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Open quantum systems have been shown to host a plethora of exotic dynamical phases.
Measurement-induced entanglement phase transitions in monitored quantum systems are a striking
example of this phenomena. However, naive realizations of such phase transitions requires an ex-
ponential number of repetitions of the experiment which is practically unfeasible on large systems.
Recently, it has been proposed that these phase transitions can be probed locally via entangling
reference qubits and studying their purification dynamics. In this work, we leverage modern ma-
chine learning tools to devise a neural network decoder to determine the state of the reference qubits
conditioned on the measurement outcomes. We show that the entanglement phase transition man-
ifests itself as a stark change in the learnability of the decoder function. We study the complexity
and scalability of this approach and discuss how it can be utilized to detect entanglement phase
transitions in generic experiments.

INTRODUCTION

Entanglement entropy in closed quantum systems that
thermalize generically tends to increase until reaching a
volume-law behavior with entanglement spread through-
out the system [1, 2]. Coupling to a bath profoundly
changes the internal evolution of the system [3], which in
turn can suppress the growth of entanglement and corre-
lations within the system to an area-law behavior [4, 5].
A prominent example of such systems are random quan-
tum circuits with intermediate measurements [6–10]. In
these circuits, where the unitary time evolution of the
system is interspersed by quantum measurements, the
competition between unitary and non-unitary elements
leads to a measurement-induced phase transition between
a pure phase with an area-law and a mixed phase with a
volume-law entanglement behavior [11–31]. Such entan-
glement phase transitions are only accessible when the
density matrix is conditioned on the measurement out-
comes while they are hidden from any observable which
can be expressed as a linear function of the density ma-
trix. On the other hand, to experimentally probe ob-
servables which are non-linear functions of the density
matrix, one naively needs to reproduce multiple copies
of the same state. However, due to intrinsic randomness
in measurement outcomes, this naive approach requires
repeating the experiment exponentially many times (in
system size) [10, 26].

Building on the close connection between
measurement-induced entanglement phase transi-
tions and quantum error correction [11, 12, 32–35],
a possible workaround to this obstacle was found in
Ref. [36], where it was proposed to probe these phase
transitions through purification dynamics of an ancilla
reference qubit that is initially entangled to local system
degrees of freedom. Subsequently, the time dependence
of the entanglement entropy of the reference qubits

signifies the phase transition properties [11, 15, 36]. To
employ this method, one needs to find the density matrix
of reference qubits conditioned on the measurement
outcomes of the circuit. Hence, the final objective in
this approach is to obtain a “decoder” that maps the
measurement outcomes to the density matrix of the
reference qubit. However, such decoders are only known
and implemented for special classes of circuits such
as stabilizer circuits [9]. For more generic circuits like
Haar-random circuits, finding an analytical solution to
this problem is likely unfeasible.

Here, motivated by the the recent successful appli-
cations of machine learning algorithms in quantum sci-
ences [37] and especially optimizing quantum error cor-
rection codes and quantum decoders [38–45], we provide
a generic neural network approach that can efficiently
find the aforementioned decoders. First, we sketch our
physically motivated neural network architecture. Al-
though we use numerical simulations of Clifford circuits
to show the efficacy of our neural network (NN) de-
coder, we argue that the same neural network decoder
with slight modifications should in principle work for
any generic circuit. We investigate the complexity of
our learning task by studying the number of circuit runs
required for training the neural network decoder. Impor-
tantly, we show that the learning task only needs mea-
surement outcomes inside a rectangle encompassing the
statistical light-cone [19, 36] of the reference qubit. Fur-
thermore, we demonstrate that by studying the tempo-
ral behavior of the learnability of the quantum trajecto-
ries, one can estimate the critical properties of the phase
transition. Finally, we verify that for large circuits one
can train the neural networks over smaller circuits which
proves the scalablity of our method.
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Figure 1. (a) Brickwall structure of hybrid circuit with ran-
dom two-qubit Clifford gates interspersed with projective Z
measurements. MT denotes the measurement outcome ma-
trix with matrix elements mi = 0,±1, where T = 3 for
this example. (b) Neural network architechure: We use con-
volutional neural networks composed of (C:convolutional),
(P:pooling) and (F:fully connected) layers, used to learn the
decoder function which is trained by the measurement out-
comes of quantum trajectories in order to predict the mea-
surement result of the reference qubit σp.

