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The topological phases of matter are characterized using the 
Berry phase, a geometrical phase associated with the energy-
momentum band structure. The quantization of the Berry 
phase and the associated wavefunction polarization manifest 
as remarkably robust physical observables, such as quantized 
Hall conductivity and disorder-insensitive photonic trans-
port1–5. Recently, a novel class of topological phases, called 
higher-order topological phases, were proposed by generaliz-
ing the fundamental relationship between the Berry phase and 
quantized polarization, from dipole to multipole moments6–8. 
Here, we demonstrate photonic realization of the quantized 
quadrupole topological phase, using silicon photonics. In our 
two-dimensional second-order topological phase, we show 
that the quantization of the bulk quadrupole moment mani-
fests as topologically robust zero-dimensional corner states. 
We contrast these topological states against topologically triv-
ial corner states in a system without bulk quadrupole moment, 
where we observe no robustness. Our photonic platform could 
enable the development of robust on-chip classical and quan-
tum optical devices with higher-order topological protection.

The Berry phase provides a universal framework that relates the 
robust quantization of physical observables at the boundaries of a 
non-interacting system to the topological properties of the bulk. For 
example, in electronic systems, the Berry phase dictates the presence 
of quantized zero-dimensional (0D) charges in 1D insulators1,2, quan-
tized charge/spin currents along the 1D edges of 2D quantum Hall/
spin Hall systems3,9, and conducting 2D surfaces in 3D topological 
insulators10. In general, this bulk–boundary correspondence relates 
the quantized charge/current carried by the (n − 1)-dimensional 
boundaries to the quantized electric dipole moment of the n-dimen-
sional bulk4. Recently, this relationship between the charge moments 
of the bulk and their boundary manifestations has been generalized 
from electric dipole to multipole moments, leading to higher-order 
topological phases6–8,11. For example, a quantized quadrupole moment 
in a 2D system leads to the presence of quantized charges, which are 
localized at the 0D corners. This is in contrast to the quantized dipole 
moment, which gives rise to 1D edge currents in a 2D system.

When formulated in terms of the Berry phase, the bulk–bound-
ary correspondence also applies to neutral bosonic systems; that 
is, the non-trivial topology of the bulk leads to the emergence of 
robust boundary states. In fact, topologically robust, localized 0D 
edge states in 1D systems and propagating 1D edge states in 2D 
systems have been realized using atomic12, photonic5,13–17 as well as 
phononic lattices18. Motivated by the search for higher-order topo-
logical phases, the 2D quadrupole topological phases with robust 
0D corner states were recently observed using microwave19,20 and 
phononic metamaterials21–23. We report on the optical realization of 

the quadrupole topological phase, employing an integrated silicon 
photonics platform. Using spectroscopic measurements and direct 
imaging, we reveal the existence of the localized corner states and 
show that they are robust against certain fabrication disorders that 
are ubiquitous in nanophotonic systems. Furthermore, by introduc-
ing a quadrupole domain boundary in our system, we show that the 
observed corner states are not artefacts at the physical corners of 
the lattice. We note that the corner states can also emerge in systems 
without a quadrupole moment24,25. We study corner states associ-
ated with zero bulk quadrupole moment and observe that they are 
not immune to fabrication disorders.

Our quadrupole topological system is realized using a 2D lat-
tice of nanophotonic silicon ring resonators (Fig. 1; see Methods for 
details of device fabrication). The unit cell (plaquette) of this lattice 
consists of four site rings arranged into a square (in blue in Fig. 1). 
These site rings are evanescently coupled to their nearest neighbours 
using a set of auxiliary rings, which we call link rings (in green and 
red). The resonance frequencies of the link rings are detuned from 
those of the site rings by introducing an extra path length. We con-
trol the magnitude of the coupling strength between the lattice sites 
by adjusting the gap between the site-ring and the link-ring wave-
guides. Furthermore, the link rings allow us to manipulate the sign 
(phase) of the coupling between the site rings and introduce a syn-
thetic gauge flux threading each square plaquette15,26. Specifically, 
when the link ring coupling two site rings along the x axis is verti-
cally shifted, the photons hopping towards the right travel a slightly 
longer path compared to those hopping towards the left (Fig. 1). 
This path length difference results in an effective, direction-depen-
dent, hopping phase ϕ. We choose ϕ = π such that the shifted link 
ring (in red) introduces a negative coupling. In a unit cell, we 
arrange the link rings such that ϕ ≠ 0 for only one coupling term, 
while keeping the amplitude of coupling equal to γ. This results in a 
net gauge flux π threading the unit cell (Fig. 1b and Supplementary 
Section 1). To implement a topological system with quantized quad-
rupole moment6, we realize a 2D array of these unit cells, coupled 
to their nearest neighbours with coupling strength ±κ. Throughout 
the lattice, we change the sign of the inter-cell coupling κ, such that 
a uniform gauge flux π penetrates any plaquette (made of a 2 × 2 
array of site rings; Figs. 1b,c and 2a). When γ/κ < 1—that is, when 
the inter-cell coupling is stronger than the intra-cell coupling—the 
lattice hosts degenerate mid-gap states localized at each of the four 
corners (Fig. 2b,e and Supplementary Section 2). The corner states 
are characterized by topologically invariant integers and protected 
against certain disorders. This topological protection is due to the 
presence of spatial inversion symmetry, and the two mirror symme-
tries (about the x and y axes) of the lattice which do not commute 
because of the non-zero gauge flux6. In the other case, that is when 
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γ/κ > 1, the lattice is topologically trivial and there are no states in 
the bandgap (Fig. 2h).

