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Abstract
Trapped-ion quantum simulators, in analog and digital modes, are considered a primary candidate
to achieve quantum advantage in quantum simulation and quantum computation. The underlying
controlled ion–laser interactions induce all-to-all two-spin interactions via the collective modes of
motion through Cirac–Zoller or Mølmer–Sørensen schemes, leading to effective two-spin
Hamiltonians, as well as two-qubit entangling gates. In this work, the Mølmer–Sørensen scheme is
extended to induce three-spin interactions via tailored first- and second-order spin–motion
couplings. The scheme enables engineering single-, two-, and three-spin interactions, and can be
tuned via an enhanced protocol to simulate purely three-spin dynamics. Analytical results for the
effective evolution are presented, along with detailed numerical simulations of the full dynamics to
support the accuracy and feasibility of the proposed scheme for near-term applications. With a
focus on quantum simulation, the advantage of a direct analog implementation of three-spin
dynamics is demonstrated via the example of matter-gauge interactions in the U(1) lattice gauge
theory within the quantum link model. The mapping of degrees of freedom and strategies for
scaling the three-spin scheme to larger systems, are detailed, along with a discussion of the
expected outcome of the simulation of the quantum link model given realistic fidelities in the
upcoming experiments. The applications of the three-spin scheme go beyond the lattice gauge
theory example studied here and include studies of static and dynamical phase diagrams of
strongly interacting condensed-matter systems modeled by two- and three-spin Hamiltonians.

1. Introduction

Quantum simulation is expected to be a promising avenue to revealing the rich dynamics of quantum
many-body systems, from strongly correlated electron systems in material [1], to dense nuclear matter in
the interior of neutron stars [2, 3], to coherent neutrino propagation from core-collapse supernovae and
early Universe [4, 5], to strongly interacting gauge field theories of the standard model of particle physics
[6–9]. Quantum simulators can perform in analog, digital, or hybrid modes, with the underlying hardware
architecture ranging from condensed-matter-based systems to optical, atomic, and molecular systems. As
the vibrant field of quantum simulation moves toward making large-scale noise-resilient quantum
simulators and quantum computers a reality, it is crucial to pursue a co-design process in which the
specifications of the theoretical problem subject to the simulation, such as characteristics of interactions and
degrees of freedom of the physical system, can be taken into account in enhancing and extending the

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/ac5f5b
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8268-3612
https://orcid.org/0000-0002-7288-2810
https://orcid.org/0000-0002-8163-9353
https://orcid.org/0000-0003-1679-4880
https://orcid.org/0000-0002-6760-4015
https://orcid.org/0000-0001-5419-5999
mailto:davoudi@umd.edu
mailto:t.d.grass@gmail.com
mailto:pagano@rice.edu


Quantum Sci. Technol. 7 (2022) 034001 B Andrade et al

simulator’s toolkit. With a focus on the analog mode of operation of the quantum device, such an objective
is applied in this work to trapped-ion quantum simulators [10–12]. These systems have demonstrated their
value in recent years in successful simulation of quantum many-body systems [13–23], some of which have
started to challenge classical numerical methods. These simulations were mostly based on an effective
two-spin Ising Hamiltonian with single-spin field terms. Motivated by the need for an enhanced dynamics
as exhibited in certain exotic spin systems as well as in lattice gauge theories, we generalize this effective
Hamiltonian to a Hamiltonian with simultaneous single-, two-, and three-spin dynamics, and examine its
accuracy through a numerical simulation with realistic experimental parameters.

While low-energy descriptions of interactions in nature primarily rely on two-body couplings, three-
and higher-body couplings occur in many physical systems and impact the dynamics in a nontrivial
manner. In high-energy physics, quantum field theories exhibit interacting terms beyond two-field
couplings, including gauge-matter and gauge-field self interactions in gauge theories of the standard model
[24–27]. In nuclear physics, three and higher-nucleon interactions that are effectively generated from
quantum chromodynamics (QCD) have proven to be important in providing an accurate description of
nuclei and dense matter [28–32]. While present-day quantum simulators are not yet suited for simulating
quantum fields and their complex interactions in general (see e.g., references [7–9, 23, 33–77] for some
recent progress), the possibility of inducing simultaneous interactions among more than two degrees of
freedom of a quantum simulator can open up many interesting possibilities. A more immediate application
is in the realm of condensed matter physics where it is argued that spin systems with two- and three-spin
Hamiltonians exhibit novel phase diagrams and quantum phase transitions, signified by unique
entanglement characteristics that are absent in systems with only two-spin couplings [78–91]. Such
dynamics are interesting in the context of spin glass physics [87–89] and quantum statistics [92].
Furthermore, quantum link models that exhibit local symmetry constraints, and are argued to approximate
infinite-dimensional gauge field theories in certain limits [93, 94], are spin systems (after mapping fermions
to hard-core bosons) with multi-spin interactions.

Given such rich physics exhibited in systems that are governed by multi-spin interactions, and given the
interest in demonstrating the near-term benefits of analog (and hybrid) quantum simulators, multitude of
proposals and strategies are put forward to directly engineer correlated three-qubit interactions. These ideas
include Floquet engineering or the use of the electrical modes in superconducting circuits [95, 96],
optimization of periodic drives in weakly driven quantum systems such as superconducting circuits and
molecular nanomagnets [97], perturbative generation of multi-spin interactions with tunable couplings in a
triangular configuration of an optical lattice of two atomic species [98], natural generation of three-body
coupling in polar molecules driven by microwave fields [99], adiabatic passages with tunneling interactions
among atoms in a one-dimensional optical lattice [100], coupling Rydberg-pair interactions and collective
motional modes in trapped Rydberg ion systems [101], and resonantly driving three-spin interactions
through an adiabatic elimination of the off-resonant transitions involving spin–phonon couplings in
trapped-ion systems [102].

More specifically, the possibility of engineering a three-spin Hamiltonian in a trapped-ion quantum
simulator was proposed by Bermudez et al in reference [102], where the use of first and second order
spin–phonon couplings enabled the generalization of the two-spin ‘phase gate’ [103] Hamiltonian ∼ σz

i σ
z
j

to a three-spin Hamiltonian σz
i σ

z
j σ

z
k, where i, j, k are the ion indices. An analogous strategy is applied in this

work to induce effective correlated spin-flipping transitions among (quasi)spins of three ions using nearly
resonant single- and double-sideband transitions, extending upon the well-known Mølmer–Sørensen
scheme [104]. Effective interactions proportional to σ+

i σ−
j + h.c. and σ+

i σ+
j σ+

k + h.c. are generated, along
with a single-spin Hamiltonian proportional to σz

i . Off-resonant contributions constitute interactions that
entangle the spin and phonon degrees of freedom and are ensured to be kept small with a careful choice of
laser and trap parameters as will be discussed. Our strategy for tuning the relative importance of the two-
and three-spin dynamics is different from reference [102] and does not require addressing the axial modes
of motion. In particular, by introducing an almost ‘mirror’ copy of the drives that induce effective single-,
two-, and three-spin interactions, the single- and two-spin Hamiltonians can be significantly suppressed. To
validate the effective dynamics, we go beyond a qualitative discussion of requisite experimental parameters
and present a thorough numerical simulation of a three-spin coupling scheme in the trapped-ion system by
examining the exact dynamics (within a highly accurate rotating-wave approximation), including the effects
of spin–phonon contamination. High fidelities for the three-spin dynamics, as well as the effectiveness of
the ‘mirror’ drive in suppressing lower-body interactions, are established for realistic experimental values
for laser intensities and frequencies, and for the axial trap frequency that controls the relative strength of
contributions from multiple normal modes to the dynamics.

To demonstrate an application of our scheme in simplifying near-term quantum simulations of physical
models of interest, the example of the lattice Schwinger model within its simplest quantum-link-model
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representation is examined and feasible strategies are proposed for scaling the simulations given undesired
contamination from proliferation of the normal modes of motions. Furthermore, the question of the
severity of local gauge-symmetry violations in light of imperfect fidelity of realistic experiments is analyzed
through a crude model of interactions. The underlying scheme for Hamiltonian engineering of this work,
through analog or gate-based implementations, can be extended analogously to engineer three-spin
Hamiltonians with higher-dimensional spin degrees of freedom, as well as four- and higher-body spin
interactions, with direct applications in lattice gauge-theory simulations. In the context of bosonic quantum
field theories such as gauge theories, another interesting extension of the scheme is the engineering of
effective spin–spin–phonon dynamics which will be explored in future work.

The present paper is organized as follows. Section 2 contains a detailed description of the scheme and its
numerical simulation. In particular, section 2.1 offers a semi-qualitative description of the underlying
mechanism for the generation of an effective three-spin Hamiltonian without full technical details. A
detailed derivation of the effective Hamiltonian for single- and multi-mode scenarios and using single- and
multi-drive schemes to control the three-spin dynamics is provided in section 2.2. Section 2.3 presents the
numerical simulations of the exact unitary time evolution of the three-ion system, including phonon
contributions to the dynamics, and explores the range of laser intensities and frequencies, as well as trap
characteristics, that result in maximum fidelities. To present an application of the engineered three-spin
Hamiltonian in the context of quantum simulation, the example of the quantum-link-model representation
of U(1) lattice gauge theory is studied in section 3, and includes a discussion of an exact mapping of the
degrees of freedom and the Hamiltonian and the scaling specifications and limitations in section 3.1, an
analysis of the expected dynamics in the quantum link model assuming imperfect gauge-violating
interactions in section 3.2, and a brief note on how the fully digital implementation of the model may
compare with its fully analog simulation within the scheme of this work in section 3.3. Conclusions and a
discussion of future directions are presented in section 4.

2. Engineering an effective three-spin Hamiltonian with trapped ions

The effective Hamiltonian that couples three spins simultaneously can be engineered using tailored
ion–laser interactions. Section 2.1 presents basic theoretical aspects of the ion–laser dynamics in a linear
Paul trap [105], along with a qualitative description of an enhanced Mølmer–Sørensen scheme that leads to
an effective three-spin Hamiltonian. Section 2.2 presents the exact relations for the effective Hamiltonians,
including the desired three-spin Hamiltonian and accompanying single- and two-spin Hamiltonians, along
with their detailed derivation and a description of the errors. Section 2.3 presents a numerical study of the
full evolution compared with the one anticipated from the effective picture in an experimentally realistic
three-ion system, and identifies regimes in the tunable parameters of the scheme that are best suited for
suppressing the single- and two-spin terms, giving rise to predominantly three-spin dynamics.

