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Spurred by the possibility of realizing continuous-variable pho-
tonic quantum computation1, and protocols like Gaussian 
boson sampling2 that hold near-term promise for quantum 

simulations and various graph-theory problems, nanophotonic sys-
tems have emerged as a natural platform with which to generate 
indistinguishable correlated photon pairs and, in the strong nonlin-
earity regime, single-mode squeezed light3–7. Most on-chip sources 
of indistinguishable photon pairs rely on dual-pump spontaneous 
four-wave mixing (SFWM), a third-order nonlinear process, in 
silicon or silicon-nitride waveguides and ring resonators3–7. In this 
process, two pump photons at different frequencies annihilate and 
create two frequency-degenerate photons, called the signal and the 
idler. The tight mode confinement in nanophotonic waveguides and 
the use of a ring resonator greatly enhance the strength of SFWM 
interactions, leading to an enhancement in pair-generation rates and 
eventually to the realization of on-chip sources of squeezed light6–9. 
Extensions of these simple single-element systems to multi-mode, 
multi-resonator systems can enable tunability and multiplexing of 
various spectral or temporal modes, and hence a substantial reduc-
tion in physical resources10–12. However, such extensions have so far 
remained elusive.

At the same time, the influx of ideas derived from the phys-
ics of topological insulators has led to a new paradigm of pho-
tonic devices that use arrays of coupled waveguides or resonators 
to achieve unprecedented control over the flow of photons13–21. 
More specifically, edge states, the hallmark of topological systems, 
exhibit unique features such as unidirectional (or helical) flow of 
photons confined to the boundaries of a system, linear disper-
sion, and an inherent robustness against disorders. Photonic edge 
states have now been used to realize robust optical delay lines18,20,22, 
lasers23–25, optical fibres26, and reconfigurable pathways on chips27,28. 
More recently, topological edge states have been exploited in quan-
tum photonic devices, to realize chiral quantum-optic interfaces 
between quantum dots and photonic crystals29, topological beam-
splitters for quantum interference of photons30, quantum walks of 

correlated photon pairs31, and also topological sources of quantum 
light32,33. In particular, in ref. 32 we implemented a topological source 
of distinguishable photon pairs using single-pump SFWM in a 
two-dimensional (2D) lattice of coupled ring resonators.

Here we report spectrally engineered generation of indistin-
guishable photon pairs via dual-pump SFWM in a 2D lattice of cou-
pled ring resonators. This lattice realizes the anomalous quantum 
Hall model for photons and exhibits topological edge states20,34–36. 
We show that the linear dispersion of the edge states results in 
phase-matched generation of photon pairs throughout the edge 
band and thus allows us to tune the spectral−temporal bandwidth 
of photon pairs by tuning the input pump frequencies in the edge 
band. To show that the generated photon pairs are indeed indistin-
guishable, we use the fact that our system is time-reversal symmet-
ric and therefore supports two pseudo-spins with corresponding 
edge states that circulate around the lattice in opposite directions 
(Fig. 1). We use these counter-propagating edge states to create 
path-entanglement in a Sagnac interferometer and thereby, deter-
ministically split the indistinguishable photon pairs4,37. We then 
demonstrate Hong−Ou−Mandel (HOM) interference between split 
photons, which unequivocally establishes their indistinguishability. 
Furthermore, we show that the tunability of the spectral bandwidth 
of our source manifests in the temporal width of the HOM interfer-
ence dip. Finally, we demonstrate that the generated photon pairs 
are energy−time entangled38, as expected for a SFWM process with 
a continuous-wave pump, and that our source is robust against 
fabrication disorders. In contrast to our previous realization of the 
topological source of distinguishable photon pairs where we used 
the integer quantum Hall model (ref. 32), here we use the anoma-
lous quantum Hall model. The presence of next-nearest-neighbour 
couplings in this model yields an edge band that is twice the width 
of that in the integer quantum Hall model35,36. We exploit this sub-
stantially wider edge band to tune our source in a larger range. Our 
results could lead to the realization of on-chip, topologically robust 
and spectrally engineered sources of squeezed light for applications 
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in continuous-variable quantum computation and Gaussian boson 
sampling1,2,10.

Our system consists of a 2D chequerboard lattice of ring resona-
tors (Fig. 1a)35,36. The rings (blue) at the lattice sites are coupled to their 
nearest and next-nearest neighbours using another set of rings, which 
we call the link rings18,20. The gap between the link and the site rings 
sets the strength J of the evanescent field coupling between the site 
rings and is the same for both the nearest and next-nearest neighbour 
site rings. The resonance frequencies of the link rings are detuned 
from those of the site rings such that the link rings act as waveguides 
connecting site rings. More importantly, depending on their posi-
tion, the link rings introduce a direction-dependent hopping phase 
between the site rings. In our system, the link rings are positioned 
such that the hopping phases between next-nearest-neighbour site 
rings is always zero, and that between nearest-neighbour site rings 
is ±π/4. This configuration effectively leads to the realization of a 
staggered synthetic magnetic field for photons such that the average 
magnetic flux through a unit cell of two plaquettes of the lattice is 
zero (shaded light green in the inset of Fig. 1a), but the flux through 
a single plaquette is non-zero. This coupled ring resonator configura-
tion simulates the anomalous quantum Hall model for photons35,36, 
with a Haldane-like tight-binding Hamiltonian
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) is the photon creation (annihilation) operator  
at a lattice site N and h. c. indicates Hermitian conjugate. The 

summations 〈N O〉 and 〈〈N O〉〉 are over the nearest-neighbour 
and the next-nearest-neighbour lattice sites, respectively. J is the 
coupling strength between the lattice sites, and is the same for 
both nearest and next-nearest neighbours. The hopping phase 
ϕm,n = ±π/4 for nearest-neighbour couplings, and ϕm,n = 0 for 
next-nearest-neighbour couplings. The energy−momentum band 
structure of the lattice shows two bulk bands separated by a band-
gap. For a finite lattice, the bandgap hosts topological edge states 
that are confined to the boundary of the lattice. More importantly, 
the edge states exhibit a linear dispersion, and are robust against dis-
orders such as a mismatch in the ring resonance frequencies22,35,36. 
The band structure and the presence of edge states in the lattice can 
be probed by measuring the transmission and the delay spectra of 
the lattice from input to the output port. The simulated transmis-
sion and delay spectra for an 8 × 8 lattice of site rings are shown 
in Fig. 1b, c. The linear dispersion of the edge states manifests in 
the Wigner delay spectrum as a flat profile (Fig. 1c) in the range 
δω = [ − 1, 1]J, where δω = ω − ω0 is the detuning of the excita-
tion laser frequency ω from the ring resonance frequency ω0, for a 
given longitudinal mode. In contrast, the Wigner delay in the bulk 
band varies substantially because, in a finite lattice, the bulk bands 
do not have a well defined momentum. Our system also supports 
a pseudo-spin degree of freedom because of the two circulation 
directions (clockwise and counter-clockwise) in the ring resona-
tors. The two pseudo-spins (up and down) are time-reversed part-
ners, and therefore experience opposite hopping phases and exhibit 
counter-propagating edge states36.

