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Topological phases are intriguing phases of matter which cannot be described

with traditional characterization methods, and numerous efforts has been put to

achieve these exotic phases of matter in a variety of quantum platforms. In this

thesis, we discuss how topological quantum states of matter can be engineered by

utilizing spatially patterned light, which has become available thanks to the recent

advances in beam shaping techniques.

First, we discuss a scheme to construct an optical lattice to confine ultracold

atoms on the surface of torus. We investigate the feasibility of this construction with

numerical calculations including the estimation of tunneling strengths. We then

propose a supercurrent generation experiment to verify the non-trivial topology of

the created surface. We propose a scheme to construct fractional quantum Hall

states which can demonstrate topological degeneracy. We show how our scheme can

be generalized to surfaces with higher genus for exploration of richer topological

physics.



Next, we extend our effort for creation of topologically non-trivial surfaces

for ultracold atoms to the surfaces with open boundaries. This becomes possible by

constructing a bilayer optical lattice with multiple pairs of twist defects. We explain

how a spin-dependent optical lattice can serve as the bilayer optical lattice for this

purpose. We discuss how fractional quantum Hall states can be loaded on this

surface, as well as manipulation and measurement techniques via optical protocols.

Then we turn our attention to electronic systems irradiated by spatially pat-

terned light. In particular, we investigate a way to imprint the superlattice structure

in the two-dimensional electronic systems by shining circularly-polarized light. We

demonstrate the wide optical tunability of this system allows one to realize a wide

variety of band properties. We show that these tunable band properties lead to

exotic physics ranging from the topological transitions to the creation of nearly flat

bands, which can allow the realization of strongly correlated phenomena in Floquet

systems.

Finally, we investigate the Floqut vortex states created by shining light car-

rying non-zero orbital angular momentum on a 2D semiconductor. We analytically

and numerically study the properties of those vortex states, with the methods anal-

ogous to the ones applied to superconducting vortex states. We show that such

Floquet vortex states exhibit a wide range of tunability, and illustrate the potential

utility of such tunability with an example application in quantum state engineering.
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Chapter 1: Introduction

1.1 Motivation

Since Klaus von Klitzing first observed the quantum Hall effect [1], tremendous

efforts have been put to explore and characterize topological phases of matter. The

topological phases are new phases of matter that cannot be described by a symmetry

breaking order parameter in Ginzburg-Landau theory [2, 3]. These phases are not

just new phases of matter but also used in applications such as metrology [4] and

quantum information processing [5, 6].

In the early days of the search for topological phases of matter, it was thought

that these states can only exist in condensed matter systems with extreme conditions

such as a high magnetic field. Later, it turned out that topological phases of matter

are more ubiquitous and the search for topological phases have been extended to

various platforms such as ultracold atoms [7–10], superconducting circuits [11–14],

photons in waveguides [15–19], photonic crystal [20,21], and optomechanical systems

[22,23]. This list is keep expanding with developments of new techniques to prepare

and control classical and quantum systems.

Among many techniques to control quantum systems, the optical manipulation

has been highly useful for its wide tunability and its stability. In particular, the
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recent advances in shaping optical beams have been successfully applied in systems of

ultracold atoms [24–28]. The ability to pattern the beam profile with high precision,

however, can be effectively applied to other quantum platforms as well and therefore

can open a new possibility of engineering exotic quantum states.

In this thesis, we investigate the possibility of engineering topological quantum

states of matter with spatially patterned light. In particular, we study the ways to

construct a topologically non-trivial surface for ultracold atoms as well as to engineer

topological band structures in driven electronic systems.

1.2 Topological Quantum States

The first widely known topological quantum system is the integer quantum

Hall (IQH) state [1, 29–31], which exists in a two-dimensional electron gas under a

strong magnetic field and a low temperature. Shortly after, the fractional quantum

Hall (FQH) effect was observed. It was discovered that the physics behind the FQH

state is quite different from that of the IQH state despite their similar setting.

More recently, spin-orbit-induced topological insulators were discovered [32–

38], demonstrating that topological quantum states can exist beside the quantum

Hall setting. Later, the concept of topological state was extended to the unconven-

tional superconductor [39–43], the superfluid [44], and gapless systems [45–49].

In this section, we briefly review two widely studied of categories of topological

quantum states, the symmetry-protected topological states [50] and the topologi-

cally ordered states [3, 51]. The symmetry-protected topological states, such as the
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topological insulators, are short-ranged entangled quantum states and they require

particular symmetries to be preserved to maintain topological properties. On the

other hand, topologically ordered states, such as the FQH states, are long-range

entangled quantum states and are robust to any local perturbations regardless of

the preservation of the symmetry.

1.2.1 Symmetry-protected Topological States

In condensed matter systems, an electronic band structure may be charac-

terized by topological invariants while it is separated from the other bands. In

particular, an index calculated from a band is a topological invariant if the index

does not change under any deformation of the Hamiltonian that does not close the

gaps between this band and other bands. So if we think of an insulator occupying a

single band with a non-zero topological invariant, this insulator cannot be adiabati-

cally deformed into a normal insulator if it remains gapped. A symmetry-protected

topological (SPT) phase is a phase of matter where the band can be described by a

non-trivial topological invariant as long as particular symmetries are preserved.

One of the most widely used topological invariant is the first Chern number of

the band manifold. For example, when a band {|ψk〉} in a 2D material is represented

by the crystal momentum k = (kx, ky), the Chern number C of this band can be

written as

C = 1
2π

∫
Brillouin Zone

d2kΩ(k),

Ω(k) = −i
[
∂ky (〈ψk|∂kx|ψk〉)− ∂kx

(
〈ψk|∂ky |ψk〉

)]
, (1.1)
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where Ω(k) is the Berry curvature. If an insulator occupies bands whose sum of

Chern numbers is non-zero, we call it a topological insulator. If a topological insu-

lator is interfaced with a normal insulator, the gap should close at the interface since

the topological invariant cannot change otherwise. Since the bulk parts other than

the interface are gapped, electrons can only conduct through the channels on this

interface, and they form gapless boundary modes. In general, if two insulators with

topological invariant m1 and m2 are put together, there are |m1 − m2| boundary

modes in total.

Since spin-orbit-induced topological insulators are experimentally realized, sig-

nificant efforts have been put in theoretical classification of different SPT states

based on the symmetry of the system. In particular, it turned out that SPT states

can be classified by 10 classes based on three discrete symmetries: time-reversal

symmetry, particle-hole symmetry, and chiral symmetry [52–54]. In this 10-fold

classification scheme, each class can have integer (Z), Z2, or trivial number as a

topological invariant, depending on the dimensionality of the system. Beyond these

discrete symmetries, spatial symmetries such as reflection [55, 56], rotation [57–59],

inversion [60,61], and translation [62,63] have been considered to better classify and

characterize different SPT states.

1.2.2 Topologically Ordered States

Topologically ordered states are long-range entangled states unlike SPT states.

It means that it cannot be transformed into trivial product state with finite number

4



of local unitary operations in the thermodynamic limit. For example, the Laughlin

wavefunction [64] for the FQH state with filling fraction 1/m is given by

ΨLaughlin({zi}) = exp
(
−1

4
∑
i

|zi|2
)∏
i<j

(zi − zj)m, (1.2)

where zi = xi + iyi represents the position of ith electron. As exhibited above,

this wavefunction is highly entangled and therefore its physics cannot be captured

by a single particle Hamiltonian. Indeed, the Laughlin wavefunction is the exact

ground state of the quantum Hall Hamiltonian with the Haldane psuedopotential

interaction [65].

To characterize topological orders, the long-range entanglement can be directly

used in the form of entanglement entropy [66,67]. Yet, there are several other ways

to characterize topological orders. One such way is to investigate the degeneracy

of the ground states [68–73]. For example, the Laughlin state with filling fraction

1/m on a Riemann surface with genus g has the ground state degeneracy of mg. To

observe a non-trivial ground state degeneracy, one needs to create a surface with

non-zero g, such as torus (g = 1), double torus (g = 2), and so on. m extracted from

this ground state degeneracy is a topological quantum number of this topological

order and can be used to distinguish different topological phases.

Another way to characterize topological orders is investigating the braiding

statistics of excitations [5, 69, 74–76]. For instance, the excited Laughlin wavefunc-
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tion with two quasiholes pinned at ξ1 and ξ2 can be written as [64]

ΨLaughlin, q.h.({zi}; ξ1, ξ2) = exp
(
−1

4
∑
i

|zi|2
)

×
∏
i

(zi − ξ1)
∏
j

(zj − ξ2)
∏
k<l

(zk − zl)m. (1.3)

By adiabatically rotating ξ2 around ξ1 in counterclockwise direction, this state picks

up the Berry phase of 2π/m. This means that the statistical angle of exchange

statistics is π/m and is neither fermionic or bosonic statistics, and these quasihole

(or quasiparticle) excitations are called anyons. In case of the Laughlin state, these

excitations are Abelian anyons since its braiding only yields an extra phase and does

not alter the state vector itself. For other topologically ordered states, excitations

can have non-Abelian braiding statistics [5, 76]. These different braiding statistics

can be used for the characterization of different topological orders.

1.3 Floquet Theory for Driven Quantum Systems

In this section, we review the Floquet theory for time-periodic quantum sys-

tems [77–79]. Especially, we review how such systems can be more simply described

in the high-frequency regime [80,81]. The high-frequency regime is particularly rel-

evant to the optically driven systems since optical frequencies are often far higher

than the energy scales of interest in many quantum systems.

Floquet theory was originally developed for periodic linear ordinary differential

equations by Gaston Floquet [82]. Now let us apply the Floquet theorem, the main

result of the theory, to the Schrödinger equation for a time-periodic quantum system
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H(t) = H(t+T ) which can often occur in a quantum system driven with frequency

Ω = 2π/T . The Floquet theorem tells that the steady-state solution of this system

is given in the form of

|ψα(t)〉 = exp(−iεαt) |φα(t)〉 , |φα(t)〉 = |φα(t+ T )〉 , (1.4)

given that the Hamiltonian H(t) is Hermitian. Here, the eigenvalues of the system

{εα} are called quasienergies and they are bounded in the range of [−Ω/2,Ω/2).

This is because we can replace any state with unbounded quasienergy ε′α with a

bounded quasienergy εα = ε′α − nΩ (n ∈ N) by setting the periodic states to be

einΩt |φα(t)〉. The motion described by the periodic part of the solution |φα(t)〉 is

also called the mircomotion of the state.

The steady solution in Eq. (1.4) indeed resembles Bloch states in its math-

ematical form. Due to this similarity, the bounded range for the quasienergies,

[−Ω/2,Ω/2), is often called the Floquet-Brillouin zone. Yet, one big difference is

that crystalline systems are periodic over position r which is a quantum operator

that acts on the Hilbert space while time t is merely an external parameter in non-

relativistic quantum mechanics. Therefore, the Floquet theory for periodic quantum

system necessarily involve infinitely many copies of the Hilbert space, one for each

t ∈ [0, T ), while the Bloch theory is completely described within a single copy of the

Hilbert space. This issue can be resolved by lifting the vectors in Hilbert space into

the space called the Floquet-Hilbert space, also called as the Sambe space following

Hideo Sambe [77]. That is, for a vector |ψ〉 in the Hilbert space at time t is lifted
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to a vector |ψ〉 |t) in the Floquet-Hilbert space. Now the Schrödinger equation for

a periodic system simply becomes an eigenvalue problem in this Floquet-Hilbert

space,

[H(t)− i∂t] |φα(t)〉 = εα |φα(t)〉 . (1.5)

Here, H(t) − i∂t is often called as a Floquet Hamiltonian. In practice, it is

more beneficial to use the Fourier basis:

|n, j〉〉 = T−1
∫ T

0
dt einΩt |j〉 |t). (1.6)

In this basis, the Floquet Hamiltonian can be written as

H(t)− i∂t =
∑
n,q

∑
j,j′
〈j′|Hq|j〉 |n+ q, j′〉〉〈〈n, j|+

∑
n

∑
j

nΩ|n, j〉〉〈〈n, j|

≡ Ĥ + Ẑ (1.7)

where Hq = T−1 ∫ T
0 H(t)e−iqΩtdt = H†−q is the harmonic components of the Hamil-

tonian. To understand the meaning of the Floquet Hamiltonian in this basis, we

visualized each terms of Eq. (1.7) in Fig. 1.1. From this figure, we can perceive

eigenstates of H0 as different orbitals localized around each Floquet-Brillouin zone

in the extended zone scheme. In this interpretation, Hq(6=0) acts as tunnelings be-

tween different Floquet-Brillouin zones while Ẑ does the role of a linear on-site

potential for the lattice of Floquet-Brillouin zones. In this perspective, the Floquet

8



Figure 1.1: A schematic representation of the Floquet Hamiltonian.

Hamiltonian can be understood as a Wannier-Stark problem [83,84].

1.3.1 High-frequency Expansion

While the full description of a driven quantum system requires the Floquet-

Hilbert space, one may get an effective description within a single copy of the Hilbert

space in the high-frequency regime. One technique to derive this description is to

use the high-frequency expansion (HFE), which is a perturbation expansion in the

limit where Ω dominates over all the other energy scales in the problem.

While there are several schemes to carry out this perturbation expansion,

the Schrieffer-Wolff (SW) transformation [85, 86] is particularly useful to obtain

an effective Hamiltonian description. To apply the SW transformation to some

perturbed Hamiltonian Htotal = Hu.p. + V , we first let {|ψi〉} and {Ei} be the

eigenstates and the eigenenergies of Hu.p. with Ei ≤ Ei+1. Now one consider a subset
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of the Hilbert space S which can be spanned by the eigenstates ofHu.p. corresponding

to eigenenergies Ek, · · · , El. Then the SW transformation is applicable if |V | �

min(Ek−Ek−1, El+1−El). When this condition is satisfied, the effective Hamiltonian

within S is given by

Heff = Hu.p.P + PV P + 1
2P

 ∑
k≤i,j≤l

〈ψi|V |ψj〉
Ei − Ej

[|ψi〉 〈ψj| , V ]
P +O

(
V 3
)
, (1.8)

where P is the projection operator onto S.

Back to the HFE, we can use the SW transformation if we choose Hu.p. = Ẑ,

V = Ĥ, and P = P̂ = ∑
α |n, α〉〉〈〈n, α| where {|α〉} is an arbitrary basis that spans

the Hilbert space. Without loss of generality, we can set n = 0. Now the SW

transformation is applicable as long as |Hq| � Ω for all q. Note that this condition

requires the static part of the Hamiltonian, H0, to be smaller than Ω as well. Then,

from Eq. (1.8), the effective Hamiltonian description up to the second order in the

perturbation is given by

ĤF =
∑
α

〈α|H0|α〉 |0, α〉〉〈〈0, α|+
1
2
∑
α,β,γ

∑
q 6=0

(
2 〈α|H−q|γ〉 〈γ|Hq|β〉

−qΩ

)
|0, α〉〉〈〈0, β|

=
∑
α

〈α|H0|α〉 |0, α〉〉〈〈0, α|+
∑
α,β

∑
q>0

〈α|[Hq, H−q]|β〉
qΩ |0, α〉〉〈〈0, β|

=
H0 +

∑
q>0

[Hq, H−q]
qΩ

⊗ 1
T

∫ T

0
|t)(t|dt ≡ HF ⊗

1
T

∫ T

0
|t)(t|dt. (1.9)

Therefore, we can reconstruct the quasienergy spectrum of this system only by

diagonalizing HF instead of the entire Floquet Hamiltonian in this regime. Note

that S is fixed to the n = 0 states, so HF can be factored out from ĤF regardless of
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the perturbation order, therefore a higher order expression for HF can be found by

applying the higher order expansions of Eq. (1.8) which can be found in Ref. [86].

1.3.2 Rotating Wave Approximation

Now let us treat the rotating wave approximation (RWA) in the perspective of

the Floquet theory in the high-frequency regime. Just as in the previous section, we

can obtain an effective RWA Hamiltonian description with the SW transformation

in Eq. (1.8). Yet, we choose the subspace and the perturbation differently. That is,

we select

Hu.p. = Ẑ +∑
n

∑
j,j′ 〈j′|H0|j〉 |n, j′〉〉〈〈n, j|,

V = ∑
n′ 6=n

∑
j,j′ 〈j′|Hn′−n|j〉 |n′, j′〉〉〈〈n, j|,

P = P̂ = ∑
n

∑
|j〉∈Sn |n, j〉〉〈〈n, j|, (1.10)

where {Sn} is a set of non-overlapping subspaces of the Hilbert space. We let

{|ψ(0)
i 〉} and {E

(0)
i } be the eigenstates and the eigenenergies of H0. Then we define

the spectral gap for each harmonic components, ∆q(>0), as

∆q = min
⋃

n

⋃
m=−q,q

{
|E(0)

i − E
(0)
j −mΩ|

∣∣∣|ψ(0)
i 〉 ∈ Sn, |ψ

(0)
j 〉 6∈ Sn+m

} . (1.11)

Then we require |Hq| � ∆q for all q > 0 to apply the SW transformation. Under

this condition, the effective Hamiltonian up to the first order in the perturbation is
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given by

ĤRWA =
∑
n

∑
|ψ(0)
i 〉∈Sn

(
nΩ + E

(0)
i

)
|n, ψ(0)

i 〉〉〈〈n, ψ
(0)
i |

+
∑
n′ 6=n

∑
|j〉∈Sn

∑
|j′〉∈Sn′

〈j′|Hn′−n|j〉 |n′, j′〉〉〈〈n, j| (1.12)

.

To understand the RWA in a detailed example, let us consider a two-band

system H0 perturbed by a simple harmonic driving H1e
iΩt +H−1e

−iΩt. To describe

how the two bands are hybridized by the driving, we use the RWA. In this case,

we may choose S0 = {|j ↑〉} to be the upper-band subspace and S1 = {|j ↓〉} to

be the lower-band subspace while we set all the other Sn empty. In this case, the

spectral gap ∆1 is set by the interplay of the bandwidth and the driving frequency.

Yet, if we can assume this driving is reasonably local in the momentum space, i.e.

slowly changing over the space compared to the lattice constant, then we can make

∆1 ' Ω by slicing the Brillouin zone and choose S0 and S1 within the momenta in

each slice. In this case, we require |H1| � Ω for the RWA, and it leads to the RWA

Hamiltonian

ĤRWA =
∑
j,j′

(〈j′ ↑ |H0|j ↑〉 |0, j′ ↑〉〉〈〈0, j ↑ |+ 〈j′ ↓ |H0|j ↓〉 |1, j′ ↓〉〉〈〈1, j ↓ |

+ 〈j′ ↓ |H1|j ↑〉 |1, j′ ↓〉〉〈〈1, j ↑ |+ 〈j′ ↑ |H−1|j ↓〉 |1, j′ ↑〉〉〈〈1, j ↓ |)(1.13)

which describes the hybridization of the two bands.
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1.3.3 Remarks

Figure 1.2: Comparison between the high-frequency expansion (HFE) and the ro-
tating wave approximation (RWA).

To summarize, we present the difference between the HFE and the RWA in

Fig. 1.2. While these two approaches are both used in the high-frequency regime, the

requirement of each approximation is slightly different and one need to be cautious.

In general, the HFE is used to find the correction of the entire energy spectrum

due to the second order effect in the perturbation. On the other hand, the RWA is

used to find the interplay of different energy levels (or bands, if there is any good

quantum number which can parameterize the system) connected by the driving as

the linear order effect of the perturbation.

So far, we have not said much about the symmetry of the driving term while

reviewing the Floquet theory. In fact, if the driving term itself has spatial periodic-

ity, the Floquet theory can be extended to a formalism for spacetime crystals [87,88].
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Beside the spatial lattice translations, the driven quantum systems with other sym-

metries can also lead to rich physics [89,90].

1.4 Optically Driven Quantum Systems

If an electron under the quantum Hamiltonian H(p, r) is applied with elec-

tromagnetic field represented by the electrostatic potential V (r) and the mag-

netic potential A(r, t), its dynamics is described by a new quantum Hamiltonian

H(p + eA(r, t)/~, r) − eV (r) via minimal coupling p → p + eA(r, t)/~. This de-

scription through minimal coupling Hamiltonian is valid as long as the applied

electromagnetic field is the coherent light. If we consider a quantum system driven

by irradiation of electromagnetic wave, we may disregard the electrostatic potential

V (r). The remaining minimal coupling Hamiltonian H(p + eA(r, t)/~, r) is a time-

periodic Hamiltonian which can be understood with the Floquet theory described

in the Section 1.3. In the case of optically driven quantum systems, the radiation

frequency is a few hundreds THz which translates into a few eV per photon. This

is quite high energy scale in many quantum systems, so the approximations in the

high-frequency regime is often applicable.

1.4.1 Neutral Atoms with Driving Fields

While the description of driven electronic material is rather straightforward

since an electron is a charged elementary particle, it is less obvious how optical

driving fields affect the motion of a neutral atom. The essence of this atomic motion
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can be understood with a simple two-level problem. Let us consider the transition

between an atomic orbital |g〉, which is one of the occupied orbitals of the ground

state of the atom, and an excited orbital |e〉. Supposing the transition frequency is

ω0, the static Hamiltonian of this two-level problem is simply ~ωge |e〉 〈e|. Under the

presence of electric field oscillating with frequency ω, the electric dipole potential

energy is given by −d · E(t) where d = −er is the electric dipole operator. While

each orbital has no intrinsic dipole moment (e 〈g|r|g〉 = e 〈e|r|e〉 = 0), the transition

dipole moment (µeg = e 〈e|r|g〉 = µ∗ge) can be non-zero. Now by writing E(t) · µeg =

Ωe−iωt + Ω̄eiωt, the time-dependent Hamiltonian of this two-level problem becomes

H2-level = ~ωge |e〉 〈e|+ ~
(
Ωe−iωt + Ω̄eiωt

)
|e〉 〈g|+ ~

(
Ω∗eiωt + Ω̄∗e−iωt

)
|g〉 〈e| . (1.14)

The temporal Fourier components of this Hamiltonian are H0 = ~ωge |e〉 〈e| and

H1 = ~Ω̄ |e〉 〈g| + ~Ω∗ |g〉 〈e| = H†−1. Then we can use RWA in Eq. (1.12) with the

choice of S0 = {|e〉} and S1 = {|g〉}, which leads to the RWA Hamiltonian

HRWA = ~ωge|0, e〉〉〈〈0, e|+ ~ω|1, g〉〉〈〈1, g|+ ~Ω|0, e〉〉〈〈1, g|+ ~Ω∗|1, g〉〉〈〈0, e|, (1.15)

and this RWA Hamiltonian is valid as long as |Ω| � ω. By adjusting the offset

energy by subtracting ~ωgeI from this Hamiltonian and writing the detuning δ =

ω−ωge, this RWA Hamiltonian can be also written as ~δ|1, g〉〉〈〈1, g|+~Ω|0, e〉〉〈〈1, g|+

~Ω∗|1, g〉〉〈〈0, e|. Then the eigenenergies of this Hamiltonian are given by ε± =

~(δ/2)
(
1±

√
1 + 4|Ω|2/δ2

)
. In the large detuning limit |Ω| � δ, the dressed state
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close to the ground state has the eigenenergy ε+ = ~δ + ~|Ω|2/δ + O (~|Ω|4/δ3).

This indicates that the ground state gains an extra energy offset ~|Ω|2/δ which

corresponds to the AC stark shift [91].

In case the irradiated beam is spatially patterned so that Ω = Ω(r), this energy

offset provides a potential landscape for the atom. The total potential is given by the

summation of energy offsets corresponding to all possible atomic transitions which

are allowed by the selection rule µeg 6= 0. Yet, a term corresponding to particular

transition (|g〉 → |e〉) can dominate if the driving frequency is tuned close to that

transition frequency ωge. In this case, the sign of this potential can be controlled

by choosing the detuning postive (blue-detuned) or negative (red-detuned). This

potential can be shaped into different lattice patterns by superposing several beams,

which are called optical lattices [92,93]. For example, two counter-propagating plane

waves E1(x, t) =
(
E0e

i(qx−ωt) + c.c.
)

ŷ and E2(x, t) =
(
E0e

i(−qx−ωt) + c.c.
)

ŷ yield

the potential U(x) =
(
4E2

0 |µeg,y|
2 ~/δ

)
cos2(qx) which creates a 1D lattice of a

lattice spacing π/q.

1.5 Recent Advances in Patterning Optical Beam

While the interference pattern of several optical beams can generate spatial

patterns such as lattice patterns in optical lattices, there are other useful optical

manipulations, such as addressing of single lattice site, which cannot be implemented

by interfering several plane beams. In this section, we briefly review some of the

recent advances in techniques of spatially patterning the optical beams which can
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help to create and control exotic quantum states.