In our experiment, we fabricate a 5 × 5 array of unit cells, as shown 
in Fig. 2a. We design the system to be in the topological regime 
with the coupling strengths γ and κ estimated to be 4.8(2) GHz and 
29.0(8) GHz, such that γ/κ ≈ 0.17. To probe the presence of corner 
states in the lattice, we fabricate a waveguide coupler at each of the 
corners (Fig. 2a). This allows us to couple the lattice to a laser and 
measure the power absorption at each corner as a function of the 
laser frequency detuning (δν) from the ring resonance frequency (ν).  
Furthermore, we use a microscope objective and an infrared camera 
to directly image the spatial intensity profile in the lattice, as we sweep 
the laser frequency (see Methods for further details). The measured 
absorption spectra at the four corner sites are shown in Fig. 2d.  
We observe very narrow absorption peaks, indicating the presence 
of four isolated mid-gap states in the lattice (Fig. 2b). Figure 2f shows 
the measured spatial intensity profile in the lattice with each cor-
ner excited independently, and integrated over the corresponding 
absorption peaks. In agreement with numerical simulation (Fig. 2e),  
we see that the corner modes are remarkably localized at the 
corner sites. However, contrary to the theoretical prediction  
(Fig. 2b,c), the absorption peaks are shifted with respect to each other, 
indicating that the corner states are not degenerate in frequency. 
This is due to the nanofabrication process, which introduces very 
strong disorder in the ring resonance frequencies (Supplementary 
Section 3). The upper bound on the standard deviation in the ring 
resonance frequencies was measured to be ~33 GHz, which is very 
significant compared to the bandgap κ ≈2 2 68 GHz. In addition, 
there is a small disorder in the coupling strengths γ and κ, which 
was estimated to be ~4% of the mean values, and also a disorder 
of 0.1 (radians) in the gauge flux ϕ. Remarkably, even in the pres-
ence of such strong disorder, which is comparable to the bandgap, 
the corner states are still present and well localized; this highlights 
their topological protection. Using numerical simulations, we find 
that the corner states exist for even stronger disorder in the cou-
pling strengths and also random variations in the sign of coupling 
(Supplementary Section 4). We note that the ‘zero energy’ in these 
measurements corresponds to the resonance frequency of a particu-
lar longitudinal mode of the ring resonators.

To show the absence of corner states in a trivial system, we 
analyse the scenario where the intra-cell hopping is much stronger 

than the inter-cell hopping, that is, γ/κ > 1 (Fig. 2g). For this system 
we swap the two coupling strengths—that is, now γ ≈ 29 GHz and 
κ ≈ 4.8 GHz—such that γ/κ ≈ 5.8. As such, the lattice is topologically 
trivial and the mid-gap modes are absent (Fig. 2h). Figure 2j shows 
the measured power absorption spectra at the four corners and 
Fig. 2l shows the spatial intensity distribution integrated over the 
absorption bands. In contrast to Fig. 2d, the spectra in Fig. 2j show 
two broad absorption bands centred around γ± 2 , corresponding 
to the bulk states of the lattice6. Furthermore, the observed spatial 
intensity distributions (Fig. 2l) confirm that these absorption bands 
do not correspond to localized modes and are smeared into the bulk 
of the lattice.

Next, we demonstrate that the observed corner states are not 
artefacts arising due to some defects at the physical corners of the 
lattice. We break the periodicity of the inter-cell coupling strength 
such that it creates a domain boundary, and the unperturbed 
quadrupole domain now consists of an array of 5 × 4 unit cells  
(Fig. 3a). In this configuration, the corners S2 and S3 of the quad-
rupole domain coincide with the physical corners of the lattice, 
whereas corner sites S1 and S4 of the quadrupole domain are 
shifted from the physical corners, labelled S′1 and S′4 in Fig. 3a. 
As before, the waveguide couplers for absorption measurements 
are located at the physical corners of the lattice. Figure 3b,c shows 
the measured absorption spectra. The spectra at corners S2 and S3 
show a single absorption peak, and the associated spatial inten-
sity distribution (Fig. 3d) shows localized corner states at S2 and 
S3, consistent with our previous observation. However, the spectra 
measured at corners S′1 and S′4 show three absorption peaks. The 
spatial intensity distribution corresponding to the middle absorp-
tion peak around zero frequency detuning, in fact, shows excita-
tion of localized modes at the corners S1 and S4 of the quadr′upole 
domain (Fig. 3d). In contrast, the intensity distribution in the other 
two sidebands, away from zero detuning, occupies the lattice sites 
outside the quadrupole domain (Fig. 3e). The power absorption 
in the middle band is lower relative to the sidebands because the 
corner states of the quadrupole domain are very weakly coupled to 
the physical corner.

To further explore the significance of topological protection  
of the observed corner states in the quadrupole system, we com-
pare them with those emerging in a system with zero quadrupole 
moment—a 2D extension of the Su–Schrieffer–Heeger model 
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Fig. 1 | Schematic of the photonic quadrupole topological system. a, Schematic of the topological system with quantized quadrupole moment in the bulk, 
which induces quantized dipole moments at the edges and quantized charges at the corners. b, The unit cell consists of four lattice sites with nearest-
neighbour couplings of magnitude γ. One of the couplings (shown as red) is negative, which introduces a gauge flux ϕ = π per unit cell. The coupling 
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(Supplementary Section 6). We fabricated a very similar lattice with 
zero gauge flux, that is, where all the couplings are positive (Fig. 4a).  
The inter-cell and intra-cell couplings in this lattice still corre-
spond to the topological case (Fig. 2a), that is, γ/κ < 1. Because of 
the absence of the gauge flux, the two mirror symmetries (about 
the x and y axes) commute and the net quadrupole moment is 
zero (Supplementary Sections 5–7). Numerical simulation, in the 
absence of disorder, shows that this system hosts zero-energy states 
localized at the corners, similar to those of the quadrupole system 
(Fig. 4b,c,e). However, unlike the quadrupole system, the measured 
absorption spectra at the corners show a multimode structure, 
indicating that the corner states are not completely isolated from 
the bulk states (Fig. 4d,f; for additional data see Supplementary 
Information). The measured spatial intensity distribution confirms 
that these corner modes indeed couple to the bulk modes of the 
lattice. This observation suggests that the corner states in the zero 
gauge flux lattice are susceptible to the fabrication disorder and are 
not topologically protected. This lack of robustness against disorder 
is also evident in the energy spectrum of the device, where there 

is no bandgap at zero energy (Fig. 4b). Consequently, an on-site 
potential disorder, which is the dominant source of disorder in our 
experimental set-up, can easily couple these corner states to the bulk 
states located near zero energy (Supplementary Sections 5 and 6).