2.1. Ion–laser dynamics and a qualitative description of the scheme
Consider a system of N ions confined in a radio-frequency Paul trap. The Hamiltonian of the system in
absence of any interactions with external lasers can be written as7

Hfree =
ω0

2

N∑
i=1

σz
i +

3N∑
m=1

ωm

(
a†mam +

1

2

)
. (1)

Here, σ is a Pauli operator acting on the space of the ions’ (quasi)spin, namely the qubit. ω0 is the qubit
frequency which is of the order of a few GHz for typical ions used in present-day quantum simulators. In a
linear trap with a common confining potential and with long-range Coulomb interactions among the ions,
the motion of the ions can be described in terms of a set collective normal modes with quantized
excitations, i.e., the phonons. As a result, the displacement of each ion from its equilibrium position, Δri,
can be expressed in terms of phonon creation (a†m) and annihilation (am) operators associated with the
motion along the three orthogonal principal axes of the trap, x, y and z, with commutation relations
[am, am′] = [a†m, a†m′] = 0 and [am, a†m′] = δm,m′ . Here, x and y denote the most-confined directions in the
trap, which will have the same normal-mode spectra for symmetric traps commonly used. These will be
denoted as transverse directions. The least-confined direction is denoted as z and is named the axial
direction8. In general, the indices m run from 1 to 3N, but for the coupling scheme described below, only

7 Planck’s constant � is set to unity throughout.
8 x, y and z in san-serif font correspond to spatial physical coordinates of the trap, hence labeling the Cartesian components of the
wave-vector of the laser beams. x, y, and z in italic font correspond to the Bloch-sphere axes in the qubit Hilbert space.
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the modes along one spatial direction, selected by a light field, will be relevant. The index m will then run
from 1 to N to denote the relevant set of modes.

One or multiple pairs of counter-propagating laser beams, indexed by L, can be introduced with
wave-vector difference ΔkL, frequency difference (beatnote) ΔωL, and phase difference ΔφL, to stimulate
the two-photon Raman transition among the two states of the qubit with a Rabi frequency ΩL. The beams
can address the ions globally, or for more flexibility in devising interactions individually, in which case both
amplitude and frequency control of the beams are required (and an index i must be attached to laser’s
parameters).

The Hamiltonian describing the ion–laser interactions can be written as [12]

Hint. =

N∑
i=1

nL∑
L=1

ΩLe−iΔωLt+iΔϕL+iΔkL·Δri (α0Ii + α1σ
x
i + α2σ

y
i + α3σ

z
i ) + h.c. (2)

Here, index L runs over nL pairs of Raman beams. α0,α1,α2, and α3 are constants related to
spin-dependent forces on the two states of the qubit [12] and are controlled by the intensity, geometry, and
polarization of the laser beams. These are set to α0 = α2 = α3 = 0 and α1 =

1
2 , associated with a common

choice. The operator ΔkL ·Δri can be written as
∑3N

m=1ηm,j(am + a†m), where ηm,i are Lamb–Dicke

parameters defined as ηm,i =
√

|Δk|2
2Mionωm

bm,i. Here, bm,i are the (normalized) normal-mode eigenvector

components between ion i and mode m, and Mion denotes the mass of the ion. For optimal control, the
ion–laser system must operate in the Lamb–Dicke regime where ηm,i〈(am + a†m)2〉1/2 � 1. To exclusively
couple the Raman beams to one set of normal-mode excitations, ΔkL can be set along only a single
principal axis.

In the interaction picture with respect to the free Hamiltonian Hfree, the interacting Hamiltonian
becomes

H′
int. =

N∑
i=1

nL∑
L=1

ΩL

2
ei
∑3N

m=1 ηm,i(ame−iωmt+a†meiωmt )e−i(ΔωL−ω0)t+iΔφLσ+
i + h.c., (3)

where it is assumed that |ΔωL − ω0| � ω0. The prime on H is to denote that this Hamiltonian is in the
interaction picture. Tuning the Raman-beams beatnote to ω0 (ω0 ± ωm) leads to carrier (sideband)
transitions, which can be derived by expanding equation (3) to O(η0) (O(η)), where η is the short-hand
notation for the Lamb–Dicke parameter defined above. Similarly, an nth-order side band transition can be
achieved by expanding equation (3) to O(ηn) and setting ΔωL = ω0 ± nωm.

Consider one set of Raman beams. Setting the detuning μ ≡ ΔωL − ω0 of the Raman beams to ±ωm,
there arise interactions proportional to9

σ+
i am, σ−

i a†m, σ+
i a†m, σ−

i am, (4)

where σ±
i = 1

2 (σx
i ± iσy

i ). These describe spin excitation of ion i accompanied by either absorption or
emission of a quantum of motion in the mth mode, the so-called blue and red sideband transitions,
respectively. On the other hand, when μ 	= ±ωm but |μ− ωm| 
 ηm,iΩL, the motional modes are only
virtually excited, and the first-order contributions in the Lamb–Dicke parameter give rise to an effective
Hamiltonian proportional to

σx
i σ

x
j . (5)

As will be shown in section 2.2, in the limit where the detuning from the center-of-mass mode, δ, satisfies:
|δ| ≡ |μ− ωcom| � Δm for a typical mode splitting Δm, the two-spin coupling can be approximated as
η2

comΩrΩb
δ , neglecting counter-rotating terms. Here, ηcom =

√
|Δk|2

2MionωcomN is the Lamb–Dicke parameter

associated to the center-of-mass normal mode, and Ωr(Ωb) are the Rabi frequencies associated with the red
and blue sideband beatnotes, respectively. This is the familiar Mølmer–Sørensen scheme, that is
schematically described in figures 1(a) and (b). In particular, it is shown how phonon emission and
absorption cooperate to create a coherent coupling between the | ↓↓〉 and | ↑↑〉 two-ion states.

The key feature of this work, which resembles that first proposed in reference [102], is the generalization
of the Mølmer–Sørensen scheme to create an effective three-spin Hamiltonian. This scheme relies on
second-order contributions in the Lamb–Dicke parameter, interactions that are proportional to

σ+
i aman, σ+

i ama†n, σ+
i a†man, σ+

i aman,

σ−
i a†ma†n, σ−

i a†man, σ−
i ama†n, σ−

i a†ma†n.
(6)

9 Upon tuning the Raman-beam phase differences properly.
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Figure 1. (a) and (b) Traditional Mølmer–Sørensen scheme based on a pair of bichromatic laser beatnotes off-resonantly
driving first-order spin–phonon couplings with symmetric detuning (±δ), giving rise to an effective spin–spin interaction. The
two-ion case is shown for simplicity. (c) and (d) Generalized Mølmer–Sørensen scheme to generate an effective three-spin
coupling. A second-order blue sideband is driven with twice the detuning (2δ) as the first-order red (−δ) sideband. As shown in
(c), this process creates two virtual phonons with a second-order process and annihilates the same number of phonons through
two first-order processes. Note that only two out of several possibilities are depicted. In all subfigures, Ωr and Ωb are the Rabi
frequencies of the red and blue beatnotes, respectively. ω0 is the qubit frequency, and ω [≡ ωcom] is the transverse center-of-mass
frequency.

Here, a spin excitation can be associated with the creation or annihilation of two phonons at the same
time. As shown in figures 1(c) and (d), this scheme amounts to driving the ion chain using two beatnotes
with asymmetric detunings (for example, 2δ for the blue and −δ for the red sideband) so that a single
second-order spin–phonon excitation process can be combined with two first-order absorption processes,
giving rise to a coherent resonant coupling between | ↓↓↓〉 and | ↑↑↑〉 states. This leads to an effective
three-spin Hamiltonian proportional to

σ+
i σ+

j σ+
k , σ−

j σ
−
j σ

−
k , (7)

with a coupling that can be approximated by η4
comΩ2

rΩb
δ2 , in the limit of small detuning δ from the

center-of-mass mode. This process generates resonant single- and two-spin interactions as well, and if the
goal is to achieve a pure three-spin Hamiltonian, these contributions must be suppressed, particularly given
that their strength is larger than that of the three-spin interactions. For this reason, a second drive is added
to cancel out the undesired single- and two-spin contributions that are proportional to 1

δ
and will enhance

the three-spin contribution that is proportional to 1
δ2 . This additional drive is composed of two sets of

Raman beams with asymmetric detunings of opposite sign compared with the first drive i.e., ∼ −2δ for the
blue and ∼ δ for the red sideband. This cancellation is only exact for the center-of-mass mode contribution.
The exact relations in the next section will provide further essential detail of the single- and two-drive
schemes in the single- and multi-mode scenarios, and the numerical study of section 2.3 will investigate the
accuracy of the effective three-spin dynamics.

2.2. Derivation of the effective Hamiltonian
To obtain the exact relations for the effective dynamics of the ion–laser system within the scheme just
described, one can start from the interaction-picture Hamiltonian in equation (3). To engineer an effective
three-spin Hamiltonian, we introduce two pairs of Raman beams, as described in the previous section. The
Rabi and beatnote frequencies associated with pair I are denoted as Ωr and μr ≡ Δω0 − ωI, respectively,
and those associated with pair II are denoted as Ωb and μb ≡ ω0 −ΔωII. Additionally, the following
relations

μr = −ωcom − δ, (8)

μb = −2μr = 2ωcom + 2δ, (9)
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will be applied to ensure resonant three-spin transitions, as will be seen shortly. This choice of beatnote
frequencies justifies the use of ‘r’ and ‘b’ subscripts for each pair, corresponding to (single) red and (double)
blue sideband transitions of the qubit, respectively. With this setup, and ignoring contributions from
counter-rotating waves oscillating with a frequency of ωm or higher, the Hamiltonian of the system at O(η)
in the interaction picture becomes

HRWA
int.

∣∣
O(η)

=
i

2

N∑
i=1

N∑
m=1

ηm,iΩre
i(ωm+μr)ta†mσ

+
i + h.c., (10)

and that at O(η2) reads

HRWA
int.

∣∣
O(η2)

= −1

4

N∑
i=1

N∑
m=1

N∑
n=1

ηm,iηn,iΩbe−i(ωm+ωn−μb)tamanσ
+
i + h.c., (11)

where RWA in the superscripts refers to the rotating-wave approximation applied. Only the transverse
normal modes along the x direction of the trap are addressed with both pairs of the beams, hence the sums
over modes m and n run from 1 to N.