One promising technique is the holographic beam shaping using digital micro-

mirror devices (DMD) [94]. A DMD is composed of a 2D array of small mirror

patches which are individually turned on and off by switching the orienting angle of

the mirror. With a given angle of the incident beam and the given target amplitude

pattern, the binary map of DMD panel to generate that target amplitude pattern can

be calculated. This can generate an arbitrary amplitude pattern of the beam with

precision comparable to the optical wavelength. This can be used for simultaneous

addressing of single lattice sites for ultracold atoms loaded on an optical lattice, and

therefore can be used for the quantum gas microscope [95]. Further, each mirror

cell can be switched with a rate of a few kHz; therefore, we can also update the

amplitude pattern of the beam with the same rate [96].

Another useful imaging tool for optical manipulation is the optical tweezer [97].

It uses a focused laser beam which maximizes the intensity at a focal point and

the center of the beam profile. If the frequency of the beam is red-detuned from

a particular atomic transition, the AC stark shift on an atom provides a trapping

potential. With a high-resolution optical tweezer, one can individually capture single

atoms and move them around freely. It can even be used to assemble multiple atoms

to construct an arbitrary atomic structure in any dimension up to three [98–100].

1.6 Outline of Thesis

The remainder of this thesis is organized as follows.
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• In chapter 2, we propose an experimental scheme to construct an optical lat-

tice where the atoms are confined to the surface of a torus. This construction

utilizes the spatially shaped laser beams which could be realized with recently

developed high resolution imaging techniques. To study the feasibility of this

proposal, the tunneling strengths for atoms in the torus lattice are numerically

calculated. To illustrate the nontrivial role of topology in atomic dynamics on

the torus, we study the quantized superfluid currents and fractional quantum

Hall states on such a structure. We then numerically investigate the robust-

ness of the topological degeneracy of such fractional quantum Hall states and

propose an experimental way to detect this degeneracy. We also demonstrate

how this scheme for torus construction can be generalized to surfaces with

higher genus for exploration of richer topological physics.

• In chapter 3, we propose an experimental scheme to construct a bilayer optical

lattice with multiple pairs of twist defects. These pairs of twist defects effec-

tively embed the ultracold atoms in a topologically non-trivial surface with

open boundaries. To locate the twist defects in the optical lattice, recently

developed high resolution imaging techniques can be utilized for site-resolving

shaping of the laser beams. To demonstrate the effect of non-trivial topology

in atomic dynamics, we investigate the quantized supercurrents and fractional

quantum Hall states on this structure. We also investigate how the degenerate

fractional quantum Hall ground states on this manifold can be measured and

manipulated via optical manipulations.
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• In chapter 4, we propose an optical method of shining circularly polarized

and spatially periodic laser fields to imprint superlattice structures in two-

dimensional electronic systems, by studying the case of monolayer graphene.

We particularly consider the high-frequency regime where the electronic sys-

tem can remain in the quasiequilibrium phase for an extended amount of time.

We demonstrate that the wide optical tunability allows one to tune different

properties of the effective band structure, including Chern number, energy

bandwidths, and band gaps. We also demonstrate that this tunability of the

superlattice leads to unique physics ranging from the topological transitions

to the creation of flat bands in a kagome superlattice, which may allow the

experimental realization of strongly correlated phenomena in Floquet systems.

• In chapter 5, we propose a scheme to create an electronic Floquet vortex state

by irradiating a two-dimensional semiconductor with the laser light carrying

non-zero orbital angular momentum. We analytically and numerically study

the properties of the Floquet vortex states, with the methods analogous to

the ones previously applied to the analysis of superconducting vortex states.

With this analysis, we show that the number of created vortex modes is equal

to the vorticity of the applied beam. We also show that such Floquet vortex

states exhibit a wide range of tunability, and illustrate the potential utility of

such tunability with an example application in quantum state engineering.
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Chapter 2: Optical Lattice with Torus Topology

2.1 Introduction

In the past decades, ultracold atoms in optical lattices have been widely used

to study a range of interesting coherent and many-body physics [101]. In particular,

there has been remarkable progress in investigating phenomena [7, 8, 102, 103] in

both different dimensions [104–106] and lattice geometries, such as square [102,104],

triangular [107], honeycomb [108], kagome [109], ring [110], cylinder [111], and more

recently ribbon lattices with synthetic dimensions [10].

Meanwhile, intriguing physics can be explored in systems with non-trivial

topologies. For example, it is theoretically predicted that there are topologically

protected degeneracies on surfaces with non-zero genus, like the fractional quantum

Hall (FQH) model [72,112] or spin liquids [113–115]. Such systems are expected to

not only contain rich many-body physics but also possibly be used in topological

quantum computation [113]. While there have been interesting proposals to make

torus surfaces in ultracold atomic systems, using synthetic dimensions [116] and

semi-2D geometries by modifying cylinders [117, 118], the experimental construc-

tion of a torus in real space has remained challenging. Moreover, the presence of

edge physics and the finite size effects have made the observation of FQH effect in
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ultracold atoms challenging.

In this chapter, we propose a scheme to construct an optical lattice in which

atomic dynamics is confined to the surface of a torus. Our construction makes

use of recent advances in beam shaping, in the context of ultracold atomic sys-

tems [94,98–100,119]. Specifically, we show that a rectangular square lattice with a

hole in the middle can be turned into the surface of a torus by shaping a single beam

perpendicular to the layers (Fig. 2.1). Moreover, we discuss that this construction

could be generalized to surfaces with higher genus. To illustrate the non-trivial

role of topology in atomic dynamics on the torus, we first investigate the hydrody-

namics of bosonic superfluid on the torus. Specifically, we demonstrate a sequence

of optical manipulations that generates quantized supercurrents in two intersecting

non-contractible cycles. Furthermore, in the strongly correlated regime, we discuss

a FQH model which can be realized on this torus. To numerically investigate the

topological degeneracy on such system, we consider a relatively small square lattice

(6 × 6) with torus topology. We show that the anticipated topological degeneracy

exists and is robust against the discrepancy between inter- and intra-layer tunneling

and disorder. Moreover, we propose a way to experimentally detect the topological

degeneracy.

2.2 Torus Construction

In the following, we show that by using several pairs of laser beams in the

x, y, and z directions, one can build an optical lattice in which atomic dynamics
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Figure 2.1: (a) Schematic beam configuration for a torus surface in an optical lattice.
Plane wave beams in the horizontal directions generate a rectangular lattice in the
xy plane. In the z direction, a superlattice structure created by pairs of blue-
detuned and red-detuned beams confines atoms in two layers. The −z propagating
blue-detuned beam has the beam shape of a square annulus. (Inset) Different laser
intensities turn the inter-layer tunneling on and off in different regions. To complete
the torus surface, only the inter-layer tunneling on in the edge region is allowed.
(b) Generalization of the scheme to surfaces with higher genus (g = 2, 3 shown for
example) can be achieved by puncturing more holes in the middle of the lattice.

is confined to the surface of a torus (Fig. 2.1). We first make a bilayer system by

creating a superlattice structure in the z direction. Using high resolution optics, we

then tailor one of the beams used in the superlattice structure to have the shape

of a square annulus. This square annulus divides the xy plane into three regions:

bulk, edge, and empty space [Fig. 2.1(a)]. By having a different set of intensities in

these regions, the trap potential can be arranged to only allow atoms to vertically

tunnel through lattice sites in the edge region, thus confining atoms to the surface

of a torus.
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To prepare a bilayer system, we use a 3D optical lattice with a superlattice

structure in the z direction. Red-detuned laser beams with wavevectors ±kxx̂ and

±kyŷ form a 2D rectangular lattice with lattice spacings (ax, ay) = (π/kx, π/ky).

For the superlattice structure, we use a pair of blue-detuned lasers with wavevectors

±kzẑ and another pair of red-detuned lasers with wavevectors ±qzẑ. When the

±z propagating beams do not vary in the xy plane, the combined vertical dipole

potential is given by Vz(z) = Vb(z) + Vr(z) = Vblue cos2(kzz) − Vred cos2(qzz) for

properly chosen relative phases, where Vblue (Vred) is the amplitude of the dipole

potential generated by the blue-detuned (red-detuned) beam pair alone. Then atoms

with atomic mass m can be confined at two neighboring minima, which we call the

±z0, as shown in Fig. 2.2(b). Atoms in these minima constitute the bilayer system.

To complete the torus surface, we tailor the −z propagating blue-detuned

beam in the shape of a square annulus in the xy plane, adjusted to achieve the

desired inter-layer tunneling only along edge sites. In particular, we make the laser

intensity lower at the edge compared to the bulk region. The resulting potential

barrier in the z direction is shallower at the edge than the bulk, which makes the

inter-layer tunneling non-zero at the edge while negligible in the bulk region. With

the laser intensity of the −z propagating beam set to zero in the empty space region,

the +z propagating blue-detuned beam generates a higher dipole potential in the

empty space compared to the edge and the bulk region. This difference in dipole

potential energetically prevents atoms from escaping the designated square annulus.

To be concrete, we consider the following beam shapes for the blue-detuned
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Figure 2.2: Numerically evaluated dipole potential and tunneling strengths. We
consider Rb87 atoms with ax ' ay = 480 nm and kx = kz/2 = 2qz. In the unit of
recoil energy Er ≡ ~2k2

x/2m (Er,z ≡ ~2k2
z/2m), V0 = 8Er, VE = 60Er = 15Er,z, VB =

120Er = 30Er,z, and Vred = 20Er = 5Er,z. (a) Dipole potentials in the xy plane
on the upper layer. (b) Dipole potentials in the yz plane. Inter-layer tunneling
strengths in bulk (Jbulk

z ) and edge (Jedge
z ) are shown for comparison. (c) Numerically

evaluated tunneling strengths represented as the thickness of bonds in the 3D lattice.
Shown tunneling strengths range from 0.03Er to 0.04Er.

beams:

E+(r, t) = ŷ
(
e+ikz(z−ct) + c.c.

)
E+, (2.1)

E−(r, t) = ŷ
(
e−ikz(z+ct) + c.c.

)


EB bulk

EE edge

0 empty space

.

In this discrete setting, bulk and edge regions correspond to the zones around bulk

and edge sites in the square annulus, within the distance ax/2 (ay/2) in the x (y)

direction. The rest of the area is designated as empty space. For illustrative pur-
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poses, we assume the model beam has sharp boundaries between different regions,

but in an experimental realization, one can relax this constraint and construct a

good approximation of Eq. (2.1) using beams with sufficient numerical apertures

(0.17 ∼ 0.80) (see Sec. 2.5). The recent progress in beam-shaping techniques for

optical lattices [94,98–100,119] could allow one to realize such a beam profile in the

lab. Note that this beam profile should be placed properly in the xy plane in a way

that regional distinctions in Eq. (2.1) match with the horizontal lattice sites.

This beam profile gives rise to the combined vertical dipole potential including

interference between the +z and −z propagating beams:

Vz(r) = Vb(r)− Vred cos2(qzz), (2.2)

Vb(r) =



VB cos2(kzz) + V
(0)
B bulk

VE cos2(kzz) + V
(0)
E edge

VS empty space

,

where the lattice potential amplitudes are VB/E = 4f0E+EB/E, and the energy offsets

are V
(0)
B/E = f0(E+ − EB/E)2, VS = f0E2

+. Here, the proportionality constant f0

depends on beam frequency, dipole elements, and transition frequency [120]. By

setting EB > EE, the potential barrier between layers in the edge region is shallower

than in the bulk region. This barrier difference leads to an inter-layer tunneling

strength which is stronger in the edge than in the bulk. Moreover, we need to

satisfy two additional conditions: (1) to have a smooth torus, the on-site energy

in the edge and the bulk regions should be the same, and (2) this on-site energy
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should be smaller than the potential in the empty space, so that atoms are trapped

in the designated square annulus. To find on-site energies in these conditions, we

should include the zero point energies in the effective potentials as well. Then, these

requirements can be summarized as

V
(0)
B + ~ωB

2 = V
(0)
E + ~ωE

2 < VS (2.3)

where the zero point energy of the harmonic confinements are

1
2~ωB/E = 1

2~
∑

s=x,y,z

√
m−1 ∂2

sV (r)|r∈B/E. (2.4)

To evaluate this, we consider the total dipole potential V (r) = Vxy(x, y) + Vz(r),

where the horizontal dipole potential is Vxy(x, y) = V0{cos2(kxx) + cos2(kyy)} and

Vz(r) is given in Eq. (2.2). While it is not obvious to find a set of parameters

satisfying these conditions simultaneously, it is possible to satisfy Eq. (2.3) by tuning

m, kx, ky, kz, qz, V0, Vred, E+, EE, EB, f0. For example, the parameters in Fig. 2.2 fulfill

these requirements (see Sec. 2.7).

To verify that our beam design leads to the desired optical lattice, we numeri-

cally evaluate the total dipole potential for Rb87 atoms [Figs. 2.2(a) and 2.2(b)]. We

approximately evaluate the tunneling strengths by solving the Schrödinger equation

over the region containing each pair of the nearest neighboring sites (see Sec. 2.7).

Fig. 2.2(c) shows that it is possible to suppress inter-layer tunneling in the bulk,

while simultaneously setting inter-layer tunneling in the edge and intra-layer tun-
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neling everywhere to be non-vanishing. Here, for boundaries between the different

regions, we use more realistic resolution limited potentials (see Sec. 2.5) instead of

the step functions in Eq. (2.1).

Once our scheme for torus construction is realized, it is straightforward to

extend the scheme to genus-g surfaces [Fig. 2.1(b)]. The only requirement is to

puncture more holes in the beam shape, which requires no higher resolution in

beam-shaping than puncturing a single hole. On such genus-g surfaces, one can

explore richer topological physics as we discuss later.

2.3 Quantized Supercurrents in Two Cycles

To demonstrate how topology plays a non-trivial role in the dynamics of ul-

tracold atoms on a torus surface, we numerically investigated the hydrodynamics of

weakly interacting bosonic superfluids. Previously, in a ring geometry, it has been

experimentally demonstrated that the flow of supercurrents is quantized along the

single quantization axis [110, 121]. The quantization of supercurrent results from

the fact that wavefunction of the atomic condensate should be single-valued and its

phase should be compact on a closed cycle. More interestingly, in the torus setting,

there are two intersecting non-contractible cycles [Fig. 2.3(a)] which allow supercur-

rents to be quantized separately along each. In particular, the vorticity, which is

defined as

vi = 1
2πρavg

∮
cycle i

Im (ψ∗∇ψ) · dl (i = 1, 2), (2.5)
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is quantized to an integer, up to a small finite-size fluctuation. Here, ρavg is the

average condensate density and ψ(r) is the condensate wavefunction. To generate

the supercurrents with non-zero vorticities, we stir the atomic condensate with an

extra dipole potential [122]. In particular, we prepare a blue-detuned, focused beam

and move it along each non-contractible cycle to generate the supercurrent flow in

the stirring direction [Fig. 2.3(a)]. The supercurrent flows can be detected through

established methods, such as time-of-flight imaging [121].

To specifically show the quantization along each cycle, we numerically simulate

these stirring procedures [Fig. 2.3(b)]. In the weakly interacting and tight-binding

regime, atomic dynamics in our optical lattice can be described in the mean-field

approximation,

i~∂tψ↑/↓j = −J
∑

k;|k−j|=1
ψ
↑/↓
k −

(
Jψ
↓/↑
j

)
δj∈edge

+
{
V ↑/↓(rj, t)− µ+ U

∣∣∣ψ↑/↓j ∣∣∣2}ψ↑/↓j , (2.6)

where ψlj is the condensate wavefunction at site j on layer l (l =↑ / ↓ for the

upper/lower layer). Here, |k − j| indicates the distance between site k and j and

δj∈edge = 1 if j belongs to the edge region (0 otherwise). J is the tunneling strength,

U is the on-site interaction energy, V l is the stirring potential on layer l and µ is the

chemical potential. Superfluid remains stable if the stirring is slower than the sound

speed,
√
µ/m [123]. This dynamics can be simulated with the numerical methods

for the Gross-Pitaevskii equation [124–126]. See Sec. 2.8 for further details.

In the simulation, we verify that the stirred superfluid exhibits the quantized
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Figure 2.3: (a) A scheme to generate supercurrents in two cycles. A focused, blue-
detuned laser beam acts as a stirrer along each cycle, namely, cycle 1 and 2. Note
that the stirrer along cycle 2 is focused on the upper layer. A uniform condensate is
loaded on the torus initially, then the stirring potential along cycle 1 (V1) or cycle
2 (V2) is ramped up and down. (b) Quantization of vorticity in two cycles. Dotted
curves in the upper plots indicate the ramping sequences of V1 and V2. Solid lines in
the upper plots indicate the number of completed cycles (m) in the stirring process.
The lower plots show vorticities (vi) changing over time. Steady-state wavefunctions
of the different sequences are shown below.

vorticity along each cycle of stirring [Fig. 2.3(b)]. We also see that this vorticity

increases with the stirring speed. As expected, the evaluated vorticity along each

cycle coincides with the wavefunction winding numbers [Fig. 2.3(b)]. Also, we ob-

serve the creation and annihilation of vortex-antivortex pairs during the increment

of vorticity (see Sec. 2.8).
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2.4 Topological Degeneracy in FQH States

Our construction allows one to investigate the dynamics of strongly interacting

ultracold atoms on a torus. As an example, we study a bosonic FQH model, which

could be realized by laser-assisted tunneling [7, 8]. Specifically, the lattice FQH

Hamiltonian for bosonic atoms on our torus can be written as

H =
∑
n,m

∑
l=↑,↓

(
U

2 a
l†
n,m

2
aln,m

2 − Jeiθlxal†n+1,ma
l
n,m − Jeiθ

l
yal†n,m+1a

l
n,m + H.c.

)
−

∑
(n,m)∈edge

(
J ′a↑†n,ma

↓
n,m + H.c.

)
, (2.7)

θ↑/↓x (n,m) = (n∓m)φ
2 , θ↑/↓y (n,m) = (m± n)φ

2 .

Here, aln,m annihilates an atom at site (n,m) on layer l. J and J ′ are the

effective intra- and inter-layer tunneling strengths, and U is the on-site interaction

energy. With proper size of square annulus, the synthetic magnetic flux per unit cell

can be set to φ (see Sec. 2.10). To obtain the tunneling phases in Eq. (2.7), we apply

a magnetic field in such a way that the Zeeman energy gradient becomes ∆x (∆y) per

site in the x (y) direction. Then we apply Raman beams whose detuning matches

with ∆x (∆y) to induce the tunneling in the x (y) direction [Fig. 2.4(a)]. Since the

surface orientations of two layers are opposite to each other, the required tunneling

phases in each layer should be different as well. This can be achieved by targeting

the different Raman beams on the different layers [Fig. 2.4(b)]. To do so, we use

a triplet of beams for each tunneling term, namely Ti=1∼4 ≡ {i, i+, i−}. Here, the

beam i (i±) has the frequency ωi (ωi±) and the wavevector ki (ki±). In this triplet,
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Figure 2.4: (a),(b) A scheme for FQH Hamiltonian. Different Raman beam triplets
Ti=1∼4 give the different tunneling phases in Eq. (2.7). Schematic beam configu-
ration of T1 is shown for an example. Zeeman eneargy difference ∆x (∆y) in the
x (y) direction is matched with detuning of Raman beams in triplets Ti=1,3 (Ti=2,4)
to give tunneling terms in the same direction. To address each layer independently,
beam i+ and i− in triplet Ti=1,2 (Ti=3,4) destructively interfere at lower (upper)
layer. (c) Exact diagonalization of FQH Hamiltonian for 3 hardcore bosonic atoms
on a 6 × 6 square lattice (Nx = Ny = 6) with periodic boundary conditions and
φ = π/3, magnetic length lB ≡

√
2π/φ. Es (|ψs〉) indicates the s-th lowest eigenen-

ergy (eigenstate). (d) Energy spectrums with distinct intra-layer (J) and inter-layer
(J ′) tunnelings. (e) Spectrum with a random disorder of scale 0.05J . Energy split-
ting between the ground states is 5×10−3J . (f) Inserting flux Φx through the handle
of torus is equivalent to the boundary condition with twist angle αx. (g) With ad-
ditional potential V (y) = (0.01J/Ny)y, the spectral flows in αx can be detected by
measuring the y-coordinates of the states.
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the beams i+ and i− have the same x and y components and have the opposite z

components in the wavevectors. These two beams then form a standing wave in z

direction. By aligning the beams i+ and i− to destructively interfere at the lower

(upper) layer, the beam triplet Ti can solely address the upper(lower) layer. In a

rotating frame, these Raman beams result in the effective tunneling terms given in

Eq. (2.7) (see Sec. 2.9).

We numerically investigated the topological degeneracy in FQH system on the

torus. In particular, FQH systems with filling fraction ν = 1/m on a torus surface

havem-fold ground-state degeneracies [72,112]. To numerically diagonalize the FQH

Hamiltonian, we put the upper layer part of Hamiltonian in Eq. (2.7) on a 6 × 6

square lattice with periodic boundary conditions [Fig. 2.4(c)]. For filling fraction

ν = 1/2, we have the anticipated two-fold ground-state degeneracy [Fig. 2.4(d)].

To examine the robustness of this degeneracy, we calculate the energy spec-

trum for varying inter-layer tunnelings (J ′) and a disorder potential [Figs. 2.4(d)

and 2.4(e)]. We can see the two-fold degeneracy persists within slight ground en-

ergy splittings which are smaller than the tunneling strengths, the disorder scale,

and the excitation gap. Therefore, this topological degeneracy in a small FQH

system is robust against potential experimental imperfections.

Furthermore, one can measure the topological degeneracy by measuring the

spectral flow during the synthetic magnetic flux insertion though the handle of

the torus. As shown in Fig. 2.4(f), the insertion of flux Φx is equivalent to the

boundary condition ψ(x + Nx, y) = ψ(x, y) exp(iαx) where αx = (e/~)Φx. For

ν = 1/m, the spectral flow of each ground state shows the 2mπ-periodicity in
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αx [127,128]. To observe this periodicity, we can introduce a small energy splitting

by applying a potential V (y) ∝ y. Such a spectral flow is manifested in the y-

coordinate expectation values of the ground states (see [Fig. 2.4(g)], Sec. 2.11).

This average atom position can be experimentally detected through the density

measurements.

2.5 Validity of Model Laser Beams

In our design of optical lattice, we assume each laser beam maintains the beam

shape in their propagating direction. While such assumption is reasonable for the

plane wave beams, the model beam shape in Eq. (2.1) with this assumption would

violate Maxwell’s laws. If we modify this model beam to satisfy Maxwell’s laws, the

beam shape should change as the beam propagates. For this modified beam to be

a good approximation of Eq. (2.1), we should check the change of beam shape is

modest over the region in which our bilayer system is located. On the other hand,

beam shaping with a high precision requires experimental schemes to focus laser

beams in the targeted area. To make sure that our beam design is experimentally

feasible, we should check if the highest numerical aperture (NA) required in our

design is achievable with the current technology.

To construct an approximation of the −z propagating beam (E−) in Eq. (2.1),

in a way that Maxwell’s laws are satisfied, we reconstruct the 3D intensity profile of

this model beam with Hermite-Gaussian (HG) decomposition (Fig. 2.5). Each HG
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mode has the form of [129]

Elm(x, y, z) = E0
w0

w(z)Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
−x

2 + y2

w2(z)

)

× exp
(
−i π(x2 + y2)z
λ(z2 + (πw2

0/λ)2) − i
2πz
λ

+ iη(z)
)
,

w(z) =
√
w2

0 + (λz/πw0)2,

η(z) = (l +m+ 1) tan−1
(

z2

z2 + (πw2
0/λ)2

)
. (2.8)

Here, Hl(x) is the lth order Hermite polynomial, λ is the wavelength of the beam

and w0 is the beam waist radius. Since each mode is a solution of the electromag-

netic wave equation, any superposition of concentric and confocal HG modes satisfy

Maxwell’s laws. In particular, we consider the superposition such that

|E−(r, t)|z=0,t=0 =
M∑

l,m=0
ClmElm(x, y, 0). (2.9)

Since |E−| is an even function in x and y, we can omit modes with odd l or odd

m. While full HG decomposition requires M → ∞, we set M = 120 to keep the

required NA of the beams experimentally accessible. We also need to replace the

step functions in |E−| with smoother functions. In particular, we use sinusoidal

functions in the overlapping region between the different regions. For example, if
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Figure 2.5: (a) Intensity profile of the reconstructed beam through HG decompo-
sition. Here, Iz=0

max indicates the maximum intensity at z = 0. The beam shape is
almost maintained over |z| ≤ z0, where the bilayer system are located. (b) Numeri-
cal apertures of HG modes used in the reconstructed bean, which ranges from 0.17
to 0.80. We used HG modes up to the order of 120, while only the even modes are
used for the symmetry reason.

the cut is located at x = 0, beam amplitude changes as

E(x) =



E1 −ax/2 < x < −bax/2

(E1 − E2) cos2 {(πx)/(2bax) + π/4} |x| < bax/2

E2 bax/2 < x < ax/2

(2.10)

where b = 0.7 between the edge and the empty space, and b = 0.4 for the rest of

boundaries. To carry out the numerical evaluation in Fig. 2.5, we use λ = 480 nm

and w0 = 1264 nm over the lattice with ax = ay = 480 nm. As shown in Fig. 2.5(a),

the intensity profile of the reconstructed beam almost maintains its beam shape over

the region of our bilayer system. Therefore, one can construct an approximation of

the model beam that satisfies Maxwell’s laws.