Here, we have demonstrated an integrated photonic quadrupole 
topological system supporting robust corner states immune to dis-
order in coupling strengths and on-site potential. Our versatile inte-
grated photonics platform opens the route to explore even richer 
physics in the context of higher-order topological phases, for exam-
ple, those associated with different choices of gauge flux in the lattice 
or with asymmetric coupling strengths. Moreover, by integrating 
active features, for example, using thermal heaters or electro-optic 
modulators27, our scheme could allow selective flux insertion or 
manipulation of the corner/edge modes of the system and hence the 
realization of adiabatic charge pumping in higher-order topological 
systems7. Furthermore, the integration of gain/loss in this photon-
ics realization could enable the exploration of non-Hermitian phys-
ics in the context of higher-order topological phases28,29. From a  
practical perspective, light confinement in the corner states of a 
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topological system inherently realizes robust optical resonators. 
These could find applications in classical/semiclassical photonic 
devices such as topological lasers5, and also in quantum photonics, 
for example, to implement robust quantum light sources30, topolog-
ical quantum amplifiers31 and enhanced light–matter interactions 
between topological photonic cavities and quantum emitters32.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
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Methods
Our topological devices were realized using the silicon-on-insulator platform. 
The ring resonator waveguides were made of silicon and buried in a layer of 
silicon oxide. The waveguide cross-section was designed to be 510 nm in width 
and 220 nm in height so that it supported only a single transverse-electric mode 
at telecom wavelengths (around 1,550 nm). The ring resonators were ~70 μm 
in length with a free-spectral range of ~1,040 GHz. Therefore, the absorption 
spectrum of our devices repeats after every free-spectral range (Supplementary 
Section 9). The coupling gap between the ring waveguides was designed to be 
150 nm and 250 nm for the stronger and the weaker couplings, respectively. The 
devices were fabricated in a standard CMOS fabrication facility at IMEC Belgium.

To measure the power absorption spectra of the devices, we used a fibre-
coupled, frequency-tunable, continuous-wave laser. The laser output was coupled 
to the devices using grating couplers, with a coupling efficiency of ~6 dB per 
coupler. The unabsorbed light was routed to another grating coupler, collected 
in a fibre and measured using a photodetector. The measured absorption spectra 
include the actual power absorbed by the device, the losses introduced by the 

two grating couplers and also the fibre connectors. These additional losses can be 
easily measured at frequencies far detuned from the ring resonances where power 
absorption by the resonators is negligible. The absorption spectra reported in  
the main text have been corrected for these losses. Moreover, in all our 
measurements, only a single corner was excited at a given time. The spatial 
intensity distributions in Figs. 2 and 3 of the main text were summed over the 
excitations at different corners.

To image the spatial intensity profiles in the lattice, we used a microscope 
objective (×10) to collect the light scattered from the surface roughness of the ring 
resonator waveguides. The light was subsequently imaged on a high-sensitivity 
InGaAs camera (320 × 256 pixels) using a variable-zoom lens system. The raw 
images, corresponding to Figs. 2d and 3b of the main text, are available in 
Supplementary Fig. 8.

Data availability
The data that support the findings of this study are available from the 
corresponding author on reasonable request.
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1 Verification of π gauge flux through a unit-cell

To verify that the synthetic gauge flux threading the plaquette is indeed π, we fabricate a single unit-cell of the

quadrupole lattice. When the flux ϕ = π, this unit cell exhibits two pairs of degenerate eigenvalues at ±
√
2γ, where

γ is the coupling strength between the site rings.1, 2 These eigenvalues can be probed using absorption spectroscopy

(Fig.S1a). The measured results for absorption at corners S1 and S3 are shown in Fig.S1b. The presence of only

two absorption peaks in the spectra confirms the double degeneracy of plaquette eigenmodes which arises due to

the gauge flux ϕ = π. The observed asymmetry in the two absorption peaks is because of the disorder-induced

frequency mismatch between the ring resonance frequencies. Furthermore, using direct imaging of the spatial intensity

profiles (Fig.S1c-f), we observe that an excitation at corner S1 results in negligible intensity (probability density) at

the diagonally opposite corner S3 and vice-versa. Such intensity distribution is in the agreement with the expected

eigenmode structure for a single plaquette and provides another indirect proof that the gauge flux is equal to π. For

this single unit-cell device, the coupling strength between the site rings was estimated to be ≈ 26 GHz.

2 Edge Excitation for Quadrupole Device

In addition to the corner modes, the quadrupole topological system also exhibits localized edge states near δν = ±κ.1, 2

The edge states can be probed using waveguide couplers at the edges of the lattice (Fig.S2). Figure S2 shows simulated
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Figure S1: A unit-cell of the quadrupole lattice. a,b, Simulated and measured absorption spectrum of the unit-
cell, at the two diagonally opposite corners S1 and S3. Each spectrum shows only two absorption peaks, consistent
with doubly-degenerate energy eigenvalues of a unit-cell of the quadrupole system.1–3 c-f, The corresponding spatial
intensity profiles show absence of intensity at corner S3 when S1 is excited and vice-versa. The intensity profiles for
each excitation is integrated over both absorption peaks.
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Figure S2: Edge states in the quadrupole topological lattice. a, Schematic of the quadrupole device
(
γ
κ < 1, ϕ = 0

)
,

showing coupler positions for the edge excitations. b, Simulated eigenvalue spectra. The edge and the bulk bands are
highlighted. c,d, Simulated and measured power absorption spectra at the four edges of the device, respectively. The
simulated spectra, for a device with no disorder, are four-fold degenerate. e-f, Corresponding spatial intensity profiles.
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Figure S3: Overlap of edge and bulk wavefunctions. a, Simulated bulk and b, edge wavefunctions in a pure
topological device. These wavefunctions do not overlap.

and measured power absorption spectra at the edges and the corresponding spatial intensity profiles in the lattice. In

contrast to simulation, we observe two broad absorption peaks near the expected bulk band positions
(
δν = ±

√
2κ

)
,

indicating a coupling between the edge and the bulk states. Also, the observed spatial intensity profile does not match

the simulation results (Fig.S2e,f). This is because there is no bandgap between the edge and the bulk bands (Fig.S2b)

and therefore, the edge states in this system are not robust against disorder. We note that in a pure topological device

with no disorder, the wavefunction of the bulk states does not overlap with those of the edge/corner states (Fig.S3),

and therefore, one cannot excite bulk states using excitation at the edge.

