
ABSTRACT

Title of the dissertation: TOPOLOGICAL PHOTONICS
AND EXPERIMENTAL TECHNIQUES
IN QUANTUM OPTICS

Venkata Vikram Orre
Doctor of Philosophy, 2019

Proposal directed by: Professor Mohammad Hafezi
Department of ECE

Topological photonics is the study of how the geometries and topologies of

devices can be used to manipulate the behavior of photons. Many topological models

exhibit edge states, a defining feature of these models, which travel around the

perimeter of the lattice and are not affected by disorder. These edge states can

help create scalable delay lines, quantum sources of light, and lasers all of which are

robust against fabrication-induced disorder and bends in photonic structures. This

research proposal is structured into two parts.

In the first half of this thesis, we investigate a topological model and study

some of its quantum applications. First, we realize the anomalous quantum Hall

effect in a photonic platform using a 2D array of ring resonators with zero flux

threading the lattice. The lattice implements a Haldane model by using the next-

nearest couplings in lattice to simulate a nonzero local gauge flux while having a net

flux of zero. The lattice hosts edge states, which are imaged through a CCD camera

and show robustness against missing site-defects, 900 bends and fabrication-induced



disorder. We also demonstrate a topological non-trivial to trivial phase transition

by simply detuning the ring resonances. Next, we show degenerate photon pair

creation in an anomalous quantum Hall device using a dual-pump spontaneous four-

wave mixing process. The linear dispersion in the edge band results in an efficient

phase matching and shows up as maximum counts in spectral correlations. The

flatness of edge band also allows us to tune the bandwidth of the quantum source

by changing the pump frequencies. Furthermore, we verify the indistinguishability

of the photons using a Hong-Ou-Mandel (HOM) experiment. Finally, we simulate

the transport of time-bin entangled photons in an integer quantum Hall device. The

edges states preserve the temporal correlations and are robust against fabrication-

induced disorder. In contrast, the bulk states in the device exhibit localization,

which is manifested in bunching/anti-bunching behavior.

In the second part, we explore a few experimental quantum optics techniques

developed as a part of investigating quantum transport in topological devices. We

demonstrate two experimental techniques:

1. We use an EOM-based time-lens technique to resolve temporal correlations of

time-bin entangled photons, which would have been otherwise inaccessible due to

the limited temporal resolution of single photon detectors. Our time-lens also maps

temporal correlations to spectral correlations and provides a way of manipulating

frequency-bin entangled photons.

2. We show frequency-resolved interference of two and three photons distinguishable

in time, which would not have interfered in a standard Hong-Ou-Mandel (HOM)

setup. Our setup can be extended to implement temporal boson sampling using



phase modulators. Furthermore, we demonstrate time-reversed HOM-like interfer-

ence using time-bin entangled photon pairs and show that the spectral correlations

are sensitive to phase between photons.

Lastly, we demonstrate some miscellaneous experimental techniques, such as the

design of the electronics used for time-lens, optimal spontaneous parametric down

conversion parameters, measuring joint spectral intensity using a chirped bragg grat-

ing, and simultaneous measurement of Hong-Ou-Mandel interference for different

frequencies.
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Chapter 1: Introduction

1.1 Motivation

The discovery of integer quantum Hall effect forever changed the landscape of

condensed matter systems [1]. The phenomena of quantized Hall conductance as

a function of applied magnetic field was observed in a two-dimensional gas at low

temperature and could not be explained by classical physics. This was surprising,

since the impurity of samples and other interactions should effect the conductance.

The origin for the quantization was later explained by the presence of Landau levels

and the quantization value was the result of the current travelling through robust

unidirectional chiral edge states [2, 3]. The conduction in the Landau levels filled

below the fermi level contributed to the integer in the quantization value and was

also shown to be related to the topological invariance of the system [3]. These edge

states were unidirectional, immune to disorder induced localization, and hence were

not affected by any local effects in the system such as impurities.

It look nearly two decades to realize the first experimental demonstration of

quantum Hall effect in photonics using a magneto-optical photonic crystal in the

microwave regime [4]. However, this implementation in the optical domain was

difficult due to lack of strong magneto-optical response materials. The proposed



solution [5–8] instead, is to have photons experience an artificial/synthetic magnetic

field. The first of such experiments were performed in [9, 10], which demonstrated

the presence of edge states in the system. Since then, many experiments have shown

edge states using various photonic systems [11–13].

There is a growing demand for on-chip integrated photonic technologies for

use in commercial applications such as routing, sensing and quantum communica-

tions. However, fabrication disorder affects the photonic devices and hinders their

scalability. For example, an array of ring resonators designed to act as a broadband

flat filter would have bands with peaks and troughs varying from device to device,

due to disorder. By using the robustness of these topological edge states, one can

create scalable devices which are robust to fabrication disorder. The motivation for

our research is explore how these topological devices could potentially be used for

quantum communications and quantum information.

Our topological system consists of an 2D array coupled ring resonators where

the synthetic magnetic field is simulated by controlling the hopping phase and cou-

pling between the site rings. The site rings are connected using link rings which are

frequency detuned by a phase π from the site rings. The link rings effectively as

waveguides between sites and are used to control the hopping strength and phase

between the photons. The devices are fabricated using silicon-on-insulator (SOI)

platform which could be produced in existing commercial CMOS foundries. Integer

quantum Hall effect (IQHE) has already been demonstrated in this platform and

the corresponding edge states were shown to be robust against disorder [9, 14]. In

this thesis, we use the same architecture to implement another topological model,

2



anomalous Hall effect, and study two applications such as creating a robust tunable

quantum light source and using the edge states for quantum communications. As

a part of this, we developed two experimental techniques–time-lens and frequency-

resolved detection–which could be useful in the field of quantum optics and quantum

communications.

1.2 Summary of Work

In Chapter 2, we realize a photonic analogue of anomalous Hall effect with 2D

array of ring resonators by exploiting the next-nearest couplings in the lattice. We

image the edge states in the system using a charge-coupled device (CCD) camera and

show that they are robust against 900 bends, missing site-defects and fabrication-

induced disorder. Unlike the IQHE device, the anomalous device is translationally

invariant and hence a topological transition can be induced by simply detuning the

site rings. We show a topologically trivial to non-trivial transition by detuning the

rings. This design could potentially be used to make robust reconfigurable photonic

devices in areas of routing and switching.

In Chapter 3, we use the anomalous Hall device to produce degenerate photon

pairs using dual-pump spontaneous four-wave mixing (DP SFWM). We show that

the linear dispersion of the edge states provides an efficient phase matching condition

for DP SFWM and produces maximum spectral correlations in the edge band. The

linear dispersion also make it possible to tune the bandwidth of the generated pho-

tons by changing the pump frequencies. Finally, we verify the indistinguishably of

3



photons using Hong-Ou-Mandel (HOM) experiment. This work allows exploration

of a robust tunable quantum sources on-chip which would be helpful in many appli-

cations of quantum information such as coupling light to various optical cavities.

In Chapter 4, we simulate and study the transport of time-bin entangled pho-

tons in a IQHE device. We observe that the temporal correlations are preserved

when they travel through edge states, where as bulk states exhibit localization and

distort the temporal correlations. This work suggests that edge states can be used

for quantum communications. During the exploration of this experiment using our

devices, we develop two quantum optical techniques which are described below.

In Chapter 5, we realize an electro-optic modulator (EOM) based time-lens

technique to resolve temporal and spectral correlations of time-bin entangled pho-

tons. The single photon detectors used to detect temporal correlations have a finite

jitter and cannot resolve correlations if the photons are separated by less than the

detector jitter. We use a time-lens technique to resolve the photons and their tem-

poral correlations for separations of less than detector jitter by magnifying the time

by a factor of ≈ 9.6. Furthermore, the generated photons map the temporal cor-

relations to spectral correlations and could be used to manipulate frequency-bin

entangled photons. This technique could enable resolving picosecond time scales

using existing single photon detectors for use in quantum communications.

In Chapter 6, we realize frequency-resolved interference of two and three pho-

tons distinguishable in time. In interference experiments like HOM, any distin-

guishability between photons wipes out the interference. Using frequency-resolved

detection, we show interference between photons which are separated by more than

4



50 times their pulsewidth. Furthermore, we demonstrate time-reversed HOM-like

interference using time-bin entangled photon pairs and show that the spectral corre-

lations are sensitive to the phase between photons. By adding a time-dependent dis-

persion/phase modulator, our experimental setup can be extended to perform boson

sampling in time, which is one of the benchmarks to achieve quantum supremacy.

In Chapter 7, we put together some experimental techniques, such as design

of the printed circuit board used in time-lens, optimal SPDC parameters, joint

spectral intensity measurement using a chirped bragg grating, and simultaneous

measurement of HOM dip for different frequencies.

In Chapter 8, we conclude the thesis and discuss potential future work.
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Chapter 2: Anomalous Quantum Hall Effect

2.1 Introduction

Topological photonics have been shown to produce edge states which are robust

against disorder. A few possible applications of these edge states include creation

of delay lines [5,9,14], lasers [15–17], quantum sources of light [18,19] and reconfig-

urable pathways on chips [20,21]—all of which are robust against fabrication-induced

disorder and bends in the photonic structures. Despite many advances in photon-

ics, there has not yet been a nanophotonic realization of the anomalous quantum

Hall phase—a two-dimensional Chern insulator with zero net gauge flux [22,23]. In

this chapter, we demonstrate a nanophotonic analogue of the anomalous quantum

Hall system using a periodic 2D checkerboard lattice of coupled ring resonators with

nearest and next-nearest neighbor couplings [24].

As proposed in Ref. [25], the tight-binding description of the photonic lattice

is similar to the Haldane model [22], in that the net gauge flux threading the lat-

tice is zero, but next-nearest neighbor couplings induce non-zero local gauge flux.