To see if this reconstructed beam in Fig. 2.5(a) is achievable with reasonable
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NA, we calculate numerical aperture of each HG mode used in the reconstructed

beam. Since Eq. (2.8) is separable in x/w(z) and y/w(z), we can define the radius

of the mode l, rl(z), in a way that the intensity proportion of the HG beam of mode

l,m that passes through the ellipse {r|x2/r2
l (z) + y2/rm(z)2 ≤ 1} is equal to the

certain fidelity. By setting this fidelity to be 0.99, we get

∫ rl(z)
−rl(z) H

2
l

(√
2x

w(z)

)
exp

(
− 2x2

w2(z)

)
dx∫∞

−∞H
2
l

(√
2x

w(z)

)
exp

(
− 2x2

w2(z)

)
dx

=
√

0.99 (2.11)

Since rl(z) is proportional to w(z) =
√
w2

0 + (λz/πw0)2, rl(z) ∼ αlz for z � w2
0/λ.

Then the numerical aperture for the lth mode is given by NAl = sin(tan−1 αl) =

(1+α−2
l )−1/2, which is evaluated in Fig. 2.5(b). As shown in the figure, the numerical

apertures of HG modes used in Eq. (2.9) range from NA = 0.17 to NA = 0.80.

Since high-order HG beams are already implemented with NA=0.8 [94] and the

focused beam with NA=0.92 for addressing of ultracold atoms is experimentally

reported [130], the reconstructed beam in Fig. 2.5 is experimentally promising.

We also use the focused laser beams used in supercurrent generation procedure

(Fig. 2.3) . Since the focused laser beam with NA=0.92 is reported [130], we use

this number as the benchmark for the stirring laser beams. With the NA=0.92

and the wavelength λ = 480 nm, the Gaussian beam has the waist radius w0 =

λ/π(NA−2 − 1)0.5 = 65 nm, which is far smaller than the lattice spacing in the

numerical evaluation in Fig. 2.2. This tells that the focused beam used in stirring in

the cycle 1 is experimentally feasible. For the stirrer along the cycle 2, we need to

obtain enough imbalance in intensities of the focused laser beam reaching upper and
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lower layers. In our numerical evaluation of the optical lattice, the distance between

the upper and lower layers is z0 = 120 nm. If this Gaussian beam is focused at one

of the layers, the central laser intensity at the other layer is

Iz0 = I0

1 +
(
λz0

πw2
0

)2

−1

= (0.051)I0, (2.12)

where I0 is the central laser intensity at the focused layer. This provides a lower

bound of the intensity ratio γ = Iz0/I0 which we introduce and compare later.

2.6 Conditions for On-site energies

In our torus construction, we have following set of independent parameters:

m, kx, ky, kz, qz, V0, Vred, E+, EE, EB and f0. Yet, the required conditions for the on-

site energies stated in Eq. (2.3) are not represented in these parameters directly.

To express Eq. (2.3) with this set of parameters, we first express the overall dipole

potential as

V (r) = V0{cos2(kx) + cos2(ky)} − Vred cos2(qzz) + Vb(r),

Vb(r) =



4f0E+EB cos2(kzz) + f0(E+ − EB)2 bulk

4f0E+EE cos2(kzz) + f0(E+ − EE)2 edge

f0E2
+ empty space

, (2.13)
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by using VB/E = 4f0E+EB/E, V (0)
B/E = f0(E+ − EB/E)2, and VS = f0E2

+. Now the zero

point energy of the harmonic confinements can be expressed as

~
2ωB/E = ~

2ωB/E(m, kx, ky, kz, qz, V0, Vred, E+, EE, EB, f0)

= ~
2

∑
s=x,y,z

√
m−1 ∂2

sV (r)|r∈B/E

= ~(kx + ky)
√
V0

2m

+~
√
q2
zVred
2m cos(2qzzB/E)− 2k2

zf0E+EB/E
m

cos(2kzzB/E), (2.14)

where zB/E is the smallest positive number satisfying

qzVred sin(2qzzB/E) = 4kzf0E+EB/E sin(2kzzB/E). (2.15)

Now Eq. (2.3) becomes

f0(E+ − EB)2 + ~
2ωB = f0(E+ − EE)2 + ~

2ωE < f0E2
+, (2.16)

and it is completely determined by the forementioned set of independent parameters.

We also show that the parameters used in Fig. 2.2 satisfy these conditions.

We evaluate the on-site energy for each site and verify that it is the same for all

sites (Fig. 2.6). As shown in the figure, on-site energies in the bulk and the edge are

matched so that atoms can tunnel to each other within the same layer. By doing so,

one can make the torus surface smooth. Also, this on-site energy is lower than the

dipole potential in the empty space, which indicates that the leakage to the empty
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Figure 2.6: On-site energy presented with the dipole potential along several lines in
the optical lattice. On-site energies in the bulk and the edge are set to be equal,
which leads to a smooth torus surface.

space is energetically prevented.

2.7 Numerical Evaluation of Tunneling Strength

To find the tunneling strength between two neighboring sites, we use the iso-

lated two-site model for this pair of sites. If E1 and E2 are on-site energy site 1 and 2

in this pair, the model Hamiltonian is given by

 E1 −J∗

−J E2

, whose eigenenergies
are given by ε± = (E1 + E2)/2 ±

√
|J |2 + (E1 − E2)2/4. Conversely, the tunneling

strength |J | is given by

|J | = 1
2
√

(ε+ − ε−)2 − (E1 − E2)2. (2.17)

To evaluate E1, E2, and ε±, we numerically solve the 3D Schrodinger equa-
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tions. For example, for two sites located at (x, y, z) = (−ax/2, 0, 0) and (x, y, z) =

(ax/2, 0, 0), we take points in the real space as

xn = −ax + (n− 1/2)δx, yn = −ay/2 + (n− 1/2)δy,

zn = −az/2 + (n− 1/2)δz, (2.18)

for n ∈ N such that

X1 = {xn|n ≤ Nx}, X2 = {xn|Nx < n ≤ 2Nx}, Y = {yn|n ≤ Ny}, Z = {zn|n ≤ Nz},

where δx = ax/Nx, δy = ay/Ny, and δz = az/Nz. Denote the position (x, y, z) =

(xi, yj, zk) as ijk. Now the discrete Schrodinger equation gives the following Hamil-

tonian:

Hi′j′k′,ijk = ~2

m
×



−(1/2)δx−2 if |i′ − i| = 1, j′ = j, k′ = k

−(1/2)δy−2 if i′ = i, |j′ − j| = 1, k′ = k

−(1/2)δz−2 if i′ = i, j′ = j, |k′ − k| = 1

δ−2
0 + V (xi, yj, zk) if i′ = i, j′ = j, k′ = k

0 else

,

where δ−2
0 = δx−2 + δy−2 + δz−2. (2.19)

Here, V (x, y, z) is the dipole potential introduced in Eq. (2.2). Now E1 (E2) is the

lowest eigenenergy obtained by numerically diagonalizing this H over X1 × Y × Z

(X2×Y ×Z), while ε− and ε+ are the first and second lowest eigenenergies obtained
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by numerically diagonalizing H over (X1 ∪X2)× Y × Z. From Eq. (2.17), we can

evaluate the tunneling strength between the two targeted site.

This method can be applied to every pair of neighboring sites, as presented

in Fig. 2.2. For the tunneling strengths in the figure, we use Nx = Ny = Nz = 60

in the evaluation. With the dipole potential presented in Fig. 2.2, in the unit of

recoil energy Er = ~2k2
x/2m, calculated tunneling strengths are given as follows;

the intra-layer tunneling strength between two bulk sites is 0.032Er, the intra-layer

tunneling strength between an edge site and a bulk site is 0.041Er, the inter-layer

tunneling strength between two edge sites is 0.036Er, and the inter-layer tunneling

strength between two bulk sites is 0.002Er.

2.8 Numerical Simulation of Dynamics in Condensate with Stirring

Potentials

As presented in Eq. (2.6), in the mean field limit, the dynamics of condensate

wavefunction is determined by

i~∂tψ↑/↓j = −J
∑

k;|k−j|=1
ψ
↑/↓
k −

(
Jψ
↓/↑
j

)
δj∈edge

+
{
V ↑/↓(rj, t)− µ+ U

∣∣∣ψ↑/↓j ∣∣∣2}ψ↑/↓j , (2.20)
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where j runs over sites in each layer. Stirring potential V l(rj, t) = V l(x, y, t) =

V l(r, φ, t) (l =↑ / ↓ for upper/lower layer) in this equation is given by

Stirring along cycle 1:

V ↑(rj, t) = V1(t)e−[(x−X(t))2+(y−Y (t))2]/2d2
1

V ↓(rj, t) = V1(t)e−[(x−X(t))2+(y−Y (t))2]/2d2
1

,

Stirring along cycle 2:

V ↑(rj, t) = V2(t)(e−(r−RA(t))2/2d2
2 + γe−γ(r−RB(t))2/2d2

2)

V ↓(rj, t) = V2(t)(γe−γ(r−RA(t))2/2d2
2 + e−(r−RB(t))2/2d2

2)
. (2.21)

Here, (X(t), Y (t)) = R0(cos 2πt
τ1
, sin 2πt

τ1
), RA(t) = R1 + (R2 − R1)

(
mod( t

τ2
, 1)
)
and

RB(t) = R1 + (R2 − R1) (mod(−t/τ2, 1)). In each stirring sequence in Fig. 2.3(b),

Vi(t)(i = 1, 2) ramps up from 0 to Vmax,i, then remains at Vmax,i, and finally ramps

down to 0. Stirring periods are τ1 = 1200~/J and τ1 = 920~/J for the first two

graphs and τ2 = 1000~/J and τ2 = 460~/J for the last two graphs.

In the simulations presented in Fig. 2.3, we consider a torus embedded in two

layers of 108×108 square lattice (ax = ay = a) with a 36×36 puncture in the middle.

Numerical parameters used in this simulation are U = 0.0041J, µ = 27.4J, Vmax,1 =

3.0J, Vmax,2 = 4.0J,R0 = 36.0a,R1 = 32.0a,R2 = 128.0a, d1 = 12.0a, d2 = 4.0a, γ =

0.2. Note that γ used in this simulation is well above the lower bound obtained in

Eq. (2.12).

By observing the course of dynamics of the atomic condensate more closely, one

can find that each addition of vorticity is accompanied by a particular procedure

of creating, moving, and annihilating vortex-antivortex pairs. For example, the
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Figure 2.7: Condensate wavefunction during the stirring procedure presented in the
leftmost graph in Fig. 2.3(b). Determination of vortex and antivortex is opposite in
upper and lower layers due to their opposite orientations of surfaces.

procedure of vorticity addition of the leftmost graph in Fig. 2.3(b) is illustrated in

Fig. 2.7. As shown in the figure, once vortex-antivortex pairs are created on the

upper and lower layers, the vortex (antivortex) in the upper (lower) layer moves

toward the inner edge, while the antivortex (vortex) in the upper (lower) layer

moves toward the outer edge. Around each edge, newly paired vortex and antivortex

annihilate with each other. This is topologically equivalent to the operation that

moves an antivortex along the loop 2 once, which results in the addition of a unit

vorticity to the loop 1. Similarly, an operation that moves an antivortex along the

loop 1 once adds a unit vorticity to the loop 2.
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2.9 Laser-Assisted Tunneling Terms for Quantum Hall Hamiltonian

Here we introduce the expression of laser-assisted tunneling terms based on the

approach of [8]. To adopt the laser-assisted tunneling in the horizontal direction, we

may apply a magnetic field with linear tilts in x and y direction to obtain additional

potential ∆x(x/ax) + ∆y(y/ay). We set ∆y 6= ∆x. For the tight-binding model with

Wannier basis {|wnm〉} and bare tunneling strength J , overall Hamiltonian with the

additional potential is

H0 =
∑

n,m∈Z

{
(n∆x +m∆y) |wnm〉 〈wnm|

− J
(
|w(n+1)m〉 〈wnm|+ |wn(m+1)〉 〈wnm|+ H.c.

)}
. (2.22)

This Hamiltonian can be diagonalized with Wannier-Stark basis {|nm〉}, which is

described by [131]

|nm〉 =
∑
r,s∈Z

Jr

( 2J
∆x

)
Js

(
2J
∆y

)
|w(n+r)(m+s)〉 , (2.23)

where Jr is the Bessel function of the 1st kind with order r. It is straightforward

to show that H0 |nm〉 = (n∆x + m∆y) |nm〉 with the aid of recurrence relation of

Bessel function, Jr−1(x) + Jr+1(x) = 2rJr(x)/x.

Now we apply pairs of Raman beams p1 and p2 with detuning c(|p1|− |p2|) =

∆x/~, q1 and q2 with detuning c(|q1| − |q2|) = ∆y/~. Then two-photon pro-

cess between the two beams generate a time-varying dipole potential Vdip(x, y, t) =
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Ωx cos(δp·r−∆xt/~−θx)+Ωy cos(δq·r−∆yt/~−θy), where δp = p1−p2 = pxx̂+pyŷ,

δq = q1 − q2 = qxx̂ + qyŷ are relative wave vectors and θx, θy are relative phases

between the two beams in each pair. In Wannier-Stark basis in the tight binding

limit (J � ∆x,∆y), this dipole potential has the following relevant components:

Ωx

2 〈nm|e
i(δp·r−∆xt/~−θx)|nm〉 = Ωx

2 eiθp(n,m)e−i(∆xt/~+θx) +O

(
ΩJ2

∆2

)
≡ A(x)

nm(t),

Ωy

2 〈nm|e
i(δq·r−∆yt/~−θy)|nm〉 = Ωy

2 eiθq(n,m)e−i(∆yt/~+θy) +O

(
ΩJ2

∆2

)
≡ A(y)

nm(t),

Ωx

2 〈(n+ 1)m|e±i(δp·r−∆xt/~−θx)|nm〉

= ΩxJ

2∆x

e±iθp(n,m)e∓i(∆xt/~+θx)
(
1− e±ipxax

)
+O

(
ΩJ2

∆2

)
,

Ωy

2 〈(n+ 1)m|e±i(δq·r−∆yt/~−θy)|nm〉

= ΩyJ

2∆x

e±iθq(n,m)e∓i(∆yt/~+θy)
(
1− e±iqxax

)
+O

(
ΩJ2

∆2

)
,

Ωx

2 〈n(m+ 1)|e±i(δp·r−∆xt/~−θx)|nm〉

= ΩxJ

2∆y

e±iθp(n,m)e∓i(∆xt/~+θx)
(
1− e±ipyay

)
+O

(
ΩJ2

∆2

)
,

Ωy

2 〈n(m+ 1)|e±i(δq·r−∆yt/~−θy)|nm〉

= ΩyJ

2∆y

e±iθq(n,m)e∓i(∆yt/~+θy)
(
1− e±iqyay

)
+O

(
ΩJ2

∆2

)
. (2.24)

Here, θp(n,m) ≡ npxax + mpyay, θq(n,m) ≡ nqxax + mqyay. Now the overall
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Hamiltonian is

H(t) = H0 + Vdip(t)

=
∑
n,m

{(
n∆x +m∆y + A(x)

nm(t) + A(x)∗
nm (t) + A(y)

nm(t) + A(y)∗
nm (t)

)
|nm〉 〈nm|

+ J

∆x

(
g(pxax)A(x)

nm(t) + g(qxax)A(y)
nm(t) + c.c.

)
|(n+ 1)m〉 〈nm|+ H.c.

+ J

∆y

(
g(pyay)A(x)

nm(t) + g(qyay)A(y)
nm(t) + c.c.

)
|n(m+ 1)〉 〈nm|+ H.c.

}
,

where g(x) = 1− eix. (2.25)

To get rid of differences in diagonal terms, we can use a transformation U to

a rotating frame,

U = exp
[
i
∑
n,m

{
n∆x +m∆y

~
t− 2 Im

(
A(x)
nm(t)
∆x

+ A(y)
nm(t)
∆y

)}
|nm〉 〈nm|

]

≡
∑
n,m

eiB(n,m) |nm〉 〈nm| . (2.26)

In this rotating frame, the effective Hamiltonian is given by

Hrot = UHU † + i~ (∂tU)U †

≡
∑
nx,ny

J (x)
nm(t) |(n+ 1)m〉 〈nm|+ J (y)

nm(t) |n(m+ 1)〉 〈nm|+ H.c.

=
∑
n,m

{
J

∆x

ei(B(n+1,m)−B(n,m))
(
g(pxax)A(x)

nm(t) + g(qxax)A(y)
nm(t) + c.c.

)
× |(n+ 1)m〉 〈nm|+ H.c.

+ J

∆y

ei(B(n,m+1)−B(n,m))
(
g(pyay)A(x)

nm(t) + g(qyay)A(y)
nm(t) + c.c.

)
× |n(m+ 1)〉 〈nm|+ H.c.

}
. (2.27)
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By using Jacobi-Anger identity eiz cos θ = ∑
r∈Z i

rJr(z)eirθ, we get

ei(B(n+1,m)−B(n,m))

= ei∆xt/~ exp
{
−i2Ωx

∆x

sin pxax2 cos(θp(n,m) + pxax/2−∆xt/~− θx)
}

× exp
{
−i2Ωy

∆y

sin qxax2 cos(θq(n,m) + qxax/2−∆yt/~− θy)
}

= ei∆xt/~
∑
r

Jr

(
−2Ωx

∆x

sin
(
pxax

2

))
ireir(θp(n,m)+pxax/2−∆xt/~−θx)

×
∑
s

Js

(
−2Ωy

∆y

sin
(
qxax

2

))
iseis(θq(n,m)+qxax/2−∆yt/~−θy),

ei(B(n,m+1)−B(n,m))

= ei∆yt/~ exp
{
−i2Ωx

∆x

sin pyay2 cos(θp(n,m) + pyay/2−∆xt/~− θx)
}

× exp
{
−i2Ωy

∆y

sin qyay2 cos(θq(n,m) + qyay/2−∆yt/~− θy)
}

= ei∆yt/~
∑
r

Jr

(
−2Ωx

∆x

sin
(
pyay

2

))
ireir(θp(n,m)+pyay/2−∆xt/~−θx)

×
∑
s

Js

(
−2Ωy

∆y

sin
(
qyay

2

))
iseis(θq(n,m)+qyay/2−∆yt/~−θy). (2.28)

For brevity, we define

Cp,x(y) ≡ (2Ωx(y)/∆x(y)) sin(px(y)ax(y)/2),

Cq,x(y) ≡ (2Ωx(y)/∆x(y)) sin(qx(y)ax(y)/2). (2.29)

By time averaging Eq. (2.27) over the time scale∼ ~/∆, we obtain following effective
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tunneling amplitudes:

J
(x)
nm,eff = JΩx

2∆x

{
ei(θp(n,m)−θx)(1− eipxax)J0 (Cp,x)

−e−i(θp(n,m)−θx)(1− e−ipxax)J2 (Cp,x) ei2(θp(n,m)+pxax/2−θx)
}
J0 (Cq,x)

= JΩx

2∆x

ei(θp(n,m)−θx)(1− eipxax) {J0 (Cp,x) + J2 (Cp,x)} J0 (Cq,x)

= JJ1 (Cp,x) J0 (Cq,x) exp{i(θp(n,m)− θx + (pxax − π)/2)},

J
(y)
nm,eff = JΩy

2∆y

{
ei(θq(n,m)−θy)(1− eiqyay)J0 (Cq,y)

−e−i(θq(n,m)−θy)(1− e−iqyay)J2 (Cq,y) ei2(θq(n,m)+pyay/2−θy)
}
J0 (Cp,y)

= JΩy

2∆y

ei(θq(n,m)−θy)(1− eiqyay) {J0 (Cq,y) + J2 (Cq,y)} J0 (Cp,y)

= JJ1 (Cq,y) J0 (Cp,y) exp{i(θq(n,m)− θy + (qyay − π)/2)}. (2.30)

Since θp and θq are linear in n and m, the resulting effective Hamiltonian

describes the charged particle under the presence of a uniform magnetic field [132].

These expressions can be further simplified in perturbative regime, Ωx,Ωy � ∆x,∆y.

In such case, Cp,x(y), Cq,x(y) � 1, so J0(C) = 1 + O(C2) and J1(C) = C/2 + O(C2).

Then by setting θx = (pxax + π)/2 and θy = (qyay + π)/2, we get

J
(x)
nm,eff = −JΩx

∆x

sin
(
pxax

2

)
exp{i(npxax +mpyay)},

J
(y)
nm,eff = −JΩy

∆y

sin
(
qyay

2

)
exp{i(nqxax +mqyay)}. (2.31)
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2.10 Beam Configuration for Quantum Hall Hamiltonian on Torus

For the simplicity of construction, we assume our lattice spans from (n,m) =

(1, 1) to (n,m) = (L,L) = (p+ 2q+ 1, p+ 2q+ 1). Here, p is the width of the square

puncture in the middle while q is the width of the square annulus, in the unit of

lattice spacing. To obtain the tunneling phases shown in Eq. (2.7), we need our

Raman beams to satisfy following conditions:

(ki+)z = −(ki−)z = (π/4)z−1
0 , i = 1 to 4. (2.32)

|k1| − |k1±| = |k3±| − |k3| = (ω1 − ω1±)/c = (ω3± − ω3)/c = ∆x/~c,

|k2| − |k2±| = |k4±| − |k4| = (ω2 − ω2±)/c = (ω4± − ω4)/c = ∆y/~c. (2.33)

(k1 − k1±)x = (k2 − k2±)x = (k3± − k3)x = (k4 − k4±)x = φ/2ax,

(k1± − k1)y = (k2± − k2)y = (k3± − k3)y = (k4 − k4±)y = φ/2ay. (2.34)

(p+ q)φ mod 2π = (q + 2)φ mod 2π = 0. (2.35)

Here, the relative phase between beams ki+ and ki− are adjusted in a way that the

vertical standing wave between them have a node at z = −z0 (i = 1, 2) or z = z0

(i = 3, 4). That is, the beam triplets T1 and T2 target the upper layer while the beam
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triplets T3 and T4 target the lower layer. Eq. (2.32) is required to guarantee that

beams labeled with + and beams labeled with − to show constructive interference

at targeted layer while they destructively interfere at the non-targeted layer. Eq.

(2.33) implies that T1 and T3 give laser-assisted tunneling in the x direction while

T2 and T4 give laser-assisted tunneling in the y direction. Eq. (2.34) ensures that

synthetic magnetic flux threading each plaquette in the outward direction to be φ,

with a choice of symmetric gauge. Expressions for laser-assisted tunneling terms

are identified in Eq. (2.30) and Eq. (2.31). With given conditions, phases of the

tunneling terms in Eq. (2.31) are given by

Arg
(
−J (x)

nm,eff

)
=


(k1 − k1,±) · rnm = (n−m)φ/2 upper layer

(k3,± − k3) · rnm = (n+m)φ/2 lower layer
,

Arg
(
−J (y)

nm,eff

)
=


(k2 − k2,±) · rnm = (n−m)φ/2 upper layer

(k4,± − k4) · rnm = −(n+m)φ/2 lower layer
,

where rnm = naxx̂ +mayŷ. (2.36)

To have the uniform synthetic magnetic field all over the torus surface, we need

to make every plaquette in the side areas to have flux φ in the outward direction.

Keeping the inter-layer tunneling real, the outward flux from each plaquette in side

areas are shown in Fig. 2.8(a). While the outward fluxes from different sides are

not identical in general, we may set all of them to be identical up to modulo of 2π.
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Figure 2.8: (a) Flux per plaquette toward the outside of torus along the side areas.
p is the width of the square puncture in the middle, and q is the width of the square
annulus. Size of the square lattice is then L × L, L = 2q + p + 1. (b) tunneling
phases of sample lattice with p = 2, q = 4, φ = π/3.

That is,

−(q + 1)φ mod 2π = (p+ q + 1)φ mod 2π = −(2q + p+ 1)φ mod 2π = φ, (2.37)

which is equivalent to the condition Eq. (2.35). To illustrate how this scheme works

altogether, tunneling phases in a lattice with p = 2, q = 4, φ = π/3 is shown in

Fig. 2.8(b). From this figure, one can check that outward flux from every single

plaquette is the same as φ.