Our topological source is designed to operate at telecommuni-
cations wavelengths (around 1,550 nm) and is fabricated using the 
silicon-on-insulator platform. The coupling strength J between the 
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Fig. 1 | Schematic of the experimental setup. a, Schematic of the 2D array of silicon ring resonators that simulates the anomalous quantum-Hall model for 
photons. The link rings (shaded brown) couple nearest and next-nearest-neighbour site rings (blue), with hopping phases as shown in the top-left inset. 
The lattice supports two pseudo-spins (up and down), with corresponding edge states travelling in opposite directions. A given pseudo-spin can be excited 
in the system by appropriately selecting the input port20,36. b,c, Simulated transmission (T) and delay spectra of the device showing edge and bulk bands. 
The spectrum repeats after every free-spectral range (Ω). d, Pumping scheme to generate indistinguishable photon pairs via dual-pump SFWM. The lattice 
is pumped using two continuous-wave lasers, in different free-spectral ranges centred at ȗ
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, and ȗ
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. At the output, we use tunable filters (centred 
around ωs!≈!ωi) to suppress pump photons, two superconducting nanowire detectors and a time-correlated single photon counter (TCSPC) to perform 
time-resolved coincidence (Coinc.) detection. This measurement scheme allows us to exclude frequency non-degenerate photons created by single-pump 
SFWM. EDFA: erbium-doped fibre amplifier; PC: polarization controller.
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rings is about (2π)15.6 GHz and the free-spectral range is about 
(2π)1 THz. The lattice is coupled to input and output waveguides 
as shown in Fig. 1a. Figure 2a shows the measured transmission 
spectrum of the device for spin-up excitation, with the edge band 
highlighted in colour. The edge states for this excitation take the 
shorter route from input to the output coupler, as shown in Fig. 1a.

To generate indistinguishable photon pairs in this lattice, we 
use the χ(3) nonlinearity of silicon and implement a dual-pump 
SFWM process (Fig. 1). We pump the lattice using two classical, 
continuous-wave pump beams, at frequencies ȗ

Q

�

BOE ȗ

Q

�

. The 
dual-pump SFWM then leads to the generation of correlated photon 
pairs, called signal and idler, at frequencies ωs and ωi, respectively, 
such that the energy conservation relation ȗ
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satisfied. This nonlinear process is described by the Hamiltonian
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Here η is the efficiency of the SFWM process, and Bp
NȊ

, with μ = s, 
i, p1, p2, is the photon creation operator for signal, idler or pump 
photons at a lattice site m.

The two-photon state generated at the output of our device is 
described, in general, as
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where Bp
TJ

 are the creation operators for the signal or idler photons, 
|WBD〉 is the vacuum state, and Ƞ (ȗ

T

ȗ

J

) is the two-photon spectral 
wavefunction. Given the fact that our ring resonator waveguides 
support a single transverse-electric polarized mode and the gen-
erated photons are collected from a single spatial mode (the same 
output port), the signal and idler photons are indistinguishable in 
all degrees of freedom when the two-photon spectral wavefunction  

is symmetric with respect to exchange of photons, that is, 
Ƞ (ȗ
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)39,40. Furthermore, the signal and idler pho-
tons are entangled when Ƞ (ȗ
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), that is, when 
the two-photon spectral wavefunction cannot be expressed as a 
product of individual wavefunctions of signal and idler photons40.

In our experiment, we position the two pump frequencies in 
two different longitudinal modes of the lattice separated by two 
free-spectral ranges (Ω, see Fig. 1d). The indistinguishable photon 
pairs are then generated in the longitudinal mode located midway 
between the two pump modes, that is, ȗ
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and ω0s = ω0i. Here ω0μ, with μ = p1, p2, s or i, is the resonance fre-
quency of the respective longitudinal mode. We note that each of 
the two pump beams also generates distinguishable photon pairs 
via non-degenerate (single-pump) SFWM. However, because  
of energy conservation, these photon pairs are generated in lon-
gitudinal modes located symmetrically around the respective 
pump beams (Fig. 1d). Therefore, we use spectral filtering and 
time-resolved coincidence measurements between detected pho-
ton pairs to exclude the noise photons generated by single-pump 
SFWM (Fig. 1c).

To understand the nature of spectral correlations between 
the two pump fields and the generated photons, we first mea-
sure the number of indistinguishable photon pairs generated 
via dual-pump SFWM as a function of the two pump frequency 
detunings (Ȃȗ

Q
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Q
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), relative to their respective lon-
gitudinal mode centre frequencies. As mentioned earlier, we use 
time-resolved correlation measurements 
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 to post-select the 
photon pairs generated by dual-pump SFWM. Figure 2b shows the 
typical temporal correlation function with pump powers P1 = 1 mW 
and P2 = 3 mW at the input of the lattice. We measure a maximum 
H

(�)
(�) ! ���, which shows that the two photons are indeed cor-

related. We integrate over the correlation peak to get the total 
number of coincidence counts in a given acquisition time (here 
10 s). Figure 2c shows the measured number of coincidence counts 
(normalized) as a function of the frequency detunings Ȃȗ
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(Ȓ) showing that the generated signal and idler photons are strongly correlated. c, Measured 
coincidence counts as function of the input pump frequency detunings Ȃȗ
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 relative to the respective longitudinal mode resonances. d−f, Measured 
JSI of the signal and idler photons, for input pump frequencies (Ȃȗ

Q
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�

) = (��), (����) + and (������) +. The colour scale indicates the number 
(normalized to maximum) of generated photon pairs. The pump frequencies are also indicated in c using labels d–f. The dashed lines in c show the spectra 
of generated photons in the edge band allowed by energy conservation. The maximum on-chip photon pair generation rate was measured to be about 
3,000!s–1!mW–2.
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Notably, we observe that the photon generation rate is maximum 
when both the pump frequencies are in the edge band, that is, when 
Ȃȗ

Q

�

 Ȃȗ

Q

�

= [−� �]+  (Fig. 2a). Furthermore, compared to the bulk 
band regions, the generation rate is relatively uniform throughout 
the edge band. We note that for a given choice of the two pump fre-
quencies, energy and momentum conservation lead to spectral cor-
relations between generated photons. However, our measurement 
of the number of generated photon pairs as a function of the pump 
frequencies does not resolve these spectral correlations.