This effectively breaks time reversal symmetry and creates a topologically nontrivial

band gap. We directly image the light intensity distribution in the lattice, revealing

topological edge states in this gap that are robust against missing-site defects and



propagate around 90◦ corners without any scattering into the bulk. Because the

overall structure is time-reversal invariant, it hosts a pseudospin degree of freedom

associated with the clockwise and the counter-clockwise (time-reversed) propaga-

tion of photons in the rings. By selective excitation of the pseudospins, we show

that time-reversal invariance is effectively broken within each decoupled pseudospin

sector, similar to the Kane-Mele quantum spin Hall model with no Rashba cou-

pling [23], and the edge states associated with the two pseudospins propagate in

opposite directions. Furthermore, we demonstrate a transition between topologi-

cally nontrivial and trivial phases by detuning the ring resonance frequencies, and

observe edge states at an internal boundary between the two phases. We note that

the system is periodic and does not require staggering the phases of the couplings,

unlike the coupled-resonator system of Refs. [5,9,17] which realizes the integer quan-

tum Hall effect.

2.2 Ring resonator

A ring resonator is a looped waveguide which resonates similar to a opti-

cal cavity. When a field goes through n times round the ring, it constructively/

destructively interferes at specific wavelengths. The resonance condition happens

when nλ = L, where n is an integer, λ is resonant wavelength and L is the length

of the ring. The light in the ring could be coupled in two modes; one propagating

clockwise and the other counter clockwise. These two modes could be considered as

a pseudospin in integer quantum Hall effect (IQHE) and anomalous quantum Hall
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effect system. There exists many longitudinal modes in the resonator, but we design

the system such that single-mode approximation theory would be valid in a given

free spectral range (FSR). This is done by making the bandwidth much smaller than

the FSR, i.e using high quality factor (Q) rings.

2.3 Theory of Anomalous Hall effect

We construct a 2D array of ring resonators and realize photonic analogue of

anomalous Hall effect. Our system consists of superposed square lattice of two

different sets of site rings A and B as shown in Fig. 2.1. The site-rings are coupled

to their neighbours and next-nearest neighbours using link rings which are detuned

from the site rings by a phase difference of π. The detuning is accomplished by

introducing an extra path-length into the link rings. The link rings introduces a

direction-dependent hopping phase ±π/4 when photons hop between neighbours

and, a phase of zero between next-nearest neighbours. This configuration results

in a effective magnetic flux π threading a plaquette (containing two A and two

B) and a net magnetic flux of zero in an unit cell (two plaquettes). This system

breaks time-reversal symmetry and gives rises to an anomalous quantum Hall phase

without Landau levels [22]. The two modes of clockwise and counter-wise modes

in the lattice contribute to pseudospin(up and down) degree of freedom. The two

modes realize two different copies of anomalous Hall phase. Since their hopping

phases are +π/4 and −π/4, the lattice breaks time-reversal symmetry and behaves

similar to Kane-Mele model of quantum spin Hall effect [23].

8



The corresponding hamiltonian for the system is

H =
∑

<i,j>,σ

(ω0 −M) a†i,σai,σ + (ω0 +M) b†i,σbi,σ

− J
(
a†j,σai,σ + b†j,σbi,σ + a†j,σbi,σe

−iσφi,j + h.c.
)
, (2.1)

Here, ai,σandbi,σ are the annihilation operators corresponding to site rings A

and B, respectively, at lattice site index i = (x, y) and the summation < i, j >

is only over nearest and next-nearest neighbours. σ = ±1 is the pseudospin index

for the up/down spins, respectively. J is the coupling strength between nearest

and the next-nearest neighbor sites, and φi,j = ±π/4 is the direction-dependent

hopping phase between sites A and B, as shown in Fig. 2.1(a). We introduce a

detuning M between the A and B site rings. If M < 2J , the lattice exhibits a robust

unidirectional topological edge state in the topological bandgap (Fig. 2.1(c)). In

contrast, when M > 2J , the lattice is topologically trivial and doesn’t exhibit any

edge states.

2.4 Device

We use the silicon-on-insulator (SOI) platform and fabricate the chip using

deep-UV projection lithography at a commercial foundry (IMEC, Belgium). Each

resonator has a width of 510 nm and 220 nm in height and is designed such that only

a single transverse electric (TE) mode propagates through it. The interaction length

and gap between the rings determines the coupling between rings. The coupling

gap between the rings is designed such that J is estimated to be 15.6(4) GHz. More

specifications on the devices are given in Appendix A. Surface roughness of the
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Fig. 2.1: (a) Schematic of the 2D array of ring resonators, with site-rings A(blue)and

B(red) coupled using link-rings (grey). Top-left inset: microscope image of

the device. Top-right inset: the two pseudospin degree of freedom, up and

down, which correspond to the clockwise and the counterclockwise circulation

of photons in the site rings, respectively. Center inset: schematics for nearest-

neighbor hopping (left) and next-nearest-neighbor hoppings (center and right)

for the pseudospin-up. (b) Schematic of the 2D lattice. Red and blue circles

indicate A and B lattice sites respectively. Solid lines denote nearest-neighbor

hoppings between A and B sites, with hopping phases indicated. Dashes indi-

cate next-nearest neighbor hoppings. The gauge flux is ±π in a single plaquette,

and zero over a unit cell of 2 plaquettes (shaded yellow). (c)-(d) Band diagram

of the semi-infinite lattice for M = 0 and M = 3J , respectively.
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waveguides will allow for some light to leak through which is captured through

a charged-coupled device (CCD) camera. Light from a continuous wave laser is

amplified through a Erbium-doped fiber amplifier (EDFA) and sent through the

input port and the corresponding power is detected at the drop port. From the

image captured by the CCD camera, we determine the intensity distribution in each

of the rings.

2.5 Edge states

We fabricated an array of 56 A and 56 B resonators as shown in schematic in

Fig. 2.1(a). For this device, M = 0 is chosen which implies that both A and B

rings are identical. Fig. 2.2(a,c) show the simulated transmission spectrum for the

pseudo-spin up and pseudo-spin down configuration. The procedure to simulate the

spectra is given in Appendix B. We observe the transmission in pseudospin-down is

lower as light travels a long path and encounters a higher loss. The simulations do

not include disorder which changes the transmission spectrum from device to device.

We measure the transmission spectrum for pseudospin-up excitation and observe a

band with high transmission around δν ≈ 0 GHz Fig. 2.2(a). The central frequency

is calculated by minimizing the variation in transmission and delay spectra in the

edge band [9]. Fig. 2.2(b) shows measured spatial intensity over a range of 5

GHz. In Fig. 2.2(e), the light travels along the counter-clockwise direction and

is confined to the edge. We also observe that the light travels around two sharp

90o bends without scattering into bulk. This is the edge band of the device. The
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decrease in intensity along the edge is due to the scattering losses and attenuation

in the waveguides. When contrasted with light excited at δν ≈ 20 GHz (away from

the edge band), the intensity is distributed through the bulk of the lattice, as shown

in Fig. 2.2(c). This is the bulk band of the lattice. The fabricated devices have a

disorder of 2J (33 GHz) which is comparable to the bandgap of the device. In spite

of this disorder, the lattice exhibits clear edge states showing its robustness against

fabrication-induced disorder.

Next, we study the spin-nature of topological edge state by exciting the pseudospin-

down configuration. Fig. 2.2(d) shows the resulting transmission spectrum for

pseudospin-down and the corresponding intensity distribution at δν ≈ 0 GHz shows

a confined edge state travelling in clockwise direction. The transmission in this edge

is about 5 dB lower compared to pseudospin-up, since it has to travel a longer path

and hence undergoes more scattering loss. As before, exciting at δν ≈ 20 GHz

shows light scattering into the bulk. We also observe that the transmission in the

bulk in much lower compared to simulation which shows the effect of disorder on the

bulk. We see a slight shift between edge band frequencies because pseudospin-up

experiences a different disorder compared to pseudospin-down.

2.6 Trivial System

Unlike the IQHE device given in [9], the anomalous device is translationally

invariant and hence a topological transition can be induced just by detuning the site

rings. To show a topological phase transition, we engineer another device with a de-
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tuning of M > 2J = 98 GHz. The detuning is achieved by increasing(/decreasing)

the length of the site rings A(B) which effectively shifts the ring resonance frequen-

cies. Fig. 2.3(a) shows the transmission for pseudospin-up and we see negligible

transmission at δν ≈ 0 GHz indicating the presence of a bandgap. There is single

transmission band at δν ≈ M ≈ 100 GHz. The measured intensity distribution

shows that a few B rings are excited at δν = 100 GHz (Fig. 2.3(c)). The site

A rings and B rings are weakly coupled due to resonance mismatch. Hence, the

transmission at δν = 100 GHz is negligible but the A rings can be seen to be excited

from the intensity profile and the reflection spectra (Fig. 2.3(b). Here, flipping the

spin of excitation does not affect the transmission or the intensity profile confirming

that lattice is topologically trivial (Fig. 2.3(d)).

2.7 Topological trivial and non-trivial boundary

In order to verify that edge states are not artifacts of physical boundary, we

fabricated a device with interface between a topologically non-trivial (M = 0 GHz)

and a trivial (M ≈ 98 GHz) lattice as shown in Fig. 2.4(a). We place an input port

on one edge of the non-trivial domain and two outport ports at the edges of trivial

and non-trivial domains. The measured transmission for two outports are shown

in Fig. 2.4(b). At frequencies in the bandgap of the non-trivial domain, we see

that the light travels along the clockwise edge of the non-trivial boundary without

scattering into the trivial domain. We further see that there is no transmission in

the trivial domain. To further test the robustness of edge states, a ring has been

15



removed along the edge of non-trivial domain as shown in Fig. 2.4(a) and (c). The

edge states routes around the missing defect without scattering into bulk.