2.11 Measurement of Topological Degeneracy

In Fig. 2.4(g), the spectral flow and the flow of the y-coordinates in the chang-

ing twist angle show very similar graphs to each other. To briefly understand the

physics behind this resemblance, we can consider the thin torus limit [133]. For
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Figure 2.9: (a) The relation between the energy splitting and difference in y-
coordinates becomes clear in the thin torus limit. Case of Np = 6, ν = 1/2 is
shown for an example. (b) Average y-coordinates during the adiabatic flux inser-
tion, in the presence of potential V (y) = (0.01J/Ly)y. Flux corresponds to αx = 4π
is inserted over the time interval of 5000~/J .

a short interaction length, the two-fold degenerate ground states for ν = 1/2 are

given as |010101 · · ·〉 and |101010 · · ·〉 where each 0 and 1 indicates the occupation

at each orbital. While there is some freedom to choose these orbitals, we select

the orbitals localized in the y direction on the torus (x, y) ∈ [0, Lx) × [0, Ly). If a

perturbative potential V (y) = (∆Vy/Ly)y is applied, the energy shift in each ground

state is proportional to the y-coordinate expectation values of each state, as shown

in Fig. 2.9(a). Since this energy splitting is a finite-size effect which should vanish in

the thermodynamic limit, the proportionality constant presented in this thin torus

limit is not precise. Yet, in a finite-size system, this effect can be experimentally

detected.

With a proper cooling scheme, we can prepare atoms to be in a particular

ground state due to the energy splitting. Yet, to observe the 4π-periodicity in

spectral flow of each state, the flux should to be inserted adiabatically. To see if

such an adibatic evolution is possible, we simulate the procedure of flux insertion

on the system in Fig. 2.4(g) [Fig. 2.9(b)]. As shown in the figure, change in y-

coordinates can be detected in a proper adiabatic time evolution. By measuring

the atomic densities for the varying twist angle, one can detect the anticipated
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periodicity and therefore measure the topological degeneracy.

2.12 Outlook

Aforementioned generalization of the scheme to a genus-g surface leads to a

topologically protected mg-fold degenerate ground-state subspace for abelian and

non-abelian FQH states. In that context, one can implement modular transforma-

tions to probe topological orders, measure fractional statistics, and realize fault-

tolerant logical gates for topological quantum computations [134,135].
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Chapter 3: Twist Defects in Optical Lattice

3.1 Introduction

Ultra-cold atoms in optical lattices have been broadly used to study a vari-

ety of coherent and many-body physics for the high tunability of the optical lat-

tices [92, 93, 136, 137]. Among many attempts to create various lattice structure in

different dimensions using this tunability of optical lattices [107, 109, 111, 138–143],

the creation of topologically non-trivial surfaces have drawn huge attentions for

its possibility to host the topologically ordered phases of matter such as fractional

quantum Hall (FQH) states [72,112] or spin liquids [113–115]. Such phases of mat-

ter is interesting not only for their rich many-body physics but also for the possible

applications in the topological quantum computation [113]. While several schemes

have been proposed to create topologically non-trivial closed surfaces for the ultra-

cold atoms [118, 144], the experimental realization of such schemes still remains as

a challenging problem.

One common challenge in the schemes suggested so far is the necessity of

creating a closed surface. To create a closed surface, one needs to connect all the

boundaries to each other and such task is often experimentally demanding. However,

one can still create topologically non-trivial surfaces by introducing twist defects in
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a bilayer system [145–149]. Here, twist defects are the point defects created at the

end of line defects that sew each layer of a bilayer system with the other layer, as

shown in Fig. 3.1(a). As long as the line defects are located far enough from the

boundary of the system, one can map the entire bilayer system with g + 1 pairs

of twist defects to a g-genus surface up to two punctures that does not harm the

topological nature of the system.

In this paper, we propose a scheme to construct a bilayer optical lattice

with multiple pairs of twist defects. Specifically, we use spin-dependent optical

lattice [150–154] in checker board shape where each spin of the atomic ground

state to represent each of layer in the bilayer system. To create pairs of twist

defects, we use Raman process to generate inter-layer tunneling across the line

defects which are set by site-resolving laser fields, where such spatially shaped

beams can be achieved with recent advancements in high-resolution imaging tech-

niques [24,94,98–100,119,155–157]. To exhibit the role of topology in the dynamics

of atoms on the creates surface, we first study the hydrodynamcis of bosonic su-

perfluid stirred around the twist defects. Specifically, we introduce sequences of

local optical manipulation that can generate quantized supercurrents and verify its

feasibility with numerical simulations. Moreover, to study the topologically ordered

phases in strongly correlated regime, we discuss a FQH model realizable on our

lattice construction. We also illustrate how the topologically ordered phases can

be measured through randomized local unitary operations even in the presence of

open boundaries. Finally, we discuss how the braiding of twist defects guided by the

modulation of the laser field can be used for the operation among the topologically
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Figure 3.1: (a) Bilayer surface with twist defects. A surface with g+1 pairs of twist
defects is topologically equivalent to a g-genus surface up to two punctures. (b) The
upper (lower) layer is consisted of atoms in the spin-up (spin-down) state. Atoms
with different spin states are put in alternating order in a checkerboard lattice. For
the demonstration purpose, a sample non-contractible loop is drawn in red.

degenerated states.

3.2 Bilayer Lattice with Twist Defects

To construct a bilayer lattice, we consider spin-up (spin-down) state of an al-

kali atomic ground state, |↑〉 (|↓〉), represents the upper (lower) layer of the bilayer

system (Fig. 3.1). With Zeeman energy splitting ε > 0, these two layers are energet-

ically separated. To avoid the undesired interaction between different layers, we let

different spin states stay on alternating sites in a checkerboard lattice. For this, we

create a spin-dependent dipole potential Vlat(r) generated by following plane wave
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laser beams with different polarizations [Fig. 3.2(a)]:

E(r, t) = E
∑
s=±1

(
eiskyx̂ + ieiskxŷ

)
e−iωt + c.c.

≡ [E1(x, y)ê1 + E−1(x, y)ê−1] e−iωt + c.c. ,

Vlat(r) = f0
∑
s=±1

[(
2

∆3/2
+ 1

∆1/2

)
E2
s (x, y)⊗ I

+
(

1
∆3/2

− 1
∆1/2

)
sE2

s (x, y)⊗ σz
]
. (3.1)

where ê±1 = (x̂± iŷ)/
√

2, ê0 = ẑ are circular polarizations and I = |↑〉 〈↑|+ |↓〉 〈↓|,

σz = |↑〉 〈↑| − |↓〉 〈↓|. ω = ck is the beam frequency, where we set ~ = 1 from

now on. f0 is the proportionality constant, and ∆1/2 (∆3/2) is the detuning from

atomic transition S1/2 → P1/2 (S1/2 → P3/2). By setting the beam frequency to

satisfy ∆3/2 = −2∆1/2, the dipole potential becomes Vlat(r) = −V0 cos kx cos ky⊗σz

where V0 = 12f0E2/∆1/2. This potential confines atoms with different spin states in

alternating sites of a checkerboard lattice with lattice spacing a = π/k. Note that

extra pair of laser beams is required to confine the atoms in the z direction.

We need a few more laser beams to to create a line defect sewing different

layers. First, we need Raman beams to restore the inter-layer tunnelings across the

designated line. For this, we shine a pair of red-detuned beams whose frequency

difference matches with the Zeeman energy spltting ε [Fig. 3.2(b)]. We set the

polarization of one of these beams to be x̂ = (ê1+ê−1)/
√

2 and the other beam to be

ẑ = ê0 so that spin state can flip through the resonant Raman process between these

beams. By shaping the beam with polarization x̂ to target only the sites around the
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Figure 3.2: (a) The spin-dependent checker board lattice is generated by pairs of
counter-propagating laser beams in the x and y direction. These beams have in-
plane polarizations, which are represented as small black arrows. (b) Different layers
are connected through the Raman beam pair with detuning equal to Zeeman energy
ε. The intensity pattern of one of these beams define the location of line defects.
Additional beam with a stripe intensity pattern generates potential barriers to block
undesired tunnelings. (c) Numerically calculated tunneling strengths for different
pairs of neighboring sites. Here, the dipole potential is evaluated with V0 = 5Er,
Vb = 25Er where Er = k2/2M is the recoil energy. Vr is set to satisfy Eq. (3.3) with
these parameters.

designated line defect, we can control the area affected by this Raman process. Next,

we need another beam that creates potential barriers to block undesired tunnelings.

In particular, we shine a blue-detuned beam targeting the area around the line

defect, with an intensity pattern of stripe ridges with period a [Fig. 3.2(b)]. Along

with the previous Raman beam targeting the same area, the overall dipole potential
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becomes

V (r) = Vlat(r) + A(r)
[
Vb sin2

(
πy

a

)
− Vr

]
, (3.2)

where the regional function A(r) is 1 if r is within the distance of a/2 from the

line defect and is 0 otherwise. Vb(Vr) is the potential amplitude created from the

blue-detuned (red-detuned) beam. Then, this potential creates barriers along the

direction of line defect which prevent atoms around the line defect to tunnel into

the other lattice sites than the nearest ones across the line defect.

To make the surface around the line defects smooth, we need to calibrate the

on-site energy of every site equal. Here, on-site energy of a lattice site is the sum

of dipole potential and the zero point energy of the harmonic confinement at that

site. Then the calibration condition is

ERI = ERO , ER = V (R) +
∑
s=x,y

√
∂2
sV (r)|r=R

4M , (3.3)

where RI (RO) is the position of a lattice site that is (is not) adjacent to the line

defects. M here is the atomic mass. This condition can be satisfied by tuning V0,

Vb and Vr in Eq. (3.2) appropriately.

In order to check if our dipole potential can generate the desired lattice model,

we numerically evaluate the different tunneling strengths based on the potential in

Eq. (3.2). For this, we calculate pseudo Wannier functions for different lattice sites

and evaluate overlaps between them to obtain different tunneling strengths. To make
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the beam design more experimentally accessible, We modify the regional function

in Eq. (3.2) so that it has smooth boundary. Calculated tunneling strengths with a

sample set of parameters satisfying Eq. (3.3) are shown in Fig. 3.2(c). As shown in

the figure, it is possible to keep the undesired tunneling strengths far weaker than

the desired tunneling strengths. Note that our optical lattice design heavily relies on

capabilities of generating arbitrary beam intensity patterns with a high precision,

while the recent progress in beam-shaping technologies enable us to engineer such

laser beams.

3.3 Quantized Supercurrents along Different Non-contractible Loops

To illustrate how topology affects the dynamics of ultracold atoms on the sur-

face with twist defects, we numerically study the hydrodynamics of weakly interact-

ing bosonic superfluid on such surface. A distinct phenomenon we can expect is the

supercurrent flowing along each non-contractible loop. While there are several ways

to create supercurrent flows in a bosonic condensate, one can stir the condensate

with extra spin-dependent potential along some of the non-contractible loops. This

requires blue-detuned dipole potentials addressing on different layers selectively, and

it can be achieved by tuning the frequency of extra beam relatively closer to one

spin-flip transition than the other transitions, remaining in the far-detuned limit

compared to the tunneling strengths [Fig. 3.3(a)]. With careful arrangement of

stirring paths, supercurrent flows along different non-contractible loops can be gen-

erated, and that dynamics can be captured through following mean-field description
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Figure 3.3: (a) The frequency of a laser beam is set close to the excitation from the
spin-up (spin-down) state to the excited spin-down (spin-up) state. By controlling
the detuning much smaller than the Zeeman energy ε and much larger than the
typical tunneling strength J , this beam can effectively generate the dipole potential
only on the upper (lower) layer. By using these layer-targeting beams as stirrers
for different non-contractible loops, one can generate supercurrent flows along those
loops. (b) Simulation of stirring procedures for different stirring loops. Generated
supercurrent flows show the quantized vorticities along the stirred non-contractible
loops. For the clarity of vorticity counting, guide lines (white) for non-contractible
loops are drawn.

of the bosonic condensate:

i~∂tψiρ = −J
∑
〈j,k〉

ψjρ̄δik − J
∑
[j,k]

ψjρδik +
{
Vρ(ix, iy, t)− µ+ U |ψiρ|2

}
ψiρ. (3.4)

Here, ψiρ is the condensate wave function at site i = (ix, iy) on layer ρ, where ix + iy

must be even (odd) for ρ =↑ (↓). ρ̄ =↓ (↑) for ρ =↑ (↓). 〈j,k〉 indicate the nearest

neighboring pairs of sites j,k that intersect with the line defects. [j,k] indicate
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pairs of sites j,k such that |j − k|2 = 2 where the pairs do not intersect with the

line defects. J is the tunneling strength, U is the on-site interaction energy, Vρ is

the stirring potential on layer ρ, and µ is the chemical potential. With this mean-

field description, we simulated the supercurrent generation procedures as shown in

Fig. 3.3(b).

Since the condensate wave function is single-valued, supercurrent flows gener-

ated along each non-contractible loop is quantized in a certain way. In particular,

up to some finite-size fluctuation, the vorticity defined as following is quantized to

an integer:

vn = 1
2πρavg

N−1∑
s=0

Im
(
ψ∗isσsψis+1σs+1

)
(3.5)

where i1σ1, · · · , iNσN = i0σ0 are lattice points along the non-contractible loop Ln.

ρavg is the average condensate occupation per site. Dyanmics of these vorticities

during the stirring procedures are presented in Fig. 3.3(b). As shown in the fig-

ure, these vorticities converge into different integers after strring, depending on the

strength and speed of stirrer.

3.4 FQH States with Twist Defects

More interestingly, strongly interacting ultracold atoms on the surface with

twist defects can exhibit exotic topological physics. A good example to study is

FQH system on such surface, and one of the simplest bosonic lattice model for such
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Figure 3.4: (a) A uniform dipole potential gradient can be created by an out-of-
focus Gaussian beam. (b) To create uniform synthetic magnetic field, we apply a
Raman beam pair with the momentum kick perpendicular to the linear potential
gradient. This makes an atom to accumulate a total phase of φ when circulating
each plaquette on each layer. (c) By applying randomized on-site potential through
site-resolving tailored laser light, one can perform random unitary operations. By
processing the particle occupation measurements followed by the random unitary
operations, one can obtain the fractional Chern number. (d) The Hall conductivity
can be determined by measuring the Hall drift of the center of mass in response of
a extra linear dipole potential gradient. (e) By slowly altering the targeting region
of the focused beams configuring the line defects, one can deform the line defects as
desired. Through some sequences of such deformation, one can braid arbitrary two
twist defects.

system is Harper-Hofstadter-Hubbard (HHH) Hamiltonian [132,158]:

H =
∑
ρ=↑,↓

∑
i

U

2 a
†2
iρa

2
iρ − J ′

∑
〈i,j〉

a†iρajρ̄ − J
∑
[i,j]

(
eijxφ/2a†iρajρ + H.c.

) . (3.6)

Here, a†iρ creates an atom at site i = (ix, iy) on layer ρ, where ix + iy must be

even (odd) for ρ =↑ (↓). Conventions for ρ̄, 〈i, j〉, and [i, j] are the same as in

Eq. (3.4). J and J ′ are the effective intra- and interlayer tunneling strengths,
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U is the on-site interaction energy. φ represents the threaded flux per each square

plaquette on each layer. This HHH Hamiltonian is known to host the bosonic lattice

version of Laughlin states [158]. In the presence of g + 1 pairs of twist defects,

the Laughlin states with filling fraction 1/m (m even) have mg-fold topologically

protected degeneracy, just as in the g-genus surface [147].

The HHH Hamiltonian can be realized within our setup by using the laser-

assisted tunnelings [7, 8]. For this, we require a uniform dipole potential gradient

which can be created by an out-of-focus Gaussian beam. This potential gradient

introduces a uniform on-site energy difference between nearby lattice sites in its

direction, and a pair of Raman beams is applied in a way that their detuning matches

to this on-site energy difference. By adjusting the direction of momentum kick from

the Raman beam pair to be perpendicular to the dipole potential gradient, one can

create synthetic flux φ per each square plaquette on each layer. Along with the

on-site interaction between atoms, this scheme complete the HHH Hamiltonian in

Eq. (3.6).

Furthermore, pairs of twist defects not only provide a topologically non-trivial

surface, but also can be used for non-trivial quantum operations on the topological

states hosted on this surface. For instance, the braiding of twist defects follow a

non-Abelian statistics despite the fact that underlying Laughlin states only have

Abelian quasiparticles [145, 147, 148]. That is, by braiding different twist defects,

one transforms the topological quantum state to a different state rather than mere

acquisition of a phase factor. Such braiding operation can be naturally performed

in our setup, since the location of line defects are solely defined by the target area of
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focused laser beams. By slowly adjusting the targeting area of these beams, one can

deform the line defects as desired. By undergoing a sequence of such deformations,

one can do arbitrary braiding of twist defects as presented in Fig. 3.4(e). If the

deformation of line defects is inconvenient, there is also another way to realize the

braiding operations by performing a sequence of projective measurements [134].

While our scheme prepares the FQH states in the presence of open boundaries,

there are still several ways to measure the topological properties of these states. In

a recently developed scheme using randomized measurement [159, 160], the atom

population over the lattice is measured repeatedly given the application of random-

ized unitary operation, and one can calculate the many-body Chern number out of

these population measurement results. The randomized unitary operation in this

process can be realized in our setup by applying randomized disorder dipole po-

tential through a site-resolving, arbitrarily shapable laser beam [Fig. 3.4(c)]. Also,

one can determine the Hall conductivity by measuring the Hall drift speed of the

atomic center of mass as a linear response to a extra uniform dipole potential gra-

dient [9, 161]. It is also possible to do projective measurement of the many-body

states by using an interferometry using an auxiliary qubit [135,162].

3.5 Evaluation of Tunneling Strength

To evaluate tunneling strength between neighboring sites, we numerically cal-

culate a pseudo-Wannier function for each lattice site based on the lowest band. To

be concrete, let our lattice sites are located at Rm,n = r0 + ma1 + na2 where r0
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is the origin and a1, a2 are primitive lattice vectors. Let us define region Am,n as

Am,n = {r|[(r − r0) · a1] = m, [(r − r0) · a2] = n} where [x] indicates the largest

integer smaller than or equal to x. For a given potential V (r), we numerically solve

the Schrodinger equation

H = − 1
2M∇

2 + V (r) (3.7)

with the standard finite difference method with the meshes divided in the directions

of a1 and a2. We solve this equation over each Am,n with the periodic boundary con-

ditions, and take the ground state wavefunction ψmn(r) and set it vanishes outside

of Am,n. Now we construct a large region A = A(m1,n1)(m2,n2) ≡
⋃m2
m=m1

⋃n2
n=n1 Amn.

Denote Q1 = m2 −m1 + 1, Q2 = n2 − n1 + 1, and Q = Q1Q2. By solving Eq. (3.7)

over A(m1,n1)(m2,n2) with the periodic boundary conditions, we obtain the s-th lowest

state wavefunction Ψs(r) for s = 1, · · · , Q. Also we order the lattice sites in this

large region as (m,n)→ l = (m− 1)Q2 + n. Now we construct a Q×Q matrix M

such that

M ′
ls =

∫
Al

Ψ∗l (r)Ψs(r)d2r, Mls = M ′
ls

 Q∑
t=1
|M ′

ts|
2

−1/2

. (3.8)

For each unit vector hi such that (hi)j = δij, we find gi = M−1hi. Then we define

our pseudo Wannier function for stie i as

Wi(r) =
Q∑
s=1

(gi)sΨs(r). (3.9)
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Note that for a periodic potential V (r) = V (r + a1) = V (r + a2), this expression

represent exact Wannier functions which satisfy
∫
AW∗i (r)Wj(r)d2r = δij.

To find the tunneling strengths between sites (m,n) and (m + 1, n), we find

the pseudo Wannier function for the large region A = A(m−1,n−1)(m+2,n+1). Then the

tunneling strength between these sites are given by

J(p,q)(p+1,q) =
∣∣∣∣∫
A
W∗m+1,n(r)

[
− 1

2M∇
2 + V (r)

]
Wm,n(r)d2r

∣∣∣∣ . (3.10)

To apply this method to our checker board lattice, we set a1 = ax̂ + aŷ,

a2 = −ax̂ + aŷ, and r0 = 0 (ax̂) for the upper (lower) layer. Let us denote the

Wannier functions for the upper (lower) layer as W↑(↓)p,q (r) . Intra-layer tunnelings

in Fig. 3.2(c) can be evaluated with Eq. (3.10), while we use the potential in Eq.

(3.2) with V0 = 5Er, Vb = 25Er, and Vr =
√

(Vb + V0/2)Er −
√
V0Er/2. We replace

the regional function A(r) with a function with the smooth boundary. For example,

to target the lattice sites at pax̂ + qaŷ (p = p1, p1 + 1 and q = q1, · · · , q2), we use

the following regional function

A(r) = h(x/a, p1 − d, p1 + 1 + d, w)h(y/a, q1 − d, q2 + d, w),

h(s, s1, s2, ws) =



1 if
∣∣∣s− s1+s2

2

∣∣∣ < s2−s1−ws
2

1+sin{π(s−s1)/ws}
2 if |s− s1| ≤ ws/2

1−sin{π(s−s2)/ws}
2 if |s− s2| ≤ ws/2

0 if
∣∣∣s− s1+s2

2

∣∣∣ > s2−s1+ws
2

(3.11)

where we set d = w = 0.1 in Fig. 3.2(c).
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3.6 Details of Supercurrent Flow Generation Simulation

As presented in Eq. (3.4), the mean-field description of the bosonic condensate

is given by

i~∂tψiρ = −J
∑
〈j,k〉

ψjρ̄δik − J
∑
[j,k]

ψjρδik +
{
Vρ(ix, iy, t)− µ+ U |ψiρ|2

}
ψiρ. (3.12)

Here, ψiρ is the condensate wave function at site i = (ix, iy) on layer ρ, where ix + iy

must be even (odd) for ρ =↑ (↓). ρ̄ =↓ (↑) for ρ =↑ (↓). 〈j,k〉 indicate the nearest

neighboring pairs of sites j,k that intersect with the line defects. [j,k] indicate pairs

of sites j,k such that |j − k|2 = 2 where the pairs do not intersect with the line

defects. J is the tunneling strength, U is the on-site interaction energy, Vρ is the

stirring potential on layer ρ, and µ is the chemical potential.

For the numerical simulations in Fig. 3.3, the condensate wavefunction is ini-

tially prepared as the static solution of Eq. (3.12) for Vρ(ix, iy, t) = 0 on a 120×120

square lattice so that the lattice site ix, iy is located at x = (ix−0.5)a, y = (iy−0.5)a.

We set µ = 30J and U = 0.004J . The line defects are located at x = 40a and

x = 80a for y ∈ [40a, 80a]. For the stirring sequences along the non-contractible
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loop L1, the stirring potential is set to be

Vρ(ix, iy, t)|L1
= V0R1(t)

∑
C=A,B

e−{((ix−0.5)a−XC,ρ(t))2+((iy−0.5)a−YC,ρ(t))2}/(2r2
0),

R1(t) =



t/τ ′1 0 ≤ t < τ ′1

1 τ ′1 ≤ t < τ1 − τ ′1

(τ1 − t)/τ ′1 τ1 − τ ′1 ≤ t < τ1

0 τ1 ≤ t

, t̄ = mod(t, T ),

XA,↑(t) =



x1 + vt̄ 0 ≤ t̄ < Tx

x2 Tx ≤ t̄ < Tx + Ty

x2 − v(t̄− Tx − Ty) Tx + Ty ≤ t̄ < 2Tx + Ty

x1 2Tx + Ty ≤ t̄ < 2Tx + 2Ty

,

YA,↑(t) =



y1 0 ≤ t̄ < Tx

y1 + v(t̄− Tx) Tx ≤ t̄ < Tx + Ty

y2 Tx + Ty ≤ t̄ < 2Tx + Ty

y1 + v(T − t̄) 2Tx + Ty ≤ t̄ < 2Tx + 2Ty

,

XB,↑(t) = 120a−XA,↑(t), YB,↑(t) = YA,↑(t), XA,↓(t) = XA,↑(t),

YA,↓(t) = 120a− YA,↑(t), XB,↓(t) = 120a−XA,↑(t), YB,↓(t) = 120a− YA,↑(t),

v = x2 − x1 + y2 − y1

T/2 , Tx = x2 − x1

v
, Ty = y2 − y1

v
. (3.13)

Here, x1 = 30a, x2 = 50a, y1 = 20a, y2 = 100a, r0 = 10a. For the sequence that

quantized v1 to 1, V0 = 25J , τ1 = 320J−1, τ ′1 = 32J−1, T = 640J−1. For the

sequence that quantized v1 to 2, V0 = 26J , τ1 = 265J−1, τ ′1 = 26.5J−1, T = 530J−1.
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The stirring potential for the sequences along the non-contractible loop L2 is

Vρ(ix, iy, t)|L1
= V0R2(t)

∑
ρ′
Sρρ′(t)

×
∑

C=A,B
e−{((ix−0.5)a−XC,ρ′ (t))2+((iy−0.5)a−YC,ρ′ (t))2}/(2r2

0),

R2(t) =



t/τ ′2 0 ≤ t < τ ′2

1 τ ′2 ≤ t < τ2 − τ ′2

(τ2 − t)/τ ′2 τ2 − τ ′2 ≤ t < τ2

0 τ2 ≤ t

, t̄ = mod(t, T ),

S↑↑(t) =



1
2 − (vt̄− 40a+ x1)/∆ |40a− x1 − vt̄| ≤ ∆/2

0 |60a− x1 − vt̄| ≤ 20a−∆/2

1
2 + (vt̄− 80a+ x1)/∆ |80a− x1 − vt̄| ≤ ∆/2

1 elsewhere

,

XA,↑(t) =



x1 + vt̄ 0 ≤ t̄ < Tx

x2 Tx ≤ t̄ < Tx + Ty

x2 − v(t̄− Tx − Ty) Tx + Ty ≤ t̄ < 2Tx + Ty

x1 2Tx + Ty ≤ t̄ < 2Tx + 2Ty

,

YA,↑(t) =



y1 0 ≤ t̄ < Tx

y1 + v(t̄− Tx) Tx ≤ t̄ < Tx + Ty

y2 Tx + Ty ≤ t̄ < 2Tx + Ty

y1 + v(T − t̄) 2Tx + Ty ≤ t̄ < 2Tx + 2Ty

,
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S↓↓(t) = S↑↑(t), S↑↓(t) = S↓↑(t) = 1− S↑↑(t),

XB,↑(t) = XA,↑(t), YB,↑(t) = 120a− YA,↑(t), XA,↓(t) = 120a−XA,↑(t),

YA,↓(t) = YA,↑(t), XB,↓(t) = 120a−XA,↑(t), YB,↓(t) = 120a− YA,↑(t),

v = x2 − x1 + y2 − y1

T/2 Tx = x2 − x1

v
, Ty = y2 − y1

v
. (3.14)

Here, x1 = 20a, x2 = 100a, y1 = 70a, y2 = 90a. For the sequence that quantized

v2 to 1, V0 = 18J , τ1 = 335J−1, τ ′1 = 33.5J−1, T = 670J−1. For the sequence that

quantized v2 to 2, V0 = 18J , τ1 = 320J−1, τ ′1 = 32J−1, T = 640J−1.