Performing a Magnus expansion [106] of the time-evolution operator, keeping only contributions that
are resonant and further ignoring contributions from counter-rotating terms (see discussions below), give
rise to an effective (time-independent) spin Hamiltonian. Explicitly,

U(t, 0) = T e
−i

∫ t
0

(
H′

int.(τ)|O(η)
+H′

int.(τ)|O(η2)

)
dτ

≈ e
−i

(
H(σ)

eff +H(σσ)
eff +H(σσσ)

eff

)
t
, (12)

where T denotes time ordering. The single-spin Hamiltonian has the form

H(σ)
eff =

1

4

∑
i

⎧⎨
⎩

∑
m

η2
m,i

Ω2
r

ωm + μr

(
nm +

1

2

)
− 1

4

∑
m,n

Ω2
b

ωm + ωn + 2μr

⎡
⎣η2

m,iη
2
n,i(nm + nn + 1)

+
∑
m′,n′

ηm,iηn,jηm′ ,iηn′,jδωm′+ωn′ ,ωm+ωn a†m′a
†
n′aman

⎤
⎦
⎫⎬
⎭ σz

i . (13)

The two-spin Hamiltonian reads

H(σσ)
eff =− 1

4

∑
i

∑
i	=j

{∑
m

ηm,iηm,j
Ω2

r

ωm + μr

+
1

2

∑
m,n

ηm,iηn,iηm,jηn,j
Ω2

b

ωm + ωn + 2μr
(nm + nn + 1)

}
σ+

i σ−
j , (14)

and the desired three-spin Hamiltonian takes the form

H(σσσ)
eff =

∑
i,j,k

∑
m,n

ηm,iηn,jηm,kηn,k Ω
2
rΩb σ

+
i σ+

j σ+
k

× 3μr + ωm + 2ωn

24(μr + ωm)(μr + ωn)(2μr + ωm + ωn)
. (15)

In these relations, nm(n) ≡ a†m(n)am(n) is the occupation-number operator for the corresponding phonon
mode, and the condition μb = −2μr is imposed. In an individual-addressing scheme, the Rabi frequencies
can be set independently at the location of each ion, hence the following replacements must be taken into
account: Ω2

r(b) → Ω2
r(b),i in equation (13), Ω2

r(b) → Ωr(b),iΩr(b),j in equation (14), and Ω2
rΩb → Ωr,iΩr,jΩb,k in

equation (15).
Corrections to the above picture can be attributed to at least three sources. First, off-resonant

contributions, i.e., those introducing oscillatory time dependence in the exponent of U(t, 0) (instead of
linear time dependence that is a feature of resonant contributions), introduce corrections to the effective
Hamiltonians. They include first-order terms in the Lamb–Dicke parameter and can have a
time-dependence as slow as eiδt. At long times and as long as ηΩr(b)/δ remains small, these contributions
can be ignored. Such a slow time dependence occurs at higher orders in the Lamb–Dicke parameter as well,

6
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but they will average to zero compared with the resonant contributions at long times, i.e., when t 
 1/δ.
Second, there are higher-order resonant and off-resonant terms that are suppressed by positive powers of
Lamb–Dicke parameter compared with the contributions retained. The third source of corrections to the
effective Hamiltonians are from counter-rotating terms. While being resonant, these generally scale with
inverse powers of mode frequency or mode-frequency separation (and combinations of), which are
suppressed compared with those included in equations (13)–(15), which scale as inverse powers of δ,
provided that δ is the smallest frequency scale in the setting. Given these sources of corrections to the
effective picture above, it is important to benchmark the scheme in a complete numerical simulation, and
obtain the range of experimental parameters with which the effective dynamics above can be achieved. Such
an investigation is conducted and described in detail in the next section.

While the simultaneous one-, two-, and three-spin dynamics may be relevant in describing a generic
quantum many-body system, the overarching goal of our study is to achieve a pure three-spin Hamiltonian
for applications in quantum computing, and in quantum simulation of certain lattice gauge theories. The
single- and two-spin dynamics arising from equations (13) and (14) can in general be significant compared
with the three-spin dynamics from equation (15). Nonetheless, there is a simplifying limit in which a
scheme can be devised to cancel the undesired single- and two-spin contributions entirely. Before
introducing this scheme, let us consider the following simplification. If the spacing among the modes is
much larger than δ, the only mode contributing to the effective dynamics is that close to the lasers beatnote
frequency. This can be achieved for the transverse modes if trap’s axial confinement is increased. In the
scheme adopted above, this is the center-of-mass mode, see equations (8) and (9). Ignoring contributions
from all other modes, the effective single-, two-, and three-spin Hamiltonians become

H(σ)
eff = −1

4

∑
i

η2
com

δ

{
Ω2

r

(
ncom +

1

2

)
− 1

8
η2

comΩ
2
b (n2

com + ncom + 1)

}
σz

i , (16)

H(σσ)
eff =

1

4

∑
i

∑
j	=i

η2
com

δ

{
Ω2

r +
1

2
η2

comΩ
2
b

(
ncom +

1

2

)}
σ+

i σ−
j , (17)

H(σσσ)
eff =

∑
i,j,k

η4
com

16 δ2
Ω2

rΩb σ
+
i σ+

j σ+
k + h.c., (18)

respectively. ncom is the occupation-number operator for the center-of-mass mode, i.e., ncom ≡ a†comacom.10

The above single-mode approximation makes it clear that the single- and two-spin couplings are odd
under δ →−δ while the three-spin coupling is even. Therefore, the net single- and two-spin contributions
can be canceled, by introducing two extra Raman-beam pairs (I

′
and II′) each with Rabi and beatnote

frequencies Ω′
r = Ωr, μ′

r = −ωcom + δ, and Ω′
b = Ωb, μ′

b = 2ωcom − 2δ, respectively. However, such
detunings give rise to resonant sideband transitions when applied along with the first set of lasers. To avoid
such undesired contributions and still achieve the desired cancellation, one can set the detuning of the
second set of lasers from the center-of-mass mode, δ′, to be incommensurate with respect to that of the first
set, δ. The cancellation of single- and two-spin couplings can be still achieved by scaling the Rabi
frequencies accordingly. Explicitly, assuming δ′ = qδ for non-rational constant q

Ω′
r =

√
qΩr, μ′

r = −ωcom + qδ,

Ω′
b =

√
qΩb, μ′

b = 2ωcom − 2qδ. (19)

Once again, given the approximation made, it is important to investigate how close the simplified dynamics
is to the full dynamics, as will be studied in the next section. The original scheme introduced earlier will be
denoted in the following as a ‘single-drive’ scheme while the enhanced scenario is denoted as a ‘two-drive’
scheme.

2.3. Numerical simulations
The effective Hamiltonian obtained from the Magnus expansion relies on the assumption that only the
resonant combination of second- and third-order processes contribute to the system dynamics. In the
present section, we validate and corroborate the analytical results of section 2.2 by performing a numerical
simulation of the system dynamics.

The numerical treatment requires discretization of time, with time steps smaller than the time scale of
the fastest processes in the Hamiltonian. Therefore, to facilitate the simulation, the rotating-wave
approximation in equations (10) and (11) is assumed, which is justified by the fact that

10 Note that for the center of mass mode, bcom,i =
1√
N
{1, 1, . . . , 1}, hence ηcom,i can be replaced with ηcom for each i, where ηcom is

defined after equation (5).
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|δ| ≡ |μ− ωcom| � ωm. The dynamics generated by these Hamiltonians can differ from the desired effective
spin dynamics due to off-resonant terms which are neglected in the effective picture. These terms manifest
themselves by changes in the phonon number during the time evolution. Moreover, as explained above, the
effective dynamics becomes a pure three-spin interaction when a second drive cancels the undesired
resonant single- and two-spin contributions in equations (16) and (17). However, this cancellation scheme
is complete only with respect to the contributions from the center-of-mass mode. Therefore, the presence of
more than one mode yields another source of error if the purpose is the design of a pure three-spin
Hamiltonian.

2.3.1. Single-mode approximation

In order to discern between these two sources of errors, one can first study the effect of off-resonant terms
in the single-mode approximation, where the contributions from all modes except for the center-of-mass
mode are discarded. Up to second order in η, the Hamiltonian of one Raman pair reads

Hcom
1drive =

N∑
i=1

(
iΩr

2
ηcom e−iδta†comσ

+
i − Ωb

4
η2

com e2iδt a2
comσ

+
i

)
+ h.c. (20)

A second Raman pair with opposite detuning would cancel the undesired single- and two-spin terms from
the first pair, but it would also produce a new resonant second-order term from the combination of the two
pairs. Therefore, as introduced in equation (19), an asymmetry between the two pairs needs to be
introduced through an appropriate scale factor q 	= 1. With this, the Hamiltonian including both drives is
given by

Hcom
2drive =

N∑
i=1

[
iΩr

2
ηcom

(
e−iδt +

√
q eiqδt

)
a†comσ

+
i − Ωb

4
η2

com

(
e2iδt +

√
q e−2iqδt

)
a2

comσ
+
i

]
+ h.c. (21)

For convenience, we choose Ωb = 2Ωr/ηcom, such that the red- and blue-sideband processes appear with
equal strengths. Additionally, the scale factor is set to q = 1.3, which as will be evident shortly, appears to be
a good choice. Assuming a transverse trap frequency ωx = 5 × 2π MHz, and a recoil energy of
ωrec ≡ |Δk|2/(2Mion) = 26 × 2π kHz, the Lamb–Dicke parameter for N = 3 ions evaluates to
ηcom =

√
ωrec/(Nωx) ≈ 0.0416.11 For different choices of detuning δ and Rabi frequency Ωr, the dynamics

are simulated under the two-drive single-mode Hamiltonian in equation (21), with the results shown in
figures 2 and 3.

Specifically, figure 2 shows in black the evolution of the spin expectation value 〈σz
i 〉 as a function of time

if the system is initially prepared in the state | ↓↓↓〉 ⊗ |0〉 corresponding to all spins pointing down and the
phonon vacuum. In all cases, this evolution exhibits an oscillatory behavior which is a manifestation of the
three-spin interactions. In addition, blue and red lines in figure 3 show the evolution if the system is initially
prepared in the | ↓↑↓〉 ⊗ |0〉 state. In this case, the dynamics is strongly suppressed, demonstrating that the
cancellation of two-body terms indeed works very well.