MODEL

The circuits that we study have a brickwork structure
as in Fig. 1, with L qubits. We consider time evolu-
tion with T time steps with repetitive layers of two-qubit
random unitary gates, followed by a round of single-site
measurements of the Pauli Z operators at each site with
probability p. As one tunes p past some critical value
pc, there is a phase transition from a volume-law en-
tanglement behavior (p < pc) to an area-law behavior
(p > pc) and a logarithmic scaling at the critical point
(p = pc). Crucially for this work, this phase transition is
also manifested in the time dependence of the entangle-
ment entropy of a reference qubit entangled with the sys-
tem SQ(t) [36]. SQ(T ), averaged over many circuit runs,
is known as the coherent quantum information and plays
a crucial role in the fundamental theory of quantum er-
ror correction [46]. For polynomial in system size circuit
depths, SQ(T ) maintains a finite value in the volume-law
phase and vanishes in the area law phase. The protocol
we use to probe SQ(t) is illustrated in Fig. 1a. Starting
from a pure product state, we make a Bell pair out of
the qubit in the middle and an ancilla reference qubit.
Throughout the paper, we use periodic boundary condi-
tions for the circuit.

Decoder. To find SQ(T ) in experiment, we need to
find the density matrix of the reference qubit at time
T , which is a vector inside the Bloch sphere and can be
specified by its three components 〈σX〉, 〈σY 〉 and 〈σZ〉.
Therefore, probing the phase transition can be viewed

as the task of finding a decoder function FC for a given
circuit C, such that

FC(MT ) = (〈σX〉, 〈σY 〉, 〈σZ〉) (1)

where MT is the set of circuit measurement outcomes.
Let pP (m|MT ) for P ∈ {X,Y, Z} denote the probabil-
ity of getting reference qubit outcome m = ±1 when
measuring σP of the reference qubit after time t = T ,
conditioned on the measurement outcomes MT . Since
〈σP 〉 =

∑
m=±1m pP (m|MT ), the problem of finding

the decoder FC is equivalent to finding the probability
distributions pP (m|MT ) for P ∈ {X,Y, Z}.

DEEP LEARNING ALGORITHM

Instead of finding pP (m|MT ) analytically for a given
circuit C, we plan to use ML methods to learn these func-
tions from a set of sampled data points which in principle
could be obtained from experiments. The task of learn-
ing conditional probability distributions is known as the
probabilistic classification task in ML literature [47, 48].
Let us fix the circuit C and the Pauli P . A sample data
point is a pair of (MT ,m) for a single run of the cir-
cuit whereMT is the circuit measurement outcomes and
m is the of outcome of measuring the reference qubit in
the σP basis at the end of the circuit. By repeating the
experiment Nt times, we can generate a training set of
Nt data points. By training a neural network using this
data set, we obtain a neural network representation of
the function pP (m|MT ).

Framing the problem as a probabilistic classification
task does not necessarily mean that the learning task
would be efficient. Indeed, given that the number of dif-
ferent possible MT outcomes scales exponentially with
the system size, one would naively expect that the mini-
mum required Nt should also scale exponentially for the
learning task to succeed, i.e., we need to run the circuit
exponential number of times to generate the required
training data set. However, the crucial point made in
Ref. [36] is that, when the reference qubit is initially en-
tangled locally to the system, its density matrix at the
end of the circuit only depends on the measurement out-
comes that lie inside a statistical light cone, and up to a
depth bounded by the correlation time that is finite away
from the critical point. Hence, for a typical circuit away
from critically, the function pP (m|MT ) depends only on
a finite number of elements in MT and that makes the
learning task feasible.