3 Characterization of the disorder

The nano-fabrication process introduces various disorders into our devices. The most significant disorder affecting our

device is the on-site potential, that is, the mismatch between the site ring resonance frequencies. In addition, there is

a disorder in the coupling strengths and also in the gauge flux ϕ, which is essentially a manifestation of the mismatch

between link ring resonance frequencies. We used add-drop filters (ADFs) to characterize these disorders and also

the coupling strengths γ and κ. The dimensions (length, bend radius) of the ring resonators used in ADFs matched

exactly the dimensions of those used in our 2D devices. But, to allow for independent measurements of the coupling

strengths, the ADFs had different coupling gaps between the rings and the input-output waveguides. The through and

the drop port spectra were measured for five different ADFs (with different coupling strengths) fabricated on each

chip. The standard deviation of the resonance frequencies was calculated for each chip and then averaged over ten

chips (total fifty ADFs), to give σν0 ≈ 32.8 GHz. The measured contrast and the bandwidth of the spectra yielded
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Figure S4: Robustness of corner states. Simulated energy-spectra of a 5 × 5 array of unit cells, as a function of
various disorder strengths. a, Disorder in coupling strengths (κ, γ), b, flipping the sign of of a fraction η of the total
(90) couplings along the x-axis (positive to negative or vice-versa), c, disorder in ring resonance frequencies (σν0). For
each case, we simulate 20 random realizations of disorder. d, Simulated absorption spectra for 20 random realizations
of disorder, in a 10×10 array of unit cells. We have included the estimated disorder in the coupling strengths, phase
and also the ring resonance frequencies.

γ = 4.8 GHz and κ = 29.0 GHz as the mean values. The standard deviation in the coupling strengths was ≈ 4%. The

standard deviation in the gauge flux ϕ was calculated to be ≈ 0.1 using the estimated value of σν0 . Also, the loss in

the resonators was estimated to be ≈ 1.8 GHz, with a standard deviation of ≈ 20%.

4 Robustness of corner states against disorder

To analyze the robustness of the corner states, we numerically calculate the eigen-energies of a 5 × 5 array of unit

cells with varying strengths of disorder in individual parameters. The results are shown in Fig.S4a-c, for 20 random

realizations of disorder. We see that the corner state energies are in fact very robust against disorder in coupling

strengths (κ and γ). Only when the disorder strength is very strong, comparable to κ, the bandgap closes and the

corner states start coupling to edge/bulk states. Similarly, the corner states are also robust against interchange of some

of the negative couplings to positive ones (along the x-axis) and vice-versa (Fig.S4b), that is, the bandgap does not

close. However, as we increase the fraction (η) of couplings which have been randomly interchanged (of the total 90

couplings between site rings, along the x-axis), we observe that the corner states are no longer degenerate. Finally, we

studied their robustness against disorder in the ring resonance frequencies. We see that this on-site potential disorder

breaks their degeneracy as well. However, as long as the disorder strength is weak compared to the coupling strength κ,

we still observe corner states. We do not expect the parameter fluctuations to increase with the device size. Therefore,

using our silicon photonics platform, corner states could easily be realized in much larger arrays (Fig.S4d).
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Figure S5: 2D lattice with zero gauge flux. a, Measured power absorption spectra at the four corners of the device
with all positive couplings, that is, ϕ = 0. b-e, Corresponding spatial intensity profiles showing coupling of corner
and bulk modes. The intensity profiles are integrated over the absorption peaks.

5 2D Lattice with zero gauge flux

To highlight the robustness of the topological corner states in a quadrupole system, we compare them against those

emerging in a system with no gauge flux (ϕ = 0) which results in zero quadrupole moment (a 2D extension of the

Su-Schrieffer-Heeger model, see Section 6). Numerical simulation for such a system (ϕ = 0) shows sharply localized

corner states in the absence of disorder (Fig.4c,e of the main text). However, the measured absorption spectra (Fig.S5)

show multi-mode behavior and are consistent with the measured intensity profiles which reveal significant coupling

of corner modes to the bulk modes. This clearly demonstrates that the corner states in a system with zero quadrupole

moment are not robust against disorder, unlike those associated with quadrupole topological phases.

6 Topological transition realized by varying the gauge flux in the lattice

The proposed integrated silicon photonic platform allows one to realize even richer variety of topological systems

by tuning the phase of hopping amplitudes. As an interesting illustration, we examine here the transition between the

two-dimensional tight-binding system with all positive couplings with ungapped spectrum and the standard quadrupole

insulator characterized by the gapped bands as the magnitude of flux through each plaquette of the lattice is varied

from 0 to π.