In figure 2, we also compare the full dynamics from equation (21) and the effective spin dynamics from
equations (16)–(18), the latter shown in dashed curves. By construction of the two-drive scheme, within
the single-mode approximation the single-spin and two-spin terms, equations (16) and (17), fully cancel in
the effective dynamics. Accordingly, the effective dynamics reduces to a pure three-body interaction
described by the effective Hamiltonian in equation (18). For the fully polarized initial state, equation (18)
yields three-spin Rabi oscillations with a period

T3 =
π

6J2drive
3

, (22)

where J2drive
3 ≡ J1drive

3 (1 +
√

q−1) is the coupling from the two simultaneous drives, and J1drive
3 ≡ η4

comΩ2
rΩb

16δ2 is
the three-spin coupling from a single drive. The factor 6 in the denominator of equation (22) accounts for
all permutations of the three spins. For the parameters specified in figures 2(a)–(d), the expected
oscillations periods are: (a) T3 ≈ 22.8 ms, (b) T3 ≈ 19.7 ms, (c) T3 ≈ 11.4 ms, (d) T3 ≈ 19.2 ms. These
values agree well with the observed period, showing for all cases the presence of three-spin interactions with
approximately the strength predicted by equation (18).

Let us now compare the fidelity of evolution compared to that predicted by the effective spin dynamics.
Qualitatively, the oscillations are quite different in the four scenarios shown in figure 2. Clean sinusoidal
oscillations, with an amplitude ranging from −1 to 1, are seen in panel (d), which among all shown cases

11 Values that are accessible in current experimental trapped-ion systems operating using ytterbium ions in radio-frequency Paul traps.
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Figure 2. Evolution of 〈σz
i 〉 under the single-mode two-drive Hamiltonian Hcom

2drive in equation (21), where i = 1, 2, 3 is the ion
index, for different choices of detuning δ and Rabi frequency Ωr. The evolution of the spins from an initial state | ↓↓↓〉 ⊗ |0〉
probes the system’s three-spin interactions, and it is shown by the black curve (for ion 1), as well as fully hidden (identical)
curves for ions 2 and 3. The evolution predicted from the effective Hamiltonians in equations (16)–(18) is shown by dashed
curves. For the effective spin dynamics, we assume that the phonon state remains in the vacuum during the evolution.

has the largest detuning (δ = 4 × 2π kHz). In this case, the suppression of two-body terms, as shown in
figure 3(d), also works best. In fact, within the single-mode approximation, the best suppression of
two-body terms is obtained by minimizing the effect of the phonon mode, e.g. by minimizing Ω/δ.
Demanding a fixed strength of the three-body interactions (i.e. fixed time scale of three-body Rabi
oscillations), this is in favor of larger choices of δ.

In panels (a) and (b) of figure 2, similarly fast three-spin dynamics as in panel (d) are achieved, but at
smaller values of the detuning. It is seen that for δ = 2 × 2π kHz in panel (b) the results are still in good
accordance with sine-like oscillations expected of the effective dynamics, but the fidelity of the evolution
becomes significantly poorer at δ = 1 × 2π kHz in panel (a). Similarly, the fidelity decreases if the
oscillation are sped up by increasing Ωr. In this respect, one can compare panels (b) and (c), that exhibit
identical detuning, but different Rabi frequencies. Clearly, the price for the speed-up in (c) is a significant
loss of fidelity, also resulting in an increase of spurious two-body interactions, as shown in figure 3(c).
Specifically, in figure 3 we demonstrate the two-spin dynamics by initializing the system in a
non-ferromagnetic state | ↓↑↓〉 ⊗ |0〉. As is seen in figure 3(d) the maximum suppression of two-spin
dynamics occurs for the largest detuning employed, which is consistent with the highest fidelity of
three-spin oscillations in figure 2(d).

For a direct comparison between single- and two-drive schemes, in figure 4 we have simulated the
dynamics of the Hamiltonian with only one Raman pair, equation (20). As expected, when the system is
initialized in a ferromagnetic state, the single-drive scheme in figure 4(a) leads to similar three-spin
oscillations as the two-drive scheme in figure 2(d), yet with approximately twice the period. However, when
the initial state is non-ferromagnetic, as considered in figure 4(b), the single-drive Hamiltonian exhibits
very fast two-spin dynamics which is absent in the two-drive scheme in figure 3(d).

9
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Figure 3. Evolution of 〈σz
i 〉 under the single-mode two-drive Hamiltonian Hcom

2drive in equation (21), where i = 1, 2, 3 is the ion
index, for different choices of detuning δ and Rabi frequency Ωr. The evolution of the spins from an initial state | ↓↑↓〉 ⊗ |0〉
probes the system’s two-body dynamics, and it is shown by the yellow, blue and red curves for ions 1, 2 and 3, respectively. Here,
the yellow curve is fully hidden by the red one. The evolution predicted from the effective Hamiltonians in equations (16)–(18) is
trivial, as the single- and two-spin dynamics fully cancel, and is not shown.

Table 1. The average values of the center-of-mass phonon
occupation over a time duration of 40 ms for the three-spin
evolution revealed using a ferromagnetic initial state and the
two-spin evolution revealed using a non-ferromagnetic initial
state. The evolution occurs under the single-mode two-drive
Hamiltonian Hcom

2drive in equation (21) for the detunings and Rabi
frequencies used in figures 2 and 3. The Hilbert space is restricted
by truncating the phonon occupation of the center-of-mass mode
at 6.

1
2π {δ,Ωr} [kHz] {1, 6} {2, 10} {2, 12} {4, 16}

|↓↓↓〉 ⊗ |0〉 0.43 0.19 0.44 0.08
|↓↑↓〉 ⊗ |0〉 0.14 0.08 0.14 0.05

This interpretation of the spin dynamics is corroborated by the number of phonons generated during
the evolution, as a quantitative measure for the deviation from the ideal evolution in which the systems
remains in the phonon vacuum throughout. The average number of phonons over a time duration of 40 ms
is given in tables 1 and 2 for the scenarios shown in figures 2–4. Smaller detunings and/or larger Rabi
frequencies lead to larger deviations from the phonon vacuum. The number of phonons oscillates around
this time-averaged value but its peak remains below one at all times.

As a result of these considerations, one might conclude that a larger detuning is the better choice.
However, the anticipation from the more realistic multi-mode scheme is that a small detuning of the
center-of-mass mode, together with a large phonon bandwidth, will be a feasible strategy to suppress the
undesired effect of the other modes. In particular, within the two-drive scheme these modes spoil the

10



Quantum Sci. Technol. 7 (2022) 034001 B Andrade et al

Figure 4. Evolution of 〈σz
i 〉 under a single-mode (center-of-mass) Hamiltonian with a single drive corresponding to Hcom

1drive in
equation (20), where i = 1, 2, 3 is the ion index, for detuning and Rabi frequency shown. (a) The evolution from an initial state
| ↓↓↓〉 ⊗ |0〉 probes three-spin interactions. They give rise to three-spin oscillations, represented by the black curve for ion 1. Ions
2 and 3 behave identically. (b) The two-spin dynamics is probed by considering the evolution from an initial state | ↓↑↓〉 ⊗ |0〉.
Yellow, blue, and red curves correspond to ions 1, 2, 3, respectively. Note that the yellow curve is fully hidden by the red one.
These plots should be compared with figures 2(d) and 3(d), that is the evolution under two-drive scenario using the same laser
parameters.

Table 2. The average values of the center-of-mass phonon
occupation over a time duration of 40 ms for the three- and
two-body evolutions revealed by different initial states under the
single-mode single-drive Hamiltonian Hcom

1drive in equation (20) for
the parameters considered in figure 4. The Hilbert space is
restricted by truncating the phonon occupation of the
center-of-mass mode at 6.

1
2π {δ,Ωr} [kHz] {4, 16}

|↓↓↓〉 ⊗ |0〉 0.05
|↓↑↓〉 ⊗ |0〉 0.05

cancellation of the two-spin dynamics. The optimal set of parameters for an experimental implementation
should, therefore, be concluded from the analysis of the multi-mode scenario, as will be presented next.

2.3.2. Multi-mode simulation
Next, let us turn our attention to the multi-mode Hamiltonian, which up to second order in the
Lamb–Dicke parameter reads

Hmulti
2drive =

N∑
i=1

N∑
m=1

[
i

2
ηm,i eiωmt

(
Ωr eiμrt +Ω′

r eiμ′rt
)

a†mσ
+
i

− 1

4

N∑
n=1

ηm,iηn,i

(
Ωb eiμbt +Ω′

b eiμ′bt
)

e−i(ωm+ωn)t amanσ
+
i

]
+ h.c. (23)

Here, Ω′
r, Ω

′
b, μ′

r, and μ′
b concern the second Raman-beam pair. They are defined in equation (19) in terms

of the parameter q.
Simulations of the evolution under the multi-mode Hamiltonian were performed under the same

conditions as for the single-mode case, i.e., with q = 1.3, ωrec = 26 × 2π kHz, and N = 3 ions. In addition
to the transverse trap frequency, ωx = 5 × 2π MHz, the axial trap frequency ωz also needs to be fixed, as it
determines the bandwidth of the phonon spectrum, i.e., transverse modes separations. The results for
different ωz values are shown in figure 5 for a ferromagnetic state, and in figure 6 for different
non-ferromagnetic initial states. For the detuning and the Rabi frequencies, those parameters which worked
well in the single-mode approximation have been chosen, i.e., δ = 2 × 2π kHz with Ωr = 10 × 2π kHz and
δ = 4 × 2π kHz with Ωr = 16 × 2π kHz.

From an initial state | ↓↓↓〉 ⊗ |0, 0, 0〉 (where the latter ket corresponds to the vacuum of three phonon
modes), one observes three-spin oscillations with good fidelity, as shown in figures 5(a)–(c). This is not
surprising, since two-spin interactions are automatically suppressed by the choice of initial state, and
off-resonant contributions from the other modes are negligible due to their large detuning. Notably, the
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Figure 5. Evolution of 〈σz
i 〉 under the multi-mode Hamiltonian Hmulti

2drive in equation (23) from an initial state | ↓↓↓〉 ⊗ |0, 0, 0〉.
The evolution of the spins probes the system’s three-spin interactions. Different panels consider different choices of detuning δ,
Rabi frequency Ωr, and axial trap frequency ωz . Different colors (black, green, purple) correspond to the evolution of each of the
different spins (i = 1, 2, 3), which, in contrast to the single-mode case, take different numerical values, but still can barely be
discerned from one another. The evolution predicted from the effective Hamiltonians in equations (13)–(15) is shown by dashed
curves. For the effective spin dynamics, we assume that the phonon state remains in the vacuum during the evolution.