2.8 Summary

In this chapter, we have realized a photonic analogue of the anomalous quan-

tum Hall phase using a 2D lattice of ring resonators with net zero flux. We showed

that the system exhibits robust edge states that are less susceptible to fabrication-

induced order. We also showed a topological non-trivial to trivial phase transition

by introducing relative detuning between the site rings. This system could be mod-

ified to perform reconfiguration topological phase transitions using metal heaters or

electro-optic modulators [26, 27]. This design could be potentially be used to make

robust reconfigurable photonic devices in areas of routing and switching.
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Chapter 3: Tunable quantum interference using a topological source

of indistinguishable photon pairs

3.1 Introduction

Indistinguishable photon pairs and their quantum interference is a fundamental

resource enabling many quantum applications such as quantum metrology [28, 29],

quantum communications [30,31] and quantum computing [32,33]. Sources of indis-

tinguishable photon pairs have largely relied on nonlinear processes, such as sponta-

neous parametric down conversion (SPDC) and spontaneous parametric four-wave

mixing (SFWM), in bulk crystals or optical fibers. There is a growing need to

generate these photon sources on-chip which can be accomplished by using the

χ3 non-linearity of silicon. On-chip photon pairs produced through SFWM have

an added advantage over SPDC of being easily scalable and not requiring spe-

cial materials. However, disorder during fabrication processes changes the device

functionality and makes the scalability of these devices ineffective. One prominent

solution to the problem is to use topological edge states, which were shown to be

robust against fabrication-induced disorder. Recently, these edge states have been

used to create a topological non-degenerate photon pair source using spontaneous



four-wave mixing in a quantum-spin Hall device [18] and other works [34, 35] have

shown quantum interference in topological models. Furthermore, the correlations

generated in parametric processes dictate the characteristics of quantum interfer-

ence between generated photons, and subsequently, their applications in quantum

networks and quantum communications [36, 37]. For example, long distance quan-

tum communications and efficient atom (cavity)-photon interfaces require photons

with narrow spectral bandwidths whereas quantum-enhanced temporal measure-

ments may require photons with narrow temporal bandwidths [38–40]. This diverse

range of applications necessitates generation of photon pairs with tunable spectral

and temporal correlations.

In this chapter [19], we report the generation of indistinguishable photon

pairs via dual-pump SFWM in a topological photonic system that simulates the

anomalous-quantum Hall effect for photons [22, 24, 25]. More importantly, we use

the linear dispersion and the spatial confinement of the topological edge states to

generate photon pairs with tunable spectral bandwidth. Our system is time-reversal

symmetric and supports two pseudo-spins with counter-propagating edge states,

similar to the quantum-spin Hall effect. We use these two pseduospins, together

with a Sagnac interferometer scheme, to generate path-entangled photon pairs, and

subsequently, realize a deterministic quantum beam-splitter to separate the indistin-

guishable photon pairs via time-reversed HOM interference [41–43]. This allows us

to confirm the indistinguishability of signal and idler photons using HOM interfer-

ence. We also show that the tunability of the spectral bandwidth of the two-photon

wavefunction manifests in the temporal width of the HOM interference dip. Next,
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we demonstrate that the generated photon pairs are energy-time entangled, as ex-

pected for a SFWM process with continuous-wave pump. Finally, we compare the

spectral correlations of multiple 2D devices with 1D array of ring resonators and

show that the topologically non-trivial devices surpass the performance of topo-

logically trivial devices to produce consistent output spectrum in the edge bands.

Our results would pave the way for the realization of topologically robust quantum

photonic devices, for example, topological parametric amplifiers and single-mode

topologically squeezed light [44,45].

3.2 Theory of dual-pump SFWM

In a dual-pump SFWM process (DP-SFWM), two pump photons ωp1 and ωp2

annihilate to produce two identical signal and idler photons ωs, ωi as shown in Fig.

3.1(a). The output spectrum of the generated signal photons is determined by the

energy and momentum equations ωp1 + ωp2 = ωs + ωi and kp1(ωp1) + kp2(ωp2) =

ks(ωs) + ki(ωi). It can be seen that output spectrum also depends on the dispersion

relation of the medium. By using the linear dispersion of the edge states, we can

efficiently generate degenerate photon-pairs in a DP-SFWM process across the edge

band.

We use the topological configuration of an anomalous Hall device in Chap-

ter 2, where M = 0J . This configuration results in a Haldane-like tight-binding

Hamiltonian [22,24,25],

HL =
∑
i,j

ω0a
†
iai − J

(∑
<i,j>

a†jaie
−iφi,j +

∑
�i,j�

a†jai + h.c.

)
(3.1)
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Simulated transmission and delay spectrum of device. We pump the lattice us-

ing two classical, continuous-wave pump beams in two longitudinal modes of the

lattice(ωp1 , ωp2) separated by two free-spectral ranges (FSRs). The correspond-

ing resonance frequencies of pumps, signal and idler are given by ω0p1 , ω0p2 , ω0s

and ω0i respectively. Top-left inset: Pseduospin-up/down excitations, Unit cell

of the lattice, where the gauge flux is ±π in a single plaquette, and zero over

a unit cell of 2 plaquettes (shaded yellow). Level diagrams for DP-SFWM and

ND-SFWM. Top-right inset: The photons from ND-SFWM are filtered out by

measuring coincidences and the pump photons are spectrally filtered. Middle

inset shows the image of the device obtained using a camera.
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Here a†i (ai) is the creation (annihilation) operator at a lattice site i = (x, y). The

summations < i, j > and � i, j � are over the nearest and the next-nearest neigh-

bor lattice sites, respectively. The phase φi,j = ±π/4 for nearest-neighbor hoppings.

For a finite lattice, the band gap hosts topological edge states that are confined to

the boundary of the lattice. More importantly, the edge states are robust against

disorder, for example, against variations in the ring resonance frequencies. The edge

states also exhibit a linear dispersion [14, 24, 25]. The band structure of the lattice

and the presence of edge states can be probed by measuring the transmission and

the delay spectra of the lattice from input to the output port. The simulated trans-

mission and delay spectra for a 8× 8 lattice are shown in Figs. 3.1(b,c). The linear

dispersion of the edge states manifests in the Wigner delay spectrum as a flat profile

(Fig. 3.1(c)). In contrast, the Wigner delay in the bulk band varies significantly

because in a finite lattice, the bulk bands do not have a well defined momentum.

Our system also supports a pseudospin degree of freedom because of the two circu-

lation directions (clockwise and counter-clockwise) in the ring resonators. The two

pseudospins are time-reversed partners, and therefore, experience opposite hopping

phases and counter propagating edge states.

To generate indistinguishable photon pairs in this lattice, we use the χ(3)

nonlinearity of silicon and implement dual-pump SFWM. We pump the lattice using

two classical, continuous-wave pump beams in two longitudinal modes of the lattice

separated by two free-spectral ranges (FSRs, see Fig. 3.1). The DP-SFWM then

leads to the generation of indistinguishable photon pairs, called signal and idler, in

the longitudinal mode located midway between the two pump modes such that the
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energy conservation relation is satisfied. This nonlinear process is described by the

Hamiltonian

HNL = η
∑
m

(
a†m,s a

†
m,i am,p1 am,p2 + a†m,p1 a

†
m,p2

am,s am,i

)
, (3.2)

Here η is the efficiency of the SFWM process, and a†m,µ, with µ = s, i, p1, p2,

is the photon creation operator for signal, idler or pump photons at a lattice site

m. The DP-SFWM adds or removes photons in pairs, and therefore, in the low-

loss regime, leads to single-mode squeezed light. We note that each of the two

pump beams also generate distinguishable photon pairs via non-degenerate SFWM

(ND-SFWM). However, because of the energy conservation (2ωpi = ωs + ωi), these

photon pairs are generated in longitudinal modes located symmetrically around the

respective pump beams. Therefore, we use spectral filtering and time-resolved co-

incidence measurements between correlated photon pairs generated via DP-SFWM

to exclude the noise photons generated by ND-SFWM.

Next, we show the method to simulate the intensity of output photon gen-

eration in the anomalous Hall device. We assume that the pump fields are much

stronger than the signal and hence use the linear evolution to describe the evolution

of the pump fields. Using input-output formalism and rotating wave approximation

in [5, 46], we derive the steady state pump fields evolution to be [18],

− iωpi am,pi = i [HL, am,pi ]− κin am,pi − (δm,I + δm,O)κex am,pi − δm,I
√

2κex ain,pi ,

(3.3)

Here, κex is the coupling strength of the lattice to input/output waveguides, κin is

the loss and ain,pi ∈ [ain,p1 , ain,p2 ] are the input pump fields. The input and output
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waveguides are coupled to the lattice at sites indexed by I, O. The steady state

signal field evolution given by,

−iωρ am,s/i = i
[
HL +HNL, am,s/i

]
−κin am,s/i−(δm,I + δm,O)κex am,s/i−δm,I

√
2κex ain,s/i,

(3.4)

We determine the signal/idler at the output of the lattice by aout,s/i =
√

2κex aO,s/i

using the input-output formalism.

3.3 Experimental Setup

We use the same topological device as in Chapter 2 for measurements, where

the coupling strength J ' 15.6 GHz. Figure 3.2(a) shows the measured transmission

spectrum of the device for spin-up excitation, with the edge band highlighted in

color. The edge states for this excitation take the shorter route from input to the

output coupler, as shown in Fig. 3.1(a).

We use tunable continuous-wave lasers and EDFA’s to pump the lattice (ωp1 , ωp2).