To reveal the spectral correlations between generated signal 
and idler photons, we fix the input pump frequencies to be in the 
middle of the edge band, at Ȃȗ

Q

�

! � ! Ȃȗ

Q

�

, and measure the 
joint-spectral intensity (JSI), |Ƞ (Ȃȗ

T

 Ȃȗ

J

)|� (Fig. 2d). This is the 
joint probability of detecting a signal photon at frequency δωs 
and an idler photon at frequency δωi. Here δωs,i are the frequency 
detunings of the signal and idler photons relative to their respec-
tive longitudinal mode resonances. The measured correlations show 
that, with the two pump fields in the edge band, the spectrum of 
generated signal and idler photons is also limited to the edge band. 
This is because of the linear dispersion of the edge states that leads 
to efficient phase matching (momentum conservation) when all 
four fields are in the edge band and the confinement of the edge 
states to the lattice boundary, which leads to a good spatial overlap 
between the fields. Furthermore, both the signal and idler spectra 
are centred around δωs ≃ 0 ≃ δωi, which shows that they are degen-
erate in frequency, that is, |Ƞ (ȗ

T

ȗ

J

)|� = |Ƞ (ȗ
J

ȗ

T

)|�. The JSI also 
shows that the signal and idler photons generated by our source are 
entangled, that is, Ƞ (ȗ

T

ȗ

J

) != Ƞ
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(ȗ
T

)Ƞ

J

(ȗ
J

). We note that we use 
continuous-wave pumps in our experiments and the apparent width 
of spectral correlations along the diagonal is because of the finite 
spectral resolution (≈ �� ()[ " ����+) of our measurements.

The energy conservation and the linear dispersion of the edge 
states allows us to tune the spectral bandwidth of generated photons 
by tuning the input pump frequencies within the edge band region. 
This is because of the efficient momentum conservation in the edge 
band that limits the spectra of generated photons also to the edge 
band region. To show such tunability of the spectra of generated 
photons, we measure the signal−idler spectral correlations for dif-
ferent pump frequencies in the edge band (Fig. 2e,f). When both the 
pump frequencies are near the side of the edge band (! ���+), in Fig. 
2f, we observe that the spectra of generated photons are substan-
tially narrower (by about 4 times) than when both the pumps are in 
the centre of the edge band (Fig. 2d). Also, the spectra are centred 
around 0.8J, which shows that the two photons are degenerate in 
frequency, as expected. Similarly, when the two pump frequencies 
are at different locations in the edge band (Ȃȗ

Q

�

! ���+ Ȃȗ

Q

�

! �), 
we observe that the spectra of generated photons are centred around 
0.4J, with a bandwidth larger than that with both the pumps in the 
side of the edge band (Fig. 2e).

Though our JSI measurements show that the signal and idler 
photons are degenerate in frequency, |Ƞ (ȗ

T

ȗ

J

)|� = |Ƞ (ȗ
J

ȗ

T

)|�, 
these measurements do not confirm their indistinguishability, which 
requires phase-coherence such that Ƞ (ȗ

T

ȗ

J

) = Ƞ (ȗ
J

ȗ
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)39,40. A 
way to unambiguously confirm the indistinguishability of generated 
signal and idler photons is to perform HOM interference41 between 
the two photons. In HOM interference, when two indistinguishable 
photons arrive simultaneously at the two input ports of a beamsplitter, 
they bunch together at the output of the beamsplitter. We emphasize 
that HOM interference between correlated signal and idler photons 
(generated by the same source) only requires the two-photon spec-
tral wavefunction to be symmetric, Ƞ (ȗ

T

ȗ

J

) = Ƞ (ȗ
J

ȗ

T

), but not 
necessarily separable, Ƞ (ȗ
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) = Ƞ
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)39,40.
In HOM interference the two photons arrive separately, one 

photon in each of the two input ports of the beamsplitter. However, 
in our topological source, both the photons are in a single spatial 
mode, they have the same polarization, and they are degener-

ate in frequency. Therefore, we cannot deterministically split the 
two photons into two spatial modes using a normal beamsplitter, 
which creates at its output a superposition of states where either 
one photon is in each port, or two photons are in the same port 
(see Supplementary section 3, and refs. 4,37). Nevertheless, when the 
input to the beamsplitter is a path-entangled two-photon state of 
the form |��〉

"#

+ |��〉
"#

, that is, when both the photons arrive 
either at the input port A or at port B of the beamsplitter, then the 
two-photon state at the output ports C, D of the beamsplitter is 
deterministic with one photon in each port, that is, |��〉

$%

. Here the 
state |ON〉

"($)#(%) refers to n photons in the input(output) port A(C) 
of the beamsplitter and m photons in the input(output) port B(D) 
(see Supplementary section 3, and refs. 4,37). This scenario, in fact, 
corresponds to time-reversed HOM interference of two photons37.

To deterministically split the two photons, so that we can later 
perform HOM interference between them, we use our topological 
source in a Sagnac interferometer (formed by beamsplitter BS-1, 
Fig. 3a)4,37. In this configuration, both the pseudo-spins (up and 
down) associated with our source are simultaneously pumped. 
Because they are time-reversed partners, the pump beams cor-
responding to the two pseudo-spins propagate through the same 
edge state, but in opposite directions, and generate a path-entangled 
two-photon state |��〉

"#

+ F

−JȂ

|��〉
"#

 at ports A, B of the beam-
splitter BS-1 (Fig. 3a). We note that the strength of SFWM interac-
tion in our experiment is very weak, such that the probability of 
generating two photon pairs, one in each arm of the Sagnac interfer-
ometer, is small. The relative phase δ of two-photon entangled state 
can be set to 0 or π by appropriately choosing the input ports for 
the two pump beams at the Sagnac beamsplitter (BS-1 in Fig. 3a)4. 
When both the pumps are in the same port of the BS-1 (port C or 
port D), the phase δ = π, and the two photons bunch at the output of 
BS-1, that is, they appear together at either port C or port D of BS-1 
(Fig. 3c). In contrast, when the two pumps are in different ports of 
the beamsplitter BS-1 (one in port C, and the other in port D), the 
phase δ = 0 and it leads to anti-bunching of photons such that the 
photons are deterministically separated at the output of the BS-1 
(Fig. 3b). We use two circulators to collect the photons at ports C 
and D. For δ = 0, we measure the total probability of bunching (in 
either port C or port D), H(�) (�) = ����(�), which shows that the 
two photons are predominantly in the state |��〉

$%

. For δ = π, we 
measure H(�) (�) = ����(�), which shows that the two photons are 
still in the same spatial mode (port C or port D). We emphasize 
that the use of a Sagnac interferometer, with the two pump beams 
injected at different input ports, alleviates the need for any active 
stabilization of our source.