Figure 6. Evolution of 〈σz
i 〉 under the multi-mode Hamiltonian Hmulti

2drive in equation (23) from the initial state | ↓↑↓〉 ⊗ |0, 0, 0〉.
(First row) and from the initial state | ↓↓↑〉 ⊗ |0, 0, 0〉 (second row). The evolution of the spins from these initial states probes the
system’s two-spin interactions. Different columns consider different choices of detuning δ, Rabi frequency Ωr, and axial trap
frequency ωz . In each panel, different colors (yellow, blue, red) correspond to the evolution of each of the different spins
(i = 1, 2, 3). In the case of a parity-symmetric initial state (first row), the yellow curves (i = 1) is hidden by the red curve (i = 3).
The evolution predicted from the effective Hamiltonians in equations (13)–(15) is shown by dashed curves. For the effective spin
dynamics, we assume that the phonon state remains in the vacuum during the evolution.

evolution of the three ions is almost exactly the same in these cases, that is, one can hardly discern the black
curve in all panels of figure 5 for ion 1, from the green and the purple curves for ion 2 and ion 3.

An interesting observation is that, for some parameter choices, the oscillation amplitude when evolving
under the multi-mode scenario is larger than that for the single-mode approximation with similar
parameters (compare e.g., figures 2(b) and 5(b)). This might seem counterintuitive given the exact
cancellation of single- and two-spin dynamics in the single-mode approximation. Similarly counterintuitive
is the fact that the oscillation amplitudes of the full dynamics exceed the ones of the effective spin dynamics
in some parameter regimes, see e.g., figures 5(a) and (c), where the dashed curves describe the effective
dynamics from equations (13)–(15). An explanation of these features could be a destructive interference of
the two factors which contribute to the suppression of the oscillations’ amplitude hence decrease in fidelity:
(i) the effective single-spin terms in equation (13), and (ii) any terms which are not accounted for by the
effective Hamiltonian, that involve various spin–phonon couplings. In the full single-mode evolution, only
the residual spin–phonon terms contribute to the suppression of the three-spin oscillation amplitude. On
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Table 3. The average values of the total phonon occupation in all
modes over a time duration of 40 ms for the three and two-body
evolutions under the multi-mode Hamiltonian Hmulti

2drive in
equation (23). In all cases, the average values for occupation of
the non-center-of-mass modes are less than 0.01. The Hilbert
space is restricted by truncating the phonon occupation of the
center-of-mass mode at 6. The phonon occupation of the other
two modes is truncated at 2.

1
2π {δ,Ωr,ωz} [kHz] {2, 10, 1000} {2, 10, 1500} {4, 16, 1500}

|↓↓↓〉 ⊗ |0, 0, 0〉 0.20 0.19 0.08
|↓↑↓〉 ⊗ |0, 0, 0〉 0.07 0.08 0.04
|↓↓↑〉 ⊗ |0, 0, 0〉 0.09 0.08 0.05

the other hand, in the effective multi-mode evolution, only the residual single-spin and two-spin terms
contribute to the suppression of the three-body oscillation amplitude. In contrast, in the full multi-mode
evolution, both factors contribute, and it is plausible that they can partially cancel each other out.

Let us now probe the two-body dynamics by initializing the system in a non-ferromagnetic state. Since
the second pair of Raman beams is designed to only cancel the two-spin terms stemming from the
center-of-mass mode, one observes an enhanced amount of two-spin dynamics in the multi-mode scenario,
but one also has to differentiate between parity-symmetric initial states, like | ↓↑↓〉 shown in
figures 6(a)–(c), and asymmetric initial states like | ↑↓↓〉, shown in figures 6(d)–(f). The ‘tilt’ mode induces
two-spin interactions only if the first and the third spin are different, and therefore this mode, which is next
to the center-of-mass mode in the phonon spectrum, does not contribute in the parity-symmetric case.
Therefore, the two-spin dynamics in figures 6(a)–(c) remains strongly suppressed. However, this is not the
case for asymmetric initial states, and much faster two-spin dynamics is observed, see figures 6(d)–(f).

Nevertheless, by increasing the bandwidth of the phonon spectrum, the detuning of the modes other
than the center-of-mass mode can be increased, and thereby their effect will decrease. This strategy works
best if the detuning of the center-of-mass mode is kept small. To enhance the phonon bandwidth, the axial
confinement can be increased, e.g. by changing ωz from 1 × 2π MHz to 1.5 × 2π MHz, see figures 5 and 6.
While this change has almost no effect on the three-spin evolution, the two-spin dynamics is significantly
slowed down.

Moreover, from comparison between panels (b)–(e) and (c)–(f) of figure 6, one can recognize the effect
of an increase of the detuning from 2 kHz to 4 kHz (together with a proportional increase of the Rabi
frequency to keep the three-spin dynamics similarly fast in both cases). This increase of detuning, while
slightly improving the fidelity of the three-spin evolution (as already seen in the single-mode case), leads to
significantly faster two-spin dynamics. As anticipated earlier, this shows that in order to achieve a quantum
simulator with purely three-spin interactions, one must keep the detuning as small as possible. Finally, note
that the faster two-spin effective dynamics, represented by dashed curves in figure 6, compared to the full
two-spin dynamics is consistent with the lower fidelity of three-spin evolution within the effective spin
model in figure 5, and can be attributed to the destructive interference among various contributions, as
explained before. There is, therefore, a welcome feature in the full dynamics compared with the effective
dynamics in the cases studied, in that higher fidelities in three-spin evolution and better suppression of
two-spin dynamics are achieved compared with the effective spin model. Whether this feature persists in
larger systems and given arbitrary initial states is to be seen in future studies.

For completeness, the average phonon number over a duration of 40 ms for the different combinations
of parameters and initial states as used in figures 5 and 6 are reported in table 3. As is seen, the average
phonon occupation remains well below one. Furthermore, not surprisingly in all cases the most occupied
mode is the center-of-mass mode, as it the beams are more closely tuned to the center-of-mass mode than
the rest.

In summary, the implementation of the three-spin Hamiltonian is possible with an appropriate choice
of the experimental parameters. Mainly, this requires increasing the axial trap frequency as much as
possible, as well as keeping the detuning small. As an optimal lower limit for the detuning, the simulation
carried out in this section determines the value δ ≈ 2 × 2π kHz. Limitations to the axial frequency are
more general, given by zig-zag deformation of the ion chain, which happens when ωz > ωx

0.73 N−0.86 [107].
For the case of N = 3 and the transverse frequency of this simulation, the bound on the allowed axial
frequency is ≈2.67 MHz.
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Figure 7. Maximum fidelity for the GHZ-state preparation, along with the time to reach such a fidelity, for different values of
Rabi frequency Ωr, at a fixed detuning δ = 2 × 2π kHz and axial frequency ωz = 1500 × 2π kHz. The GHZ state considered here
is defined as |GHZ( 3π

2 )〉 = 1√
2

(
|↓↓↓〉 − i|↑↑↑〉

)
, and the phonon degrees of freedom are traced out in the intermediate-states

density matrices.

2.3.3. Preparation of a GHZ state
To conclude this section, we consider the possibility of using the three-spin coupling scheme to prepare a
maximally entangled state of three spins. Specifically, by subjecting a ferromagnetic state to the three-spin
Hamiltonian for the proper amount of time, i.e., ≈π/(2J2drive

3 ), a Greenberger–Horne–Zeilinger (GHZ)-like
state |GHZ(ϕ)〉 = 1√

2
(|↑↑↑〉+ eiϕ|↓↓↓〉) can be obtained, where in our scheme the phase angle is ϕ = 3π

2 .12

To determine how well this GHZ state is reached, one can calculate the fidelity F as the system evolves
defined as

F(t) ≡
[

tr
√√

ρGHZ ρ(t)
√
ρGHZ

]2

, (24)

where ρGHZ denotes the density matrix corresponding to the state |GHZ( 3π
2 )〉. Since this is a pure state, the

simplified relation F(t) = 〈GHZ( 3π
2 )|ρ(t)|GHZ( 3π

2 )〉 can also be used. ρ(t) denotes the reduced density
matrix of the time-evolved state after tracing out the phonon degrees of freedom. The maximum fidelity
Fmax is plotted in figure 7 for different choices of the Rabi frequency Ωr. We also plot the time tmax at which
the maximum fidelity is reached. It can be seen that a fidelity > 0.95 can be reached within 10 ms for
Ωr = 8 × 2π kHz. Slight increases of the Rabi frequencies allow to reduce the preparation time to smaller
than 5 ms, keeping Fmax still as large as approximately 0.92. A comparison of the fidelities achieved in digital
universal implementations of quantum circuits using only two-qubit entangling gates compared with the
three-qubit entangling operation proposed here will be discussed more closely in section 3.3.

We emphasize that our theoretical study considers a quantum simulator which is not affected by any
noise through the coupling to the environment (causing, e.g., heating or motional dephasing) or due to
fluctuations and/or drifts in the external fields. In practice, such effects are in play, and contribute to a
decrease of the fidelity Fmax. In fact, while the theoretical fidelity increases with time, as is seen in figure 7,
the experimental noise accumulates as implementation time grows, hence lowering the predicted theoretical
fidelity. We can estimate the effect of typical heating rates of cryogenic systems (∼1 quanta/s) to cause an
infidelity of the order of ∼1%. Motional dephasing also cause an infidelity that grows linearly with time,
but varies from system to system and depends on the experimental configuration. Overall, we can model
the total effect of the coupling to environment by the rate Γ of a noise event. Assuming that Γ−1 is much
below the entangling times tmax, a crude estimate of the true entangling fidelity F can be made via
F = Fmax (1 − Γtmax). The optimal spin–phonon coupling frequency Ωr then depends on Γ, and can be
determined from figure 7 by maximizing F. For a realistic noise rate of Γ = 10 Hz, the optimal choice
would be Ωr/(2π) ≈ 9 kHz, with a true fidelity of about 0.88.