The corresponding resonance frequencies of pumps, signal and idler are given by

ω0p1 , ω0p2 , ω0s and ω0i respectively. Filters are used to remove the pumps from the

photons. A beam-splitter is used with conjunction of a time-correlated single-photon

counting (TCSPC) module and two single photon superconducting nano-wire detec-

tors (SNSPDs) to measure the timing of coincidences. The inset in Fig. 3.1(a)shows

a typical coincidence histogram where the coincidences are calculated by integrating

the points in the full-width at half maximum of the histogram peak.
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3.4 Characterisation of the quantum source

In order to characterize the purity of the two photon source, we look at the

second order cross-correlation (g2(τ)) which also measures the amount of bunching

between photons. A true two-photon source results in a gcc2 (τ = 0) > 2. A coinci-

dence histogram is used to measure g2(τ) as shown in Fig. 3.2(b) when P1 = 1 mW

and P2 = 3 mW at the input of the lattice. We observe a g2(τ = 0) ≈ 117 showing

that photons are indeed strongly correlated.

We find the signal-to-noise ratio of the photon source by measuring coinci-

dences to accidental ratio (CAR) in the histogram. We integrate g2(τ) around the

peak to calculate the actual coincidences and divide it by the mean at τ >> 0 which

are the noise photons. The resulting ratio gives a CAR of ≈ 53 showing that it is a

high quality two-photon source. We also verify the behaviour of CAR as an function

of one of the pump powers when the other pump is fixed. The theoretical CAR is

calculated using

CAR =
ηPp1Pp2

(ηP 2
p1

+ ηP 2
p2

+ ηPp1Pp2)
2
, (3.5)

where the Ppi is the power of the pump i. The theoretical CAR curve increases to

a maximum and then falls down as a function of pump power. For low powers, the

CAR is limited by noise from SFWM process. Fig. 3.2(d) shows the measured

CAR as function of one pump power as the other pump power is fixed at 3 mW

and agrees very well with the corresponding theoretical curve. We also verified that

coincidences are from DP-SFWM by varying one pump power, while the other pump

is fixed at 3mW (Fig. 3.2(c)). The curve follows linearly as expected, since the
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coincidences scale as Pp1Pp2 .

3.5 Spectral Correlations in an Anomalous Hall Device

To measure the spectral correlations between the two pump fields and the

generated photons, we first measure the number of indistinguishable photon pairs

generated via DP-SFWM as a function of the two pump frequencies (ωp1 , ωp2). Fig.

3.3(a) shows the measured number of coincidence counts as a function of the two

pump frequencies over an acquisition time of 10 seconds. We observe that the photon

generation rate is maximum when both the pump frequencies are in the edge band,

[−J, J ]. Furthermore, compared to the bulk band regions, the generation rate is

relatively uniform throughout the edge band. We note that because of the presence

of four fields in the D-SFWM process (ωp1 + ωp2 = ωs + ωi), the current plot does not

yield any information about the spectral correlations between generated photons.

Next, we fix the input pump frequencies to be in the middle of the edge

band at ' 0J , ωp1 − ω0p1 = ωp2 − ω0p2 = 0J (in respective longitudinal modes)

and measure the joint spectral intensity (JSI) between generated signal and idler

photons [Γ (ωs, ωi)]. We use a beam-splitter and two spectrometers to measure the

JSI. The measured JSI shows that, with the two pump fields in the edge band, the

spectra of generated signal and idler photons is also limited to the edge band. This

is because of the linear dispersion of the edge states that leads to efficient phase

matching (momentum conservation) when all the four fields are in the edge band,

and also because of the confinement of the edge states to the lattice boundary that
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Fig. 3.3: (a-d)Measured Joint spectral intensity of the signal photons at [ωp1−ω0p1 , ωp2−

ω0p2 ] = [.8J, 0J ], [.8J, .8J ], [0J, 0J ], [−1.82J,−2.42J ] respectively.

leads to a good spatial overlap between the fields. Furthermore, both the signal and

idler spectra are centered around 0J which indicates that they are degenerate in

frequency. Given the facts that our ring resonator waveguides supports a single TE

polarized mode and the generated photons are collected from a single spatial mode

(the same output port), the generated photons are indistinguishable in all degrees

of freedom. Note that we use continuous-wave pumps in our experiments, and the

apparent width of spectral correlations along the diagonal is because of the finite

spectral resolution (≈ 10GHz ' 0.64J) of our measurements.

To show the tunability of the spectra of generated photons, we measure the

signal-idler JSI correlations for different pump positions in the edge band. For

example, when both the pump frequencies are near the side of the edge band

ωp1 − ω0p1 = ωp2 − ω0p2 = .8J , we observe that the spectra of generated pho-

tons is significantly narrower (by ≈ 3X) than that when both the pumps are in
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the center of the edge band (Fig. 3.2(d)). This is again because of the efficient

energy and momentum conservation in the edge band that limits the spectra of

generated photons. Also, as expected, the spectra are centered around 0.8J . Sim-

ilarly, when the two pump frequencies are at different locations in the edge band

ωp1 − ω0p1 = .8J, ωp2 − ω0p2 = 0J , we observe that the spectra of generated photons

are centered around 0.4J . We contrast these results by exciting the pumps in the

bulk band, when ωp1 − ω0p1 = −1.82J, ωp2 − ω0p2 = −2.42J . We observe that spec-

trum is uneven and supports multiple modes due to the randomized dispersion in

the bulk band.

3.6 HOM experiment

Though our spectral measurements indicate that the generated photons are

indistinguishable, Hong-Ou-Mandel interference [47] can confirm the indistinguisha-

bility of photons. In HOM interference, two indistinguishable photons arriving si-

multaneously at the two input ports of a beam-splitter bunch together at the output.

However, in our topological source, both the photons are in a single spatial mode,

they are degenerate in frequency, and have same polarization. Therefore, as re-

quired for HOM interference, they can not be separated into two spatial modes

using a normal beam-splitter which is probabilistic and gives only 50% interference

visibility. Nevertheless, the two photons can be deterministically separated using

time-reversed HOM interference in beam-splitter when the input to the beamsplitter

is a path-entangled state of the form |20 >A,B +|02 >A,B, that is, both the photons
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Fig. 3.4: (a) Schematic of the Sagnac interferometer setup used to deterministically split

the two photons via time-reversed HOM interference of a path-entangled two-

photon state (at beamsplitter BS1), and subsequently, realize HOM interference

at beamsplitter BS2 with a variable delay τ between the two photons. (b) Mea-

sured two-fold coincidences at the output ports C, D of the beamplitter BS1, for

two different configuration so the input pump beams. The photons anti-bunch

(bunch, δ = π) when the two pumps are in separate (same, δ = 0) input ports of

BS1. (c,d) Measured HOM interference dip for δ = π, and the pump frequencies

ωp1 − ωp10 = ωp2 − ωp20 = 0 and ωp1 − ωp10 = ωp2 − ωp20 = .8J , respectively.

Insets show the measured JSI.
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arrive either at the input port A or at port B of the beamsplitter. Here the state

|nm〉A,B refers to n photons in the first port of the beamsplitter and m photons in

the second port.

To implement this deterministic beamsplitter, we use our topological source

in a Sagnac interferometer (formed by beamsplitter BS-1) [41–43]. In this con-

figuration, both the pseduospins (up and down) associated with our source are

simultaneously pumped (Fig. 3.4(a)). Because they are time-reversed partners, the

pump beams corresponding to the two pseudospins propagate through the same

edge state, but in opposite directions, and generate an entangled two-photon state

|20 >A,B +eiδ|02 >A,B at ports A, B of the beamsplitter BS-1. The relative phase δ

of two-photon entangled state can be set to 0 or π by appropriately choosing the in-

put ports for the two pump beams at the Sagnac beamsplitter (BS 1 in Fig. 3.4(a)).

When both the pumps are in the same port of the BS-1 (Port C or Port D), the

phase δ = 0, and the two photons bunch at the output of BS-1, that is, they appear

at either port C or port D of BS-1 (Fig. 3.4). In contrast, when the two pumps are

in different ports of the beamsplitter BS-1 (one in Port C, and the other in Port D),

the phase δ = π and it leads to anti-bunching of photons such that the photons are

deterministically separated at the output of the BS-1. In our experiment, we use

two circulators to collect the photons at ports C and D. The pumps are excited at

ωp1 −ωp10 = ωp2 −ωp20 = 0 and the corresponding measured coincidence histograms

for the two configurations of pumps are shown in Figs. 3.4(b-c). For δ = 0, we mea-

sure the anti-bunching ratio to be 89(1)%, and for δ = π, we measure the bunching

ratio to be 86(1)%. We emphasize that the use of a Sagnac interferometer, with
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the two pumps beams injected at different input ports, alleviates the need for any

active stabilization of our source.

To demonstrate HOM interference we set δ = 0 such that the two photons

are deterministically separated in the ports C and D of the beamsplitter BS-1. We

pump our source in the middle of the edge band, that is, ωp1−ωp10 = ωp2−ωp20 = 0.

We introduce a relative delay between the two photons, interfere them on another

beamsplitter (BS-2), and measure the coincidence counts at the output of BS-2 as

a function of the delay τ between the photons. As expected, we see a HOM dip

in the coincidence counts, with a visibility of 88(10)%, which confirms that the

two photons are indeed indistinguishable. The small degradation of visibility is

from 48/52 splitting ratio of the beam-splitter, small mismatch in spectral filtering

between filters. The high visibility of the HOM shows that the topological edge

states could be a good source of identical photons. Here, we observed that the

backscattering in the fibers contributed to noise in the output arms of the circulator

and washing out the output signal. To solve this, we used monochromators of

bandwidth ≈ 200pm in conjunction to WDM filters to filter the coincidences. The

bandwidth of the device is larger than the spectral width of the generated photons.