To show the effectiveness of this method, we test our
decoder using data points gathered from numerical sim-
ulation of Clifford circuits with pc = 0.160(1) [8], which
enables us to study circuits of large enough sizes. Due
to Clifford dynamics, the reference qubit either remains
completely mixed at t = T or it is purified along one of
the Pauli axis. This means the measurement outcome
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of σP at the end of the circuit is either deterministic
or completely random. Therefore, it is more natural to
view the problem as a hard classification task (rather
than probabilistic) where we train the neural network
to determine the measurement outcome of σP (See the
methods section). Note, if the reference qubit is purified
at the end of the circuit, then the decoder can in principle
learn the decoding function while, if it is not, then the
measurement outcomes are completely random, leading
to an inevitable failure of the hard classification. Thus,
the purification phase transition shows itself as a learn-
ability phase transition. It is worth noting that we are
only changing how we interpret the output of the NN, i.e.
we pick the label with highest probability, so the same
NN architecture can be used for more generic gate sets.
For simplicity, we also only look at the data points cor-
responding to the basis P in which the reference qubit
is purified. In an experiment, the purification axis is not
known, so one needs to train the NN for each of the three
choices of P ; if the learning task fails for all of them, it
means the qubit is totally mixed. Otherwise, the learn-
ing task will succeed for one axis and fail for the other
two [49], which means the reference qubit is purified.

Since locality and causality structure play important
roles in purification dynamics, we employ a particular
deep learning [50–52] architecture called convolutional
neural networks (CNN) that are efficient in detecting lo-
cal features in image recognition applications [53]. In
utilizing these networks the input data is treated as a
snapshot as in Fig. 1(b) with each pixel treated as a fea-
ture of the neural network and the label of each image is
the measurement outcome of σP .

LEARNING COMPLEXITY

For a fixed circuit C, we start the training procedure
by training the neural network with a given number of la-
beled quantum trajectory measurements, and then eval-
uate its performance on predicting the labels of new ran-
domly generated trajectories produced by the same cir-
cuit C. The learning accuracy 1−εl is the probability that
the NN predicts the right label. The minimum number
of training samples denoted by M(εl) to reach a specified
learning error εl can provide an empirical measure of the
learning complexity of the decoder function FC [54]. In
what follows, we fix the learning error of each circuit to
be εl = 0.02.

In performing this analysis, different learning settings
can be considered. Intuitively, for a fixed circuit, we ex-
pect the purification time of the reference qubit, tp, after
which the reference qubit’s state does not alter any fur-
ther, to play an important role in determining M . There-
fore, in our first learning setup, we consider a postselected
learning scheme where for a given measurement rate, we
postselect quantum trajectories based on their purifica-

Figure 2. (a) Distribution of purified circuits as a func-
tion of the purification time for different measurement rates
p = 0.05(mixed phase), p ' pc ' 0.16 (critical value), p = 0.5
(pure phase) with L = 16 qubits and Nc = 107 random cir-
cuits. (b) and (c) Averaged number of quantum trajectories
required for learning the reference qubit after postselection
as a function of the purification time tp, for p = 0.1 (mixed
phase) and p = 0.3 (pure phase). Averaging is performed over
Nc = 20 circuits for each tp and error bars are set according to
the standard deviation. In (b) we have circuits with L = 128
qubits. In the main plot measurement outcomes from inside
the fixed light-cone box are used for training while for the in-
set we use the measurement outcomes from the whole circuit.
In (c) we have circuits with L = 128 qubits (solid-line) and
L = 64 qubits (dashed-line) with p = 0.1 in the main plot
and p = 0.3 in the inset. (d) Ratio of learned circuits as a
function of number of quantum trajectories with L = 64 and
for different p without postselection on the purification time
with Nc = 103 circuits for each p.

tion time tp, which allows us to study the effect of system
size on the learning complexity. Moreover, we discard
measurement outcomes corresponding to measurements
performed after tp. Here, we note that given Nc circuits
with the same purification time, in addition to the learn-
ing efficiency of each circuit, we need to fix the learning
inaccuracy averaged over Nc circuits, δl, which we fix to
be δl = 20%. We remark that this number is larger than
εl since some of the postselected circuits have not been
learned.