12 To set the relative phase of the two states equal to unity, a trivial single-qubit phase gate can be applied to one of the ions at the
beginning of the operation.
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3. Applications in quantum simulation: a lattice gauge theory example

Quantum simulation of quantum many-body systems can potentially benefit from a direct implementation
of three-spin interactions. Examples include simulating certain lattice gauge theories whose dynamics can
be mapped to multi-spin Hamiltonians [93, 108], as well as spin systems with two- and three-spin
interactions which can exhibit nontrivial phase diagrams [78–91]. Among the features of the scheme of this
work that can be useful in simulating such physical systems are the possibility of a direct simulation of the
three-spin dynamics without the need for digitalization of the evolution, as well as the ability to tune the
relative strength of two- and three-spin interactions. In this section, an example in the context of lattice
gauge theory will be presented13. This section also investigates the benefit of implementing three-qubit gates
in place of two-qubit gates to achieve higher-fidelity decomposition of certain time-evolution operators in
quantum simulation.

3.1. A U(1) quantum link model with the three-spin coupling scheme
The U(1) lattice gauge theory in 1 + 1 dimensions, i.e., the lattice Schwinger model, is a valuable prototype
of QCD and has long served as a testbed for benchmarking quantum simulation of lattice gauge theories on
quantum hardware [23, 63, 71, 72]. In the Kogut–Susskind formulation [109], the model consists of
fermion-gauge interactions, electric-field contribution, and a staggered fermion mass term:

HU(1) = x

Nstag−1∑
i=1

[
ψ†

i Uiψi+1 + h.c.
]
+

Nstag−1∑
i=1

E2
i + μ

Nstag∑
i=1

(−1)iψ†
i ψi. (25)

Fermions ψi sit on site i, while the conjugate-variable pairs {Ei, Ui} belong to the link originating from site
i, see figure 8. Nstag denotes the number of staggered sites. Rescaled dimensionless couplings x and μ are
used such that the Hamiltonian is expressed in dimensionless unit14. Open boundary conditions will be
considered such that the electric-field flux into the lattice, E0, is fixed. The continuum limit of the
expectation values of the observable O for a fixed mass over coupling ratio is obtained via a double-ordered
limit: limx→∞ limNstag→∞〈O〉, a limit that will not be considered here. The states are characterized by bosonic

and fermionic quantum numbers. Explicitly, bosonic quantum number n(g)
i is associated with the discrete

spectrum of a quantum rotor satisfying Ei|n(g)
i 〉 = n(g)

i |n(g)
i 〉 and Ui|n(g)

i 〉 = |n(g)
i + 1〉 with n(g)

i ∈ Z. The

fermionic quantum number n(f )
i is associated with the fermionic occupation at each site, which satisfies

n(f )
i ∈ {0, 1}. An unoccupied (occupied) odd (even) site represents the presence of an electron (positron).

The physical states are those annihilated by the Gauss’s law operator Gj = Ej − Ej−1 − ψ†
j ψj +

1
2

[
1 − (−1)j

]
at each site.

A finite-dimensional formulation of the same U(1) theory is described by a quantum link model
[93, 94]. Within this formulation, and upon performing a Jordan–Wigner transformation of the staggered
fermions, the Hamiltonian becomes

HQLM = J

Nstag−1∑
i=1

[τ+i S+i τ
−
i+1 + h.c.] +

Nstag−1∑
i=1

S2
z + μ

Nstag∑
i=1

(−1)iτ z
i , (26)

where τ i are Pauli matrices at each site, and S is a spin operator. While the exact Schwinger model is
recovered in the limit of S →∞, for low-energy quantities, small S values provide accurate approximations
to the exact theory, as shown in e.g., reference [110].15 To map this Hamiltonian to the trapped-ion effective
Hamiltonian, the spin- 1

2 limit of the quantum links will be considered, and Si in equation (26) will be
replaced by the Pauli operators at each site. The electric-field contribution is then trivial and one is left with
matter-gauge interaction in form of a nearest neighbor three-spin operator, as well as the staggered mass
term.

Such a Hamiltonian can be mapped to the effective Hamiltonian of the trapped-ion simulator. Explicitly,

HIon = J

Nstag−1∑
i=1

[
σ+

2i−1σ
+
2i σ

−
2i+1 + h.c.

]
+ μ

Nstag∑
i=1

(−1)iσz
2i−1. (27)

Note that N = 2Nstag − 1 ions are needed to encode the dynamics with open boundary conditions. The
basis states are simply the direct product of eigenstates of the Pauli operator σz, while the physical states are

13 We refer the reader to references [78–91] for applications in the context of condensed-matter theory.
14 Not to be confused with the lasers’ frequency in the previous section.
15 Note that only in the limit of S →∞, J approaches the original coupling x, see reference [110].
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Figure 8. The mapping of the degrees of freedom of the lattice Schwinger model to a quantum link model, that is ultimately
mapped to (quasi)spin degrees of freedom of a linear chain of trapped ions, which are addressed with given sets of laser beams as
described in the text. The ion–laser interactions induce an effective three-spin Hamiltonian via virtually-excited phonons.

those annihilated by the Gauss’s law operator, which in this formulation reads:
Gi =

1
2

[
σz

2i − σz
2i−2 − σz

2i−1 − (−1)i
]

with σz
0 fixed by (open) boundary conditions. A diagrammatic

representation of the mapping between degrees of freedom in the original lattice Schwinger model, the
quantum link model, and the trapped-ion simulator is shown in figure 8.

In order to apply the scheme of the previous section to simulate the dynamics governed by
equation (27), one first needs to perform a local unitary transformation consisting of π-rotations on every
other odd–even pairs of ions, as well as on the last ion in the chain. Explicitly,

U ≡ σx
2Nstag−1

Nstag
2 −1∏
i=1

σx
4i−1σ

x
4i (28)

is applied at the beginning and the end of the simulation. The Hamiltonian in the transformed basis is

H(rot.)
Ion = J

Nstag−1∑
i=1

[
σ+

2i−1σ
+
2i σ

+
2i+1 + h.c.

]
− μ

Nstag∑
i=1

σz
2i−1. (29)

For an analog simulation of the dynamics governed by this Hamiltonian, one can use the two-drive scheme
discussed in the previous section, in addition to a Stark-shift beam to induce the evolution under the mass
term. Specifically, the gauge-matter term proportional to three-spin interactions can be mapped to the
effective Hamiltonian in equation (15). Acting on three ions, the two-drive scheme produces the desired
three-spin interactions, while suppressing single- and two-spin terms. For N � 3, however, the ions at
locations 2i + 1 for i ∈ {1, . . . , Nstag − 2} need to be addressed with two sets of Raman beams, as these ions
participate in three-spin interactions with their left and right neighbors simultaneously. This can be
achieved through local addressing of the ions, hence individual control of Rabi frequencies. Besides the
need for individual addressing, one needs to mitigate the problem of deviating from the effective three-spin
dynamics given multiple drives on each third ion in the chain. One strategy is to apply lasers that address
different transverse modes of the chain in an alternate pattern. Explicitly, ions {2i − 1, 2i, 2i + 1} can be
addressed by beams with Δk = Δkx̂ while ions {2i + 1, 2i + 2, 2i + 3} can be addressed with beams with
Δk = Δkŷ, for i ∈ {1, 3, . . . , Nstag − 3}, see figure 8.16

In this scheme, there will still be two types of undesired contributions to the dynamics even with two
sets of alternate drives. First, there will be terms proportional to phonon creation and annihilation

16 With open boundary conditions, ions 1 and 2Nstag − 1 do not need to be addressed with two sets of orthogonal Raman pairs.
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operators in both modes, that go as ei(δ−δ̃)t or slower, where δ and δ̃ are the detuning from the
center-of-mass frequency of each set of the modes. Thus, multiple drives with similar detunings on a single
ion will give rise to undesired spin–phonon entanglement. These contributions can be made off-resonant
by setting the two detunings sufficiently differently, and by compensating for the required equal couplings
by adjusting the corresponding Rabi frequencies. The second type of terms can result from cross-coupling
among e.g., ions in the sets {2i − 1, 2i, 2i + 1} and {2i + 3, 2i + 4, 2i + 5}, as the beams aligned with the
same principal axis of the trap are used for the two non-adjacent sets. Such cross-couplings can result in
long-range effective spin interactions along the chain. They can be made off-resonant by adopting different
detunings for each set of the beams. To increase the distance among the ions addressed by lasers along the
same principal axes, axial modes of motion can be addressed too, but these modes are lower in frequency,
and the second sideband drive with respect to the center-of-mass mode would unavoidably induce the first
sideband transitions of several modes other than the center-of-mass mode, which complicates the effective
dynamics. Increasing the axial trapping frequency, as well as detuning close the highest frequency (‘zig-zag’)
axial mode, can help with this limitation.

Another complication with scaling up the scheme of the previous section to simulate a large instance of
the quantum link model is related to the proliferation of the normal modes and the increased contribution
from modes other that the center-of-mass mode to the dynamics—an effect that is anticipated to worsen
the cancellation of the undesired single- and two-spin contributions. As a result, the fidelity of the
simulation compared with the exact effective three-spin dynamics degrades as a function of the number of
the trapped ions. As performing a numerical study of the full dynamics to estimate the expected outcome is
costly and reaches the limits of classical methods quickly, experimental implementations on the quantum
simulator are the only means by which to assess the performance of the scheme for larger system sizes.

The mass term can be implemented by applying, simultaneously with the lasers that induce the
three-spin coupling, a Stark shift on participating ions, i.e., ions 2i − 1 for i ∈ {1, . . . , Nstag}, corresponding
to a longitudinal effective magnetic field Bz applied to the ions. Alternatively, properly shifted red and blue
sideband transitions can effectively implement such a magnetic-field interaction, as described, e.g., in
references [11, 51, 111]. However, arbitrarily large masses cannot be simulated if long evolution times are
desired, as undesired cross-coupling terms with the lasers implementing the three-spin coupling occurs. By
requiring the model parameters to match those in experiment for the effective magnetic-field term
throughout the evolution, that is by setting μtQLM = Bzt, the undesired terms will be small for
|BztηΩr/δ| = |μtQLMηΩr/δ| � 1 and |Bztη2Ωb/δ| = |μtQLMη2Ωb/δ| � 1.