Note, the backscattering would not be an issue if the sagnac loop was implemented

on-chip due to minimized path length.

We note that the temporal width of the HOM interference dip is inversely

related to the spectral width of the joint-spectral intensity (along the line ωs−ω0s =

−ωi−ω0i) that characterizes the two-photon state. As we demonstrated in Fig. 3.3,

we can control the JSI of generated photons in our source by simply tuning the
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input pump frequencies (Fig. 3.2). To demonstrate similar control in the HOM

interference, we set the two pump frequencies to be at one of the extremes of the

edge band ωp1 − ω0p1 = ωp2 − ω0p2 = .8J , such that the spectral width of the JSI

is ≈ .6J (Fig. 3.2(c)). We now observe that the temporal width of the HOM

interference dip with a visibility of 82(7)% is indeed much larger (by a factor of

≈ 2.7(4)) compared to the case with both the pumps in the center of the edge

band. This increase in temporal width of the HOM interference is in agreement

with the decrease in the spectral width of the measured JSI (by a factor of ≈ 4(6)).

This discrepancy is mainly because of the limited spectral resolution of our JSI

measurements.

3.7 Energy-time entanglement

Finally, we show that the generated two-photon state is energy-time entangled.

The use of a continuous-wave pump for generating photon pairs via SFWM (or

SPDC) naturally leads to the emergence of energy-time entanglement such that

∆ω∆T < 1, where ∆ω = ∆ωs + ∆ωi in the uncertainty in the total energy of the

signal and idler photons, and ∆T is the uncertainty in the time duration between

arrival of two photons [48–51]. We use a beam splitter to probabilistically split

the two photons at the output of our source, and inject them into two Franson

interferometers with a path-length delay (≈ 800 ps) much larger than the temporal

correlation of the generated photons (≈ 200 ps). The phase(θ) in the interference

path is controlled through a peizo-controlled delay stage (Fig. 3.5(a). Time-resolved
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coincidence measurements at the outputs of the interferometers show three peaks

(Fig. 3.5). The first/third peak in the histogram corresponds to the one photon

taking the short/long path and other taking the long/short path(|sl〉 / |ls〉). The

middle peak shows the interference when both the photons take the same path

either short/long( |ss〉 + ei2θ |ll〉). We measure the number of coincidence counts

in the three peaks as we vary the phase θ of the interferometers. The latter two

cases (both short or both long) are indistinguishable, and therefore, we observe

interference fringes in the coincidence counts as a function of the two-photon phase

2θ acquired in the interferometer. Figure 3.5(d-e) shows the coincidence histogram

at the output of the detectors for phases of θ = π, 2π when the pumps are excited

at ωp1 − ω0p1 = ωp2 − ω0p2 = .8J . In contrast, the other two cases, where one

photon travels through the shorter path and the other through the longer path,

are distinguishable and accordingly yield no interference. Our observation of two-

photon interference fringes with a fringe visibility of 92(6)% for a path-length delay

in the interferometers that is much longer than the temporal correlation width of the

photons, demonstrates that the coherence time of our generated two-photon state

is much longer and it is indeed energy-time entangled.

3.8 Comparison with 1D CROW devices

Lastly, we compare the spectral correlations in topological devices with a topo-

logically trivial devices such as a 1D array of coupled resonator optical waveguides

(CROW). A 1D CROW device consists of 8 ring-resonators, the same length as
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Fig. 3.6: (a) Measured transmission and delay spectra of five Anomalous Hall devices,

(b) Measured transmission and delay spectra of five 1D CROW devices.

the short edge in our topologically non-trivial device. The CROW devices are also

designed on the same chipsets and have the same amount of disorder as 2D devices.

Since CROW devices are susceptible to fabrication-induced disorder, the output

spectral correlations vary across devices due to randomized dispersion. Here, we

measure the transmission and delay spectra of five anomalous Hall and five 1D

CROW devices in Fig. 3.6 with the same fabrication parameters. Despite having

the same disorder, we observe that 2D devices have a flatter spectrum, delay in

the edge band and show smaller deviations across devices. The 1D devices show a

varying spectrum and larger deviations across devices in the center band showing

their susceptibility to disorder.

Next, we measure the number of indistinguishable photon pairs generated as

a function of the two pump frequencies of five different anomalous Hall devices

(Figures 3.7(a-e)). Even with the fabrication-induced disorder of 2J (33 GHz)
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Output spectrum of five different 1D CROW devices where, the disorder affects

the spectral correlations.

comparable to the bandgap of device, the spectral correlations of all the devices

exhibit consistent and maximum coincidences in the edge bands. The spectrum in

the bulk bands on the other hand vary from device to device due to disorder. By

comparison, we observe that the spectral correlations for five 1D CROW devices

behave similarly to bulk bands and produces a changing spectral correlations from

one device to device (Figs. 3.7(f-j)). We quantify the similarity between devices

across the center band using a parameter, similarity. The similarity between two

devices p and p’ is calculated by taking the mean of the inner product between two

spectra and is given by,

Sp,p′ =
[√

ΓNpΓNp′
]2

(3.6)

where ΓNp is the normalized spectral correlations Γp with the maximum value of

coincidences in the complete band of the device. The range of spectral correlations
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to calculate similarity is taken over a bandwidth of 2J in the center band. A higher

value of similarity implies that center band has a maximum and the spectra is more

even in the band. We observe an average similarity of .5(1) for 2D devices and .2(1)

for 1D devices. This contrast clearly shows the triumph of topological robust edges

over CROW devices in susceptibility of fabrication-induced disorder.
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Fig. 3.8: (a-b,c-d) Transmission and output spectrum of two different anomalous Hall

devices. Insets show corresponding JSI’s when the pumps are excited at [ωp1 −

ω0p1 , ωp2 − ω0p2 ] = [0J, 0J ], [0.8J, 0J ], [0.8J, 0.8J ].
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sets show JSI’s when the pumps are excited at [ωp1 − ω0p1 , ωp2 − ω0p2 ] =

[0J, 0J ], [0.8J, 0J ], [0.8J, 0.8J ].

In the above section, we have looked at the photon pair generation as a func-

tion of pump frequencies for different 2D devices. Here, we look at the robustness

of spectral correlation between generated photons and the tunable nature of our

devices. We measure the spectral correlations between generated photons (JSI)

for two different anomalous Hall devices at the three different pump locations,

[ωp1 − ω0p1 , ωp2 − ω0p2 ] = [0J, 0J ], [0.8J, 0J ], [0.8J, 0.8J ]. The measured JSI is ro-

bust against disorder as shown in Figs. 3.8(a-e). We also measure the JSI for a 1D

CROW device as shown in Figs. 3.9(a-b) for the corresponding pumps and observe

that generated JSI is prone to disorder and excites different localized modes. This

is due to randomized dispersion in 1D devices. These results also that the generated

spectra of photons are robust against disorder for the topological 2D devices.
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3.9 Summary

In summary, we have demonstrated a topological source of indistinguishable,

energy-time entangled photon pairs generated via dual-pump SFWM. We showed

that the linear dispersion of the edge states leads to an enhanced generation of pho-

ton pairs, and allows us to tune the spectral bandwidth of the generated two-photon

state by simply tuning then input pump frequencies. We confirmed the indistin-

guishability of the photon pairs and the tunability of their spectral bandwidth using

HOM interference. We also demonstrated the energy-time entanglement between

photon pairs that naturally emerges because of the energy conservation and the

use of continuous-wave pump beams. In addition, we showed that anomalous Hall

devices outperform 1D CROW devices and produce a consistent output spectrum

in presence of fabrication-induced disorder. Recent works [52] have produced pho-

ton pair sources in single ring devices which have comparable efficiencies to SPDC

making them a good alternative. If these high efficiencies were to be achieved using

topological edge states, it could create scalable, tunable, and robust photon sources

on-chip that could enable many applications in quantum information and quantum

computing.
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Chapter 4: Two-photon transport in the quantum Hall systems

4.1 Introduction

In the previous chapter, we studied the generation of non-classical light on a

topological device. Now, we study the transport of non-classical light in these topo-

logical devices. In order to study quantum transport, we first briefly describe qubits,

the building blocks of quantum communications, and how they are represented in

our system.

4.2 Qubits

The demand for high-speed communications in the information-driven age

is rapidly increasing. When the chipsets fabricated become smaller and smaller,

we surpass classical mechanics and enter into the quantum domain. Learning to

use and manipulate quantum effects can enable us to achieve faster and secure

communications, as well as, to help solve problems that are exponentially hard in

complexity for a classical computer. Qubits are the bits of a quantum system.

Unlike classical systems, a quantum system has a state which is a superposition of



both the levels

|ψ〉 = α |0〉+ β |1〉 , (4.1)

where |ψ〉 is the wave function, α and β are the probability amplitudes, which can

be complex and satisfy the condition |α|2 + |β|2 = 1. The probability amplitudes

are obtained after performing measurements on the system as the state collapses to

one of the qubit states (0 or 1). In a quantum system, one can manipulate states

by applying unitary operations (rotations, reflection, etc.) on the system which are

reversible operations. One can also make qubits using distinguishable properties of

electrons or photons like polarisation, time, spin, etc.

In our system, we use time of arrival of photon as a qubit. A single photon is

sent through a Mach-Zander interferometer with a delay placed in one of the arms

as shown in Figure 4.1. Two possible outcomes are expected at the output; the

photon can arrive early if it takes the shorter path or it can arrive late if it goes

through the delayed path. A qubit could be constructed using time of arrival of the

photon in this setup which is also known as time-bin qubit. The state of the photon

could be expressed as

|ψ〉 = α |e〉+ β |l〉 , (4.2)

where |e〉 and |l〉 correspond to the photon being in early and late time-bins respec-

tively.
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Fig. 4.1: Time-bin qubit setup. The photon could either take the shorter/longer path

resulting in an early/late time of arrival.