In the second setting, we remove the postselection con-
straint and only consider the overall complexity of the
learning task when we randomly generate circuits for a
given p. The two schemes can be related using the prob-
ability distribution rp of the purification time as shown
in Fig. 2(a) and explained more concretely in the meth-
ods section. Note that since the reference qubit is en-
tangled locally at the beginning, there is always a finite
probability that it will be purified in early times. In the
mixed phase, the distribution has a exponentially small
tail until exponentially long times (both in system size)
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whereas in the pure phase, the ancilla purifies in a con-
stant time independent of system size. Inspired by the
approximate locality structure of hybrid circuits [36], we
also consider a light-cone learning scheme, where we train
the NN using only the measurement outcomes inside a
box centered at the middle (see Fig. 4(b)). In Fig. 2(b),
we compare the postselected complexity of the learning
task in the pure and mixed phases both by using the
light-cone box (main) and whole circuit (inset) measure-
ment data. For each purification time and p, we consider
Nc = 20 different circuits and we average over their min-
imum required training numbers to calculate M̄(εl, δl),
and show the standard deviation as the error bar. Here,
for all the curves, we observe an approximate exponential
growth of M̄(εl, δl) as a function of the purification time
tp. By comparing the mixed and pure phases, we notice
that the postselected learning task is more complicated in
the pure phase than the mixed phase, which is expected
since, all else being equal, there are more measurements
in the pure phase. Additionally, as shown in the inset, we
find that learning with light-cone data is less complicated
than using all the measurement outcomes. These behav-
iors can be understood by recognizing that to learn the
decoder we need to explore the domain of the mapping
in Eq.(1) whose size scales exponentially with 2pTL.

In Fig. 2(c) we compare the system size dependence of
the complexity in the two phases with L = 64, 128 where
we train our networks with the light-cone data. We note
that since the size of the light-cone box for a fixed tp
is independent of the system-size, the complexity should
be roughly independent of the system size. Taking the
error bars into consideration, our numerical observation
is partially in agreement with this theoretical expecta-
tion. We remark that, as shown in the methods section,
similar complexity results are obtained for circuits with
initial states scrambled by a high-depth random Clifford
circuit.

In the final step, we consider the learning task without
postselection. Fig. 2(d) shows the ratio of circuits that
can be learned, denoted by Rl, as a function of Nt, with
the circuit depth fixed at T = 10.

After an initial fast growth in Rl, the learning proce-
dure slows down. This can be understood by noting that
exponentially more samples are required to learn the de-
coder for circuits with longer purification time. More-
over, the saturation value for each p is bounded by the
ratio of circuits that are purified by time T , which can
be expressed as

Rp(T ) =

∫ T

0

rpdt (2)

where rp is the purification rate plotted in Fig. 2(a).

Figure 3. Temporal behavior of the reference qubit’s entangle-
ment entropy averaged over different circuit configurations for
a given p. (a) Comparing the temporal behavior for a circuit
with L = 64 qubits in the mixed (p = 0.1) and pure (p = 0.3)
phases. The dashed and solid lines are achieved from learn-
ing quantum trajectories, and exact simulation of the circuits,
respectively. (b) Temporal derivative of the learned entangle-
ment entropy Sl

Q as a function of the measurement rate at a
fixed scaled time τd = td/L = 1/16. (c) Rate of the simulated
entanglement entropy SQ as a function of the measurement
rate at the same τd = td/L = 1/16 and L. (d) Rate of the
simulated entanglement entropy for larger L. The crossing
point matches the critical point, pc ' 0.16.

DYNAMICS OF COHERENT INFORMATION

We can utilize the NN decoder to study the critical
properties of the phase transition. For a fixed p, let SQ(t)
denote the average entropy of the reference qubit after
time t, i.e., the coherent quantum information of the sys-
tem with 1 encoded qubit. We may assume on general
grounds that SQ(t) follows an early time exponential de-
cay e−λt with λ following the scaling form

λ = L−zf [(p− pc)Lz/ν ], (3)

where z and ν are the dynamical and correlation length
critical exponents respectively [9]. On the other hand,
since SQ(t) and the ratio of purified circuits Rp(t) are
related by SQ = 1 − Rp, we can estimate SQ(t) by the
ratio of learnable circuits of depth t in the postselection
free scheme described above, which we denote it by S̃Q.