3.2. A numerical study of inexact dynamics with a crude model
It is interesting to investigate if presently-available trapped-ion simulators can reveal nontrivial
nonperturbative features of strong dynamics in the lattice Schwinger model despite the imperfect fidelity of
implementing effective three-spin dynamics as quantified in our numerical study. Let us consider a 7-ion
and an 11-ion system, as these system sizes are currently available in both digital and analog modes (see e.g.,
references [11, 112–114]). These systems can encode a quantum link model with Nstag = 4 and Nstag = 6
staggered matter sites, respectively. The numerical study of section 2.3 with realistic experimental
parameters established that the period of the undesired two-spin evolution is at worse ∼20 times larger
than that of the desired three-spin evolution, considering contributions from all the modes. This indicates
an effective three-spin coupling that is at least ∼20 time larger than the two- (and one-) spin couplings—a
consequence of the effectiveness of the two-drive scheme in suppressing the undesired contributions. The
accuracy of this scheme, of course, drops as a function of time, particularly as a result of noise, coupling to
environment, and decoherence—effects that will be left out of our analysis and can only be carefully
quantified in an experimental implementation. An accurate prediction of the dynamics in the quantum link
model with the full Hamiltonian requires inputting a comprehensive model of interactions including
phonons in chains longer than three ions, and hence is beyond a simple numerical investigation.
Nonetheless, one can still come up with a crude model of interactions to describe the quantum link model
under an imperfect Hamiltonian that qualitatively resembles that of the full Hamiltonian. For this purpose,
we consider the Hamiltonian in equation (26) with the addition of an all-to-all two-spin interactions that
are uniform in strength, and to be conservative, are taken to be 10 times and 5 times weaker than the
desired three-spin interactions. Additionally, single-spin interactions on all ions are included to
modify the mass term with uniform coefficients that are 10 and 5 times weaker than the true mass.
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Figure 9. (a) The (absolute value) of the overlap between a time-evolved string state |ψstr〉 and a fully-occupied mesonic state
|ψmes〉, Pstring→mesons ≡ |〈ψmes|e−iHQLMtQLM |ψstr〉|, as a function of the (scaled dimensionless) time tQLM for a lattice with
Nstag = 4 fermion sites, corresponding to N = 7 ion sites. For the dashed and dotted curves, the Hamiltonian must be
replaced with the non-exact H′

QLM and H′′
QLM Hamiltonians, respectively. (b) The same quantity plotted for Nstag = 6

fermion sites, corresponding to N = 11 ion sites. The graphical representations of states, both in terms of the electron,
positron, and electric-field strings and in terms of the (quasi)spins of each corresponding ions are shown for the initial string
state, and for a fully-occupied mesonic state whose probability amplitude is maximum at the points denoted. (c) The
expectation value of the lattice sum of the (absolute value of) the Gauss’s law operator between a time-evolved string state,
〈
∑

i|Gi|〉 ≡ 〈ψstr|eiHQLMtQLM 1
2Nstag−3

∑Nstag−1

i=1 |Gi|e−iHQLMtQLM |ψstr〉 for Nstag = 4 fermion sites, corresponding to N = 7 ion sites.

For the dashed and dotted curves, the Hamiltonian must be replaced with the non-exact H′
QLM and H′′

QLM Hamiltonians,
respectively. (d) The same quantity as in (c) for Nstag = 6 fermion sites, corresponding to N = 11 ion sites. The maximum
breakdown of the Gauss’s law corresponds to 〈

∑
i |Gi|〉 = 1.

Explicitly,

H′(′′)
QLM = HQLM +

x

g′(′′)

2Nstag−1∑
j,k=1

j 	=k

[
σ+

j σ−
k + h.c.

]
+

μ

g′(′′)

2Nstag−1∑
j=1

σz
j , (30)

with g′ = 10 and g′′ = 5. One can now ask, assuming this crude model captures the imperfection of the
effective model obtained in section 2.2, whether interesting nontrivial features of the quantum link model
of the lattice Schwinger model, such as string breaking and pair creation after a quench, can be observed in
experiment. Furthermore, given the gauge-symmetry violating interactions in play, will the degree of
symmetry breaking in the evolved states be small with a gauge-invariant initial states, such that qualitative
features of a constrained dynamics are not fully lost?

Figure 9 shows the result of one such study. The initial gauge-invariant state consisting of positive and
negative electric charges at the far ends of lattice with an electric-field string (quantum-link) attaching
them, the so-called ‘string’ state, is evolved in time, and its overlap is measured with a fully-occupied
‘mesonic’ state consisting of Nstag/2 electron–positron pairs, connected by proper electric-field fluxes to
satisfy Gauss’s law. Explicitly, the quantity

Pstring→mesons ≡ |〈ψmes|e−iHQLMtQLM |ψstr〉| (31)
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is calculated via exact diagonalization of the Nstag = 4 and Nstag = 6 site theories, where |ψstr〉 denotes the
string state and |ψmes〉 denotes the mesonic state. Besides the evolution with the exact Hamiltonian HQLM

(in solid curves), the two modified Hamiltonian H′
QLM and H′′

QLM are also considered (in dashed and dotted
curves, respectively). The plots indicate that the generation of a significant amplitude for a mesonic state
out of an initial string state after a quantum quench is retained for imperfect Hamiltonians, and is only
slowly diminished as function of time, particularly for the smaller perturbation. The reason for the decline
in the meson-state amplitude is the leakage to the vast unphysical Hilbert space that can occur since the
modified Hamiltonians do not respect the Gauss’s law constraints.

To reveal the degree of gauge-symmetry violation in the nonperturbative dynamics, figure 9 also depicts
the quantity

〈
∑

i

|Gi|〉 ≡ 〈ψstr|eiHQLMtQLM
1

2Nstag − 3

Nstag−1∑
i=1

|Gi|e−iHQLMtQLM |ψstr〉, (32)

with the Gauss’s law operator Gi defined above in the spin- 1
2 formulation of the quantum link model. For a

gauge-invariant state, therefore, 〈
∑

i |Gi|〉 = 0, while for a state with maximum violation of the Gauss’s law
constraint, 〈

∑
i |Gi|〉 = 1.17 As is seen in the figure, for H′

QLM, the gauge-symmetry violation remains at a
few-percent level at early times. For H′′

QLM, the violation can be significant, for both lattice sizes considered,
although it remains well below one at early times. Despite the breakdown of gauge invariance, the
qualitative behavior of the evolution under exact Hamiltonian appears to be robust with respect to the
perturbations introduced (for a few meson-state revival cycles), making this model a suitable first case study
in the upcoming implementations18.

Simulating the quantum link model is only one possible application for the trapped-ion quantum
simulator with three-spin interactions. The observation of qualitative features in the dynamics of this
model, such as string breaking, pair production, and confinement, will obviously be only first steps toward
quantitative quantum-simulation predictions, but they already provide non-trivial benchmarks. Of course,
in order to reach the ultimate goal of quantitative predictions in regimes which are not accessible to classical
simulation, new verification schemes have to be put in place. In ion chains, for instance, the exact control of
the particle number would make it possible to operate the quantum simulator in classically accessible
regimes to quantify the noise, including the scaling of the noise with system size. Then, by extrapolation of
this data, one could obtain an estimate of the quantum simulator’s fidelity also beyond the classically
accessible regimes. Generally, other verification schemes, such as tests of symmetries and conservation laws,
consistency among various observables and different simulators, and randomized tests can be employed to
gain more trust in the result of an analog simulator, see e.g., reference [117].

3.3. Digital versus analog
As demonstrated in section 2.3, the three-spin(qubit) coupling scheme can be used to prepare a
maximally-entangled three-qubit state, such as the GHZ state, with high fidelity. The two-qubit entangling
gates, i.e., the conventional Mølmer–Sørensen (MS) gate, have achieved increasingly high fidelities (∼0.995
for a three-qubit system for comparison [114]) while the fidelity of the three-spin coupling obtained here is
at best ∼96% for realistic experimental parameters. Furthermore, the GHZ-state preparation only requires
two MS gates compared with a single three-spin gate. Therefore, one will not find a greater benefit in using
the three-spin gate in creating GHZ states. There are, however, other situations for which a direct

implementation of a unitary of the type e−iα(σ+i σ+j σ+k +h.c.) can potentially reduce the time of the operation,
and hence increase the fidelity of the implementation.

An example is the quantum simulation of the U(1) quantum link model presented in this section. The
potential of a fully analog implementation of the correlated three-spin dynamics in the quantum link model
is a primary motivation for the three-spin scheme of this work, so that digitalization error of the
time-evolution operators could be avoided. Nonetheless, while the implementation of the operator

e−iα(σ+i σ+j σ+k +h.c.) on three qubits, with a decomposition to MS gates as

e−iα(σ+i σ+j σ+k +h.c.)
= e
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x
j , (33)

17 Hence the normalization 1
2Nstag−3 adopted in the definition of 〈

∑
i |Gi|〉. Note that with open boundary conditions, the last fermionic

site is left open and is not counted toward the sum.
18 The robustness of gauge-invariant dynamics in lattice gauge theories is thoroughly studied in references [115, 116].
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is exact and incurs no digitalization errors, at least twelve two-qubit MS gates are needed, in addition to a
number of single-qubit gates. The fidelity of this operation, given the best MS gates reported, is
∼0.99512 = 0.942. The best theoretical fidelity, 0.96, which we obtain for the single-shot implementation of
the operator in the left-hand side of equation (33) is slightly higher, such that the three-qubit operation
potentially outperforms the sequence of two-body gates. We note, however, that this requires experimental
errors in the three-body scheme below 2%, an information that is not known at this stage.

Performing side-by-side comparison of the fidelity of operations with only MS gates versus using
three-spin gates, however, cannot be done rigorously at this stage for the following reasons. First, while our
numerical study gives a reliable estimate of the expected performance, it does not include the anticipated
experimental imperfections arising from noise (e.g., laser and trap instabilities) and coupling to
environment (e.g., heating, and undesired emission and absorption processes). Such effects are increasingly
controlled and diminished in experimental platforms, as is evident from achieved high-fidelity MS
operations in chains of ions with various sizes, but are nonetheless needed to be taken into account for a
fair comparison with the MS gate-based performances. Second, a high degree of optimization and
adjustments is applied to devise complex pulse-shaping protocols in the case of a MS gate to minimize the
spin–phonon entanglement (i.e., that can occur already at leading order in the Lamb–Dicke parameter)
throughout the gate operation [118–122], hence increasingly high-fidelities reported in recent
state-of-the-art demonstrations. Such an optimization has not been investigated in this work and hence the
fidelity reported for the three-spin gate corresponds to the simplest implementation. Devising a
pulse-shaping protocol for the three-spin gate is far more complex as it requires a simultaneous
minimization of both the first- and second-order contributions in the Lamb–Dicke parameter, but can
potentially lead to the same improvement in the three-spin gate fidelity as with the MS gate. Such an avenue
will be left to future studies.