4.3 Entanglement

Entanglement is one of the distinguished features of quantum mechanics which

does not have an equivalent classical counterpart. One can write a general two qubit

state as

|ψ〉A,B = α |0〉A |0〉B + β |0〉A |1〉B + γ |1〉A |0〉B + δ |1〉A |1〉B , (4.3)

where A and B are the two qubits of the system. If the above state can be decom-

posed as a product of superpositions of each qubit, the state is called a separable

state. For example, it can be represented by

|ψ〉A,B = |ψ〉A |ψ〉B

= (αA |0〉+ βA |1〉) (αB |0〉+ βB |1〉) ,
(4.4)

Suppose we measure a qubit A and observe it to be |0〉 state, the wavefunction of

qubit A collapses, but does not affect the state of B. A measurement on qubit B

yields a probability of α2
B to be in state |0〉 and β2

B in state |1〉. Measurement of A
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does not effect the measurement of B and hence they are not correlated measure-

ments. The physics here can be described as if all the particles are independent.

There are some other two qubit states which can be written as the following

∣∣Ψ±〉
A,B

= α |0〉A |0〉B ± β |1〉A |1〉B , (4.5)

∣∣Φ±〉
A,B

= α |0〉A |1〉B ± β |1〉A |0〉B , (4.6)

These states are called maximally entangled states or Bell states. If we measure

qubit A of |Ψ+〉A,B to be in state |0〉, the measurement collapses the wavefunction

and forces the state of B in state |0〉. Here, measurement of one qubit effects the

state of the other and vice-versa. This shows that there is some sort of correlation

between measurements of the two qubits and this property is called entanglement.

In generic states which are not separable and not maximally entangled, there is

partial entanglement in the states.

For time-bin qubits, there are only three bell states which are given by

∣∣Ψ+
〉

=
1√
2

(|e〉1 |l〉2 + |e〉1 |l〉2) , (4.7)

∣∣Φ+
〉

=
1√
2

(|e〉1 |e〉2 + |l〉1 |l〉2) , (4.8)

∣∣Φ−〉 =
1√
2

(|e〉1 |e〉2 − |1〉1 |l〉2) , (4.9)

where (|e〉1,2 and |l〉1,2 corresponds to a single photon state in early and late time-

bins respectively. The fourth bell state is not considered because it is anti-symmetric

under exchange of photons.
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4.4 Integer Quantum Hall Effect

The photonic structure for implementing a quantum spin-Hall system consists

of a 2D array of ring resonators which are coupled through off-resonant link rings [5].

Similarly to anomalous Hall device, the link rings serve as waveguides and determine

the hopping phase and coupling between the rings. The link rings are slightly shifted

from each other along the rows such that they introduce a direction dependent phase

as in Figure 4.2 [53]. This arises from photons travelling different path lengths due

to the shifted link ring. The shifts are chosen to ensure that photons acquire a

hopping phase along x direction which is a linear function of the row number y .

The resulting overall phase in a round trip around a single unit cell would be φ.

This system simulates a tight binding model Hamiltonian with magnetic field whose

hamiltonian is given by,

H =
∑
x,y

ω0 â
†
x,yâx,y−J

(
â†x+1,yâx,ye

+iyφ + â†x,yâx+1,ye
−iyφ + â†x,y+1âx,y + â†x,yâx,y+1

)
,

(4.10)

where, J is the next neighbour coupling between the rings, ω0 is the ring resonance

frequency, φ is the synthetic magnetic flux in an unit cell, â†x,y and âx,y+1 are photon

creation and annihilation operators at site (x , y) respectively.

Figure 4.2(c) shows the transmission of a 8×8 lattice when φ = π/2. The

lattice supports unidirectional clockwise (CW) and counter-clockwise (CCW) edge

states which travel around the perimeter of the lattice. These topological edge states

have been experimentally demonstrated to be robust against disorder [14], whereas
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(grey). The lattice is coupled to input and output waveguides. (b) A vertical

shift of link resonator introduces direction dependent hopping phase and hence

synthetic magnetic field for photons. Photons hopping along right experience a

longer path and hence an extra phase compared to photons hopping along left.

(c) Transmission spectrum (single-photon) for a pure 8×8 lattice. CW, CCW

Edge and bulk bands are shaded in green,red and blue, respectively.

the bulk states in the center of the band are susceptible to disorder. Using this

feature, one could make delay lines using these topological devices which show less

variability in transmission in presence of disorder. Further, when contrasted with

delay lines constructed from 1D Coupled-Resonator Optical waveguides (CROW)

which are collection of ring resonators which are coupled only in one direction, the

average transmission falls at a lower rate as a function of number of rings [14].
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4.5 Theory of entangled photons in the 2D lattice

The edge states of this system has been shown be robust under disorder for

continuous wave excitation in [14]. We show that the integer quantum Hall device

could also be used for quantum information by simulating the response for entangled

states in the system [54]. We couple a generalised two photon input state

|ψin(te, tl)〉 =

∫ ∞
−∞

∫ ∞
−∞

dt1dt2ψin(t1, t2; te, tl)â
†(t1)â†(t2) |0〉 , (4.11)

where te (tl) are the early (late) time bins in which the photons could arrive,â† is

photon creation operator and ψin(t1, t2; te, tl) is the two-photon temporal wavefunc-

tion which is symmetric under exchange of photons.

We send in the corresponding bell states to check how the system behaves for

these states in edge and bulk band. We derive that the output two-photon temporal

wavefunction could be calculated by single photon temporal wavefunction at the

output. We consider one of the bell states |Ψ+〉

ψin(t1, t2; te, tl) =
1√
2

(ϕin,1(t1 − te)ϕin,2(t2 − tl) + ϕin,1(t1 − tl)ϕin,2(t2 − te)) ,

(4.12)

where ϕin,i(ti − te(l)) is the single-photon temporal wavefunction corresponding to

the photon arriving in the early(late) time bin. Using 2D Fourier transform, the

two-photon temporal wavefunction can be rewritten in frequency domain as

ψin (t1, t2; te, tl) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dω1dω2ψ̃in(ω1, ω2)e−iω1t1e−iω2t2 , (4.13)

where ψ̃in(ω1, ω2) is the input two-photon spectral wavefunction. Using 4.12 and
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4.13, we see that

ψ̃in(ω1, ω2) = ϕ̃in,1(ω1)ϕ̃in,2(ω2)
(
e(iω1te+iω2tl) + e(iω1tl+iω2te)

)
, (4.14)

Since the Hamiltonian doesn’t contain any non-linear terms, we can write the output

wavefunction as

ψ̃out (ω1, ω2) = S (ω1)S (ω2) ψ̃in(ω1, ω2)

= ϕ̃out,1(ω1)ϕ̃out,2(ω2)
(
e(iω1te+iω2tl) + e(iω1tl+iω2te)

)
,

(4.15)

where S(ω) is the transfer function for a single photon wavefunction at input fre-

quency ω.

ϕ̃out,i (ω) = S(ω)φ̃in,i (ω) , (4.16)

This is calculated from input-output formalism described in [5]. Using inverse 2D

fourier transform on 4.15, we see

ψout (t1, t2; te, tl) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dω1dω2ψ̃out(ω1, ω2)e−iω1t1e−iω2t2

=
1√
2

(ϕout,1(t1 − te)ϕout,2(t2 − tl) + ϕout,1(t1 − tl)ϕout,2(t2 − te)) ,

(4.17)

where ϕout,i (t) is the inverse Fourier transform of ϕ̃out,i (ω). Therefore, two-photon

temporal wavefunction can be calculated using single temporal wavefunction for the

above non-interacting hamiltonian. Similarly, derivation for other bell states could

be also shown using above formalism.

We assume that the single photon input wavefunctions are gaussian which

transforms the |Ψ+〉 as

Ψ+(t1, t2; te, tl) = e−
(t1−te)

2

2σ2 e−
(t2−tl)

2

2σ2 + e−
(t1−tl)

2

2σ2 e−
(t2−te)

2

2σ2 , (4.18)
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where σ is the pulse-width of a single photon temporal wavefunction. We take the

time scale T0 to be inverse of the coupling rate T0 = 1
J

and the corresponding pulse-

width to be 10T0. The pulse-width is chosen such that we can resolve each band

separately and study the underlying physics. The delay between the two photons is

chosen be t1 − te = 30T0 such that they are very well separated at the input. The

correlation function is calculated using the probability of finding one photon at time

t1 and other at t2 and is given by Γ (t1, t2) = |ψ (t1, t2)|2

4.6 Simulation Results of transport properties

We first simulate the transport for a 8x8 lattice with no disorder. Figure 4.3

shows the input temporal correlation and at the output for both CW Edge and

CCW Edge(ω = ±1.5J) for Ψ+ and Φ+ states. The output correlation functions

have shifted by 5T0 and 16T0 diagonally for CCW and CW respectively, which

depends on the length traversed through the lattice. We can also clearly see that

the temporally correlations are perfectly preserved after the lattice for edge states.