3.7 Laser-assisted Tunneling and Quantum Hall Hamiltonian

The Hamiltonian of the checker board lattice with a linear potential gradient

is described by

H0 =
∑
n

ny∆ |Wn〉 〈Wn| − J0
(
|Wnx−1,ny+1〉 〈Wn|+ |Wnx+1,ny+1〉 〈Wn|+ H.c.

)
, (3.15)

where |Wn〉 = |Wnx,ny〉 is the Wannier state at site n = (nx, ny). In the limit that

J0 � ∆, this Hamiltonian can be diagonalized as

H0 =
∑
n

ny∆ |n〉 〈n|+O

(
J2

0
∆

)
,

where |n〉 = |nx, ny〉 ≡ |Wnx,ny〉+
∑
p=±1

∑
q=±1

qJ0

∆ |Wnx+p,ny+q〉 . (3.16)

Now we apply a pair of Raman beams with detuning ∆ and the momentum kick of

δk = δkx̂, δka mod 2π = φ/2. The time-dependent dipole potential by this beam
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pair is V (r, t) = Ω cos(δkx−∆t− θ). By considering a transformation to a rotating

frame U = exp(iHt), relevant components of this potential are 〈nx ± 1, ny + 1|V |n〉 =

(J0/2∆)(e±iδka − 1)
[
ei(nxφ/2−∆t−θ) + c.c.

]
. In the perturbative Raman beam regime

(Ω� ∆), we can get following effective Hamiltonian,

Heff = U(H + V )U † + i (∂tU)U †
∣∣∣
Ω�∆

=
∑
n

∑
p=±1

ei∆t 〈nx + p, ny + 1|V |n〉 |nx + p, ny + 1〉 〈n|+ H.c.

∣∣∣∣∣∣
Ω�∆

=
∑
n

∑
p=±1

ΩJ0

∆ sin
(
δka

2

)

×ei[nxφ/2−θ+p(δka+π)/2] |nx + p, ny + 1〉 〈n|+ H.c., (3.17)

which is equivalent to the non-interacting part of Eq. (3.6) in the region except line

defects, up to some irrelevant constant phases.

3.8 Braiding of Twist Defects

To deal with a surface with g + 1 pairs of twist defects, let us label the twist

defects and non-contractible loops as in Fig. 3.5(a). Here, we only consider the twist

defects and loops with natural number indices. With this convention, one can see

that the counter-clockwise braiding of twist defect p and q, Rp,q = Rq,p, acts on each

non-contractible loop as following:

R2k−1,2k :


βk−1 → βk−1 + αk−1 − αk

βk → βk − αk−1 + αk

(1 ≤ k ≤ g + 1),

R2k,2k+1 : αk → αk − βk (1 ≤ k ≤ g), (3.18)
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Figure 3.5: (a) Non-contractible loops around twist defects. (b) Transformation of
non-contractible loops under the braiding of neighboring twist defects.

while other loops remain unchanged and α0 = β0 = αg+1 = βg+1 = 0. Also, braiding

of distant twist defects can be expressed as

Ri,j = R−1
i,i+1 · · ·R−1

j−2,j−1Rj,j−1 · · ·Ri+1,i (i < j). (3.19)

To see how these braiding operations change the FQH ground states in detail,

let us consider the Laughlin states with filling fraction ν = 1/m from now on.

If we denote the Wilson loop operator along the loop γ as W (γ), W (γ)W (γ′) =

exp[−i(2π/m)]W (γ′)W (γ) if γ pass through γ′ from the left to the right. Therefore,

W (αi)W (βj) = exp[−i(2π/m)δij]W (βj)W (αi), (3.20)

where all the other pairs of Wilson loop operators commute to each other. ThenWm
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commutes with any Wilson loop operator, so we can considerWm = 1. Since Wilson

loop operator is unitary, eigenvalues of any W are restricted to ei2πn/m, n ∈ Zm.

Then we can choose bases for the ground states as

W (αi) |· · · , nj, · · ·〉α = ei2πnj/m |· · · , nj, · · ·〉α ,

W (βi) |· · · , nj, · · ·〉α = |· · · , nj − 1 mod m, · · ·〉α ,

W (αi) |· · · , nj, · · ·〉β = |· · · , nj + 1 mod m, · · ·〉β ,

W (βi) |· · · , nj, · · ·〉β = ei2πnj/m |· · · , nj, · · ·〉β , (3.21)

for j = 1, · · · , g, nj ∈ Zm. Let Up,q be the unitary operation acts on the ground

states by performing the braiding Rp,q. Since R2k,2k+1 : αk → αk − βk,

U2k,2k+1W (αk)U †2k,2k+1 = eiχW (αk)W †(βk)

→ (Z2 layer-exchange symmetry) →

U2k,2k+1W
†(αk)U †2k,2k+1 = eiχW †(αk)W (βk)

↔ U2k,2k+1W (αk)U †2k,2k+1 = e−i(χ+2π/m)W (αk)W †(βk)

→ ei2χ = e−i2π/m, χ = rπ − π/m (r ∈ Z). (3.22)
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Since W (α)m = W (β)m = I,

U2k,2k+1W (αk)mU †2k,2k+1 = eimχ
[
W (αk)W †(βk)

]m
= eimχe−i(2π/m)[m(m−1)/2]W (αk)mW †(βk)m

= eiπm(r−1) = U2k,2k+1U
†
2k,2k+1 = I, (3.23)

so we can choose any r such that r ≡ m mod 2. Without loss of generality, we set

r = m. Now this braiding acts non-trivially only on {|nk〉β ≡ |· · · , nk, · · ·〉β |nk ∈

Zm}, so

U2k,2k+1 |nk〉β = U2k,2k+1W (αk) |nk − 1〉β = eiχW (αk)W †(βk)U2k,2k+1 |nk − 1〉β

= einkχ
[
W (αk)W †(βk)

]nk |0〉β
= einkχei(2π/m)[nk(nk+1)/2]W †(βk)nkW (αk)nk |0〉β

= e−iπ(n2
k/m+mnk) |nk〉β , (3.24)

with U2k,2k+1 |0〉β = |0〉β. We may repeat this procedure for braiding R2k−1,2k as
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well,

U2k−1,2kW (βk−1)U †2k−1,2k = eiχ
′
W (βk−1)W (αk−1)W †(αk)

→ (Z2 layer-exchange symmetry) →

U2k−1,2kW
†(βk−1)U †2k−1,2k = eiχ

′
W †(βk−1)W †(αk−1)W (αk)

↔ U2k−1,2kW (βk−1)U †2k−1,2k = e−i(χ
′+2π/m)W (βk−1)W (αk−1)W †(αk)

→ ei2χ
′ = e−i2π/m, χ′ = rπ − π/m (r ∈ Z), (3.25)

U2k−1,2kW (βk−1)mU †2k−1,2k = eimχ
′ [
W (βk−1)W †(αk−1)

]m
W †(αk)m

= eimχei(2π/m)[m(m+1)/2]W (βk−1)mW †(αk−1)mW †(αk)m

= eiπ[m(r−1)+2] = U2k,2k+1U
†
2k,2k+1 = I, (3.26)

so set r = m again without loss of generality. These results hold for k−1↔ k. This

braiding acts non-trivially only on {|nk−1, nk〉α ≡ |· · · , nk−1, nk, · · ·〉α |nk−1, nk ∈
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Zm}, so

U2k−1,2k |nk−1, nk〉α

= U2k−1,2kW (βk−1) |nk−1 + 1, nk〉α

= eiχ
′
W (βk−1)W (αk−1)W †(αk)U2k−1,2k |nk−1 + 1, nk〉α

= ei(m−nk−1)χ′
[
W (βk−1)W (αk−1)W †(αk)

]m−nk−1
U2k−1,2k |0, nk〉α

= ei(2m−nk−1−nk)χ′
[
W (βk−1)W (αk−1)W †(αk)

]m−nk−1

×
[
W (βk)W (αk)W †(αk−1)

]m−nk |0, 0〉α
= ei(2m−nk−1−nk)χ′ei(2π/m)[(m−nk−1)(m−nk−1+1)/2]ei(2π/m)[(m−nk)(m−nk+1)/2]

×W (αk−1)m−nk−1W (βk−1)m−nk−1W †(αk)m−nk−1

×W (αk)m−nkW (βk)m−nk |0, 0〉α

= eiπ[n2
k−1/m+n2

k−1/m−m(nk−1+nk)]

×W (αk−1)m−nk−1W (βk−1)m−nk−1ei2πnk(nk−1−nk)/m |0, nk〉α

= eiπ[n2
k−1/m+n2

k−1/m−m(nk−1+nk)]ei2πnk−1(m−nk−1)/mei2πnk(nk−1−nk)/m |nk−1, nk〉α

= e−iπ[(nk−1+nk)2/m+m(nk−1+nk)] |nk−1, nk〉α (3.27)

with U2k−1,2k |0, 0〉α = |0, 0〉α.

As the simplest example, consider the case of ν = 1/2 Laughlin states with

two pairs of twist defects. Then the braiding operations become

U1,2 = |0〉 〈0|α − i |1〉 〈1|α = 1− i
2

(
|0〉 〈0|β + |1〉 〈1|β

)
+ 1 + i

2
(
|0〉 〈1|β + |1〉 〈0|β

)
,

U2,3 = |0〉 〈0|β − i |1〉 〈1|β . (3.28)
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3.9 Outlook

While we considered bilayer square lattice in this work, similar optical lattice

construction may be created for different bilayer lattice geometries and twist defects

within them. Such variety in lattice geometry would help to realize different kinds

of lattice models on the topologically non-trivial surface.

Presence of long-ranged interactions, such as Rydberg interaction [163] or

dipole interaction between polar molecules [164], can also help creating various quan-

tum many-body states. For example, the presence of interaction between different

spins on a FQH Hamiltonian can help generating Halperin states [165] which can

have ground state degeneracy not accessible by Laughlin states [146,147].

With further efforts in engineering different geometries and interactions, one

may construct a Hamiltonian hosting non-Abelian states such as the Kitaev model

[76]. If such non-Abelian states are prepared, the presence twist defects and braiding

operations of them can realize the universal topological quantum computation [147].
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Chapter 4: Optical Imprinting of Superlattices in Two-dimensional

Materials

4.1 Introduction

A superlattice structure in two-dimensional (2D) materials has opened a new

way to engineer electronic bands, starting with the investigation on a honeycomb

superlattice structure in monolayer graphene [166]. Recently, Moiré pattern in a

twisted-bilayer van der Waals heterostructure has been immensely successful in

generating a variety of band structures, including Hofstadter butterfly [167, 168]

and flat bands [169–173]. These bands can induce intriguing strongly correlated

phases such as fractional Chern insulator [168], anomalous Hall phase [174, 175],

Mott insulating phase [173,176–178], nontrivial magnetic phases [174,179–181], and

superconductivity [172, 178, 182–184]. Yet, this passive way of creating a superlat-

tice has been largely limited by the microscopic structure of the 2D materials since

different samples should be prepared for different superlattice structures. Therefore,

it is interesting to find alternative ways to synthesize a spatiotemporal structure in

2D materials.

At the same time, the recent progress in the beam-shaping technique has en-
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abled the generation of arbitrary beam patterns with high resolution comparable to

the optical wavelengths [94, 98–100, 119, 185], which already found remarkable suc-

cesses in ultracold-atom systems [24–28]. This wide tunability of light can be natu-

rally applied to 2D electronic systems to imprint arbitrary superlattices, regardless

of the underlying microscopic lattice structure. This is particularly interesting in the

context of the “Floquet topological insulator,” where the illumination of circularly

polarized (CP) light can turn a trivial system into a topological insulator [186–195].

In this chapter, we propose a method to create superlattice structures in a

2D material by shining spatially periodic laser beams, as schematically shown in

Fig. 5.1. We illustrate the idea with an example of monolayer graphene irradiated by

a circularly polarized beam with a superlattice structure, where the beam amplitude

is spatially periodic. To demonstrate the tunability of this superlattice structure

and unique physics originating from the superlattice, we first study the case of a

square superlattice and explore the topological phase transition induced by varying

the superlattice size. Then, we investigate the topological phase transitions, when

the square superlattice is sheared to a stretched hexagonal one. In particular, we

examine the relationship between this topological phase transition and the role of

lattice geometry in creating complex tunneling phases. Further, we demonstrate

the possibility of creating more exotic lattices by superposing multiple lattices, with

an example of tuning between a hexagonal and a kagome lattice where the flat

bands can be obtained. These flat bands particularly can harbor strongly correlated

phenomena in Floquet systems.
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4.2 Graphene with Spatially Patterned Light

Let us consider a monolayer graphene with the inter-atomic distance a and the

tight-binding energy t between the nearest neighbors. The low-energy description

for this monolayer graphene under the electromagnetic field A(r, t) is given by

H = v [p + eA(r, t)] · (τzσxx̂ + σyŷ) , (4.1)

where σx, σy, σz are Pauli matrices acting on sublattice degrees of freedom, v =

(3/2)ta is the Fermi velocity at Dirac points, and τz = ±1 is the valley index [196].

In particular, if we shine the CP beam with spatial amplitude pattern A(r, t) =

A0(r)eiωt(x̂ + iŷ) + c.c. (Fig. 5.1), the effective Floquet Hamiltonian to the first

order in ω−1 becomes [78–81,186,197–199]

Heff = v(τzpxσx + pyσy) + τz
4e2v2

ω
|A0(r)|2 σz. (4.2)

We denote the peak amplitude of A0(r) as A0. Then, Eq. (4.2) becomes a valid

description when frequency ω is high enough (ω � evA0) and the amplitude varies

in length scale larger than a (A0/max {|∇A0(r)|} � a). For brevity, we set ~ = 1

from here on.

We specifically study the superlattice structure created by a spatially periodic

amplitude |A0(r)| = |A0(r + L1)| = |A0(r + L2)|. While the 2D material with

spatially modulated beams has been studied in the different contexts [200–202],
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Figure 4.1: A 2D material irradiated by a spatially periodic CP light with frequency
ω. Here, we use the example of a monolayer graphene. The superposition of multiple
CP Gaussian beams generates a periodic amplitude pattern A0(r) with translation
vectors L1 and L2. |L1| = l. Upper inset: We denote the interatomic distance of
the graphene as a and the tight-binding energy between the nearest neighbors as
t. Lower inset: Each Gaussian beam has a peak amplitude A0 and a half waist w
(black lines). The overall beam amplitude (red line) results from the superposition
of the Gaussian beams.

here we investigate the generation of a superalttice with spatially periodic beams. In

particular, to make the beam experimentally relevant, we consider the superposition

of CP Gaussian beams positioned on the superlattice,

A0(r) =
∑
n1,n2

A0 exp
(
−|r− n1L1 − n2L2|2

2w2

)
, (4.3)

where w is the radius of each Gaussian beam. This beam configuration is achievable

with recent progress in beam-shaping technologies [94, 98–100, 119, 185]. For the
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cases |L1|, |L2| = l � a, the Brillouin-zone folding occurs on a momentum scale

1/l. Furthermore, the hybridization of Floquet sidebands is suppressed for v/l� ω

so that the low-energy description is captured by Eq. (4.2) (see Appendix A).

We obtain Bloch eigenstates |ψm,k〉 and eigenenergies Em,k, where m is the band

index and k is the crystal momentum within the Brillouin zone set by reciprocal

lattice vectors of L1 and L2. Note that Eq. (4.2) preserves particle-hole symmetry

(σxH∗effσx = −Heff) and therefore the energy spectrum is symmetric with respect to

the zero energy. Also, σyHeffσy = Heff|τz→−τz , so two valleys have the same spectrum

and eigenstates up to a unitary operation, σy. This also ensures that both valleys

have the same Chern number. For brevity, let us only consider the τz = 1 valley

from now on.

4.3 Illumination of Square Superlattice

We first consider the simplest case of a square superlattice, L1 = lx̂ and L2 =

lŷ. Before directly diagonalizing Eq. (4.2), we can make some speculations. First of

all, the contribution from the spatial average of |A0(r)| opens up the gap around the

zero energy (∆b) as in the case of the graphene under the CP uniform light, where

the Chern number, C1, of the first band above E = 0 is nonzero [186–188,200,203].

C1 remains nonzero for small l, as far as the maximum kinetic energy within the

Brillouin zone, which is of the order of v/l, is much larger than the spatial Fourier

components of the σz term in Eq. (4.2), which is of the order of e2v2A2
0/ω. On

the other hand, as l → ∞, the contribution of the kinetic term becomes negligible
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and therefore the bands become flat. Also, the Bloch wavefunctions look similar

regardless of k and therefore the bands become topologically trivial. Therefore,

there must be a topological phase transition where C1 changes from a nonzero value

to zero as we increase l. This topological transition would occur at a superlattice

size that makes the two energy scales e2v2A2
0/ω and v/l comparable to each other.

For a succinct description of this phase transition, we use the rescaled superlattice

size

χ = (ve2A2
0/ω)l (4.4)

so that the critical superlattice size χc is O(1). Here, χ represents the ratio of the

effective superlattice potential over the kinetic energy.

To study the detail of this topological phase transition, we numerically diago-

nalize Eq. (4.2) as shown in Fig. 5.2(a). Along with the energy spectrum, we present

the Chern number C of each band calculated based on Ref. [204]. In Fig. 5.2, we set

A0 = 0.006(ea)−1, ω = 0.06t, and w/l = 0.3. With these parameters, we can check

that the topological phase transition occurs at χc = 0.965, which is close to 1. This

topological transition accompanies the direct gap closing at k = M and the band

inversion between the first- and second-lowest positive-energy bands. To see this,

we compare the particle and current densities of the lowest positive-energy band’s

wave function at the direct gap closing point. Here, for the Bloch wavefunction of
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Figure 4.2: (a) Energy spectrum for square superlattices with different superlattice
size χ. We set A0 = 0.006(ea)−1, ω = 0.06t, and w/l = 0.3. Only the positive-
energy spectrum is shown for simplicity. The Chern numbers of low-lying bands,
C, are presented as colors. The topological phase transition occurs at χc = 0.965.
Upper inset: Direct gap at k = M between the first- and the second-lowest positive
band (δM) is plotted in the vicinity of χc. Lower insets: The particle density n(r)
and current density j(r) of the Bloch wavefunction of the lowest positive band at
k = M are shown for χ = 0.8 < χc and χ = 4 > χc. In the density plots, the centers
of the Gaussian beams are located at the corners of the plotted region. The particle
density is shown in units of l−2. The amplitude of the current density is presented
with the color in units of ev/l2 and the direction of j(r) is represented by arrows.
(b) Orbital magnetizationMorb for the lowest positive band for different superlattice
sizes. (c) For the lowest positive band, we plot the energy gap below the band (∆b),
the energy gap above the band (∆t), the direct band gap at k = M (δM), and the
bandwidth (δE) with respect to the superlattice size χ. α0 is the minimum value of
(4e2v2/ω)|A0(r)|2. The black dashed lines are asymptotic lines showing that El/v
is constant, indicating E ∝ χ−1.
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the mth band, ψ(r) = 〈r|ψm,k〉, the particle and current densities are given by

n(r) = ψ†(r)ψ(r), (4.5)

j(r) = −eψ†(r)∂Heff

∂p
ψ(r) = −evψ†(r) (σxx̂ + σyŷ)ψ(r).

The comparison of n(r) and j(r) before (χ = 0.8) and after (χ = 4) the transition

point shows a drastic change in the wave function, which signifies that the band

inversion has occurred in the phase transition. In the current density plot, one can

also find that the circulation direction of the electron flips as the band inversion

occurs. This phenomenon can also be captured in the calculation of the mth band

contribution to the orbital magnetization [205–207],

Morb = Im
∫ d2k

(2π)2 e
∂ 〈um,k|
∂kx

(Hk + Em,k) ∂ |um,k〉
∂ky

, (4.6)

where |um,k〉 = e−ik·r |ψm,k〉 and Hk = e−ik·rHeffe
ik·r. In Fig. 5.2(b), one can see

that Morb of the lowest positive band shows the sign flip at the phase transition

point, agreeing with the observation in the current density plots. We also remark

that even if this topological phase transition theoretically exists regardless of the

Gaussian beam size, it is desirable to keep w comparable to l for experimental

realizations since a fainter superlattice will imply a smaller direct band gap.

This topological phase transition could be experimentally detected in several

ways. The change in C1 causes the difference in the Hall current carried by the chiral

edge state, and such difference can be revealed by transport measurements, similar to
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Ref. [190]. For the bulk property, one can measure the orbital magnetization, where

the sudden jump would be observed at the phase transition shown in Fig. 5.2(b).

As the superlattice size χ increases, the electrons become localized at the local

minima of |A0(r)|. This provides an explanation for the exponential suppression of

the bandwidth of the lowest positive-energy band (δE) in χ [Fig. 5.2(c)]. For well-

localized electrons, the dynamics can effectively be described by a tight-binding

model, and the tunneling energy of that model is approximately given by the WKB

integrals. This integral decays exponentially with the distance between the super-

lattice sites, so the bandwidth decreases exponentially as well. The band gaps (∆b,

∆t, δM) decay as O(χ−1), where the details of this band gap scaling are explained

in the Appendix B.

4.4 Superlattice Shearing

To further investigate the role of the superlattice geometry, let us shear the

square superlattice by angle θ so that L1 = lx̂ and L2 = l(tan θx̂ + ŷ). From the

perspective of the Floquet Chern insulator created by uniform CP light, in a large

superlattice size limit where the tight-binding description is valid, we might inter-

pret the electron tunneling between superlattice sites as the chiral currents around

the strongly irradiated region. That is, the paths that these chiral currents flow

would give the major contribution to the path integral from one superlattice site

to another. In this viewpoint, two superlattice sites can have a complex tunneling

phase between them if the system has no reflection symmetry along the line con-
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Figure 4.3: (a) We shear a square lattice by angle θ. Tunneling between two sites can
be understood as the flow of chiral edge currents around each Gaussian CP beam.
If the system has reflection symmetry around the line connecting the two sites,
this tunneling should be real. Otherwise, the tunneling can have a complex phase.
As examples, the next-nearest-neighbor tunnelings for the θ = 0, π/4 case and the
θ = tan−1(1/2) case are presented. (b) The Chern number of the lowest positive
energy band C1 is shown as a phase diagram between the shearing angle θ and the
superlattice size χ. (c) Energy spectra for χ = 2.4 at selected angles are shown
where the colors of low-lying bands represent the Chern numbers. The particle
density in units of l−2 is plotted for angles before and after the phase transition.

88



necting the two sites [Fig. 5.3(a)], which is analogous to Ref. [16]. Then we can see

that the tunneling terms of the tight-binding model for the square lattice (θ = 0 and

θ = π/4) are real. At angles close to θ = tan−1(1/2), the localized electrons form

a hexagonal superlattice under a uniform strain and can have complex tunneling

phases between the next-nearest neighbors. Then we can construct a tight-binding

model for the lowest positive band similar to the Haldane model [208], as explained

in the Appendix C. Similar to the Haldane model, a complex tunneling phase in the

next-nearest-neighbor tunneling makes C1 nonzero at this angle. With these con-

siderations, we can predict successive topological phase transitions as we increase θ

from 0 to π/4.