4. Conclusion and outlook

Correlated evolution of the (quasi)spin of three ions in a trapped-ion quantum simulator can be achieved
via an extension of the standard Mølmer–Sørensen scheme. Explicitly, a resonant combination of two
single-sideband and one double-sideband transitions can be combined to effectively couple three spins via
virtual phonons. Resonant single- and two-spin effective transitions are also induced, and can either be
used to simulate spin systems with competing two- and three-spin interactions in a magnetic field, or if
only pure three-spin dynamics is desired, be eliminated with another set of Raman beams driven with
carefully tuned Rabi and beatnote frequencies. The effective Hamiltonian in the single-mode approximation
(when the lasers are detuned closely to the single and double sidebands of a single mode so that the
contribution to the dynamics from the nearby modes is small) and in the multi-mode approximation are
derived, and the leading corrections to the effective picture are qualitatively identified. Given these
corrections, a thorough check of the scheme is presented by conducting a numerical simulation of the exact
dynamics (that from all orders in the Lamb–Dicke parameter and including phonons dynamics) in a
rotating-wave approximation. This investigation reveals the experimental parameters for Rabi and beatnote
frequencies of the Raman beams, as well as the axial trapping frequency, such that with the use of the
second drive, the fidelity of generating a GHZ state with only three-spin dynamics reaches �95%, and
single- and two-spin dynamics remains at least ∼20 times slower that the three-spin dynamics.
Furthermore, the phonon occupation in participating modes remains far below one for simulations that
start in a phonon-less state. These promising analytic and numerical results motivate future experimental
implementation of this scheme, and can potentially simplify quantum simulation of spin systems with
multi-spin interactions. The important case of a lattice gauge theory is investigated in this context, and the
specifications of an upcoming implementation of the quantum link model of the U(1) gauge theory in
1 + 1 dimensions within this scheme are detailed. In particular, it is shown through a crude model of
interactions that the near-term demonstrations for systems of ∼10 ions can still reveal interesting
constrained dynamics of the lattice gauge theory, such as string breaking, despite the anticipated undesired
gauge-violating interactions revealed by our numerical simulation. The comparative performance of analog
simulation using engineered three-spin dynamics and that based on solely MS two-spin gates in digitized
dynamics depends on the task and model, and a decisive conclusion will need to await experimental
benchmarks.

A few extensions and improvements over the scheme developed here can be enumerated, along with
potential applications:

• While our effective Hamiltonian realizes maximally spin-flipping transitions in a given basis, it is easy
to see that interactions proportional to σz

i σ
z
j σ

z
k can also be realized in an analogous way, extending

two-qubit geometric phase gates [123, 124] to correlated three-qubit operations. In fact, a number of
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parasitic undesired single- and higher-spin interactions coupled to phonon operators will be absent in
the three-qubit phase-operation scheme since couplings among the spin operators at the same ion will
be absent in the Magnus expansion, i.e., the commutation among σz

i operators at the same site is
vanishing19.

• The three-spin Hamiltonian of this work is engineered with semi-global beams on every triple of
nearest-neighbor ions such that with each operation, interactions are of short range. On the other
hand, global Raman beams that address all the ions in the chain can generate three-spin couplings
with all-to-all interactions. Various coupling profiles for the interactions, both the single-, two-, and
three-spin couplings, can be engineered by tuning the Raman beatnote frequencies, see
equations (13)–(15), and if individual addressing of the ions is a possibility, by tuning the Rabi
frequencies as well. Such an optimization of parameters to achieve certain coupling profiles is
customary in MS-based analog simulation schemes, see e.g., references [51, 126, 127]. Furthermore,
for digital gate-based applications, pulse-shaping techniques such as those applied to generate
optimized MS gates [118–122] can be employed in the three-spin scheme to minimize spin–phonon
entanglement, and optimize the operation of the associate three-qubit gate, as mentioned before.

• Quantum-simulation and quantum-computing possibilities can be expanded in trapped-ion systems
by addressing more than two internal hyperfine levels of the ions, hence effectively introducing a
higher-spin degree of freedom for encoding information, i.e., a qudit. The success of this encoding has
been already demonstrated in reference [128] and its scope is analyzed further in reference [129]. In
particular, two-spin entangling operations have been realized in such a setting. It is then
straightforward to extend the scheme of this work to three-spin transitions, where one or more ions
exhibit a higher (quasi)spin. Among the applications of this capability is in approaching the
continuum limit of quantum link model which recovers the U(1) lattice gauge theory by increasing
the spin of the quantum link [110]. The fidelity of the effective three-spin dynamics with higher-spin
encodings will need to be both numerically and experimentally quantified.

• It is interesting to explore the viability of engineering higher-spin effective interactions, following the
strategy of this work. Explicitly, resonant transitions involving multi-spin flips, assisted by a number
of virtual phonons, can be induced, but such processes will be higher-order contributions in the
Lamb–Dicke parameter, and hence exhibit slower dynamics. Furthermore, for effective four-spin
interactions, for example, the lower-order resonant transitions will be proportional to both 1/δ and
1/δ2 in the single-mode approximation, and the simple two-drive scheme of this work with almost
opposite detunings cannot eliminate these lower-order spin transitions. Nonetheless, more complex
schemes can be potentially devised. Perhaps more interestingly is the possibility of inducing resonant
spin–spin–phonon transitions by borrowing ideas from the extended MS scheme of this work, hence
opening up the possibility of analog quantum simulation of coupled fermion-boson models,
including gauge-fermion couplings in lattice gauge theories, extending the recent hybrid
analog-digital proposals [75, 130, 131]. A detailed theory and numerical investigation will be required
to establish if this scheme can be a viable path toward this goal.

While an experimental demonstration of the scheme of this work is the next immediate goal, all these
aforementioned directions will be valuable to investigate in future studies. These align with the overarching
goal of enhancing and expanding trapped-ion simulator toolkit for applications beyond what is possible
today.
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[122] Blümel R, Grzesiak N, Nguyen N H, Green A M, Li M, Maksymov A, Linke N M and Nam Y 2021 Phys. Rev. Lett. 126 220503
[123] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[124] Porras D and Cirac J I 2004 Phys. Rev. Lett. 92 207901
[125] Britton J W, Sawyer B C, Keith A C, Wang C-C J, Freericks J K, Uys H, Biercuk M J and Bollinger J J 2012 Nature 484 489
[126] Korenblit S et al 2012 New J. Phys. 14 095024
[127] Teoh Y H, Drygala M, Melko R G and Islam R 2020 Quantum Sci. Technol. 5 024001
[128] Senko C, Richerme P, Smith J, Lee A, Cohen I, Retzker A and Monroe C 2015 Phys. Rev. X 5 021026
[129] Low P J, White B M, Cox A A, Day M L and Senko C 2020 Phys. Rev. Res. 2 033128
[130] Lamata L, Mezzacapo A, Casanova J and Solano E 2014 EPJ Quantum Technol. 1 9
[131] Mezzacapo A, Casanova J, Lamata L and Solano E 2012 Phys. Rev. Lett. 109 200501

24

https://doi.org/10.1103/revmodphys.62.531
https://doi.org/10.1103/revmodphys.62.531
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050225
https://doi.org/10.1103/physrevd.98.034505
https://doi.org/10.1103/physrevd.98.034505
https://doi.org/10.1103/physrevd.11.395
https://doi.org/10.1103/physrevd.11.395
https://arxiv.org/abs/2104.00025
https://doi.org/10.1103/physreva.95.013602
https://doi.org/10.1103/physreva.95.013602
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://arxiv.org/abs/2009.11482
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://arxiv.org/abs/2009.07848
https://arxiv.org/abs/2104.07040
https://doi.org/10.1038/s41534-021-00380-8
https://doi.org/10.1038/s41534-021-00380-8
https://doi.org/10.1103/physrevlett.97.050505
https://doi.org/10.1103/physrevlett.97.050505
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1088/1367-2630/10/1/013002
https://doi.org/10.1103/physrevlett.114.120502
https://doi.org/10.1103/physrevlett.114.120502
https://doi.org/10.1103/physrevlett.120.020501
https://doi.org/10.1103/physrevlett.120.020501
https://doi.org/10.1103/PhysRevLett.126.220503
https://doi.org/10.1103/PhysRevLett.126.220503
https://doi.org/10.1103/physrevlett.74.4091
https://doi.org/10.1103/physrevlett.74.4091
https://doi.org/10.1103/physrevlett.92.207901
https://doi.org/10.1103/physrevlett.92.207901
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature10981
https://doi.org/10.1088/1367-2630/14/9/095024
https://doi.org/10.1088/1367-2630/14/9/095024
https://doi.org/10.1088/2058-9565/ab657a
https://doi.org/10.1088/2058-9565/ab657a
https://doi.org/10.1103/physrevx.5.021026
https://doi.org/10.1103/physrevx.5.021026
https://doi.org/10.1103/physrevresearch.2.033128
https://doi.org/10.1103/physrevresearch.2.033128
https://doi.org/10.1140/epjqt9
https://doi.org/10.1140/epjqt9
https://doi.org/10.1103/physrevlett.109.200501
https://doi.org/10.1103/physrevlett.109.200501

	Engineering an effective three-spin Hamiltonian in trapped-ion systems for applications in quantum simulation
	1.  Introduction
	2.  Engineering an effective three-spin Hamiltonian with trapped ions
	2.1.  Ion–laser dynamics and a qualitative description of the scheme
	2.2.  Derivation of the effective Hamiltonian
	2.3.  Numerical simulations
	2.3.1.  Single-mode approximation
	2.3.2.  Multi-mode simulation
	2.3.3.  Preparation of a GHZ state


	3.  Applications in quantum simulation: a lattice gauge theory example
	3.1.  A U(1) quantum link model with the three-spin coupling scheme
	3.2.  A numerical study of inexact dynamics with a crude model
	3.3.  Digital versus analog

	4.  Conclusion and outlook
	Acknowledgments
	Data availability statement
	ORCID iDs
	References