To show that preservation of temporal correlations along edge states is non-

trivial, we look at the correlation in the bulk band. Figure 4.4 shows that cor-

relations for three different bulk band frequencies, ω = (−.52,−.4, .52)J when the

input is a Ψ+ state. We see that even though the photons are anti-bunched at the

input, they become bunched at the output. This shows the quantum information

is lost along this bulk band. We further contrast this with a separable two photon

state whose temporal wavefunction is symmetrized. The separable state correspond-
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input state Φ+. Insets show the transmission spectrum and the path followed by

edge states. Γ (t1, t2) is normalized such that the maximum is unity.

ing to Ψ+ is given by ψ (t1, t2; te, tl) = ϕ1 (t1 − te)ϕ2 (t2 − tl), where ϕi (ti) is the

single-photon temporal wavefunction. To contrast the entangled photon transport,

we symmetrize the two-photon correlation function for separable state as

Γ (t1, t2) =
1

2

(
|ϕ1 (t1 − te)ϕ2 (t2 − tl)|2 + |ϕ1 (t1 − tl)ϕ2 (t2 − te)|2

)
, (4.19)

We can see in Fig. 4.4 that bunching for entangled state is much more
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prominent compared to a symmetrized separable state. Similar plots for Φ+ state

are also shown in which case anti-bunching occurs for bunched photons. In both

cases, we see that entangled states are more susceptible to fluctuations compared a

separable state.

4.7 Transport in presence of disorder

Transport of classical light has been shown to robust in the 2D lattice when

compared to 1D CROW [14]. Here, we simulate non-classical light in the lattice

with disorder. The most significant disorder in a 1D lattice is ring resonance

mismatch(4ω0), hence we use on-site potential V to specify disorder. We plot

results only for Ψ+ as Φ+ follows a similar pattern with bunching and anti-bunching

terms exchanged. Figure 4.5 shows the temporal correlations for Ψ+ in edge and

bulk bands for disorder strengths V = (.2, .4, .6, .8)J . The simulations are averaged

over the corresponding bands and over 100 devices.

The correlations in edge bands are much robust under disorder compared to

bulk bands. We can also see that the CW Edge is more susceptible to disorder

compared to CCW Edge since it travels through a longer path. There is some

bunching observed in the edge states for higher disorder strength V > .6J , which is

due to the reduced bandwidth at large disorder. Bulk states on the other hand are

prone to disorder even for a small disorder V = .2J .

We quantify the bunching of photons at the output using a normalized prob-
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ability of bunching for a Ψ+ state which is given by

PB =

∫∞
−∞

∫∞
−∞ dt1dt2δ(t2 − t1 ± τ)Γ(t1, t2)∫∞
−∞

∫∞
−∞ dt1dt2Γ(t1, t2)

, (4.20)

where bunching of photons occurs in a τ = σ/2 time window. Figure 4.6(a) shows

that PB as a function of disorder strength. The probability of bunching for edge

states is much lower compared to bulk states and also the bunching probability

increases with disorder. We also look at another figure of merit which is the similarity

of the output correlation with respect to the input correlation.

S = MAXi∈shifts


(∫∞
−∞

∫∞
−∞ dt1dt2

√
Γout,i(t1, t2)Γin(t1, t2)

)2∫∞
−∞

∫∞
−∞ dt1dt2Γout,i(t1, t2)

∫∞
−∞

∫∞
−∞ dt1dt2Γin(t1, t2)

 , (4.21)

where Γin is the input correlation function at the input and Γout,i is shifted

output correlations along the diagonal with a value i. Maximum similarity is ob-

tained when the output spectrum has maximum overlap with the input function.

Figure 4.6(b) shows that S as a function of disorder strength. The similarity for

edge states is higher compared to bulk which is as expected from theory.

4.8 Summary and experimental Progress

In this chapter, we showed that temporal correlations of entangled states are

preserved when transported through edge states. This is in contrast with bulk states

where the correlations are distorted and can result in bunching/anti-bunching. One

of the major challenges in realizing the quantum transport experiment is the inability

to resolve temporal correlations due to jitter of the single photon detectors. The

photons have to be delayed by < 50 ps (longest delay in the lattice) for them to
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interact in the lattice. However, the timing jitter of the single photon detectors

were ≈ 100 ps. In addition, the loss in the system is of the order 25dB, which

translates into an effective loss of 50dB for coincidence measurements. To solve

these challenges, we have developed a few experimental techniques in quantum optics

which are described in the next chapters.
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Chapter 5: Temporal and Spectral manipulation of correlated pho-

tons using Time-lens

5.1 Introduction

Entangled photons are one of the most frequently used sources in quantum

information [55,56]. Hence, spectral and temporal manipulation of these entangled

photons play a vital role in quantum optics. Usually, the single photon detectors

used in these experiments are too small to resolve the features in a single photon

wavepacket. Using the technique of time-lens, one could spectrally compress the

bandwidth of the photons and magnify these temporal features [57]. Time-lens

techniques has been previously used in classic light waves and demostrated recently

for single photons [58,59].

In this chapter, we use an Electro-Optic Modulator (EOM) based time-lens to

magnify and measure the two photon wavefunction of time-bin entangled photons

while preserving their quantum correlations. Though other methods of resolving

these correlations exist, such as time-resolved frequency upconversion [60] and in-

tensity modulation [61], they are very slow because they require a two-dimensional

scan of a narrow filter in time/frequency. Our scheme allows for measurement of



Joint Temporal Intensity (JTI) without any filtering and enables a single shot mea-

surement of JTI [62]. Our time-lens is designed to work in the telecom domain and

achieves a temporal magnification of 9.6(2)x. Using the magnification, we measure

JTI of two-photon states with a delay much less than the resolution of supercon-

ducting nanowire single photon detectors (SNSPDs). Furthermore, we show that

the time-lens maps temporal correlations of incoming photons to frequency correla-

tions of outgoing photons and can be used to manipulate frequency-bin entangled

two-photon states [63].

5.2 Time-lens setup

Fig. 5.1 shows the time-lens setup. The time-lens consists of three elements

1.Input dispersive element, 2. EOM 3. Output dispersive element. The three pa-

rameters corresponds to object distance, focal length and image distance in their

equivalent spatial domain. The input dispersive element with a group delay disper-

sion (GDD) φ
′′
i = d2φi(ω)

dω2 chirps the input photon pulses spectrally. where ω is the

angular frequency and φi (ω) is the frequency dependent phase-shift accumulated

during propagation. The EOM driven by an rf field acts as a time-lens introducing

a quadrature time varying phase φl(t) = πVm
2Vπ

ω2
mt

2 , when the photon time arrival

is locked in phase with the rf. Where, ωm, Vm are the modulation frequency and

amplitude of the rf drive and Vπ is the π phase-shift voltage. The GDD φ
′′

l = Vπ
πVmω2

m

of the time-lens introduces a frequency shift between the photons which is given by

δν =
Vm
V π

ω2
m

2
δin. (5.1)
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where δin in the input time delay between the photons. The time information

is mapped into frequency domain similar to that of spatial lens, where position is

mapped into momentum. Lastly, a large GDD output dispersive element converts

the frequency shifts into differential delay 2πδνφ
′′
o resulting in delay between the

output photons δout given by,

δout = δin +
πVm
Vπ

ω2
mφ

′′

oδin. (5.2)

When the time-lens equivalent lens-equation is satisfied − 1

φ
′′
l

= 1

φ
′′
i

+ 1
φ′′o

, the input

photons experience a temporal magnification given by M = δout
δin

= −φ
′′
o

φ
′′
i

. The time-

lens similar to spatial lens has a limited aperture which is given by τa ≈ 1
ωm

and

hence can be used only pulsed-light sources.

Our experiment is designed to produce a magnification, M ≈9.8x. The initial

dispersive element is a 15 km spool of SMF-28 fiber with GDD = -326 ps2 and

output dispersion is acheived through a Chirped-bragg grating(CBG) with GDD =

-3190 ps2. The EOM was driven by a rf signal with frequency νm = ωm
2π

= 2.786

GHz and was locked to the Ti-Sapphire laser. The π-phase-shift voltage Vπ of the

modulator was measured to be 3.49(6) V, at 2.786 GHz. The rf signal amplitude Vm

was set to 12.3 V so that the GDD introduced by the EOM is -326 ps2 and satisfies

the time-lens equation. The corresponding signs of the GDD lead to a converging

lens [57].
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5.3 Temporal Magnification of photons

In order to test the magnification of the lens, we send two photons with in-

put delays between 20-60 ps less than the detector jitter of 100 ps. δin = tl − te

where, te and tl are time of arrival of photon in early time-bin and late time-bin. A

periodically-poled potassium titanyl phosphate (PPKTP) crystal (30 mm length) is

pumped using a pulsed (≈ 1.6 ps) Ti-Sapphire laser (≈ 775 nm) which generates or-

thogonally polarized, spectrally-degenerate photon pairs at telecom wavelengths via

Type-II collinear spontaneous parametric down-conversion (SPDC). We separate

the two orthogonally polarized photons using a polarization beam-splitter (PBS)

and introduce a relative delay δin between them. We rotate the polarization in one

of the arms such that the two photons are identically polarized and collect them

into a single fiber using a beam-splitter. The photons are filtered through narrow

band filter of ≈ 75 GHz (0.6 nm) FWHM and sent into time-lens. The photon

pulsewidth is measured to be 16.7(7) ps using Hong-Ou-Mandel(HOM) interference

before the time-lens. The photons at the output of the time-lens are then detected

using a superconducting nanowire detectors (SNSPDs) and the timing information

is collected through a time-interval analyzer (TIA)(Fig. 5.1(c)).

Figure 5.2(a) shows the output photon pulses at the output of the lens for

different input delays. The lowest delay we could resolve is a seperation of 23 ps

which is consistent with estimated time resolution, which is the ratio of focal length

to the aperture of the lens, δt0 = 2Vπ
Vmωm

≈ 30 ps. The output delay is plotted

as a function of input delay and estimated magnification M given by the slope to
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be 9.6(2), which is close to the design parameter of M = 9.8 (Fig. 5.2(b)). The

discrepancy is due to the overfilling of aperture for higher δin. The estimated output

of the photon pulse-width is 186(1) ps given the input pulse-width is 16.7(7) ps.