The schematics of the system under study is shown in Fig. S6a. We assume that the couplings γ and κ are purely
5
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Figure S6: Variation of gauge flux. a, The schematic of tight-binding system under study realized as an array of
evanescently coupled ring resonators. Coupling is ensured via the auxiliary rings. b, Numerically computed evolution
of the system spectrum as the gauge flux is varied from 0 to π. Opening of a topological gap is observed and the corner
states develop. The size of the system is 5× 5 unit cells, γ/κ = 0.17. c, Corner charge, edge dipole polarizations and
bulk quadrupole polarization depending on the flux π. The calculation has been performed for N = 30 unit cells, and
γ/κ = 0.17. In order to fix the sign of the quadrupole moment the diagonal energies at the diagonal sites of each unit
cells were set to ±δ = ±10−4κ Ref.2

real, while some of the couplings in the lattice are complex and have an extra hopping phase: γ eiϕ and κ eiϕ. Note

that this geometry ensures ϕ flux through each square plaquette of the lattice. The momentum space Hamiltonian of

the periodic structure reads

H(kx, ky) =



0 γ + κeiky 0 γ + κeikx

γ + κe−iky 0 eiϕ(γ + κeikx) 0

0 e−iϕ(γ + κe−ikx) 0 γ + κe−iky

γ + κe−ikx 0 γ + κeiky 0


, (S1)

where kx and ky are the Cartesian projections of the Bloch wave vector. Similarly to the article main text, we choose

the ratio of the hopping amplitudes γ/κ = 0.17.

Zero flux case corresponds to the tight-binding system with all positive couplings which can be viewed as a 2D

analogue of the Su-Schrieffer-Heeger (SSH) model.4–6 The spectrum of this system has no bandgap at zero energy and

for that reason does not feature any robust corner states. However, when some of the couplings are made complex such

that nonzero gauge flux appears, the bandgap opens and the degenerate corner states emerge, as shown in Fig. S6b.

The width of the bandgap grows as the gauge flux is further increased up to π, thus enhancing the robustness of the

corner states. The system also hosts one-dimensional edge states at δν ≈ ±κ, that are localized at the sides of the

square and weakly depend on the flux.

6



Even more instructive picture is provided by the evolution of dipole and quadrupole polarizations in the system.

The dependence of the polarizations on the flux is shown in Fig. S6c. The corner charge Qcorner has been calculated

for a large 2D system with open boundary conditions at all 4 sides. It was found to be equal to 1/2 independent of

the flux. The dipole polarizations px = py were evaluated following the procedure in Ref.2 This calculation involves

opening the boundaries along x, using periodic boundary along y direction, and evaluating the dipole polarizations

from the averaged positions of the Wannier centers. Next, the bulk quadrupole moment has been evaluated from the

equation .

Qcorner = px + py − qxy . (S2)

In agreement with the general theory, Fig. S6c demonstrates, that for the quadrupolar insulator, where ϕ = π, the

corner charge is contributed by both quantized dipole polarizations and bulk quadrupole moment. When the flux is

unequal to π or 0, the value of qxy in general is not quantized.2 When the flux decreases the bulk quadrupole moment

vanishes and becomes zero in the 2D SSH case, the edge polarizations decrease as well, but the corner charge stays the

same. Our calculation indicates that the scale on which the quadrupole moment changes from 0 to 1/2 is determined

by the small on-site potential ±δ = ±10−4κ. The energies δ, −δ, δ, −δ in the clockwise order are added to the sites

of the unit cell in order to fix the sign of the corner charges and the quadrupole moment .2

The case of zero flux is degenerate and requires special care, since the 2D SSH system is not an insulator, i.e. it

lacks a band gap. Our findings of px = py = 1/4, Qcorner = 1/2 and qxy = 0 can be also understood from the

results for the anisotropic 2D SSH model with κx ̸= κy that has a band gap and well-defined polarizations quantized

by chiral and inversion symmetries. Namely, in the anisotropic 2D SSH case with κx > κy one has px = 1/2 and

py = 0, while for κy > κx the polarizations are py = 1/2 and px = 0.2 The isotropic model with flux tending to zero

is an intermediate case where the edge polarizations have to be equal. Thus, averaging the results for κx > κy and

κx < κy we obtain px = py = 1/4 = Qcorner/2, qxy = 0, in agreement with the rigorous calculation in Fig. S6c.

The essence of the topological transition as a function of the gauge flux ϕ can be understood with the following

symmetry arguments. The quadrupole topological phase is protected by the reflection symmetries along the x and y

axes, denoted by Mx and My respectively. In order to have protected topological phase and quantized quadrupole

moments, one needs to satisfy the following necessary conditions (see Ref.2 for derivation):

1. [Mx,H] = [My,H] = 0, i.e., the system Hamiltonian H commutes with the two reflection symmetries.
7
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Figure S7: Quadrupole lattice with asymmetric couplings. a, Simulated absorption spectrum for corner states in a
topological system with different hopping strengths along the two axes (γ/κx = 1/6, γ/κy = 1/4), and b, for a trivial
system with (γ/κx = 1/6, γ/κy = 2).

2. [Mx,My] ̸= 0, i.e., the two reflection symmetries do not commute. This condition ensures that the edge states

are gapped, which is equivalent to gapped “Wannier bands” (see Ref.2 for the definition and discussion).

It is straightforward to see that the first condition is only satisfied at ϕ = 0, π. Therefore, for any ϕ in between, the

quadrupole moment qxy is not quantized and hence not topologically protected, as indicated in Fig. S6c. On the other

hand, at the ϕ = 0 point, the second condition no longer holds, while it is satisfied at the ϕ = π point due to the

introduction of gauge flux. Therefore, the ϕ = 0 point generically has gapless edge states, or equivalently gapless

Wannier bands (in the anisotropic case κx ̸= κy), leading to unprotected corner states. The isotropic case κx = κy is

special since the bulk band is gapless as stated above, so the Wannier band is not well defined. In this case, the fact

that the corner states are unprotected can be attributed to the absence of the bulk band gap.

7 Corner States with asymmetric coupling strengths

In this section, we show numerical simulation for the absorption spectra of a quadrupole device with different hopping

strengths (γx, κx, γy, κy) along the x and the y axis.2 This system preserves the two mirror symmetries Mx and My ,

but not the C4 rotation symmetry. Nevertheless, it does exhibit localized corner modes (Fig.S7a). For this simulation,

we used γx/κx = 1/6, γy/κy = 1/4 and γx = γy = 1. We note that for asymmetrical couplings, we see two edge

bands on each side of the zero energy peak, at ±κx and ±κy respectively. Moreover, when one of the couplings is in

the trivial regime (γx/κx = 1/6, γy/κy = 2), as expected, we do not observe corner states (Fig.S7b).