To demonstrate HOM interference we set δ = 0 such that the 
two photons are deterministically separated in the ports C and D 
of the beamsplitter BS-1. We pump our source in the middle of the 
edge band, that is, Ȃȗ

Q

�

! � ! Ȃȗ

Q

�

. We introduce a relative delay 
τd between the two photons, interfere them on another beamsplitter 
(BS-2), and measure the coincidence counts at the output of BS-2 
as we vary the delay τd (Fig. 3a). We see a HOM dip in the coin-
cidence counts, with a visibility of 88(10)%, which confirms that 
the two photons are indeed indistinguishable (Fig. 3d). The visibil-
ity of the HOM interference observed using the topological source 
compares well with that observed using single waveguides and ring 
resonators3,4.

We note that the temporal width of the HOM interference dip 
is inversely related to the spectral width of the JSI (along the line 
δωs = −δωi), which characterizes the two-photon state. As we dem-
onstrated in Fig. 2d–f, we can control the JSI of generated photons 
in our source by simply tuning the input pump frequencies (Fig. 2).  
To demonstrate similar control in the HOM interference, we set 
the two pump frequencies to be at one of the extremes of the edge 
band Ȃȗ

Q

�

! ���+ ! Ȃȗ

Q

�

 such that the spectral width of the JSI is 
small (Fig. 2f). We now observe, in Fig. 3e, that the temporal width 
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of the HOM interference dip is indeed much larger (by a factor of 
2.7 ± 0.4) compared to the case with both the pumps in the cen-
tre of the edge band. The discrepancy between this factor and the 
decrease in the spectral width (by a factor of ~4) can be accounted 
for by the limited spectral resolution of our JSI measurement.

Finally, we show that the two-photon state generated by our 
source is energy−time entangled. We use a fibre beamsplitter  
(Fig. 4a, Supplementary section 4) to split the two photons at the 
output of our source, and inject them into two Franson interferom-
eters38. The path length delay in the interferometer is about 800 ps, 
which is much longer than ΔT ≈ 200 ps, the width of the second-order 

temporal correlation function H(�) (Ȓ) of the generated photons (see 
Fig. 2b). As we discussed earlier (also see Supplementary section 
4), the fibre beamsplitter creates a superposition of states, with one 
photon in each output port or two photons in either of the output 
ports. However, our coincidence measurements at the outputs of 
the two interferometers post-select only the state where there is one 
photon in each output port of the beamsplitter. Furthermore, coin-
cidence measurements that resolve the time delay in the arrival of 
two photons yield three peaks. The two side peaks correspond to 
the two cases (|TM〉  |MT〉) when one of the photons took the shorter 
path (s) in the interferometer, while the other took the longer path 
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Fig. 3 | Indistinguishability of the generated photons. a, Schematic of the Sagnac interferometer setup used to deterministically split the two photons via 
time-reversed HOM interference of a path-entangled two-photon state (at beamsplitter BS-1), and subsequently, realize HOM interference at beamsplitter 
BS-2 with a variable delay τd between the two photons. b,c, Measured two-fold coincidences at the output ports C, D of the beamsplitter BS-1, for two 
different configurations of the input pump beams. The photons anti-bunch (δ!=!0) when the two pumps are in separate input ports of BS-1, and the photons 
bunch (δ!=!π) when the pumps are in the same input port. The bar plots were obtained by integrating the time-resolved coincidence counts over a window 
of 600 ps (see Supplementary section 3). d,e, Measured HOM interference dip with δ!=!0, and pump frequencies (Ȃȗ
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) = (��) +, and (������) +, 
respectively. Insets show measured JSI and time-resolved coincidences between the two photons. The error bars in b,c (shaded light blue) and d,e are 
calculated assuming Poissonian statistics for photon counts.
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(l, Fig. 4a). The center peak corresponds to the two cases (|TT〉  |MM〉) 
when both the photons took either the shorter path or the longer 
path, and therefore they arrive together at the two detectors with 
zero time delay. When we vary the phase θ of the interferometer, 
we observe interference fringes in the total number of coincidence 
counts in the centre peak, with a visibility of about 92% (Fig. 4b). 
This is because the two cases, |TT〉 BOE |MM〉, are indistinguishable at 
the two detectors. Furthermore, the period of interference fringes is 
π because the two photons acquire a total phase 2θ in the interfer-
ometer, and the corresponding state at the output of the interferom-
eter is 

(

|TT〉+ F

−J�Ȇ

|MM〉

)

 (Supplementary section 4). In contrast, the 
other two cases, where one photon travels through the shorter path 
and the other through the longer path (|TM〉  |MT〉), are distinguishable 
and accordingly yield no interference (Fig. 4c). More importantly, 
note that we observe interference fringes even when the path-length 
delay in the interferometer (about 800 ps) is much longer than the 
correlation time ΔT (about 200 ps, Fig. 3d) between the two pho-
tons. This demonstrates that the coherence time of the generated 
two-photon state (��ɔȗ), where Δω = Δωs + Δωi is the total uncer-
tainty in the frequency of signal and idler photons, is much longer 
than ΔT, such that ΔωΔT < 1. Therefore, the two-photon state gen-
erated by our topological source is indeed energy−time entangled38. 
We emphasize that, similar to single-ring devices, this energy−time 

entanglement between generated photon pairs is because of the use 
of narrow-band continuous-wave pumps. By using pulsed pumps 
with broad-band spectra, it is indeed possible to generate indistin-
guishable photons pairs that are also nearly separable (see refs. 42,43 
and Supplementary section 7), and can therefore be used to realize 
multi-photon interference schemes.

Because the edge states are topologically protected, we expect 
that the spectral correlations between generated photon pairs will 
also be robust against fabrication disorders when the two pump 
frequencies—and therefore the signal and idler frequencies—are in 
the edge band. Indeed, in ref. 32, we demonstrated the topological 
robustness of spectral correlations using a single-pump SFWM pro-
cess32. To show that this topological robustness holds for dual-pump 
SFWM process as well, we provide numerical simulation results in 
Supplementary section 5. We fix the input pump frequencies to be 
in the centre of the edge band and calculate the spectra of gener-
ated photons for random realizations of disorder. We compare these 
results against those for a one-dimensional array of ring resonators, 
which is topologically trivial, and therefore not robust against dis-
order. As expected, we observe that our topological source of indis-
tinguishable photon pairs achieves much higher spectral similarity 
across devices when compared to topologically trivial sources.