We obtain the phase diagram numerically in Fig. 5.3(b) by calculating the

Chern number of the lowest positive-energy band for each value of χ and θ. As we

predicted, we can observe the successive topological phase transitions at χ larger

than a certain value, which corresponds to the phase transition point described in

Fig. 5.2. Another salient feature is that the C1 = 1 regime very sharply blows up

toward the angle θ = tan−1(1/2), at which the χ region for C1 = 1 diverges. This

can be explained by combining the fact that the size of tunneling strengths decreases

exponentially with the distance between the superlattice points and another fact that

the Dirac cones can disappear and the topologically trivial gap opens in the extreme

strain (see Appendix C). We can also see that the topological phase transition also

accompanies the gap closing and the band inversion, as shown in the particle density

plots [Fig. 4.3(c)].
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4.5 Hexagonal Lattice to Kagome Lattice

To engineer favorable features such as flatter bands, we can create an even more

complicated superlattice by superposing different kinds of lattices. For instance, we

consider the superposition of the triangular lattice beam Atri(r) and the hexagonal

lattice beam rAhex(r), where r is the amplitude ratio of the two lattices (Fig. 4.4).

When the contribution from the hexagonal lattice beam is negligible, the localized

electrons form a hexagonal superlattice and the lowest part of the positive-energy

spectrum can be explained by a two-band model. As r increases, electrons are

confined to a kagome superlattice [109] and the lowest part of the positive-energy

spectrum can be explained by a three-band model including a flat band. Note that

slight gaps are observed in both the two-band model for the hexagonal superlattice

and the three-band model for the kagome superlattice. The gap in the two-band

model can be explained with the Haldane model with complex phases in the next-

nearest-neighbor tunneling, as shown in Fig. 5.3(a). The gap in the kagome lattice

comes from the complex phase in the nearest-neighbor tunneling [81,209]. At r = 0,

we can see that the third band is nearly flat, while it is gapped well from the other

bands. This flat band can be potentially used to stabilize strongly correlated phases.

4.6 Experimental Feasibility

For numerical calculation, we have set A0 = 0.006(ea)−1, ω = 0.06t, and w/l =

0.3 for Fig. 5.2 and Fig. 5.3. With the typical values of t = 3 eV and a = 0.142 nm
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Figure 4.4: Superposition of the triangular lattice beam, Atri(r), and the hexagonal
lattice beam rAhex(r). As we increase the ratio r, we effectively change the electron
superlattice from the hexagonal lattice to the kagome lattice. Energy spectra for
χ = 5.4 at selected values of r are shown where the colors of low-lying bands
represent the Chern numbers. By zooming in the spectrum, we can check the gaps
in the two-band model and the three-band models in the lowest part of the spectrum.
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for the monolayer graphene, these parameters of the laser field correspond to the

field amplitude 7.6 × 106 V/m, the beam frequency 43.5 THz, and beam spot size

0.1µm (FWHM). This is similar to the beam frequency in a recent experiment [190]

while the peak intensity is about 4% of the beam used in the same experiment. With

these parameters, the typical size of the gap (∆b in Fig. 5.2) is 4 meV. Fig. 4.4 uses

A0 = 0.0015(ea)−1 and ω = 0.06t while w/l = 0.3 and w/l = 0.15 for Atri(r) and

Ahex(r), respectively. Finally, we remark that due to the injection of photons into the

system, heating effects could eventually destroy the nontrivial topological behavior

that is initially formed. Therefore, we only consider the prethermal regime where

electron-electron and electron-phonon scatterings can be ignored [198]. In the past

few years, the existence of this transient regime has been convincingly demonstrated

in several pump-probe experiments [189,190,210].

4.7 Floquet Effective Hamiltonian in High Frequency Regime

Let us consider the Hamiltonian given by Eq. (4.1) with A(r, t) = A0(r)eiωt(x̂+

iŷ) + c.c. Then we can write the time-dependent Hamiltonian as

H(t) = v(τzpxσx + pyσy) + 2evτzA0(r) exp(iτzωt)σ+

+2evτzA0(r) exp(−iτzωt)σ−, (4.7)

where σ± = (σx ± iσy)/2. For this Hamiltonian, the nonzero temporal Fourier

components Hq = (ω/2π)
∫ 2π/ω

0 H(t)e−iqωτdτ are H0 = v(τzpxσx +pyσy) and H±τz =

2evτzA0(r)σ±. Then the effective Hamiltonian in the high frequency regime is [78–
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81,186,197,198]

Heff = H0 +
∑
q>0

[Hq, H−q]
qω

+O(ω−2)

= H0 + H1H−1 −H−1H1

ω
+O(ω−2)

= v(τzpxσx + pyσy) + τz
4e2v2

ω
|A0(r)|2 σz +O(ω−2). (4.8)

The description in terms of Eq. (4.8) is valid as long as Hq � ω for every q.

The condition ω � evA0 ensures that Hq=±1 � ω. For H0 � ω, we require v/l� ω

and the parameters we use in this chapter satisfy this condition. Yet, one may

wonder if the band structure is affected by the hybridization of different Floquet

sidebands [81, 191] since the driving frequency that we consider in this chapter

(ω = 0.06t) is much smaller than the original bandwidth of the graphene which is

of the order of t. To see how much our band structure is affected by the Floquet

sidebands’ hybridization, we calculate the band structure presented in the left figure

of Fig. 5.2(a) by diagonalizing the Floquet Hamiltonian, H(t)−i∂t. For the spatially

periodic Hamiltonian H(r, t) = H(r+L1, t) = H(r+L2, t), we find the quasienergies

εs,k and the corresponding quasimode wavefunctions Ψs,k(r, t) = exp(−iεst)Φs,k(r, t)

through

e−ik·r [H(t)− i∂t] eik·rΦs,k(r, t) = εs,kΦs,k(r, t),

Φs,k(r, t) =
∑

n,m1,m2

C
(n)
s,m1m2ke

i{(m1G1+m2G2+k)·r−nωt},

∑
n,m1,m2

∣∣∣C(n)
s,m1m2k

∣∣∣2 = 1, (4.9)

93



Figure 4.5: Calculated band structure of the square superlattice with eA0a = 0.006,
ω = 0.06t, w/l = 0.3, and χ = 0.8. (a) Calculation with Eq. (4.8). (b) Calculation
with Eq. (4.9). The color of the plot represents the overlap with the zeroth Floquet
sideband, p(0)

s,k.

where Gi=1,2 are the reciprocal superlattice vectors satisfying Gi ·Lj = 2πδij. Here,

the quasienergies are restricted to the zeroth Floquet sideband, εs,k ∈ [−ω/2, ω/2].

For the time-independent Hamiltonian H(t) = H0, Eq. (4.9) becomes an eigenvalue

equation for H0 by fixing the Floquet sideband index n, and n = 0 corresponds to

the eigenstates with energy in [−ω/2, ω/2]. Therefore, if we consider the case that

oscillating terms are slowly turned on, the relevant quasimodes should have high

overlaps with the zeroth Floquet sideband, which is quantified by

p
(0)
s,k =

∑
m1,m2

∣∣∣C(0)
s,m1m2k

∣∣∣2 . (4.10)

For the comparison of the two descriptions given by Eq. (4.8) and Eq. (4.9),

we calculate the band structure plotted in the left of Fig. 5.2(a) with these two

descriptions, respectively (see Fig. 4.5). For the band structure calculated with Eq.

(4.9), we represented the overlap with the zeroth Floquet sideband, p(0)
s,k, for each
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state. In the energy much lower than ω/2, the spectrum calculated with the high-

frequency expansion and the quasienergies of the Floquet eigenstates with high

overlaps with the zeroth Floquet sideband agree with each other. As the energy

approaches ω/2, the Floquet sideband hybridization due to the resonant process

affects the band structure. Therefore, one can use the high-frequency expansion

description in Eq. (4.8) for energies far smaller than the driving frequency.

4.8 Band Gap Scaling in Superlattice Size

We consider the eigenvalue problem of the effective Hamiltonian in Eq. (4.2),

 α(r) −iv(∂x − i∂y)

−iv(∂x + i∂y) −α(r)


 uA

uB

 = E

 uA

uB


↔ −iv(∂x − i∂y)uB = [E − α(r)]uA, −iv(∂x + i∂y)uA = [E + α(r)]uB (4.11)

where α(r) = (4e2v2/ω)|A0(r)|2. This can lead to

∇2uB + E2 − α(r)2

v2 uB + [(∂x + i∂y)α(r)][(∂x − i∂y)uB]
E − α(r) = 0. (4.12)

In the vicinity of minima of α(r), we can approximate this function as a harmonic

potential with rotational symmetry. This is valid for the square lattice of the Gaus-

sian beam with the fixed ratio c = w/l,

α(r) = 4e2v2A2
0

ω

[ ∑
n1,n2

e−{(x−n1l)2+(y−n2l)2}/(2c2l2)
]2

. (4.13)
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For this case, one can show that

∂α

∂x

∣∣∣∣∣
r=(l/2,l/2)

= ∂α

∂y

∣∣∣∣∣
(l/2,l/2)

= ∂2α

∂x∂y

∣∣∣∣∣
(l/2,l/2)

= 0,

α0 ≡ α|(l/2,l/2) > 0, α1 ≡
l2

2 ∂
2
xα

∣∣∣∣∣
(l/2,l/2)

= l2

2 ∂
2
yα

∣∣∣∣∣
(l/2,l/2)

> 0,

∂α0

∂l
= ∂α1

∂l
= 0. (4.14)

Then we can write α(r) = α0 +α1(r/l)2, where r is the distance from the minima of

α(r). Now we can use polar coordinates (r, φ), with ∂x± i∂y = a−1e±iφ(∂r± ir−1∂φ).

Due to the rotational symmetry, we can impose uB(r) = β(r)eimφ. Then,

1
r
∂r (r∂rβ)− m2

r2 β + 1
v2

[
E2 − α2

0 − 2α0α1

(
r

l

)2
− α2

1

(
r

l

)4
]
β

+ 2α1(r∂r +m)β
(E − α0)l2 − α1r2 = 0. (4.15)

Note that l → ∞ limit corresponds to ∇2uA + v−2(E2 − α2
0) = 0. The positive

spectrum in this limit is [α0,∞) with no gap in between. To study the behavior of

the positive spectrum for large l, we may define δE = E − α0. For the low-lying

spectrum, we can only consider the limit where δE � α0. Then we can simplify Eq.

(4.15) into

1
r
∂r (r∂rβ)− m2

r2 β + 1
v2

[
2α0δE − 2α0α1

(
r

l

)2
]
β + 2(r∂r +m)β

l2δE/α1
= 0 (4.16)
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up to the correction terms of the order of O(δE2), O(η−4). Now the rescaling r =

(vl)1/2(α0α1)−1/4ξ and δE = (α1/α0)1/2(v/l)(δε) gives

1
ξ
∂ξ (ξ∂ξβ)− m2

ξ2 β + 2
(
δε− ξ2

)
β + 2(ξ∂ξ +m)β

δε
= 0 (4.17)

and this equation is independent of l. Then the spectrum of δε is independent of l, so

that δE should scale as l−1. This means that ∆b−2α0 and ∆t should be proportional

to l−1. This explains the inverse proportionality of band gaps in χ = (ve2A2
0/ω)l

shown in Fig. 5.2(b).

4.9 Tight-binding Model for Hexagonal Lattice under a Uniform

Strain

Let us consider the effective lattice model for the sheared lattice in the vicinity

of angle θ = tan−1 0.5. By considering the terms up to the next-nearest neighbors,

we can build a tight-binding model similar to the Haldane model,

HSH =
∑
m,n

(
−t1c(B)†

m,n − t2c
(B)†
m−1,n − t3c

(B)†
m,n−1

)
c(A)
m,n (4.18)

+
(
s1c

(A)†
m+1,n + s2c

(A)†
m,n−1 + s3c

(A)†
m−1,n+1

)
c(A)
m,n

+
(
s1c

(B)†
m−1,n + s2c

(B)†
m,n+1 + s3c

(B)†
m+1,n−1

)
c(B)
m,n + H.c..

Here, c(A/B)†
m,n creates an electron in the sublattice A or B at the unit cell (m,n)

and ti=1,2,3 (si=1,2,3) is the nearest- (next-nearest)-neighbor tunneling amplitude, as

shown in Fig. 4.6. This model can be thought of as a hexagonal lattice under a
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Figure 4.6: Tight-binding model for the hexagonal lattice under a uniform strain,
in the vicinity of angle θ = tan−1 0.5 in the sheared lattice.

uniform strain. By considering the inversion symmetry of the corresponding pairs

of lattice sites, we can find that Im(t1) = Im(t2) = Im(t3) = 0. Now we can write

the Bloch Hamiltonian of this tight-binding model as

H(k) = V (k) + hx(k)σx + hy(k)σy + hz(k)σz,

V (k) = 2Re [s1 cos(k · (L2 − L1)) + s2 cos(k · L2) + s3 cos(k · L1)] ,

hx(k) = −t1 cos
(

k · L1 + L2

3

)
− t2 cos

(
k · L2 − 2L1

3

)
− t3 cos

(
k · L1 − 2L2

3

)
,

hy(k) = −t1 sin
(

k · L1 + L2

3

)
− t2 sin

(
k · L2 − 2L1

3

)
− t3 sin

(
k · L1 − 2L2

3

)
,

hz(k) = 2Im [s1 sin(k · (L2 − L1)) + s2 sin(k · L2) + s3 sin(k · L1)] , (4.19)

where the σz = ±1 corresponds to the sublattice A or B. In the absence of the

next-nearest-neighbor tunnelings, V = hz = 0 and the location of the Dirac points

is determined by hx(k) = hy(k) = 0. If this equation has two solutions, we denote
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those solutions as k = ±KD. In Eq. (4.19), we can see that the second-neighbor

tunnelings solely determine the σz component of the Bloch Hamiltonian and do not

affect the σx and σy components. By turning on the second-neighbor tunnelings,

we effectively turn on the mass term around each of the Dirac points ±KD. Since

hz(−KD) = −hz(KD), the sign of the effective mass term is opposite at the two

different Dirac points. Then, each Dirac point equally contributes 1/2 to the Chern

number, just as in the Haldane model. Therefore, if the two Dirac points exist in the

absence of the next-nearest-neighbor tunneling, the lowest positive band has nonzero

Chern number when the next-nearest-neighbor tunneling is turned on. Regarding

this condition, the equation hx(k) = hy(k) = 0 has two solutions as long as |ti−tj| <

|tk| for every i 6= j 6= k 6= i. Since the tunneling strength decreases exponentially

in the intersite distance, t1, t2, and t3 become very different as the superlattice size

gets larger. Then there is no Dirac point after some value of χ, as shown in the

square-lattice case. Yet, at angle θ = tan−1 0.5, t1 = t2, so that |ti − tj| < |tk| is

satisfied as long as t3 6= 0, and therefore C1 can remain nonzero at this angle.

4.10 Gauge-Independent Calculation of Orbital Magnetization

We want to numerically calculate the orbital magnetization of the mth band

expressed in Eq. (4.6),

Morb = Im
∫ d2k

(2π)2 e
∂ 〈um,k|
∂kx

(Hk + Em,k) ∂ |um,k〉
∂ky

= Im
∫ d2k

(2π)2 e
∂ 〈um,k|
∂kx

Hk
∂ |um,k〉
∂ky

+ 1
2

∫ d2k
(2π)2 eEm,kAm,k, (4.20)
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where Am,k = 2Im
(
∂kx 〈um,kj |

)
∂ky |um,kj〉 is the Berry curvature. To numerically

calculate it, we first need to discretize the Brillouin zone and calculate the Bloch

state |ψm,kj〉. Although the orbital magnetization is gauge independent, we need

local gauge fixing to make |ψm,k〉 differentiable. While this local gauge fixing works

well for smooth Am,k, it can work badly for the system in the vicinity of the topo-

logical phase transition. To avoid this subtlety, let us find a way to calculate this

quantity in a gauge-independent way. For Berry curvature Am,k, a method for

gauge-independent calculation is known [204]. Similar to this method, we can cal-

culate the first integral of Eq. (4.20). For this, let us consider a square patch

whose four corners are ql,j ≡ kl + (δk/2)(sjx̂ + wjŷ), where (s1, w1) = (−1,−1),
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(s2, w2) = (1,−1), (s3, w3) = (1, 1), and (s4, w4) = (−1, 1). Now

|um,ql,j〉 = |um,kl〉+ δk

2
(
sj∂kx |um,kl〉+ wj∂ky |um,kl〉

)
+δk

2

8
(
∂2
kx |um,kl〉+ 2sjwj∂kx∂ky |um,kl〉+ ∂2

ky |um,kl〉
)

+O(δk3),

E−4
m,kl

4∏
j=1
〈um,ql,j |Hkl |um,ql,(jmod4)+1〉

= 1 + δkRe
4∑
j=1

(
sj 〈um,kl |∂kx|um,kl〉+ wj 〈um,kl |∂ky |um,kl〉

)
+δk2Re 〈um,kl |∇2

k|um,kl〉+ δk2Re
∑
j

sjwj
2 〈um,kl |∂kx∂ky |um,kl〉

+ δk2

4Em,kl

4∑
j=1

[
sjs(jmod4)+1 (∂kx 〈um,kl |)Hkl∂kx |um,kl〉

+sjw(jmod4)+1 (∂kx 〈um,kl |)Hkl∂ky |um,kl〉

+wjs(jmod4)+1
(
∂ky 〈um,kl |

)
Hkl∂kx |um,kl〉

+wjw(jmod4)+1
(
∂ky 〈um,kl |

)
Hkl∂ky |um,kl〉

]
+O(δk3)

= 1 + 2δk2Re 〈um,kl |∇2
k|um,kl〉

+i 2δk2

Em,kl
Im (∂kx 〈um,kl |)Hkl∂ky |um,kl〉+O(δk3), (4.21)

and therefore

eEm,kl
8π2 Arg

 4∏
j=1
〈um,ql,j |Hkl |um,ql,(jmod4)+1〉


= e

4π2 Im (∂kx 〈um,kl |)Hkl∂ky |um,kl〉 δk2 +O(δk3), (4.22)

and this corresponds to the first integral of Eq. (4.20) over the square patch that we

considered. One can easily check that this expression is invariant under any gauge

transformation, |um,k〉 → exp[iλ(k)] |um,k〉 , ∀λ(k), and does not require any local
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gauge fixing.

4.11 Outlook

By considering Coulomb interaction in our nearly flat and topologically non-

trivial bands, one could potentially induce strongly correlated phases such as frac-

tional Chern insulators [168,211–213], superconductors [172,178,182–184,214,215],

or magnetic phases [174,179–181]. Moreover, by irradiating with frequencies compa-

rable to the bare tunneling strength, instead of the high-frequency regime considered

here, higher-order terms become relevant [81], and therefore, one can induce a wider

class of structures. While we focus on the Dirac semimetal system in this chapter,

our scheme can also be applied to other 2D materials such as semiconductors [216].

Our approach can be combined with other methods, such as surface acoustic waves

in a solid-state platform [217], for trapping, cooling, and controlling charged parti-

cles, and for simulation of quantum many-body systems. Finally, these ideas could

be used to engineer a new class of dielectric materials for potential applications in

optical devices [218].
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Chapter 5: Floquet Vortex States Induced by Light Carrying the Or-

bital Angular Momentum

5.1 Introduction

Quantum vortices and localized quantum states associated with them have

long a subject of active interest in diverse areas of physics [219–224]. To create and

observe such quantum vortex states, numerous efforts have been made in diverse sys-

tems such as Bose-Einstein condensates [225–230], superconductors [231, 232], and

magnetic materials [233–235]. While the quantum vortex states themselves exhibit

many exotic quantum and classical many-body phenomena [236–241], their stability

as topological defects makes them a promising quantum platform for applications

such as quantum information processing [5, 242,243].

Recently, Floquet systems have become popular as a useful way to engineer

exotic quantum states [15, 79, 186, 188, 190, 197, 200, 201, 244–246]. Moreover, there

have been many recent advancements in the spatial control of optical beams in

atomic systems [94,98,100,119]. These techniques have the potential to be applied

to electronic systems and can provide a wide range of tunability in quantum state

engineering.
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In this chapter, we present a scheme to create Flouqet quantum vortex states

by shining a light field carrying orbital angular momentum (OAM) on a two-

dimensional (2D) semiconductor, as illustrated in Fig.5.1. In small detuning and the

weak field limit, we show that electronic Floquet vortex states are localized around

the optical vortices with localization length bounded by the shape and intensity of

the optical field. We also show that the number of vortex state branches is directly

given by the vorticity of the light, which quantifies the OAM carried by each photon.

Such close relation with OAM of light distinguish these vortex states from the edge

states of the uniform Floquet Chern insulator [188] or the vortex states introduced

in Ref. [200, 201]. While many characteristics of these Floquet vortex states carry

close analogy with superconducting systems, we show that the Floquet vortex states

in the current system benefit from a very broad range of tunability. For example,

the freedom to choose the size of the optical vortex can be used as a knob to control

the non-linearity of the vortex state spectrum. To demonstrate how such tunability

can be exploited for quantum state engineering, we construct a scheme of quantum

information processing based on optically manipulating Floquet vortex states, with

simple single-qubit and two-qubit operations.

5.2 Model

We consider H0 = (vkx, vky,M) · σ as our model for a spinless 2D semicon-

ductor [32, 247]. For brevity, we have set ~ = 1. Here, σ = (σx, σy, σz) are Pauli

matrices. M is a half of the band gap and v is a parameter determining the cur-
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Figure 5.1: (a) A 2D semiconductor illuminated by a laser light carrying OAM. The
applied light field has the optical vortex structure of size ξ. The figure illustrates
the case of vorticity m = 1. (b) The laser field has frequency ω, and couples the
conduction and the valence bands of the semiconductor with the gap 2M . The
detuning is δ = ω − 2M . In the rotating frame, the hybridization gap of about
2Ω0 develops around the resonance ring whose radius and thickness are k0 and
kδ, respectively. (c) For the light field with non-zero vorticity m, |m| branches of
Floquet vortex states develop in the middle of the hybridization gap. Around the
zero energy, each branch has linear dispersion with energy separation ω0 between
nearby states in the branch. Note that the energy spectrum is illustrated with
respect to the electronic pseudo-OAM, l.

vature of the band dispersion ±
√
M2 + v2(k2

x + k2
y), where the positive (negative)

energy states correspond to the conduction (valence) band. We vertically shine a

linearly-polarized laser field with a non-zero orbital angular momentum (OAM),

A(r, t) = A(r)eiωtx̂ + c.c. on a semiconductor, as illustrated in Fig. 5.1 where ω is

the frequency of the laser field. The OAM of the laser field is represented in the az-

imuthal phase factor of A(r) = A0(r)eimφ, where r =
√
x2 + y2 and φ = arctan(y/x).

The integer m here is the vorticity of the field, and we refer the vortex structure

with non-zero vorticity in the light field as an optical vortex. Due to this vortex
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structure, A0(r) should vanish at r = 0. We set the size of optical vortex to ξ, which

means that A0(r) smoothly saturates to Amax at r ≥ ξ. With the minimal coupling

k = (kx, ky)→ k + eA(r, t), we obtain the time-periodic Hamiltonian

H(t) = H0 + evA(r, t) · σ. (5.1)

When ω > 2M , the frequency detuning δ = ω− 2M becomes positive and the

conduction and valence bands become resonant at the resonance ring of momentum,

|k| = k0 = v−1
√
ω2/4−M2. From Eq. (5.1), the applied laser field generates

position-dependent Rabi frequency Ω(r) = evA0(r) and hybridizes the conduction

and valence bands while opening an energy gap about 2Ω0 around the resonance

ring, where Ω0 = limr→∞Ω(r). To describe these hybridized bands, we consider

the transformation into the rotating frame, U(t) = Pce
−iωt/2 + Pve

iωt/2, where Pc

(Pv) is the projection operator into the conduction (valence) band. In the weak

field limit Ω0 �
√
ωδ, we can drop the fast oscillating terms from the rotated

Hamiltonian −iU †(t)∂tU(t) + U †(t)H(t)U(t) and obtain the effective Hamiltonian

under the rotating wave approximation (RWA). Furthermore, we consider the small

detuning regime δ � ω. In this regime, we can write δ ' v2k2
0/M and vk0 � M .

Then, for the small momenta |k| = O(k0) (see Sec. 5.5),

HRWA = δ

2

(
k2

k2
0
− 1

)
σz +

[
Ω(r)e−imφσ+ + H.c.