In Fig. 3(a) we compare the temporal behavior of the
coherent information obtained from an ideal decoder and
the NN decoder introduced here. As demonstrated in
Fig. 3(a), in the mixed phase the learned entanglement
entropy closely follows the simulated entanglement en-
tropy, while in the pure phase the two curves start to
deviate from each other after a few time steps. This be-
havior is consistent with previous observations in Fig. 2
where we demonstrated that the learning task is easier
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in the mixed phase. Since at the critical point this phase
transition can be described by a 1 + 1-D conformal field
theory [6, 8], the dynamical critical exponent can be fixed
in advance z = 1. Defining the scaled time τ = t/L,
based on the scaling relation in Eq.(3), we expect to see
a crossing in

Lλτd ≈ |
d lnSQ
dτ

|τd . (4)

when its plotted for different system sizes. Here, τd =
td/L is the differentiation time which should be suffi-
ciently large. In Fig. 3(b), we evaluate the decay rate
obtained by learning, λ̃τd , for three different system sizes,
L = {32, 48, 64}, at τd = 1/16 using S̃Q. The correspond-
ing times are td = {2, 3, 4} for which the deviation of the
learned and simulated coherent information is negligible.
Here, we notice an approximate crossing in the region
0.1 . pc . 0.15 which is consistent with the simulation
results, pc ' 0.16. To further verify this result, we com-
pare our learning results, with similar results obtained
from simulations of SQ(t) at the same τd and for the
same L in Fig. 3(c). This plot shows a similar crossing
behavior in the region 0.1 . pc . 0.15. Achieving better
results for the pc is possible by increasing τd or consider-
ing larger system sizes as displayed in Fig. 3(d) where we
see a crossing at p = 0.16 ± 0.005. Analogously, by ap-
plying our NN decoder to larger system sizes, we expect
more accurate estimates of pc.

SCALABILITY OF LEARNING

An important feature of a practical decoder is the pos-
sibility of training it on small circuits and then utilizing
it for decoding larger circuits. Here, due to the approx-
imate locality of the temporal evolution of the random
hybrid circuits, one can examine the scalability of the de-
coders in a concrete manner. For a given circuit with L
qubits, we generate smaller circuits with LB < L num-
ber of qubits which have identical gates as the original
circuit in a rectangular narrow strip around the middle
qubit which is entangled to the reference qubit. The ge-
ometry of the two sets of circuits is displayed in Fig. 4(a)
where the depth of the two sets of circuits are chosen to
be equal. Here, for each p we generate Nc = 102 large
circuits with L = 32 with 10 time steps. We also posts-
elect over circuits that are learnable using measurement
outcomes from the original circuit. Next, for each of
these circuits, for LB = {4, 8, · · · , 20} we generate their
corresponding smaller circuits and we run them to gen-
erate Nt = 5× 103 quantum trajectories. In the training
step, we use the quantum trajectories produced from the
smaller circuits to train our neural networks. In the test-
ing step, however, we use these neural networks to make
prediction for the quantum trajectories obtained from the
larger circuits. As we observe in Fig. 4(b), by increasing

Figure 4. (a) Predicting the decoder function of a circuit
with L = 32 qubits using the neural network trained by the
measurement outcomes inside the small circuit in the orange
box. Ratio of learned circuits with neural networks trained on
the measurement outcomes from the smaller box with length
LB . (b) Ratio of learned circuits as a function of LB and for
different purification times. Circuits with longer purification
times tp need quantum trajectories from larger LB .

LB the ratio of the circuits that can be learned by the
smaller circuits’ measurements increase. Also, consistent
with the effective light-cone picture, we see that by al-
lowing longer purification times, larger LB is required.