In summary, we have demonstrated a topological source of indis-
tinguishable photon pairs with tunable spectral−temporal correla-
tions. Our demonstration could lead to on-chip generation of novel 
quantum states of light where topological phenomena are used for 
robust manipulations of the photonic mode structure and quantum 
correlations between photons. In particular, in the low-loss regime 
that can be easily accessed using the commercial silicon-nitride plat-
form, our topological devices can achieve pair-generation rates that 
are an order of magnitude higher than that in single-ring sources 
(see Supplementary section 9). Low-loss topological devices would 
also allow the generation of spectrally engineered or spectrally mul-
tiplexed squeezed light5–7,44 for applications in continuous-variable 
photonic quantum computation. On a more fundamental level, 
nonlinear parametric processes such as four-wave mixing are inher-
ently non-Hermitian in nature, that is, they do not conserve particle 
number. Therefore, our system paves the way for investigations of 
the rich interplay between topology, nonlinear and non-Hermitian 
physics, and quantum photonics processes to realize novel topologi-
cal phases that are unique to photons.
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Methods
Our devices are fabricated using the complementary metal–oxide–semiconductor 
(CMOS) compatible silicon-on-insulator platform at a commercial foundry (IMEC 
Belgium). The ring waveguides are about 510 nm wide, about 220 nm high and, at 
telecommunications wavelengths (around 1,550 nm), they support a single transverse- 
electric polarized mode. The ring length is about 70 μm with a free-spectral range of 
around (2π)1 THz. The coupling gap between the rings is 0.180 nm, and it results in 
a coupling strength of J ≃ (2π)15.6 GHz. The lattice is coupled to input and output 
waveguides, as shown in Fig. 1. At the ends of the input/output waveguides, we use 
grating couplers to couple light from a standard single-mode fibre into the waveguide.

We use two tunable lasers (Santec TSL 710) to pump the lattice. The two 
pump lasers are amplified using using two erbium-doped fibre amplifiers 
(Amonics), and two tunable filters (OzOptics) are used to reduce the noise 
photons generated by the erbium-doped fibre amplifiers. The pump lasers are 
combined using a 50:50 fibre beamsplitter, and coupled to the input port of the 
lattice using a grating coupler. The photons generated at the output port of the 
lattice are collected into a single-mode fibre using another grating coupler. We use 
cascaded wavelength-division multiplexing (WDM) filters to filter out the pump 
photons, and use two superconducting nanowire detectors (PhotonSpot) and a 
time-correlated single photon counter (HydraHarp) to perform time-resolved 
coincidence detection of photons. For the JSI measurements (reported in Fig. 2) we 
use two narrow-band tunable filters (Exfo XTM-50) before the nanowire detectors. 
For demonstration of energy-time entanglement we used a single Michelson 
interferometer (see Supplementary Information for details).
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S1: COINCIDENCES AND CAR AS A FUNCTION OF PUMP POWER

The number of coincidence counts generated in the dual-pump spontaneous four-wave mixing (DP-FWM) process depend
on the product of the input pump powers as Pp1Pp2 , where Ppi is the power of the pump with index i = 1, 2. In contrast, the
number of coincidence counts generated in a single-pump spontaneous four-wave mixing (SP-FWM) process vary as P 2

pi
. To

verify that the coincidence counts detected in our setup are generated by the DP-SFWM process, we fix one of the input pump
powers, at 3 mW (on-chip), and measure the coincidence counts as we vary the other pump power. From Fig.S1a, we see that the
number of measured coincidence counts (accumulated over 180 seconds) indeed increase linearly with one of the pump powers.

We also measure the coincidences-to-accidentals ratio (CAR) which is an indication of the signal to noise ratio of a source.
To do that, we integrate the measured g(2)(τ) (see Fig.2b of the main text) around the peak to calculate the actual coincidence
counts, and divide it by the mean coincidence counts at τ ! 0 which are the accidental coincidences. Our source achieves a
maximum CAR of ≈ 53. We also measured CAR as we vary one of the pump powers (say Pp2 ) while the other pump power
(say Pp1 ) is fixed (at 3 mW), and the result is shown in Fig.S1b. As expected, we find that the CAR follows the relation [1]

CAR =
ηPp1Pp2

(P 2
p1

+ P 2
p2

+ Pp1Pp2)
2
, (S1)

where η is a fitting parameter. For low Pp2 , the CAR is limited by the noise photons generated by pump p1 via single-pump
SFWM process.
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FIG. S1. a Coincidences, and b CAR as function of one of the pumps powers, while the other pump power is fixed at 3 mW.

S2: JSI IN THE BULK BAND

Figure S2 shows the measured the joint-spectral intensity (JSI) of the signal and idler photons, when the input pump frequen-
cies are in the bulk band of the device, that is, when (δωp1 , δωp2) = (−2.42,−2.42) J, and (−1.82,−2.42) J . While the JSI
is still along the anti-diagonal δωs = −δωi because of energy conservation, we observe that the JSI shows presence of distinct
modes. More importantly, this mode pattern changes randomly as we tune the input pump frequencies. In contrast, when both
the pump frequencies are in the edge band (Fig. 2 of the main text), the JSI is relatively uniform, and only the bandwidth of the
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FIG. S2. Measured JSI when the input pumps frequencies are in the bulk band, a (δωp1 , δωp2) = (−2.42,−2.42) J , b (δωp1 , δωp2) =
(−1.82,−2.42) J . The JSI shows presence of distinct modes, that change with pump frequencies.

JSI changes as we change the pump frequencies. This behavior of bulk band is because, unlike the edge band, it does not have a
well-defined momentum and its dispersion is very sensitive to fabrication disorders.

S3: TIME-REVERSED HOM INTERFERENCE

As we mentioned in the main text, the signal and idler photons generated by our topological source are in a single spatial
mode, with the same polarization (TE), and are degenerate in frequency. Therefore, we can not use a normal beamsplitter to
deterministically split the two photons into two spatial modes. Consider a two-photon state arriving at a beamsplitter such that
both the photons are at the input port A, that is,

|Ψ〉in = |2, 0〉A,B =
1√
2
a†Aa

†
A |vac〉 . (S2)

Here a†A and a†B are the photon creation operators at the input port A and B, respectively, and they can be expressed in terms of
the photon operators at the output ports C and D of the beamsplitter as

a†A =
a†C − ia†D√

2
a†B =

−ia†C + a†D√
2

. (S3)

Therefore, the two-photon state at the output of the beamsplitter is given as

|Ψ〉out =
1

2
√
2

(
a†C − ia†D

)(
a†C − ia†D

)
|vac〉 (S4)

=
1

2
√
2

(
a†Ca

†
C − a†Da†D − ia†Ca

†
D − ia†Da†C

)
|vac〉

=
1

2

(
|2, 0〉C,D − |0, 2〉C,D − i

√
2 |1, 1〉C,D

)

As evident, the output of the beamsplitter will contain one photon in each port C and D with a probability of 0.5, and two photons
in port C or in port D with a probability of 0.25 each. Clearly, we can not use a normal beamsplitter to deterministically split the
two photons and perform the HOM interference.