]
, (5.2)

where σ± = (σx ± iσy)/2.
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5.3 Floquet Vortex States

Because of the breaking of the translational symmetry by the optically-induced

vortex, it is possible to have electronics states with energies inside the spectral gap

that are localized in the vicinity of the vortex. From Eq. (5.2), we can estimate the

spatial extent of such states. First, one can readily observe that the diagonal com-

ponents are dominant over off-diagonal elements for most of ks except the vicinity

of the resonance ring. This means that the hybridization mostly occurs at the mo-

menta in the narrow region near the resonance ring, and the thickness of this region

can be estimated by finding the range of |k| that makes the off-diagonal elements

of Eq. (5.2) comparable to or larger than the diagonal elements. We find that the

hybridization of the two bands occurs at |k| − k0 = O(kδ) where kδ ≡ k0Ω0/δ, that

characterizes the momentum range over which the Rabi frequency and dispersion of

Eq.5.2 are comparable around the resonant momentum ring. If any intragap state

develops within this hybridization gap, such a state should be a superposition of the

Bloch states within this momentum region. Therefore k−1
δ serves as a lower bound

for the spatial size of such intragap state. If a localized intragap state develops

around the optical vortex, this state cannot extend to the region where A0(r) sat-

urates to Amax since the field is nearly uniform and therefore the system remains

gapped. Therefore such a localized intragap state has an upper bound O
(
k−1
δ + ξ

)
for its size.

By using the semiclassical argument introduced in Ref. [248], one can show

that |m| branches of intragap states develop around the optical vortex with vorticity
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m (see Sec. 5.6). We call these states Floquet vortex states, and we can obtain a fully

quantum-mechanical description of the dispersion and wavefunction of these states

by applying mathematical methods used for superconducting vortices [222,249–251].

To do so, we note that while the effective Hamiltonian in Eq. (5.2) does not commute

with the electronic OAM, L̂ = −i∂φ, it does commute with the electronic pseudo-

OAM, l̂ = −i∂φ + (m/2)σz. Then the eigenstates of this effective Hamiltonian can

be written in the form of vortex states,

ψn,l(r) =
(
ei(l−m/2)φun,l,+(r), ei(l+m/2)φun,l,−(r)

)T
. (5.3)

Here, the branch index n = 1, · · · ,m represents different branches of Floquet vortex

states. One can also show that this system satisfies the particle-hole symmetry

which requires ψn,−l(r) = iσyψ
∗
|m|+1−n,l(r) and En,−l = −E|m|+1−n,l, where En,l is the

corresponding eigenenergy for ψn,l(r). In the large optical vortex regime k−1
δ � ξ,

the low-energy spectrum of these Floquet vortex states are given by [251]

En,l = mlω0 + [n− (|m|+ 1)/2]ω̃0, where

ω0 =
δ
∫∞
0

Ω(r)
r
e−(2k0/δ)

∫ r
0 Ω(r′)dr′dr

k0
∫∞
0 e−(2k0/δ)

∫ r
0 Ω(r′)dr′dr

, ω̃0 = δ(π/2)
k0
∫∞

0 e−(2k0/δ)
∫ r

0 Ω(r′)dr′dr
. (5.4)

Here, the energy separation between nearby states and branches, ω0 and ω̃0, respec-

tively, are solely determined by the bulk properties and the details of the radial beam

profile A0(r). These parameters are independent of the system size and therefore

the energy separation between states remains in the thermodynamic limit.
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Figure 5.2: (a) Numerically calculated energy spectra in terms of pseudo-OAM l.
We use ω = 2.05M , Amax = 0.09M(ev)−1, and A0(r) = Amax [1− exp{−r2/(2ξ2)}],
ξ = 20kδ, and suppose a disk sample of radius 25ξ. The numerical spectra agree with
the analytically expected dispersion in Eq. (5.4) including the number of intragap
state branches and the slope of the linear dispersion for small |El| and l. Electronic
density profiles of selected states are presented in the insets. (b) Dispersions for
m = 1 with identical parameters with (a) except the optical vortex size ξ and the
disk size 500kδ. As ξ reduces, the linear region of the spectrum shrinks while the
energy separation between the nearby states increases.

This analytic expression of the dispersion is valid for the low-energy and the

low-l regime, |En,l| � Ω0 and |l| �
√
δ/Ω0. Fig. 5.2(a) presents how this analytically

found dispersion agrees with the numerical dispersion obtained by diagonalizing Eq.

(5.2) (see Sec. 5.9). As shown in the figure, the number of intragap state branches

is given by |m|. The analytic dispersion and the numerical dispersion agree for the

low-energy and low-l regime, and deviate from each other as the energy or l moves

away from zero. Nevertheless, we can still use Eq. (5.4) to get a rough estimate of
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the pseudo-OAM differences between different intragap state branches, in the large

optical vortex regime (see Sec. 5.7). Assuming the entire intragap state branches are

linearly dispersing, the different branches at the same energy would have the pseudo-

OAM momentum difference of ω̃0/ω0 = O
(
k0k

−1
δ

√
kδξ

)
. This large difference in the

angular momentum prevents the vortex modes from different branches to hybridize

each other. With the same assumption, the number of states in a single branch can

be also estimated as 2Ω0/ω0 = O(k0ξ).

Note that these Floquet vortex states around the optical vortex are distin-

guished from the edge states of topological Floquet Chern insulators [188] or the

vortex states introduced in Ref. [200,201]. For the edge state of the Floquet Chern

insulator to develop, the bulk part of the system should have a non-zero Chern

number, while the Floquet vortex states we are discussing appear regardless of the

Chern number of the system. This point becomes clear by investigating the system

under irradiation of a circularly-polarized light beam which also carries a non-zero

OAM (see Sec. 5.8). While the bulk part of such system becomes a Floquet Chern

insulator as explained in Ref. [188], there are still |m| branches of Floquet vortex

states in the middle of the hybridization gap. The Floquet vortex states in our sys-

tem also differ from the vortex states in Ref. [200, 201] where the vortex structure

does not couple with the electronic kinetic terms and has no trivial way to realize

in experiments.

While many properties of the Floquet vortex states can be analyzed with the

similar techniques used for superconducting vortex states, our Floquet vortex states

have wider tunability due to the freedom to control the size of optical vortices. For
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superconducting vortex states, the size of vortices is tied to O
(
k−1
δ

)
since the BdG

equation should be satisfied in a self-consistent way. However, Eq. (5.2) does not

have such constraints and we have the freedom to choose the size of the optical

vortex. To illustrate the consequence of this freedom, we display the numerical

dispersion for different optical vortex sizes in Fig. 5.2(b). As shown in the figure, as

the optical vortex size ξ gets smaller, the linear region of the spectrum shrinks and

therefore the non-linearity of the spectrum is enhanced. This adjustable non-linear

dispersion of Floquet vortex states invites the possibility of using them as a platform

for quantum state engineering.

5.4 Quantum Information Processing with Floquet Vortex States

To illustrate the potential utility of the Floquet vortex states as a platform

for quantum state engineering, we show how one and two-qubit operations can be

performed in this system. As we have seen in the previous section, we can increase

the energy level spacing and the spectral non-linearity by reducing the size of the

optical vortex. It is this enhanced non-linearity that allows to create qubits out of

the Floquet vortex states and manipulate them (Fig. 5.3).

Specifically, we consider two Floquet vortex states with pseudo-angular mo-

mentum l0 and l0 + 1 of an intragap branch with index n. That is, 〈r|0〉 ≡ ψn,l0(r)

and 〈r|1〉 ≡ ψn,l0+1(r). (While here we choose the vortex states from the same in-

tragap branch, alternatively vortex states from different branches can be also used.)

To manipulate this qubit, we may apply an extra linearly-polarized field to create
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Figure 5.3: (a) The non-linearity of the dispersion allows one to encode different
Floquet vortex states as qubits. For example, the vortex states with pseudo-OAM
l0 and l0 + 1 from the vortex state branch with index n (red arrow) or the branches
with indices n and n + 1 can be used to encode a qubit (blue arrow). Arbitrary
single-qubit rotation can be performed by shining an extra linearly polarized light.
While the polarization n̂0 determines the rotation axis, the beam amplitude Eext
and the irradiation time determines the rotation angle. (b) Two-qubit gates can be
performed by bringing two vortices close to each other and then separating them
back.

an oscillating potential

Vext(t) = eEextn̂0 · r cos(Ωextt), (5.5)

where Eext is the amplitude of the applied electric field and n̂0 = cosφ0x̂ + sinφ0ŷ

is the polarization of the field. Then, in the rotating frame with frequency Ωext, the
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effective Hamiltonian for this qubit space becomes

H1-qubit =
(
El0 + Ωext

2

)
|0〉 〈0|+

(
El0+1 −

Ωext

2

)
|1〉 〈1|

+ [eEext 〈1|r cos(φ− φ0)|0〉 |1〉 〈0|+ H.c.] ,

〈1|r cos(φ− φ0)|0〉 =
∫
d2rψ†n,l0+1(r)r cos(φ− φ0)ψn,l0(r)

= πeiφ0
∑
s=±

∫ ∞
0

u∗n,l0+1,s(r)un,l0,s(r)r2dr. (5.6)

By setting Ωext = En,l0+1−En,l0 , we can effectively tuneH1-qubit to be a superposition

of σx and σy with an arbitrary ratio between them. Then this extra field implements

an arbitrary single-qubit rotation where the rotation angle is tuned by the field

amplitude Eext and the irradiation time, while the rotational axis is set by the

polarization n̂0. Note that this qubit is isolated from other vortex states because

the field with frequency matched to the energy difference En,l0+1 − En,l0 cannot

couple to other modes due to the non-linear dispersion of the vortex states.

For two-qubit operations, we can move two vortices close to one another. This

will lead to a hybridization, J , between the modes with the same quantum numbers

on the two vortices. Yet, single-electron hopping from one vortex to another may be

energetically unfavorable due to the on-site interaction energy U . This will generate

an effective superexchange interaction ∼ J2/U , with the corresponding two-qubit

Hamiltonian,

H2-qubit = − J2

U
[|01〉 〈01|+ |10〉 〈10|+ (|10〉 〈01|+ H.c.)] , (5.7)
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where |s1s2〉 = |s1〉⊗ |s2〉 (s1,2 = 0, 1) are the computational basis for the two-qubit

space. Since we have full control over the location of the vortices, we can tune

our time-evolution operator to act as a
√
SWAP gate up to some single-qubit σz

operations, as shown in Sec. 5.10. This
√
SWAP gate and previously introduced

single-qubit rotations constitute a gate set for universal quantum computation [252,

253]. We stress again that this proximity-based scheme of two-qubit gate is only

possible because the current system allows enhanced freedom to change the locations

of Floquet vortex states. This is a big advantage that Floquet vortex state qubits

have over other qubits based on solid-state systems such as quantum dots [254–256].

While the state preparation in Floquet systems is a challenging problem in

general, one may be able to prepare the desired Floquet state by using proper

bosonic and fermionic reservoirs through dissipative engineering [197,199,257]. Once

the initialization method is established, the desired qubit state can be prepared by

controlling the backgate voltage, similar to the initialization procedure in quantum-

dot qubit systems.

5.5 Application of Rotating Wave Approximation

As stated in the main text, we consider following model Hamiltonian H0 =

(vkx,±vky,M) ·σ = Dk ·σ for our semiconductor. We now consider the electromag-

netic radiation A(r, t). Then the minimal coupling k → k + eA(r, t) leads to the
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following time-dependent Hamiltonian,

H(t) = H0 + evA(r, t) · σ = H0 + V (t) = H0 +
[
Veiωt + c.c.

]
· σ. (5.8)

Then the projection operators to conduction and valence bands are

Pc =
∫
d2kPc,k =

∫
d2k(1 + dk)/2, Pv =

∫
d2kPv,k =

∫
d2k(1− dk)/2, (5.9)

where dk = Dk/|Dk|. Considering the rotating frame U(t) = Pce
−iωt + Pve

iωt, the

rotated Hamiltonian is

Hrot = −iU †(t)∂tU(t) + U †(t)H(t)U(t)

= ω

2 (Pv − Pc) + Dk · σ + PcV (t)Pc + PvV (t)Pv

+eiωtPcV (t)Pv + e−iωtPvV (t)Pc. (5.10)

In the weak field regime evAmax = Ω0 � ω, we can obtain RWA Hamiltonian by

dropping fast oscillating terms from Hrot,

HRWA =
(

Dk −
ω

2 dk

)
· σ + Vk, (5.11)
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where

Vk = Pc,k(V∗ · σ)Pv,k + Pv,k(V · σ)Pc,k

= {ReV · σ + i[ImV · σ,dk · σ]− (dk · σ)(ReV · σ)(dk · σ)} /2

= 1
2 [ReV + (dk × ImV− ImV× dk)− (dk · ReV)dk + (dk × ReV)× dk] · σ

+ i

2 [ImV · dk − dk · ImV− (dk × ReV) · dk] . (5.12)

For small detuning regime δ = ω − 2M � ω, δ ' v2k2
0/M and vk0 �M . Then, for

small momenta |k| = O(k0),

dk = (dx,k, dy,k, dz,k) = 1√
M2 + v2k2

(vkx, vky,M)

=
(
vkx
M

,
vky
M

, 1− v2k2

2M2

)
+O

(
v3k3

0
M3

)
, (5.13)

(
Dk −

ω

2 dk

)
· σ =

(
1− ω/2√

M2 + v2k2

)
(vkx, vky,M) · σ

= v2

2M (k2 − k2
0)σz +O

(
v3k3

0
M2

)
. (5.14)

Now we consider a linearly polarized light carrying OAM. The magnetic potential

of this field is A(r, t) =
[
A0(r)eimφeiωt + c.c.

]
x̂. With this, Vy = 0, and from Eq.
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(5.12),

Vk = 1
2 [(ReVx + dz,kReVxdz,k − dx,kReVxdx,k + dy,kReVxdy,k)σx

+ (dz,kImVx + ImVxdz,k − dx,kReVxdy,k − dy,kReVxdx,k)σy

+ (−dy,kImVx − dx,kReVxdz,k − dz,kReVxdx,k)σz]

+ i

2 (ImVxdx,k − dx,kImVx − dz,kReVxdy,k + dy,kReVxdz,k)

= ReVxσx + ImVxσy +O

(
evAmax

vk0

M

)
. (5.15)

Therefore, with further assumption of weak field Ω0 �
√
δM , the RWA Hamiltonian

becomes

HRWA = v2

2M
(
k2 − k2

0

)
σz +

[
evA0(r)e−imφσ+ + H.c.

]
+O

(
evAmax

vk0

M

)

= δ

2

(
k2

k2
0
− 1

)
σz +

[
Ω(r)e−imφσ+ + H.c.

]
+O

Ω0

√
δ

M

 , (5.16)

so we derived the RWA Hamiltonian in Eq. (5.2).

Due to the OAM of the light, the RWA Hamiltonian HRWA and the static

semiconductor Hamiltonian H0 have different symmetries. While H0 commutes

with electronic OAM −i∂φ, HRWA commutes with pseudo-OAM l̂ = −i∂φ+(m/2)σz.

To demonstrate this, we use [−i∂φ, kx] = iky and [−i∂φ, ky] = −ikx. These yield

[−i∂φ, kx ± iku] = ±(kx ± iky) and [−i∂φ,k2] = 0, therefore

[−i∂φ, HRWA] = −m
(
Ω(r)e−imφσ+ − H.c.

)
,

[σz, HRWA] = 2
(
Ω(r)e−imφσ+ − H.c.

)
, (5.17)
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so [−i∂φ + (m/2)σz, HRWA] = 0. Since l is a good quantum number, the wave

functions for each l have the form of

ψn,l(r) =
(
ei(l−m/2)φun,+(r), ei(l+m/2)φun,−(r)

)T
, (5.18)

where n is the branch index. With this, HRWA leads to following eigenvalue problem

for each l,

En,lun,l,±(r) = ∓ δ2

2k2
0

(
∂2
r + 1

r
∂r −

(l ∓m/2)2

r2 + k2
0

)
un,l,±(r)

+Ω(r)un,l,∓(r). (5.19)

By observing this Hamiltonian, one can see this Hamiltonian preserves the particle-

hole symmetry ψn,−l(r) = iσyψ
∗
|m|+1−n,l(r) and En,−l = −E|m|+1−n,l. Here the branch

index n should alter to |m|+ 1− n as l changes to −l.

5.6 Number of Floquet Vortex States Branches

Since HRWA(k) in Eq. (5.2) is particle-hole symmetric and gapped except the

vortex core, the intragap modes develop around the vortex core are expected to cross

the zero energy, if any exists. We may use the semiclassical approach introduced

in Ref. [248] to investigate the number of such intragap modes. Let us consider

the Hamiltonian in the classical regime, HRWA → H · σ, where the momentum

and the position commute each other. This semiclassical treatment is justified as

long as k0ξ � 1. Here, the vector H = H(k, r, φ) resides on the 3D parameter
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space (k, r, φ). Now such Hamiltonian yields energy E2(k, r, φ) = |H(k, r, φ)|2 =

δ2(k2/k2
0 − 1)2/4 + Ω(r)2 and E = 0 is achieved at k = k0 and r = 0. To consider

the surface surrounds this zero point, let us consider the surface |E| = ∆E for small

energy ∆E. Such surface would be located in the vicinity of that zero point, so

we can write k = k0 + ∆k and r = ∆r. To the leading order, This surface can

be written as ∆E2 = (δ/k0)2∆k2 + Ω(∆r)2. Without loss of generality, we can

regard Ω(∆r) = λ∆r. Now the surface |E| = ∆E becomes an ellipsoid and can be

parameterized by the polar angle θ and the azimuthal angle φ: ∆k = (k0∆E/δ) cos θ,

∆r = (∆E/λ) sin θ, ∆x = ∆r cosφ, ∆y = ∆r sinφ. Then the skyrmion number of

H on this ellipsoid is equal to the number of branches that passes the zero energy

in the intragap spectrum. Since the skyrmion number is a topological invariant,

we did not lose the generality even if the actual behavior of Ω(r) for small r is not

linear. For the current parameterization,

H||E|=∆E,φk = Ω(r) [cos(mφ)x̂ + sin(mφ)ŷ] + δ

2

(
k2

k2
0
− 1

)
ẑ
∣∣∣∣∣
|E|=∆E,φk

= ∆E [sin θ (cos(mφ)x̂ + cos(mφ)ŷ) + cos θẑ] = ∆E Ĥ(θ, φ), (5.20)

and now the skyrmion number is calculated as

Nmid = 1
4π

∫ 2π

0
dφ
∫ π

0
dθ

(
∂Ĥ
∂θ
× ∂Ĥ
∂φ

)
· Ĥ = 1

4π

∫ 2π

0
dφ
∫ π

0
dθ m sin θ = m. (5.21)

Note that the number of intragap branches Nmid is solely determined by the winding

number of the applied field, regardless of the winding number along the momentum
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direction. Yet, the presence of intragap branches crossing the zero energy does not

guarantee the existence of the exact zero mode, since the mini gap can develop

within each branch in the process of quantization. For further analysis, a fully

quantum mechanical approach is required.

5.7 Estimation of Energy Separations in Large Optical Vortex Regime

Following the formalism in Ref. [251], we find the energy separations between

the Floquet vortex states and the intragap state branches, respectively,

ω0 =
∫∞

0
Ω(r)
r
e−(2k0/δ)

∫ r
0 Ω(r′)dr′dr

k0
∫∞

0 e−(2k0/δ)
∫ r

0 Ω(r′)dr′dr
, ω̃0 = δ(π/2)

k0
∫∞

0 e−(2k0/δ)
∫ r

0 Ω(r′)dr′dr
, (5.22)

for low energy, low pseudo-OAM, and large optical vortex regime, as explained in

Eq. (5.4).

In this appendix, we demonstrate how these energy separations depend on

radiation parameters such as Ω0, δ, ω as well as the radial profile of the applied

light beam. For this, we estimate ω0 and ω̃0 for variants of radial beam profile.

Specifically, we consider the radial profile

Ω(r) =


Ω0(r/ξ)q for r ≤ ξ

Ω0 for r > ξ

, q ≥ 1. (5.23)
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With this, we define F(r) ≡ exp [−(2k0/δ)
∫ r
0 Ω(r′)dr′] and it becomes

F(r) =


exp

[
−2kδξ

q+1

(
r
ξ

)q+1
]

for r ≤ ξ

exp
[
−2kδ

(
r − q

q+1ξ
)]

for r > ξ

. (5.24)

With kδξ � 1, this F(r) can be roughly estimated by a step function θ(x) ≡

[sgn(x) + 1]/2,

F(r) ' θ (rcut − r) , rcut = O

ξ (q + 1
2kδξ

)1/(q+1)
 . (5.25)

With this,

∫ ∞
0

Ω(r)
r
F(r)dr '

∫ rcut

0
Ω0
rq−1

ξq
dr = Ω0r

q
cut

qξq
= O

(
Ω0[kδξ]−q/(q+1)

)
,∫ ∞

0
F(r)dr ' rcut = O

(
ξ(kδξ)−1/(q+1)

)
, (5.26)

then

ω0 =
∫∞

0 r−1Ω(r)F(r)dr
k0
∫∞

0 F(r)dr ' O
(
Ω0(k0ξ)−1(kδξ)−(q−1)/(q+1)

)
ω̃0 = δ(π/2)

k0
∫∞

0 F(r)dr ' O
(
δ(k0ξ)−1(kδξ)1/(q+1)

)
. (5.27)

As seen in this estimation, energy separations ω0 and ω̃0 depend not only on radiation

parameters like Ω0, δ, ω, but also on parameters related to the size (ξ) and shape

(q) of the radial profile of the beam.

From these results, we can further estimate the number of vortex modes in a
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branch as

2Ω0/ω0 = O
(
k0ξ(kδξ)(q−1)/(q+1)

)
. (5.28)

Also, we can estimate the angular momentum difference between branches as

ω̃0/ω0 = O

(
k0

kδ
(kδξ)q/(q+1)

)
. (5.29)

With q ≥ 1, the lower bound of these estimations are given as 2Ω0/ω0 = O (k0ξ)

and ω̃0/ω0 = O
(
k0k

−1
δ

√
kδξ

)
.

5.8 Illumination of Circularly Polarized Light

The hybridization gap for the bulk part of systems with linearly polarized

light is in the order of Ω0. For the most of systems with different beam polarization,

it is still true and therefore results in similar RWA Hamiltonian with Eq. (5.2).

However, the situation is different for circularly polarized light. As explained in

Ref. [188], a semiconductor valley with valley Hamiltonian H0,± = (vkx,±vky,M)

becomes a Floquet Chern insulator when illuminated by circularly polarized light

A±(r, t) = A(r)(x̂ ± iŷ)eiωt + c.c.. In such Floquet Chern insulator, the size of

hybridization gap is in the order of δΩ0/M , instead of Ω0. In this appendix, we derive

the RWA Hamiltonian for the light carrying OAM with this circular polarization.

Then we calculate the wavefunctions and dispersion of Floquet vortex states given by

that Hamiltonian. For simplicity, we only consider the valley HamiltonianH0 = H0,+
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and the field A(r, t) = A+(r, t) from now on.

The RWA Hamiltonian derived in appendix A is valid regardless of A(r, t) up

to Eq. (5.14). By using A(r, t) = A(r)(x̂ + iŷ)eiωt + c.c., we have Vy = iVx. This

yields

Vk = 1
2 [ReV + (dk × ImV− ImV× dk)− (dk · ReV)dk + (dk × ReV)× dk] · σ

+ i

2 [ImV · dk − dk · ImV− (dk × ReV) · dk]

= (1− dz,k)(ReVxσx − ImVxσy)(1− dz,k)/2 (5.30)

−1
2 [(dx,k − idy,k)(ReVx − iImVx)(dx,k − idy,k)σ+ + H.c.] +O

(
evAmaxv

3k3
0

M3

)
.

Then the RWA Hamiltonian becomes

HRWA = − ev3

2M2

[
(kx + iky)A0(r)eimφ(kx + iky)σ− + H.c.

]
+ v2

2M (k2 − k2
0)σz +O

(
v3k3

0
M2

)

= − δ

2M

[
(kx + iky)

k0
Ω(r)eimφ (kx + iky)

k0
σ− + H.c.

]

+δ

2

(
k2

k2
0
− 1

)
σz +O

δ
√
δ

M

 . (5.31)

In the bulk far from r = 0, this system becomes a Floquet Chern insulator and

therefore hosts edge states in the middle of hybridization gap. These states are

localized at the boundary of the sample and has nothing to do with the OAM of

the beam. We aim to find fully quantum mechanical solution for intragap states

localized around the optical vortex. For this, we use a similar method used in
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Ref. [222, 249–251]. Note that, due to scale change, we redefine kδ = k0Ω0/M for

this section.

For the simplicity of discussion, we normalize the RWA Hamiltonian as h =

(M/v2)HRWA. We first demonstrate that h commutes with pseudo-OAM l̂ = −i∂φ+

(m/2+1)σz. Note that the pseudo-OAM operator here differs from the pseudo-OAM

operator for the systems with non-circularly polarized light by an extra term of σz.

Similar to the linear polarization case, we use [−i∂φ, kx] = iky, [−i∂φ, ky] = −ikx,

[−i∂φ, kx ± iku] = ±(kx ± iky), and [−i∂φ,k2] = 0, therefore

[−i∂φ, h] = −(m+ 2)Ω(r)
2M

[
(kx − iky)e−imφ(kx − iky)σ+ − H.c.

]
,

[σz, h] = Ω(r)
M

[
(kx − iky)e−imφ(kx − iky)σ+ − H.c.