OUTLOOK

There are a number of directions to extend these re-
sults. We first note that Clifford circuits are a special
type of circuits, and it is important to consider more
general circuits such as Haar-random circuits, where the
purification axis can be along any radius in the Bloch
sphere. From an experimental perspective, it is possible
incorporate different errors, which are common in the re-
alization of the two-qubit gates and/or measurement pro-
cesses, in our machine learning framework. An intrigu-
ing possibility is to find neural network decoders that
are successful in learning deep circuits with local data
[35]. Similarly, implementing neural network decoders for
2D and higher dimensional measurement-induced phase
transitions is an immediate extension of this work. In the
context of quantum error correction and fault-tolerance,
the purification dynamics in measurement-induced phase
transitions leads to a rich set of examples of dynamically
generated quantum error correcting codes [11, 32, 55, 56].
Designing similar decoders as considered here for other
types of dynamically generated logical qubits is a rich
avenue of investigation. Finally, we highlight that our
empirical complexity results raise interesting questions
about the complexity of learning an effective Hamilto-
nian description [57, 58] of the measurement outcome
distributions for monitored quantum systems.

Acknowledgments.—We acknowledge stimulating
discussions with Alireza Seif, David Huse, Pradeep
Niroula, Crystal Noel, Grace Sommers, and Christopher



6

White. We acknowledge support from the National Sci-
ence Foundation (JQI-PFC-UMD and QLCI grant OMA-
2120757). H.D. and M.H. acknowledge support from
ARO W911NF2010232, AFOSR FA9550-19-1-0399, NSF
OMA-2120757, QSA-DOE and Simons and Minta Mar-
tin foundations. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE), sup-
ported by the grant number PHY210049, at the Pitts-
burgh Supercomputing Center (PSC) [59]. M.H. thanks
ETH Zurich for their hospitality during the conclusion of
this work.

∗ hdehghan@umd.edu

∗ hdehghan@umd.edu
[1] H. Kim and D. A. Huse, Phys. Rev. Lett. 111,

127205 (2013).
[2] R. Nandkishore and D. A. Huse, Annual Review of

Condensed Matter Physics 6, 15 (2015).
[3] H.-P. Breuer, F. Petruccione, et al., The theory of

open quantum systems (Oxford University Press on
Demand, 2002).

[4] B. Bauer and C. Nayak, Journal of Statistical Me-
chanics: Theory and Experiment 2013, P09005
(2013).
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METHODS

Quantum Dynamics. The dynamics of hybrid cir-
cuits considered in this work in general can be described
using the quantum channel formalism. The wave func-
tion of the circuit, denoted by |ψS〉 at the beginning of
time evolution is entangled to a reference qubit. For-
mally, the time evolution of the system under this setting
can be modeled using Kraus operators [60],

K~m = UtP
mt
t · · ·U1P

m1
1 (5)

where mt, Ut and Pmt
t , denote the measurement out-

comes, unitary gates, and projective measurements at
the t-th layer of the circuit, respectively. We also denote
the set of all measurement outcomes in different layers via
~m. The corresponding evolution of the density matrix,

ρ, can be described via the following quantum channel,

Nt(ρ) =
∑
~m

KmρK
†
m ⊗ |~m〉〈~m|. (6)

For our purpose, to generate the quantum trajectories we
need to consider the time evolution of the system at the
level of the wave functions. Under an arbitrary unitary
operator U , the wave function evolves as

|ψ〉 → U |ψ〉. (7)

For projective measurements, we consider a complete set
of orthogonal projectors with eigenvalues labeled by m
satisfying

∑
m P

m
t = 1 and Pmt P

m′

t = δmm′Pmt under
which the wave function evolves as,

|ψ〉 → Pmt |ψ〉
||Pmt |ψ〉||

. (8)

In simulating the time evolution of the wave functions,
we use random unitaries sampled from the Clifford group
where, under any conjugation operation, the Pauli group
is mapped to itself [61]. Such circuits, according to the
Gottesman-Knill theorem, can be classically simulated in
polynomial times in the system size [62, 63].
Implementation of Deep Learning Algorithms.