Now consider the case when the input to the beamsplitter is a path-entangled two-photon state of the form [2, 3]

|Ψ〉in =
1√
2

(
|2, 0〉A,B + e−iδ |0, 2〉A,B

)
=

1

2

(
a†Aa

†
A + e−iδa†Ba

†
B

)
|vac〉 . (S5)

In this case the two-photon state at the output of the beamsplitter is

|Ψ〉out =
1

4

{(
1− e−iδ

) (
a†Ca

†
C − a†Da†D

)
− i

(
1 + e−iδ

) (
a†Ca

†
D + a†Da†C

)}
|vac〉 (S6)

=
1

2
√
2

{(
1− e−iδ

) (
|2, 0〉C,D − |0, 2〉C,D

)
− i

√
2
(
1 + e−iδ

)
|1, 1〉C,D

}
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FIG. S3. Time-resolved coincidence measurement plots used to obtain bar plots in Fig.3 b,c of the main text. These plots were acquired using
the setup of Fig.3a of the main text, with delay τd set to ≈ 2400 ps. The integration window for each peak, shown by dashed lines, was chosen
to be 600 ps.

Clearly, when the phase of the path-entangled two-photon state δ = 0, the state at the output of the beamsplitter is deterministic
with only one photon in each arm, that is,

|Ψ〉out = |1, 1〉C,D . (S7)

In this case, the two-photons at the output are always anti-bunched. This situation corresponds exactly to that of a time-reversed
HOM interference [2].

In contrast, when δ = π, the two photons at the output of the beamsplitter are always bunched with

|Ψ〉out =
1

2

(
|2, 0〉C,D − |0, 2〉C,D

)
, (S8)

which is the same state as the input.
In our experiment, we set the phase δ by choosing the pump ports in the Sagnac interferometer setup (Fig. 3a of the main

text). When both the pumps are injected from the same port (Port C or Port D), the beamsplitter BS-1 introduces a relative phase
δ = π between pumps in the port A and port B. When the pumps are injected from different ports (one in Port C and one in Port
D), the relative phase δ = 0. This relative phase δ of the pump fields gets imprinted on the two-photon state generated in the
DP-SFWM process.

To measure the anti-bunching and bunching of photons with δ = 0, and δ = π, respectively, we used the same setup as shown
in Fig.3a of the main text. However, we increased the path length delay τd ≈ 2400 ps, much longer than the correlation time
of the photon pairs. This ensured that there are no single-photon or two-photon interference effects. The result of time-resolved
coincidence measurements at the two detectors are shown in Fig.S3 for δ = 0 and δ = π.

When the two-photon state at the output of beamsplitter BS-1 is anti-bunched, that is, of the form |1, 1〉C,D (see Eq.S7), the
path length difference between the two arms introduces a relative delay τd ≈ 2400 ps between the two photons as they arrive
at the detectors. Therefore, in time-resolved coincidence measurements, anti-bunched photons show up as coincidence counts
around τ ≈ ±2400 ps, the side-peaks in Fig.S3. In contrast, when the two-photon state at the output of beamsplitter BS-1
is bunched, of the form |2, 0〉C,D or |0, 2〉C,D (see Eq.S8), there is no relative delay between the two photons and they arrive
together at the detectors. In this case, the coincidence counts peak near τ = 0.

From Fig.S3, we see that for δ = 0 the number of coincidence counts near τ = 0 is negligible. This indicates that for δ = 0
the photons are anti-bunched, and they are predominantly in the state |1, 1〉C,D. For δ = π, the number of coincidence counts
is maximum near τ = 0 which shows that they are bunched, in a superposition of states |2, 0〉C,D and |0, 2〉C,D. The bar plots
shown in Fig.3b,c of the main text are obtained by integrating the coincidence counts in Fig.S3 over a window of 600 ps (as
shown in the figure). Furthermore, we sum the coincidence counts in the two side-peaks because they are both contributed by the
same state |1, 1〉C,D. The probability of bunching, g(2) (τ = 0), is then calculated as the ratio of coincidence counts (integrated)
in the center peak (bunched photons) to the total number of coincidence counts in the center and side peaks (anti-bunched). Note
that we have corrected for accidental coincidence counts in the plots of Fig.S3. The accidental coincidences were estimated by
averaging the raw coincidence counts in regions far away from the actual coincidence peaks.
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FIG. S4. a Simplified schematic of the Franson setup used to demonstrate energy-time entanglement between between generated photon pairs.
b Schematic of the actual Franson interferometer setup implemented using Michelson configuration. FBS: fiber beamsplitter, BS: beamsplitter,
PD: photo-detector, TCSPC: time-correlated single photon counter

S4: FRANSON INTERFEROMETER FOR DEMONSTRATING ENERGY-TIME ENTANGLEMENT

Figure S4a shows a simplified schematic of the Franson interferometer that was used to demonstrate energy-time entanglement
between generated signal and idler photon pairs [4]. The two photons generated by our topological source are first injected into
a fiber beamsplitter (labelled FBS in Fig.S4a). Following Eq.S4, the two-photon state at the output of the fiber beamsplitter is
a superposition of states, with one photon in each output port (labelled C and D), and two photons in either of the output ports,
and is given as

|Ψ〉out,FBS =
1

2

(
|2, 0〉C,D − |0, 2〉C,D − i

√
2 |1, 1〉C,D

)
(S9)

=
1

2
√
2

(
a†Ca

†
C − a†Da†D − ia†Ca

†
D − ia†Da†C

)
|vac〉 .

Each unbalanced interferometer then creates a superposition of states, labelled by the ”short” path (s) and the ”long” path (l)
such that

a†C = a†s,C − e−iθa†l,C (S10)

a†D = a†s,D − e−iθa†l,D

Here, a†s,C represents photon creation operation corresponding to ”short” path (s) in the interferometer connected to port C, and
so on. We have assumed that the relative phase θ of both the interferometers is the same (see below). Also, for simplicity, we
have dropped the normalization factors. The two-photon state at the two outputs of the two Franson interferometers (FI) is then
described as

|Ψ〉out,FI =
{
a†s,Ca

†
s,C + e−i2θa†l,Ca

†
l,C − 2e−iθa†s,Ca

†
l,C

}
(S11)

−
{
a†s,Da†s,D + e−i2θa†l,Da†l,D − 2e−iθa†s,Da†l,D

}

− i
{
a†s,Ca

†
s,D + e−i2θa†l,Ca

†
l,D − e−iθ

(
a†l,Ca

†
s,D + a†s,Ca

†
l,D

)}

In this state, the terms in the first line indicate the scenario when both the photons are in the upper interferometer corresponding
to port C of the fiber beamsplitter (FBS). Similarly, terms in the second line indicate the scenario when both the photons are in
the lower interferometer corresponding to port D of the fiber beamsplitter.