8



Topological Device Topological Device with Boundary

Figure S8: Raw IR images. Raw camera images showing corner states for the topological devices reported in Fig.2d
and Fig.3d of the main text.

Figure S9: Microscope image of the lattice and the grating couplers. Microscope image of the lattice. The coupling
waveguides at the corners and the edges can also be seen. The grating couplers are located far from the lattice. Insets:
Raw IR images showing intensity in the corner ring as we tune the input light frequency across the resonance.
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Figure S10: Free spectral range. Reflection spectra of the device in three consecutive FSRs.

8 Raw IR images

The raw images IR images collected from the camera, corresponding to Fig.2d and Fig.3b of the main text, are shown

in Fig.S8. To suppress scattering from the input, the fiber coupler gratings were positioned very far (≈1 millimeter)

from the lattice (Fig.S9) and the camera positions were optimized while imaging different corners. Therefore, when

the input light frequency is detuned from the absorption peak of the corner states (even about 10 GHz, the linewidth

of the absorption peaks), we do not observe any light intensity in the corner rings (Fig.S9); this confirms that the

observed light intensity in the corner rings at resonance is not because of some scattering from the grating couplers.

9 Reflection Spectra

Our devices are designed to operate in the telecom domain, around 1550 nm. The ring resonators are ≈ 70µm in

length with a free-spectral range (FSR) of ≈ 1040 GHz (≈ 8.3 nm). Therefore, when we sweep the laser frequency,

we see that the reflection spectra of the devices repeats itself after every 1040 GHz, the FSR of the site rings. Fig.S10

shows one example of such a reflection measurement (1− Absorption, in dB scale), with a frequency range covering

3 FSRs.
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1 Verification of π gauge flux through a unit-cell

To verify that the synthetic gauge flux threading the plaquette is indeed π, we fabricate a single unit-cell of the

quadrupole lattice. When the flux ϕ = π, this unit cell exhibits two pairs of degenerate eigenvalues at ±
√
2γ, where

γ is the coupling strength between the site rings.1, 2 These eigenvalues can be probed using absorption spectroscopy

(Fig.S1a). The measured results for absorption at corners S1 and S3 are shown in Fig.S1b. The presence of only

two absorption peaks in the spectra confirms the double degeneracy of plaquette eigenmodes which arises due to

the gauge flux ϕ = π. The observed asymmetry in the two absorption peaks is because of the disorder-induced

frequency mismatch between the ring resonance frequencies. Furthermore, using direct imaging of the spatial intensity

profiles (Fig.S1c-f), we observe that an excitation at corner S1 results in negligible intensity (probability density) at

the diagonally opposite corner S3 and vice-versa. Such intensity distribution is in the agreement with the expected

eigenmode structure for a single plaquette and provides another indirect proof that the gauge flux is equal to π. For

this single unit-cell device, the coupling strength between the site rings was estimated to be ≈ 26 GHz.

2 Edge Excitation for Quadrupole Device

In addition to the corner modes, the quadrupole topological system also exhibits localized edge states near δν = ±κ.1, 2

The edge states can be probed using waveguide couplers at the edges of the lattice (Fig.S2). Figure S2 shows simulated
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Figure S1: A unit-cell of the quadrupole lattice. a,b, Simulated and measured absorption spectrum of the unit-
cell, at the two diagonally opposite corners S1 and S3. Each spectrum shows only two absorption peaks, consistent
with doubly-degenerate energy eigenvalues of a unit-cell of the quadrupole system.1–3 c-f, The corresponding spatial
intensity profiles show absence of intensity at corner S3 when S1 is excited and vice-versa. The intensity profiles for
each excitation is integrated over both absorption peaks.
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Figure S2: Edge states in the quadrupole topological lattice. a, Schematic of the quadrupole device
(
γ
κ < 1, ϕ = 0

)
,

showing coupler positions for the edge excitations. b, Simulated eigenvalue spectra. The edge and the bulk bands are
highlighted. c,d, Simulated and measured power absorption spectra at the four edges of the device, respectively. The
simulated spectra, for a device with no disorder, are four-fold degenerate. e-f, Corresponding spatial intensity profiles.
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Figure S3: Overlap of edge and bulk wavefunctions. a, Simulated bulk and b, edge wavefunctions in a pure
topological device. These wavefunctions do not overlap.

and measured power absorption spectra at the edges and the corresponding spatial intensity profiles in the lattice. In

contrast to simulation, we observe two broad absorption peaks near the expected bulk band positions
(
δν = ±

√
2κ

)
,

indicating a coupling between the edge and the bulk states. Also, the observed spatial intensity profile does not match

the simulation results (Fig.S2e,f). This is because there is no bandgap between the edge and the bulk bands (Fig.S2b)

and therefore, the edge states in this system are not robust against disorder. We note that in a pure topological device

with no disorder, the wavefunction of the bulk states does not overlap with those of the edge/corner states (Fig.S3),

and therefore, one cannot excite bulk states using excitation at the edge.

3 Characterization of the disorder

The nano-fabrication process introduces various disorders into our devices. The most significant disorder affecting our

device is the on-site potential, that is, the mismatch between the site ring resonance frequencies. In addition, there is

a disorder in the coupling strengths and also in the gauge flux ϕ, which is essentially a manifestation of the mismatch

between link ring resonance frequencies. We used add-drop filters (ADFs) to characterize these disorders and also

the coupling strengths γ and κ. The dimensions (length, bend radius) of the ring resonators used in ADFs matched

exactly the dimensions of those used in our 2D devices. But, to allow for independent measurements of the coupling

strengths, the ADFs had different coupling gaps between the rings and the input-output waveguides. The through and

the drop port spectra were measured for five different ADFs (with different coupling strengths) fabricated on each

chip. The standard deviation of the resonance frequencies was calculated for each chip and then averaged over ten

chips (total fifty ADFs), to give σν0 ≈ 32.8 GHz. The measured contrast and the bandwidth of the spectra yielded
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Figure S4: Robustness of corner states. Simulated energy-spectra of a 5 × 5 array of unit cells, as a function of
various disorder strengths. a, Disorder in coupling strengths (κ, γ), b, flipping the sign of of a fraction η of the total
(90) couplings along the x-axis (positive to negative or vice-versa), c, disorder in ring resonance frequencies (σν0). For
each case, we simulate 20 random realizations of disorder. d, Simulated absorption spectra for 20 random realizations
of disorder, in a 10×10 array of unit cells. We have included the estimated disorder in the coupling strengths, phase
and also the ring resonance frequencies.