In this work we mainly used convolutional neural net-
works for learning the decoder function. These network
are composed of several interconnected convolutional and
pooling layers. The convolutional layer uses the locality
of the input data to create new features from a linear
combination of adjacent features through a convolution
process. These layers are followed by pooling layers which
reduce the number of features. Finally, a fully connected
layer is used to associate a label to the newly generated
features, thus classifying the data. These layers can be
repeated a number of times for more complicated input
data. Our neural network architecture symbolically dis-
played in Fig. 1(b) consists of eight layers whose hyperpa-
rameters are chosen by an empirical parametric search to
optimize the learning accuracy when the number of sam-
ples are smaller than 5 × 104. From left to right these
layers include: (1) a convolutional layer with a Lq/2 fil-
ters where Lq is the number of qubits with a kernel size
of 4× 4, and a stride size of 1× 1 with a rectified linear
unit (ReLu) activation function, (2) a convolutional layer
with a Lq/2 filters where Lq is the number of qubits with
a kernel size of 3 × 3, and a stride size of 1 × 1 with a
Relu activation function, (3) a maximum pooling layer
with a window size of 2× 2 to decrease the dimension of
the input data, (4) a dropout layer with a dropping rate
of rd = 0.2 to prevent overfitting, (5) a flattening layer
to convert the data into a one-dimensional vector, (6) a
dense fully connected layer with a Relu activation func-
tion whose number of output neurons is variable and is
determined according to the number of training samples,
Nn = 512 ∗ (1 + 2bNt/2000c) where bxc denotes the floor
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function of x, (7) a dropout layer with a dropping rate of
rd = 0.2, (8) a dense fully connected layer with a sigmoid
activation function which generates the prediction for the
spin of the reference qubit. Finally, since we have a clas-
sification problem, the loss function for comparing the
predicted labels and the actual labels is a binary cross
entropy function. Using this loss function, for training
our neural network model, we use the Adam optimiza-
tion algorithm with a learning rate l = 0.001. The im-
plementation of our neural network layers and their opti-
mization was done by the Python deep-learning packages
TensorFlow and Keras.

Key measurements in clifford circuits

Consider a hybrid Clifford circuit C which has M Pauli
measurements. Imagine applying this circuit on an initial
stabilizer state which is entangled to a reference qubit.
Assume that as a result of this, the reference qubit dis-
entangles and purifies into the |P ; pR〉 state, where P is
one of the Paulis and pR = ±1 determines which eigen-
vector of P the reference qubit has been purified into.
Let s1, · · · , sM = ±1 denote the measurement outcomes
for a single run of the circuit. If we run the same circuit
again, the ancilla will purify in the same basis P , but we
may get different pR as well as different si. The goal is
to understand the relation between the value of pR and
the measurement outcomes {si}Mi=1.

When a Pauli string is measured on a stabilizer state,
the result is either predetermined (in case the Pauli string
is already a member of the stabilizer group up to a phase)
or it is ±1 with equal probability. We call the former
determined measurements and the latter undetermined
measurements. Note that in a stabilizer circuit, whether
a measurement is determined or undetermined is inde-
pendent of previous measurement outcomes. Therefore,
for a given circuit C and a fixed ordering of performing
measurements, it is well defined to label measurements
as either determined or undetermined without referring
to a specific circuit run.

The following is a straightforward result of the
Gottesmann-Knill theorem:

Corollary 1. There exists a unique subset of undeter-
mined measurement results {sj1 , · · · , sjm} (which we call
key measurements) such that,

pR × sj1 × sj2 × · · · × sjm = c (9)

where c = ±1 is the same for all circuit runs. We call
this set the key measurements set.

Note that since key measurements are undetermined
measurements, their value are independent of each other.
Hence, to predict pR from undetermined measurement
outcomes with any accuracy better than 1/2, one needs
to have access to all key measurement results.

Each determined measurement can be seen as a con-
straint between previous undetermined measurement
outcomes. Specifically, if si is a determined measure-
ment result for some i it means that there is some fixed
c′ = ±1 (independent of circuit run) and a subset of un-
determined measurements {sj′1 , · · · , sj′m} such that

si × sj′1 × · · · × sj′m = c′ (10)

The similarity to the Corollary 1 is not accidental: if the
reference qubit is purified in the P Pauli basis, it means
that measuring it in the P basis would be a determined
measurement.

Existence of these constraints then means that if we
relax the condition of the measurements being undeter-
mined in Corollary 1, then the set of key measurements is
no longer unique; we may be able to replace some mea-
surement outcomes in Eq.(9) with a product of others
using the constraints between measurement outcomes.

