
the most possible transitions and peaks that correspond-
ing probe frequencies locate in the ranges v2Ω0 < ω′ and
decays exponentially at higher probe frequencies.
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FIG. 10. The Hall and longitudinal conductivities of linearly polarized light σxy and σxx, versus probe field frequency ω′ and
vorticity m = 2 for contributions arising from different types of transitions. Parameters are the same as in Fig. 2. Blue and
red lines indicate the real and imaginary parts of optical conductivities, respectively.
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