γ = 4.8 GHz and κ = 29.0 GHz as the mean values. The standard deviation in the coupling strengths was ≈ 4%. The

standard deviation in the gauge flux ϕ was calculated to be ≈ 0.1 using the estimated value of σν0 . Also, the loss in

the resonators was estimated to be ≈ 1.8 GHz, with a standard deviation of ≈ 20%.

4 Robustness of corner states against disorder

To analyze the robustness of the corner states, we numerically calculate the eigen-energies of a 5 × 5 array of unit

cells with varying strengths of disorder in individual parameters. The results are shown in Fig.S4a-c, for 20 random

realizations of disorder. We see that the corner state energies are in fact very robust against disorder in coupling

strengths (κ and γ). Only when the disorder strength is very strong, comparable to κ, the bandgap closes and the

corner states start coupling to edge/bulk states. Similarly, the corner states are also robust against interchange of some

of the negative couplings to positive ones (along the x-axis) and vice-versa (Fig.S4b), that is, the bandgap does not

close. However, as we increase the fraction (η) of couplings which have been randomly interchanged (of the total 90

couplings between site rings, along the x-axis), we observe that the corner states are no longer degenerate. Finally, we

studied their robustness against disorder in the ring resonance frequencies. We see that this on-site potential disorder

breaks their degeneracy as well. However, as long as the disorder strength is weak compared to the coupling strength κ,

we still observe corner states. We do not expect the parameter fluctuations to increase with the device size. Therefore,

using our silicon photonics platform, corner states could easily be realized in much larger arrays (Fig.S4d).
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Figure S5: 2D lattice with zero gauge flux. a, Measured power absorption spectra at the four corners of the device
with all positive couplings, that is, ϕ = 0. b-e, Corresponding spatial intensity profiles showing coupling of corner
and bulk modes. The intensity profiles are integrated over the absorption peaks.

5 2D Lattice with zero gauge flux

To highlight the robustness of the topological corner states in a quadrupole system, we compare them against those

emerging in a system with no gauge flux (ϕ = 0) which results in zero quadrupole moment (a 2D extension of the

Su-Schrieffer-Heeger model, see Section 6). Numerical simulation for such a system (ϕ = 0) shows sharply localized

corner states in the absence of disorder (Fig.4c,e of the main text). However, the measured absorption spectra (Fig.S5)

show multi-mode behavior and are consistent with the measured intensity profiles which reveal significant coupling

of corner modes to the bulk modes. This clearly demonstrates that the corner states in a system with zero quadrupole

moment are not robust against disorder, unlike those associated with quadrupole topological phases.

6 Topological transition realized by varying the gauge flux in the lattice

The proposed integrated silicon photonic platform allows one to realize even richer variety of topological systems

by tuning the phase of hopping amplitudes. As an interesting illustration, we examine here the transition between the

two-dimensional tight-binding system with all positive couplings with ungapped spectrum and the standard quadrupole

insulator characterized by the gapped bands as the magnitude of flux through each plaquette of the lattice is varied

from 0 to π.

The schematics of the system under study is shown in Fig. S6a. We assume that the couplings γ and κ are purely
5
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Figure S6: Variation of gauge flux. a, The schematic of tight-binding system under study realized as an array of
evanescently coupled ring resonators. Coupling is ensured via the auxiliary rings. b, Numerically computed evolution
of the system spectrum as the gauge flux is varied from 0 to π. Opening of a topological gap is observed and the corner
states develop. The size of the system is 5× 5 unit cells, γ/κ = 0.17. c, Corner charge, edge dipole polarizations and
bulk quadrupole polarization depending on the flux π. The calculation has been performed for N = 30 unit cells, and
γ/κ = 0.17. In order to fix the sign of the quadrupole moment the diagonal energies at the diagonal sites of each unit
cells were set to ±δ = ±10−4κ Ref.2

real, while some of the couplings in the lattice are complex and have an extra hopping phase: γ eiϕ and κ eiϕ. Note

that this geometry ensures ϕ flux through each square plaquette of the lattice. The momentum space Hamiltonian of

the periodic structure reads

H(kx, ky) =



0 γ + κeiky 0 γ + κeikx

γ + κe−iky 0 eiϕ(γ + κeikx) 0

0 e−iϕ(γ + κe−ikx) 0 γ + κe−iky

γ + κe−ikx 0 γ + κeiky 0


, (S1)

where kx and ky are the Cartesian projections of the Bloch wave vector. Similarly to the article main text, we choose

the ratio of the hopping amplitudes γ/κ = 0.17.

Zero flux case corresponds to the tight-binding system with all positive couplings which can be viewed as a 2D

analogue of the Su-Schrieffer-Heeger (SSH) model.4–6 The spectrum of this system has no bandgap at zero energy and

for that reason does not feature any robust corner states. However, when some of the couplings are made complex such

that nonzero gauge flux appears, the bandgap opens and the degenerate corner states emerge, as shown in Fig. S6b.

The width of the bandgap grows as the gauge flux is further increased up to π, thus enhancing the robustness of the

corner states. The system also hosts one-dimensional edge states at δν ≈ ±κ, that are localized at the sides of the

square and weakly depend on the flux.
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Even more instructive picture is provided by the evolution of dipole and quadrupole polarizations in the system.