Relation between postselected and postselection-free
learning schemes

Here, under certain conditions, we argue that the re-
sults of the two learning schemes as displayed in Fig. 2
are related to each other. In particular, using the
purification-time distribution of the circuits in Fig. 2(a),
learnability Rl(Nt), is related to the purification ratio
rp(tp). In what follows to make our analysis more in-
telligible, we assume that the learning error is nearly
vanishing, εl ' 0. Next, we need to study the aver-
aged learning efficiency of our decoder which for a given
tp and Nt we denote by ηl(tp, Nt). For a given tp and
Nt, this quantity is related to the averaged inaccuracy
introduced in the text by ηl = 1 − δl. To proceed, we
employ a simplifying assumption which is approximately
consistent with our numerical results. More concretely,
we imagine a decoder with a sharp step-like behavior for
ηl(tp, Nt) as a function of Nt. Using the Heaviside theta
function θH(x), we suppose ηl(tp, Nt) = θH(Nt −M(tp))
where M(tp) is the minimum number of training samples
to reach full efficiency for t ≤ tp. From the definitions, if
follows straightforwardly that

Rl(Nt) =

tMax
p (Nt)∑
tp=1

rp(tp), (11)

where tMax
p (Nt) is the maximum purification time that

can be learned for a given Nt. However, this quantity
can be evaluated by inverting the function M(t) accord-
ing to tMax

p (Nt) = M−1(Nt) where M−1(Nt) is the in-
verse function of M(tp). Now, we notice that M(tp) af-
ter averaging over different circuits, can be read from
the averaged minimum number of training samples in
Fig. 2(b). Therefore, by integrating the information in
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Fig. 2(a) and Fig. 2(b) plus ηl(tp, Nt), one can explain
the behavior of Rl(Nt) in Fig. 2(d). Here, although we
do not have the explicit form of ηl(tp, Nt), we use the
step-like behavior as an approximation which is justifi-
able due to the exponential behaviors of the complexity
as a function of the purification time. Thus, using Eq.11
as a plausible approximation for the learnability of our
decoder, we expect that during the initial fast growth of
the curves in Fig. 2(a), learned circuits mostly belong to
the circuits with short purification times. However, since
for longer purification times an exponentially large num-
ber of training samples is required, the initial exponential
growth is followed by a slow learning curve. Therefore, in
Fig. 2(d), we observe that deep in the pure phase where
the majority of circuits have a short purification time, Rl
asymptotically approaches one.

Complexity results for scrambled initial states

Here, we present our results for the circuits scrambled
by a high-depth random Clifford circuit. Concretely, to
obtain such states, we first run our circuits with initial
product states only with two-qubit random Clifford gates

in the absence of any measurements. This unitary time
evolution creates a highly-entangled state after T ∼ L
time steps with an entanglement entropy proportional to
the system size. Next, we entangle the reference qubit
to one of the circuit’s qubits and run the same circuit
in the presence of two-qubit gates and random measure-
ments. As shown in Ref. [11], there is a purification phase
transition such that for p < pc the subsystem entan-
glement entropy of the circuit after T ∼ L still has a
volume-law behavior while for p > pc, its entanglement
entropy is negligible. Using such initially mixed states,
the complexity results are displayed in Fig. 5. Here,
as in Fig. 4, we observe a nearly exponential behavior
with the purification time. Furthermore, we notice that
the postselection learning scheme is more difficult in the
pure phase compared to the mixed phase. By comparing
the inset and main plots, we also observe that learning
with the light-cone data requires less training samples.
Finally, by comparing Fig. 2(b) and Fig. 5 we observe
that learning the circuits with scrambled initial condi-
tions requires more training samples than the circuits
with product state initial conditions.
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Figure 5. Averaged number of training samples required for
learning the reference qubit after postselection as a function
of the purification time tp, for p = 0.1 (mixed phase) and
p = 0.3 (pure phase) with a scrambled initial state. Averaging
is performed over Nc = 20 circuits for each tp and error bars
are set according to the standard deviation. We have circuits
with L = 128 qubits. In the main plot measurement outcomes
from inside the fixed light-cone box are used for training while
for the inset we use the measurement outcomes from the whole
circuit.
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