For our measurements, we detect coincidence events between outputs of the upper and the lower interferometer. Therefore,
our coincidence measurements project the state |Ψ〉out,FI into terms on third line where there is one photon in each port C and
D.

|Ψ〉detectors = a†s,Ca
†
s,D + e−i2θa†l,Ca

†
l,D − e−iθ

(
a†l,Ca

†
s,D + a†s,Ca

†
l,D

)
(S12)

= |ss〉+ e−2iθ |ll〉 − i√
2
(|s, l〉+ |l, s〉)
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FIG. S5. Numerical simulation results comparing the similarity in the spectra of generated photons as a function of disorder for topologically
trivial 1D array and 2D topological devices. As expected the spectra of generated photons in topologically trivial 1D devices are much
more susceptible to disorder compared to the 2D topological devices. The simulation data was acquired for fixed input pump frequencies
(ωp1 ,ωp2) = (0, 0)J .

The first two terms here represent the scenario when both the photons took the short path (s), or both took the long path (l)
in their respective interferometers. In both these cases, the photons arrive together at the detectors, with zero time delay (the
center peak in Fig.4d,e of the main text and the inset of Fig.S4a). Because we use continuous-wave pumps for our source, the
detectors can not distinguish between these two possibilities, and this leads to interference fringes with phase 2θ. The last two
terms represent the scenario where the photon in the C port took the long path, and photon in the D port took the short path,
or vice-versa, through their respective interferometers. These two possibilities are distinguishable, and therefore, do not lead to
any interference at the detectors (as shown in Fig.4c of the main text).

In our experiment, for the ease of alignment, we actually used a single Michelson interferometer to implement both the
unbalanced interferometers as shown in Figure S4b. In this configuration, the relative phase θ of both the interferometers is
the same. We used a piezo-controlled stage to change the phase θ. Furthermore, we used WDM filters to filter out the pump
wavelength, measured the pump power using a photodetector (PD), and used this measurement to monitor the phase θ of the
interferometer.

S5: ROBUSTNESS OF SPECTRAL CORRELATIONS

To numerically show the robustness of spectral correlations of our source in the presence of disorder, we perform simulations
to calculate the spectra of generated photons in the presence of random disorder. We introduce the disorder using random
variations in the ring resonator frequencies, where the disorder strength is given by V . We fix the input pump frequencies
(ωp1 ,ωp2) = (0, 0)J , and average over 100 random realizations for each disorder. We then calculate the mean similarity of the
disordered spectra with the spectra in the absence of any disorder. The similarity between two devices i and j is calculated by
taking the mean of the inner product between two spectra and is given by,

Si,j =

√∫
ΓiΓj

2

∫
Γi

∫
Γj

(S13)

where Γi,j is the spectra of generated photons for a device i,j. We compare the results against those obtained for a topologically
trivial 1D array of 10 ring resonators. As shown in Fig.S5, our topological source of indistinguishable photon pairs achieves much
higher spectral similarity across devices when compared to a topologically trivial source. We also observe that the variability in
the spectra of 1D devices is much higher compared to 2D devices for larger disorders. These results show the advantage of using
topologically robust edge states for generating indistinguishable photon pairs [5].

S6: JSI MEASUREMENTS ON ANOTHER 2D TOPOLOGICAL DEVICE

Fig.S6 shows the transmission spectrum, number of coincidence counts as a function of the two pump frequencies, and the
JSI for three different pump frequencies in the edge band, measured on another 2D topological device. This device had exactly
same design parameters as the device reported in Fig.2 of the main text. However, this device was fabricated on a different chip,
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FIG. S6. a Measured transmission spectrum on another 2D topological device, with same design parameters as that reported in Fig. 2 of
the main text, but fabricated on a different chip. b Number of photon pairs generated as a function of the input pump frequencies. The pair
generation rate is enhanced in the edge band. c-e Measured JSI for three different pump positions in the edge band. Similar to Fig.2 of the
main text, we can tune the spectrum of generated photons by tuning the pump frequencies.

and therefore, fabrication disorder can lead to variations in device behavior. A comparison of this device data with that reported
in Fig.2 of the main text shows that although the two devices have different characteristics in the bulk bands, the behavior in
the edge band is qualitatively the same. As before, we find that generation of photons pairs is enhanced when both the pump
frequencies are in the edge band. Similarly, we can tune the spectra bandwidth of the two-photon wavefunction by tuning
the pump frequencies within the edge band. These results once again highlight the robustness of topological edge states for
generation of spectrally engineered indistinguishable photon pairs.

S7: NEARLY SEPARABLE PHOTON PAIRS USING PULSED PUMPS

In our experiment we demonstrated quantum interference between two correlated photons that are generated by the same
source. As we mentioned in the main text, this interference only requires that the two photons are indistinguishable, that is,
the two-photon wavefunction is symmetric under exchange of photons φ (ωs,ωi) = φ (ωi,ωs). However, interference between
photons generated by independent sources, for example, in gaussian Boson sampling or HOM interference between heralded
photons, also requires the two-photon state to be separable φ (ωs,ωi) = φs (ωs)φi (ωs), that is, the two photons should not be
entangled [6].

In our experiment we used continuous-wave pump lasers that naturally leads to the emergence of energy-time entanglement
in the generated photon pairs. Nevertheless, by using pulsed pumps we can also generate nearly separable photon pairs, as is
usually the case with all SFWM or SPDC based sources [6, 7]. In Fig.S7a,b we show the numerically simulated JSI for narrow-
band pumps, and broad-band pulsed pumps, respectively. For the narrow-band pumps, we consider Gaussian pulses, each with a
bandwidth (1/e) of 0.1J; and for broad-band pumps the bandwidth is 2.4J which is close to the bandwidth (2J) of the edge band.
For both these scenarios, both the pump pulse detunings δωp1 and δωp2 are centered around 0J. For the narrow-band pumps
(Fig.S7a), the energy-time entanglement in the two photons is clearly evident because detection of an idler photon at frequency
δωi deterministically projects the signal photon to a very narrow frequency band centered at δωs = δωp1 + δωp2 − δωi, and
therefore, the two photons are not separable. For the broad-band pumps (Fig.S7b), detecting an idler photon at frequency δωi

does not determine the frequency of the signal photon, and therefore, the two photons are nearly separable.
To quantify the separability of the two photons generated in each case, we calculate the reduced density matrix ρs for signal
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FIG. S7. Numerically simulated JSI for a narrow-band pump pulses with bandwidth of 0.1J, and b for broad-band pump pulses with bandwidth
of 2.4J. The two-photon state in b is nearly separable.