The dependence of the polarizations on the flux is shown in Fig. S6c. The corner charge Qcorner has been calculated

for a large 2D system with open boundary conditions at all 4 sides. It was found to be equal to 1/2 independent of

the flux. The dipole polarizations px = py were evaluated following the procedure in Ref.2 This calculation involves

opening the boundaries along x, using periodic boundary along y direction, and evaluating the dipole polarizations

from the averaged positions of the Wannier centers. Next, the bulk quadrupole moment has been evaluated from the

equation .

Qcorner = px + py − qxy . (S2)

In agreement with the general theory, Fig. S6c demonstrates, that for the quadrupolar insulator, where ϕ = π, the

corner charge is contributed by both quantized dipole polarizations and bulk quadrupole moment. When the flux is

unequal to π or 0, the value of qxy in general is not quantized.2 When the flux decreases the bulk quadrupole moment

vanishes and becomes zero in the 2D SSH case, the edge polarizations decrease as well, but the corner charge stays the

same. Our calculation indicates that the scale on which the quadrupole moment changes from 0 to 1/2 is determined

by the small on-site potential ±δ = ±10−4κ. The energies δ, −δ, δ, −δ in the clockwise order are added to the sites

of the unit cell in order to fix the sign of the corner charges and the quadrupole moment .2

The case of zero flux is degenerate and requires special care, since the 2D SSH system is not an insulator, i.e. it

lacks a band gap. Our findings of px = py = 1/4, Qcorner = 1/2 and qxy = 0 can be also understood from the

results for the anisotropic 2D SSH model with κx ̸= κy that has a band gap and well-defined polarizations quantized

by chiral and inversion symmetries. Namely, in the anisotropic 2D SSH case with κx > κy one has px = 1/2 and

py = 0, while for κy > κx the polarizations are py = 1/2 and px = 0.2 The isotropic model with flux tending to zero

is an intermediate case where the edge polarizations have to be equal. Thus, averaging the results for κx > κy and

κx < κy we obtain px = py = 1/4 = Qcorner/2, qxy = 0, in agreement with the rigorous calculation in Fig. S6c.

The essence of the topological transition as a function of the gauge flux ϕ can be understood with the following

symmetry arguments. The quadrupole topological phase is protected by the reflection symmetries along the x and y

axes, denoted by Mx and My respectively. In order to have protected topological phase and quantized quadrupole

moments, one needs to satisfy the following necessary conditions (see Ref.2 for derivation):

1. [Mx,H] = [My,H] = 0, i.e., the system Hamiltonian H commutes with the two reflection symmetries.
7
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Figure S7: Quadrupole lattice with asymmetric couplings. a, Simulated absorption spectrum for corner states in a
topological system with different hopping strengths along the two axes (γ/κx = 1/6, γ/κy = 1/4), and b, for a trivial
system with (γ/κx = 1/6, γ/κy = 2).

2. [Mx,My] ̸= 0, i.e., the two reflection symmetries do not commute. This condition ensures that the edge states

are gapped, which is equivalent to gapped “Wannier bands” (see Ref.2 for the definition and discussion).

It is straightforward to see that the first condition is only satisfied at ϕ = 0, π. Therefore, for any ϕ in between, the

quadrupole moment qxy is not quantized and hence not topologically protected, as indicated in Fig. S6c. On the other

hand, at the ϕ = 0 point, the second condition no longer holds, while it is satisfied at the ϕ = π point due to the

introduction of gauge flux. Therefore, the ϕ = 0 point generically has gapless edge states, or equivalently gapless

Wannier bands (in the anisotropic case κx ̸= κy), leading to unprotected corner states. The isotropic case κx = κy is

special since the bulk band is gapless as stated above, so the Wannier band is not well defined. In this case, the fact

that the corner states are unprotected can be attributed to the absence of the bulk band gap.

7 Corner States with asymmetric coupling strengths

In this section, we show numerical simulation for the absorption spectra of a quadrupole device with different hopping

strengths (γx, κx, γy, κy) along the x and the y axis.2 This system preserves the two mirror symmetries Mx and My ,

but not the C4 rotation symmetry. Nevertheless, it does exhibit localized corner modes (Fig.S7a). For this simulation,

we used γx/κx = 1/6, γy/κy = 1/4 and γx = γy = 1. We note that for asymmetrical couplings, we see two edge

bands on each side of the zero energy peak, at ±κx and ±κy respectively. Moreover, when one of the couplings is in

the trivial regime (γx/κx = 1/6, γy/κy = 2), as expected, we do not observe corner states (Fig.S7b).
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Topological Device Topological Device with Boundary

Figure S8: Raw IR images. Raw camera images showing corner states for the topological devices reported in Fig.2d
and Fig.3d of the main text.

Figure S9: Microscope image of the lattice and the grating couplers. Microscope image of the lattice. The coupling
waveguides at the corners and the edges can also be seen. The grating couplers are located far from the lattice. Insets:
Raw IR images showing intensity in the corner ring as we tune the input light frequency across the resonance.
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Figure S10: Free spectral range. Reflection spectra of the device in three consecutive FSRs.

8 Raw IR images

The raw images IR images collected from the camera, corresponding to Fig.2d and Fig.3b of the main text, are shown

in Fig.S8. To suppress scattering from the input, the fiber coupler gratings were positioned very far (≈1 millimeter)

from the lattice (Fig.S9) and the camera positions were optimized while imaging different corners. Therefore, when

the input light frequency is detuned from the absorption peak of the corner states (even about 10 GHz, the linewidth

of the absorption peaks), we do not observe any light intensity in the corner rings (Fig.S9); this confirms that the

observed light intensity in the corner rings at resonance is not because of some scattering from the grating couplers.

9 Reflection Spectra

Our devices are designed to operate in the telecom domain, around 1550 nm. The ring resonators are ≈ 70µm in

length with a free-spectral range (FSR) of ≈ 1040 GHz (≈ 8.3 nm). Therefore, when we sweep the laser frequency,

we see that the reflection spectra of the devices repeats itself after every 1040 GHz, the FSR of the site rings. Fig.S10

shows one example of such a reflection measurement (1− Absorption, in dB scale), with a frequency range covering

3 FSRs.
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