]
, (5.32)

so we eventually have [−i∂φ+(m/2+1)σz, h] = 0. Therefore, l is a conserved quantity

and we can block-diagonalize h along this l. Within the block for l, wavefunctions

can be written as in Eq. (5.3),

ψl(r) =
(
eil+φu+(r), eil−φu−(r)

)T
, (5.33)
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where l± = l ∓ (m/2 + 1). The eigenstates satisfy

εu+(r) = −1
2

(
∂2
r + 1

r
∂r −

l2+
r2 + k2

0

)
u+(r) + Ω(r)

2M

(
∂2
r + 2l + 1

r
∂r + l+l−

r2

)
u−(r)

+Ω′(r)
2M

(
∂r + l−

r

)
u−(r),

εu−(r) = 1
2

(
∂2
r + 1

r
∂r −

l2−
r2 + k2

0

)
u−(r) + Ω(r)

2M

(
∂2
r −

2l − 1
r

∂r + l+l−
r2

)
u+(r)

+Ω′(r)
2M

(
∂r −

l+
r

)
u+(r). (5.34)

As in the system with linearly polarized light, this RWA Hamiltonian preserves the

particle-hole symmetry. By replacing l by −l in this equation, l± → −l∓, so one can

readily show that ψ−l(r) = iσyψ
∗
l (r) with ε|−l = − ε|l. Equivalent to Eq. (5.34),

(
ε+ β

2r2

)
u+(r) = −1

2

(
∂2
r + 1

r
∂r −

α2

r2 + k2
0

)
u+(r) + Ω′(r)

2M

(
∂r + l−

r

)
u−(r)

+Ω(r)
2M

(
∂2
r + 2l + 1

r
∂r + l+l−

r2

)
u−(r),(

ε+ β

2r2

)
u−(r) = 1

2

(
∂2
r + 1

r
∂r −

α2

r2 + k2
0

)
u−(r) + Ω′(r)

2M

(
∂r −

l+
r

)
u+(r)

+Ω(r)
2M

(
∂2
r −

2l − 1
r

∂r + l+l−
r2

)
u+(r), (5.35)

where α =
√
l2 + (m/2 + 1)2 and β = l(m + 2). While it is difficult to find the

generic solution for this equation, we can find the low-energy solution for the regime

l2/k0 � k−1
δ � ξ. Let us consider a radius r∗ such that l2/k0 � r∗ � k−1

δ . For

r � r∗, Ω(r)→ 0 and therefore we can decouple u+(r) and u−(r) in Eq. (5.34),

(
∂2
r + 1

r
∂r −

l2±
r2 + k2

0 ± 2ε
)
u±(r) = 0, (5.36)
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which yields the solution

u±(r) = C±Jl∓(m/2+1)

(√
(k2

0 ± 2ε)r
)

(5.37)

where Jν(r) is the Bessel function of the first kind. The Bessel function of the second

kind can be ruled out since the solution should be finite at r = 0. In the low-energy

theory, ε� k2
0, we can write

√
k2

0 ± 2ε ' k0 ± p where p = ε/k0 � k0.

For r � r∗, we take the ansatz

u±(r) = f±(r)H(1)
α (k0r) + g±(r)H(2)

α (k0r) (5.38)

where H(1)
ν (x), H(2)

ν (x) are the Hankel functions of the first kind and the second

kind. Let us deal with the solutions for f±(r) first. Let us denote H(1)
α (x) = H(x)

for short. Denoting that (∂2
r + r−1∂r − α2/r2 + k2

0)H(k0r) = 0, Eq. (5.35) can be

written as

(
ε+ β

2r2

)
f+H

= −1
2

(
f ′′+H + 2f ′+H ′ +

f ′+H

r

)
+ Ω′

2M

(
f ′−H + f−H

′ + l−
r

)

+ Ω
2M

(
f ′′−H + 2f ′−H ′ + f−H

′′ + 2l + 1
r

(f ′−H + f−H
′) + l+l−

r2 f−H

)
,(

ε+ β

2r2

)
f−H

= 1
2

(
f ′′−H + 2f ′−H ′ +

f ′−H

r

)
+ Ω′

2M

(
f ′+H + f+H

′ − l+
r

)

+ Ω
2M

(
f ′′+H + 2f ′+H ′ + f+H

′′ − 2l − 1
r

(f ′+H + f+H
′) + l+l−

r2 f+H

)
. (5.39)

126



To simplify these equations, we estimate and compare the magnitude of different

terms in these equations around r = k−1
δ . For this, we take the ansatz f±(r) =

f±,(0)(r) exp[iη±(r)] where f ′±,(0)/f±,(0) = O(kδ), η± = O(kδ/k0), and η′±/η± = O(kδ)

around r = (kδ)−1. We further restrict the eigenenergy to be ε = O (k2
δ ). Assuming

|f+,(0)/f−,(0)| = O(1) and noting that ∂rH(1)
α (k0r) ' ik0H

(1)
α (k0r) for k0r � l2, the

lowest order equations of Eq. (5.39) become

O(k0kδ) : ∓ik0f
′
±,(0) − k2

0Ω(2M)−1f∓,(0) = 0,

O
(
k2
δ

)
:
(
ε+ β

2r2

)
f±,(0) = k0f

′
±,(0)η± + k0f±,(0)η

′
± ∓

f ′±,(0)

2r

±ik
2
0Ω

2M f∓,(0)η∓ ± i
k0Ω
2Mr

(2l ± 1)f∓,(0). (5.40)

By solving the equations of the order of O(k0kδ), we get

f+,(0) = B exp
(
−1

2(k0/M)
∫ r

0
Ω(r′)dr′

)
= −if−,(0). (5.41)

This solution indeed satisfies the supposition f ′±,(0)/f±,(0) = O(kδ). Then the equa-

tions of the order of O (k2
δ ) become

k0η
′
± −

k2
0Ω

2M (η+ + η−) = ε+ β

2r2 + k0Ω
Mr

(
l ± 1

4

)
, (5.42)
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or equivalently,

k0∂r(η+ + η−)− k2
0Ω
M

(η+ + η−) = 2ε+ β

r2 + 2l k0Ω
Mr

,

k0∂r(η+ − η−) = k0Ω
2Mr

. (5.43)

The solutions of these equations can be found as

η+(r) + η−(r) = − 2
k0
e
k0
M

∫ r
0 Ω(r′)dr′

∫ ∞
r

dr′
(
ε+ β

2r′2 + l
k0Ω(r′)
Mr′

)
e−

k0
M

∫ r′
0 Ω(r′′)dr′′ ,

η+(r)− η−(r) =
∫ r

0

Ω(r′)
2Mr′

dr′. (5.44)

We have (k0/M)
∫ 1/kδ
0 Ω(r)dr = O(1), ε + β/(2r2) + lk0Ω(r)/(Mr) ≤ O (k2

δ ) for

r ≥ O(k−1
δ ), and limr→0 Ω(r)/r < ∞, so the suppositions η± = O(kδ/k0) and

η′±/η± = O(kδ) are justified around r = (kδ)−1. One might worry that η+(r)−η−(r)

diverges as r →∞, but η+(r)−η−(r) is bounded to O(kδ/k0) as long as r ≤ O
(
k−1
δ

)
and the wavefunction vanishes for r � k−1

δ due to the behaviors of f±,(0)(r), so the

solutions become consistent.

We can also obtain the solutions for g±(r) by taking the complex conjugate

on Eq. (5.39) since ∂rH(2)
α (k0r) ' −ik0H

(2)
α (k0r), therefore g±(r) = f ∗±(r). Finally,

we can write down u±(r) for r � r∗ as

u±(r) = i(1∓1)/2Be−
1
2 (k0/M)

∫ r
0 Ω(r′)dr′ (5.45)

×
(
e±i[η±(r)±κ]H(1)

α (k0r)± e∓i[η±(r)±κ]H(2)
α (k0r)

)
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for some relative phase κ. Now let us match the solutions in Eq. (5.37) and Eq.

(5.45) at r = r∗. For this, with k0r
∗ � l2, we can use the asymptotic forms of Bessel

functions,

Jν(x) '
√

2
πx

cos
(
x− 2ν + 1

4 π + 4ν2 − 1
8x

)
, (5.46)

H(1),(2)
ν (x) '

√
2
πx

exp
[
±i
(
x− 2ν + 1

4 π + 4ν2 − 1
8x

)]
,

for ν = O(l). Now from Eq. (5.37),

u±(r∗) ' C±

√
2

π(k0 ± p)r∗
(5.47)

× cos
(

(k0 ± p)r∗ −
2l ∓m∓ 2 + 1

4 π + (2l ∓m∓ 2)2 − 1
8(k0 ± p)r∗

)
.

By matching the constant factor in Eq. (5.45) as B = C+, we have

u±(r∗) ' C+

√
2

πk0r∗
e−

1
2 (k0/M)

∫ r∗
0 Ω(r)dr

× cos
(
±η±(r∗) + κ+ k0r

∗ − 2α + 1
4 π + 4α2 − 1

8k0r∗
+ 1∓ 1

2

(
n− 1

2

)
π

)
(5.48)

where n is odd integer. Now by comparing Eq. (5.47) and Eq. (5.48), we have

±η±(r∗) + κ∓ pr∗ + 2l − 2α∓m∓ 2
4 π ± β

2k0r∗
+ 1∓ 1

2

(
n− 1

2

)
π

= O

(
p

k2
0r
∗

)
. (5.49)

Here, we now let n be any integer by using the freedom to choose the sign of
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C+/C−. In fact, this n serves as the branch index, so we put this branch index for

each state from now on. That is, ψl toψn,l, u± → un,±, η± → ηn,±, and ε → εn.

We now drop O( p
k2

0r
∗ ) terms from Eq. (5.49) since p/(k2

0r
∗) = pr∗/(k0r

∗)2 � pr∗,

and p/(k2
0r
∗) = (p/k0)/(k0r

∗) � 1/(k0r
∗) � 1. Then, from Eq. (5.49), we get

κ = (α− l − n+ 1/2)(π/2)−
∫ r
0 dr

′Ω(r′)/(4Mr′) and

ηn,+(r) + ηn,−(r) = 2εn
k0
r∗ − β

k0r∗
+
(
n+ m+ 1

2

)
π. (5.50)

Now to match Eq. (5.44) and Eq. (5.50), let us evaluate the integrals in Eq. (5.44).

First, we argue that the factor exp
(
k0
M

∫ r∗
0 Ω(r)dr

)
in Eq. (5.44) can be dropped

out. To justify this, we suppose Ω(r) is a non-decreasing function that saturates to

Ω0 without loss of generality. Then

∂r∗
(

log e
k0
M

∫ r∗
0 Ω(r)dr

)
= k0Ω(r∗)

M
<
k0Ω0

M

→ 1 ≤ e
k0
M

∫ r∗
0 Ω(r)dr < ek0Ω0r∗/M ' 1 (5.51)

since r∗ � k−1
δ . This also matches the functional form of the slowly varying

envelopes in Eq. (5.47) and Eq. (5.47). After getting rid of this factor from
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ηn,+(r) + ηn,−(r) in Eq. (5.44),

ηn,+(r∗) + ηn,−(r∗) = − 2
k0

∫ ∞
r∗

(
εn + β

2r2 + l
k0Ω(r)
Mr

)
e−

k0
M

∫ r
0 Ω(r′)dr′dr

= 2εnr∗
k0
− 2εn

k0

∫ ∞
0

e−
k0
M

∫ r
0 Ω(r′)dr′dr +

[
β

k0r
e−i

k0
M

∫ r
0 Ω(r′)dr′

]r=∞
r=r∗

+
∫ ∞
r∗

(β − 2l)Ω(r)
Mr

e−
k0
M

∫ r
0 Ω(r′)dr′

= 2εnr∗
k0
− β

k0r∗
− 2εn

( 1
k0

∫ ∞
0

e−
k0
M

∫ r
0 Ω(r′)dr′dr

)
+2ml [R(∞)−R(r∗)] ,

where R(r) =
∫ r

0

Ω(r′)
2Mr′

e−
k0
M

∫ r′
0 Ω(r′′)dr′′dr′. (5.52)

We further argue that this R(r∗) term can be dropped out from Eq. (5.52). For

the estimation, we suppose Ω(r) = Ω0(r/ξ)q for r ≤ ξ and Ω(r) = Ω0 for r > ξ,

without loss of generality. Here, 1 ≤ q = O(1). Then R(r∗) = O
(
kδ
k0

(
r∗

ξ

)q)
while

R
(
k−1
δ

)
= O

(
kδ
k0

(
1
kδξ

)q)
. Since r∗ � k−1

δ , R(r∗) � R
(
k−1
δ

)
< R(∞). Finally, by

comparing Eq. (5.50) and Eq. (5.52), we obtain the low-energy spectrum as

En,l = mlω0 + [n+ (m+ 1)/2]ω̃0, where

ω0 = δ
∫∞

0
Ω(r)
r
e
−(k0/M)

∫ r
0

∆(r′)dr′
dr

2Mk0
∫∞

0 e
−(k0/M)

∫ r
0

∆(r′)dr′
dr

, ω̃0 = v2k0(π/2)

M
∫∞

0 e
−(k0/M)

∫ r
0

Ω(r′)dr′
dr

. (5.53)

Here, we recovered the factor (v2/M) in HRWA = (v2/M)h as we restore εn → En,l.

In Fig. 5.4(a), energy dispersion of circular polarized light for different vorticities

m is shown. The non-linearity of dispersion for the illumination of CP light is also

demonstrated in Fig. 5.4(b), as can be seen by decreasing the optical vortex size,
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Figure 5.4: (a) Numerically calculated energy spectra as a function of pseudo-
OAM l. We use ω = 2.05M , Amax = 0.09M(ev)−1, and A0(r) =
Amax [1− exp{−r2/(2ξ2)}], ξ = 20kδ, and the disk sample of radius 25ξ. The numer-
ical energy dispersions agree with the analytically expected spectra in that includes
the number of intragap state branches and the slope of the linear dispersion for small
|El| and l. (b) Demonstration of dispersions’ dependence on optical vortex size ξ
for m = 1 with identical parameters with (a) except ξ and the disk size that the
latter is fixed on 500kδ. The linear region of the dispersion shrinks and the energy
separation between subsequent states increases as ξ decreases. On the right-hand
side, the electronic density profile of the vortex state for m = 1 just below the zero
of the energy is illustrated.

the energy separation between subsequent vortex states increases.

5.9 Numerical Diagonalization for the Low-energy Spectrum

For more efficient numerical diagonalization of HRWA, we can diagonalize the

block-diagonalized Hamiltonian for each l, as presented in the eigenvalue problem
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in Eq. (5.34). As shown in Eq. (5.18), wavefunctions for each l are written as

ψn,l(r) =
(
ei(l−m/2)φun,+(r), ei(l+m/2)φun,−(r)

)T
. (5.54)

Yet, it is tricky to apply a naive finite difference method due to the boundary

condition at r = 0. Rather, we use the basis which can diagonalize the Hamiltonian

onto the space of un,+(r) and un,−(r), assuming the system is confined on a disk of

radius R. That is, we use basis functions {u±,α(r)} such that

[
∂2
r + 1

r
∂r −

l2±
r2 + k2

0 ± 2ε±,α
]
u±,α(r) = 0, (5.55)

where eigenenergies ε±,α are set by the boundary condition u±,α(R) = 0. α ∈ N.

Here, l± = l∓m/2. Indeed, Eq. (5.55) are the Bessel equations and we immediately

find that u±,α(r) = C±,αJl±(
√

(k2
0 ± 2ε±,α)r) since u±,α(r) should be bounded at

r = 0. The normalization factors C±,α are determined by
∫ R

0 |u±,α(r)|2rdr = 1. Now

suppose z(ν)
α is the αth non-negative zero of the Bessel function of order ν, Jν(z).

Then we have

√
(k2

0 ± 2ε±,α)R = z(l±)
α ↔ ε±,α = ±1

2

(
z(l±)
α

R

)2

∓ k2
0

2 . (5.56)

While there are infinitely many eigenfunctions u±,α(r), we only take eigenfunctions

with the N -smallest positive eigenenergies and the N -largest negative eigenenergies

for each u±,α(r), because we would like to calculate the low-energy spectrum around

the zero energy. Since the eigenenergies are monotonic in α, we can label such
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eigenfunctions as α = i0 + 1, · · · , i0 + 2N for u+,α(r) and α = j0 + 1, · · · , j0 + 2N

for u−,α(r). Now we can calculate the rest part of the Hamiltonian from Eq. (5.34)

as

Ms,s′ =
∫ ∞

0
u+,i0+s(r)Ω(r)u−,j0+s′(r)rdr.

Along with block-diagonal matrices (H+)s,s′ = v2ε+,i0+sδs,s′/M and (H−)s,s′ =

v2ε−,j0+sδs,s′/M , we can construct a 4N -by-4N matrix

H
(l)
eff,proj =

 H+ M

M † H−

 , (5.57)

and we can diagonalize this matrix to obtain the low-energy spectrum and wave-

functions.

5.10 Two-qubit Operation of Floquet Vortex State Qubits

For the separation d between the two vortices, the Hamiltonian regarding the

two modes used for the qubit can be written as

Hd.v.(d) = Hon +Hhop(d),

Hon =
∑

P=L,R

 ∑
s=0,1

En,l0+sc
†
s,Pcs,P + Uc†0,Pc0,Pc

†
1,Pc1,P

 ,
Hhop(d) =

∑
s=0,1

Js(d)
(
c†s,Rcs,L + H.c.

)
, (5.58)
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where c†s,P creates an electron on the left (P=L) or the right (P=R) vortex at the

mode with pseudo-OAM l0 + s. On-site interaction energy U is determined by the

Coulomb repulsion between the two modes used for the qubit. While J0(d) and

J1(d) are not strictly identical, we may regard them equally in practice since the

amplitude of the tail part of the radial wavefunction is determined mostly by the

radial profile of the beam rather than the pseudo-OAM. so, we set Js=0,1(d) = J(d)

from now on. Hhop(d) in Eq. (5.58) can send a state to the outside of the two-qubit

space, but such leakage is energetically unfavorable due to the on-site interaction

energy U . Then the effective Hamiltonian in the two-qubit space can be obtained

through the Schrieffer-Wolff transformation in the regime of J(d)� U . If we denote

the projection operator onto the two-qubit space as P2, the effective Hamiltonian

can be written as

H2-qubit(d) = HonP2

+1
2
∑
i,j,k

(
〈i|Hhop|k〉 〈k|Hhop|j〉
〈i|Hon|i〉 − 〈k|Hon|k〉

+ 〈i|Hhop|k〉 〈k|Hhop|j〉
〈j|Hon|j〉 − 〈k|Hon|k〉

)
P2 |i〉 〈j|P2

= J(d)2

U
S + (El0 + El0+1)P2,

S = |01〉 〈01|+ |10〉 〈10|+ (|01〉 〈10|+ H.c.) . (5.59)

For simplicity, we can drop the diagonal term (El0 +El0+1)P2. Now, let us consider

a dynamic sequence that approaches and then separtes two vortices, d(t). The
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time-evolution of this process is given by

U = exp
[
−i
∫
H2-qubit(d(t))dt

]
= I ⊗ I +

(
exp[−iU−1 ∫ J(d(t))2dt]− 1

2

)
S

=



1 0 0 0

0 exp(−iΘ)+1
2

exp(−iΘ)−1
2 0

0 exp(−iΘ)−1
2

exp(−iΘ)+1
2 0

0 0 0 1


, (5.60)

where the matrix in the last row is written in computational basis {|00〉 , |01〉 , |10〉 , |11〉}

and Θ = U−1 ∫ J(d(t))2dt. Here, I is an identity operation on a single qubit. Now,

by controlling the dynamic sequence in a way that e−iΘ = i, we obtain

U =



1 0 0 0

0 1+i
2 −1−i

2 0

0 −1−i
2

1+i
2 0

0 0 0 1


= (I ⊗ σz)

√
SWAP(I ⊗ σz)

= (σz ⊗ I)
√
SWAP(σz ⊗ I). (5.61)

5.11 Discussion and outlook

The most important challenge in using periodic driving in condensed mat-

ter systems are the heating effects. However, recently there have been several
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theoretical proposals to restrain such destructive effects by using bath engineer-

ing techniques [197–199, 257–262]. In particular for Floquet topological insulators

(FTI) [188] created by irradiating light to semiconductors as in our proposal, it has

been demonstrated that in the weak-drive limit and in the presence of a phononic

heat bath, heating effects produced by electron-electron and electron-phonon in-

teractions can be suppressed provided that the bath-induced relaxation rates are

sufficiently large [199]. For such baths key features of FTIs such as the existence

of protected edge states can be preserved in the steady state which can make our

proposal also stable in the steady state. Also, recent experiments [190,246] on the ir-

radiated 2D material also provide another evidence that quantum states engineered

by periodic driving on condensed matter systems can be stabilized in the lab.

While vortex states can also be engineered in cold atoms [226–230], there are

several advantages to engineer them in electronic systems. One main advantage

is the possibility of creating and manipulating multiple vortex states more conve-

niently, as demonstrated in the aforementioned qubit manipulation. While this is

in principle possible in BEC systems too [263], controlling the transition of nu-

merous atoms can be more challenging than manipulating a single electron. Also,

our Floquet vortex state is spin-independent unlike the cold atom systems with

spin-orbit-angular-momentum coupling [229, 230, 264–267], and this spin degrees of

freedom can provide extra knobs for state engineering such as the Zeeman field.

To further elaborate the scheme for the quantum information processing, it

would be interesting to study the possible measurement protocols for the OAM of

the Floquet vortex states. One potential candidate for such protocol is through the
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measurement of optical Hall conductivity, which might have different responses on

the states with different OAM. Also, since our system has multiple non-linearly-

dispersed Floquet vortex states, the extension to the qudit system is a natural topic

for future study. While we briefly examined the possibility of such vortex state as

a qubit, there are a lot of unanswered questions such as the heating, decoherence,

and sensing in this platform. While we treated the vortex state of a single electron,

it would be interesting to study how the presence of Coulomb interactions can

change the vortex state structure or even help to create exotic many-body states.

Another interesting direction is to investigate lattices of optical vortices and other

field patterns such as electromagnetic skyrmions [268]. It would be also interesting

to investigate how our approach can help to control optical properties of materials

like van der Waals layered magnetic insulators.
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Chapter 6: Discussion and Outlook

In this dissertation, we have investigated several schemes to engineer topolog-

ical quantum states of matter with spatially patterned light. In this chapter, We

compare ultracold atom schemes with each other and highlight their advantages and

disadvantages. We also suggest some ideas to further develop the schemes.

The closed surface construction in Chapter 2 and the open boundary surface

construction in Chapter 3 have different advantages. The closed surface construction

can avoid unwanted effects of the boundary. For example, the measurement of

ground state degeneracy of the Laughlin states via spectral flow in Chapter 2 is

only possible in the intermediate-sized systems since it is a finite size effect. If one

creates a system of such size with an open boundary, the effect of the boundary would

ruin the desired physics in the bulk. On the other hand, the open boundary surface

construction has the same orientation in both layers. This implements orientation-

sensitive states easier compared to the closed surface construction where the two

layers have the opposite orientation. For example, the FQH Hamiltonian could be

built with far fewer laser beams in Chapter 3 since the same set of laser beams

worked for both layers.

Schemes in Chapter 2 and Chapter 3 not only differ in the existence of bound-
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ary but also differ in their methods to implement the bilayer structure. The real

space implementation in Chapter 2 does not require an external magnetic field as

well as laser-assisted tunnelings which have dangers to heat up the system. On the

other hand, the spin-dependent implementation in Chapter 3 has better control over

the interlayer tunneling and can easily image each layer separately. Also, the spin-

dependent implementation does not have to maintain the intensity profile in the

perpendicular direction. This can give better resolution and control for the beam

pattern.

Closed surface Open boundary surface
Boundary effect No Yes

Orientation of layers Opposite Identical

Table 6.1: Comparison of the closed surface construction and the open boundary
surface construction.

Real space Spin-dependent
Need an external magnetic field No Yes
Need laser-assisted tunneling No Yes
Interlayer tunneling control More difficult Easier

Single layer imaging More difficult Easier
Uniform intensity Required Not required

in perpendicular direction

Table 6.2: Comparison of bilayer implementation schemes.

Different advantages of each construction and implementation schemes dis-

cussed so far are summarized in Table 6.1 and Table 6.2. Based on these character-

istics, one may mix and match different construction and implementation schemes

that fit best with the goal of the experiment. For example, if one is not interested
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in achieving the quantum Hall states but wishes to control the interlayer tunnel-

ing better, one may try the closed surface construction with the spin-dependent

implementation of the bilayer structure.

As we discussed in Chapters 4 and 5, it is intriguing to see how such optical

patterning can be also implemented in solid-state systems. The optical imprinting

scheme in Chapter 4 not only provides a wide variety of spatial patterns on the 2D

materials but also can provide dynamically changing patterns as well. For example,

the topological phase transitions investigated in Chapter 4 can be demonstrated in

real-time. Dynamically changing spatial patterns may even implement the spacetime

crystals [87, 88].
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