photons following the detection of an idler photon as

ρs =

∫
dωsdωs′ qs (ωs,ωs′) a

† (ωs) |0〉 〈0| a (ωs′) , (S14)

where

qs (ωs,ωs′) =

∫
dωi φ (ωs,ωi)φ

∗ (ωs′ ,ωi) . (S15)

The separability of the two-photon state is then simply the purity (γ) of the reduced density matrix ρs and is calculated as

γ = Tr[ρ2s] =

∫ ∫
dωsdωs′ |q (ωs,ωs′)|2 . (S16)

For the JSI shown in Fig.S7a with narrow-band pump pulses we get a purity of ∼ 10% indicating that the projected signal
photon state is mixed. For the JSI of Fig.S7b with broad-band pump pulses, we get a purity of 89.6% indicating that the two-
photon state is nearly separable. We note that even for a single-ring resonator SFWM based source, using Gaussian pump pulses,
the maximum purity is limited to 93% [7]. Therefore, the separability of the two-photon state generated by our topological source
is comparable to that generated by a single-ring resonator. Furthermore, this purity could be enhanced by spectrally shaping the
pump pulses or by reducing the quality factor of the pump pulses compared to that of generated photons [7]. We could not
perform such experiments because of the unavailability of tunable pulsed lasers.

S8: RESOLVING EDGE STATE RESONANCES

Because of their extended nature, the topological edge states in our devices constitute a super-ring resonator that is confined
to the boundary of the lattice. The longitudinal modes of this super-ring resonator are in fact the edge state resonances. In our
experiment, these individual resonances are not resolved because the coupling rate κex ≈ 30 GHz of the lattice to the input
and output waveguides is much stronger than the coupling rate J ≈ 15 GHz within the rings. By reducing κex, for example to
0.1J , the individual edge state resonances can be very easily resolved. Fig.S8a shows the numerically simulated transmission
spectrum for such a device where the edge state resonances are clearly evident. We emphasize that this transmission spectrum
repeats every FSR, that is, at every longitudinal mode resonance of the individual ring resonators.

Realizing SFWM in such a device will lead to the generation of photon pairs predominantly at the edge state resonance
frequencies. For example, Fig.S8b,c show the simulated JSI of generated photon pairs, for narrow-band pump pulses (bandwidth
= 0.1J), with (δωp1 , δωp2) centered at two edge state resonances (0.15J, 0.15J) and (0.475J, 0.475J), respectively. The JSI
clearly shows generation of photon pairs with both the signal and idler frequencies centered around edge resonances. These JSI
plots can be compared with that of Fig.S7a where the edge states resonances were not resolved. We note that the two-photon
states with JSI shown in Fig.S8b,c are not separable because of the use of narrow-band pump pulses. Fig.S8d shows the JSI
for the scenario where we use broad-band pump pulses, centered at (0.15J, 0.15J). As expected, the two-photon state is nearly
separable with the purity of the heralded photon being 86%. Such two-photon states with resolved edge resonances could be
used to realize frequency-multiplexed squeezed states of light.
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S9: PAIR GENERATION RATES

An important parameter that characterizes a source of correlated photon pairs is the pair generation rate. Fig.S9 shows a
comparison of the numerically simulated pair generation rates for a single-ring source (in the all-pass configuration) and a
topological source (with 22 rings on the edge from input to the output port), as a function of the intrinsic loss rate κin/J . For
these simulations we use equal pump powers and coupling rates κex = J , and integrate the number of counts in a bandwidth of
2κex around zero frequency detuning. We see that in the low loss regime (κin < 0.05J), a topological source can achieve an
order of magnitude higher counts rates compared to a single ring source. This is because of the use of multiple ring resonators
and the linear dispersion of the edge states, both of which enhance the pair generate rate. Therefore, pair generation rates can
be enhanced even further by using bigger topological lattices. However, for higher κin, a topological source performs poorly
because of the loss incurred in multiple ring resonators on the edge of the device. We note that for a given κin/J there is an
optimal device size that yields maximum pair generation rate.

In our current experiment that uses silicon-on-insulator platform, the loss rate κin ≈ 1.3 GHz and J ≈ 15 GHz, which implies
that our source is not operating in the low-loss regime. Nevertheless, by using low-loss platforms like silicon-nitride that are now
commercially available [8], the loss rate κin can be reduced to below 100 MHz for similar values of J such that κin < 0.01J .
Therefore, a low-loss realization of our topological source will significantly outperform a single-ring resonator source in terms
of pair generation rate by an order of magnitude.
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FIG. S9. Comparison of simulated photon-pair generation rates in a single-ring source and a topological source, as a function of the loss rate
κin/J . The pair generation rate is normalized to that of a single-ring source with no loss.
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S10: TUNABILITY OF SPECTRAL BANDWIDTH OF GENERATED PHOTONS

Figure S10 compares the tunability of the spectral bandwidth of generated photons in a topological source to that in a single-
ring source (in the all-pass configuration), by tuning the two pump frequencies (indicated in the legend, in units of κex). For a
topological source, the full-width-half-max (FWHM) bandwidths of the generated photons are ∼ 1.4κex, ∼ 1κex, and ∼ 0.4κex,
when the two input pump frequencies (ωp1 ,ωp2) are (0, 0)κex, (0.4, 0.4)κex, and (0.8, 0.8)κex, respectively. For a single-ring
source, the FWHM bandwidths are ∼ 1.4κex, ∼ 1.6κex, and ∼ 2.3κex, when the input pump frequencies are (0, 0)κex,
(0.4, 0.4)κex, and (0.8, 0.8)κex, respectively. For a topological source, we observe a reduction in the spectral bandwidth of
generated photons by a factor of ∼ 3.5 as we detune the pump frequencies further from the ring resonances. In contrast, for a
single-ring source, the spectral bandwidth of the generated photons is more-or-less the same, and in fact, increases marginally
when we significantly detune the pump frequencies away from the resonance. This is because, away from the resonance, the ring
behaves as a waveguide with broad phase-matching with no resonant enhancement. Note that, for given input pump frequencies,
the central frequencies of generated photons are constrained by the energy conservation relation, and are therefore, exactly the
same in both the sources. Also, for the topological source, we assumed J = κex.
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FIG. S10. Simulated spectra of the generated photons for different input pump frequencies (indicated on the figure, in units of κex, for a a
topological source, and b a single-ring source. The spectra are individually normalized to their maxima.

S11: SOURCE SPECTRUM

Our source operates in the telecom domain, near 1550 nm. A typical spectrum of photons generated by our source is shown
in Fig.S11. This spectrum corresponds to the JSI measurements reported in Fig.2d of the main text.
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