Fig. 5.2(c) shows contrasted output of dectors without time-lens which shows that

the photons are un-resolved.

5.4 Temporal Correlations of photons

JTI is useful in measurements of two-photon states where single channel delay

measurements cannot distinguish them. One example is to distinguish between a

bunched and an anti-bunched state. In the bunched state (|2e, 0l〉 − |0e, 2l〉), both

the photons arrive in the early time-bin or both in the late time-bin. In the anti-

bunched state (|1e, 1l〉), one photon arrives early and the other late. Single channel

spectrum would show two peaks at early and late time-bin for both the states,

where as JTI would be distinguishable. JTI is the probability of two photons, one

at time t1 and the other at t2, and is defined as |ψ (t1, t2)|2 where ψ (t1, t2) is the

two-photon temporal wavefunction. JTI is measured using a beam splitter and

two detectors where the measurements are limited by jitter of the detectors. By

using a time-lens technique, we show that temporal correlations could be accessed

with resolutions smaller than the detector jitter. Even though JTI doesn’t measure

the phase of the wavefunction, it is still useful in many quantum applications like

quantum walks [54, 64], boson sampling [32, 65, 66] which only require intensity

measurements.
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Fig. 5.3: (a) Simulated JTI of the bunched two-photons state before the time-lens. (b)
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We generate two-photon states which are bunched and anti-bunched using a

HWP after the SPDC. When the HWP is set to 22.5◦, it acts a 50:50 beam-splitter

for the H and V photons and produces a two-photon state.

|Ψ〉 =

∫∫
dω1dω2ψ̃(ω1, ω2)[â†H(ω1)â†H(ω2) +

â†V (ω1)â†H(ω2)− â†H(ω1)â†V (ω2)−

â†V (ω1)â†V (ω2))] |0〉 , (5.3)

If the two-photon wavefunction is symmetric ψ̃(ω1, ω2) = ψ̃(ω2, ω1), it generates a

polarization entangled state where the photons are bunched

|Ψ〉 =

∫∫
dω1dω2ψ̃(ω1, ω2)[â†H(ω1)â†H(ω2)−

â†V (ω1)â†V (ω2))] |0〉 , (5.4)

We realize this by using a bandpass filter of .6 nm centered at 1550.965 nm. Trans-

forming the two-photon wavefunction in time-domain after passing through another

HWP and a delay line produces a time-bin entangled state where both the photons

come early or both the photons late and is given by,

|ΨB〉 =

∫∫
dt1dt2ψ(t1, t2)[â†(t1 − te)â†(t2 − te)−

ei2ϕâ†(t1 − tl)â†(t2 − tl)] |0〉 , (5.5)

Figure 5.3(a) shows the simulated JTI for the bunched states where the input

pulses are guassian. The symmetric nature of the wavefunction is verified using

HOM which showed a visibility of≈ 80%. We also confirmed the exchange symmetry

of the two-photon wavefunction by measuring the JSI of two photons using chirped
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Bragg grating as a frequency-to-time converter as shown in Fig. 5.1. When we set

the HWP to zero, it generates an product state in polarization and after converting

the polarization domain into time generates at two-photon product state in time

which is given by

|ΨAB〉 =

∫ ∫
dt1dt2ψ (t1 − te, t2 − tl) a† (t1 − te) a† (t2 − tl) |0〉 .

When this state is passed through a beam splitter needed for measuring JTI, it

generates a time-bin entangled state as the detectors cannot distinguish between

the two photons. Fig. 5.3(b,c) show the measured JTI without and with a time-lens

for a bunched state|ΨB〉. Fig. 5.3(g,h) show the measured JTI without and with

a time-lens for a anti-bunched state|ΨAB〉. The delay with between the photons

is set to 40 ps, less than that of the detector jitter. We can clearly see that the

temporal correlations which were otherwise inaccessible are measured by using a

time-lens and there is good fidelity between input and output states. There is a

small probability of photons in time-bins diagonal to that of expected, which is due

to the multi-photon process in SPDC. The measured delay between the photons is

about 360 ps which is consistent with the magnification.

To quantify the correlation measurement, we look at probability of photons

G (τ) arriving with a time difference, τ

G (τ) =

∫ ∫
dt1dt2 |Ψ (t1, t2)|2 δ (τ − t1 + t2) . (5.6)

As can be seen from Fig. 5.3(d,i), G (τ) for |ΨB〉 peaks at τ = 0 verifying that the

photons are bunched and G (τ) for |ΨAB〉 shows two peaks at τ ≈ tl−te. We also plot

single channel measurements in Fig. 5.3(e,j) for bunched and anti-bunched states
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and show that these measurements cannot distinguish the corresponding two-photon

states.

5.5 Spectral Correlation Measurements

The time-lens in our setup also maps the temporal correlation of the input

photons into spectral correlations of output photons. The EOM introduces fre-

quency shifts δν for input delays which are mapped to time using a CBG. The CBG

acts a frequency to time mapper irrespective of the time-lens equation and timing

information from TIA gives the corresponding frequency shifts. We independently

measure the frequency shifts of output photons using a monochromator. Fig. 5.4(a)

shows measured spectrum for different input delays. Fig. 5.4(b) plots the frequency

shifts as function of delay and the measure slope is .60(8) which fits well with es-

timated .54 from (5.1). We also see a spectral compression of the single-photon

spectrum after the time-lens compared to before timelens in Fig. 5.4(c) and observe

a compression factor of 8.3x.

5.6 Coherence of Time-lens

In order to show that the time-lens preserves quantum states, it is neccessary

for the phase θ to be also preserved when a quantum state passes through time-lens.

Standard Franson interferemetor to estimate the phase would not work, as both the

early and late photons acquire different frequency shifts after the time-lens. We use

a modified Franson interferometer setup to show the coherence of the time-lens. We
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prepare a single photon in a superposition of early and late time-bins with a relative

phase θ, |e〉+eiθ |l〉. The early and late time-bins are seperated by the period (≈ 360

ps) of the rf drive chosen such that both the photons experience the same frequency

shift (Fig. 5.5(a)). Effectively, early photons and late photons experience different

time-lenses with the same magnification. Now, a Franson interferometer can be used

to measure the relative phase θ between the photons.

Figure 5.5(b) shows the temporal response at the output of the detector for

different phases of θ and fixed phase ϕ = 0 of the output interferometer. The first

the third peaks corresponds to interference of early photons taking early path and

late photons taking late path. The middle peak shows the interference between early

photons taking late path and late photons taking early path. The intensity of the
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middle peak varies as cos (θ − ϕ) and agree with measurement in Fig. 5.5(c). We see

an interference visibility of 83 %. Furthermore, we are able resolve the interference

fringes without time-lens since the photons are seperated by larger than detector

jitter. Fig. 5.5(d) shows the interference without time-lens with a visibility of 93

%. The temporal magnification of the time-lens reduces slightly the orthogonality

of the time-bins and shows a small reduction in interference visibility.

5.7 Summary

In this chapter, we realized an EOM based time-lens technique to resolve

temporal and spectral correlations of time-bin entangled photons, which would have

otherwise been inaccessible due to limited detector resolution. This technique could

enable picosecond scale temporal resolutions using existing single photon detectors

for use in quantum communications.
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Chapter 6: Interference of temporally distinguishable photons using

frequency-resolved detection

6.1 Introduction

The nonclassical interference of two or more photons in an optical network is

the fundamental phenomenon enabling many algorithms used in linear optics quan-

tum computing [56,67–69], quantum communications [30,70,71], metrology [28,72]

and boson sampling [32, 33, 73]. Quantum interference, such as, Hong-Ou-Mandel

(HOM) and Shih-Alley interference [47,74], usually require photons which are iden-

tical in their temporal and spectral degrees of freedom. Any distinguishability in

the photons at the detectors leads to a reduction in the interference. The difficulty

in experimentally generating identical photons has prompted strong interest in de-

veloping “real world” optical networks enabling interference of nonidentical pho-

tons [75,76]. Recently, it was shown that non-classical interference can be observed

between photons completely distinguishable in time or frequency by exploiting cor-

relation measurements in the corresponding conjugate parameter [77–81]. Remark-

ably, the interference can occur for any values of the input frequencies (or times)

as long as the detector resolution in the conjugate parameter is sufficient to make



the detectors ‘blind’ to the spectral (or temporal, respectively) distinguishability of

the photons. Furthermore, the temporal/spectral distinguishability can actually be

used as a resource, for example, to reveal spectral properties of the input photons

and the symmetries of the optical network [79,80].

Many experiments have demonstrated interference of two photons that are

distinguishable in frequency or time by resolving them in the conjugate parameter

[77,78,82,83]. Scaling these spectrally/temporally resolved interference phenomena

to a larger number of photons can enable, for example, multi-boson correlation

sampling experiments where sampling over temporal/spectral modes, in addition

to spatial modes, can relax the requirements on generating identical photons and

could demonstrate quantum supremacy [84–87]. Indeed, time-resolved interference

of three photons with different frequencies was demonstrated very recently where the

temporal correlations between detected photons were manipulated using a spatial

network of beam-splitters [81]. In contrast, the complementary phenomenon, that

is, frequency-resolved interference of multiple photons that are separated in time,

allows convenient manipulations of spectral correlations by tuning the relative delays

between photons, without reconfiguring the spatial network [80,87]. This scheme can

operate in a single spatial (transverse) mode and, therefore, enable the realization

of scalable temporal boson sampling using time-varying dispersion [66]. However,

such frequency-resolved interference of more than two photons has not yet been

demonstrated.

Here, we demonstrate frequency-resolved quantum interference of three pho-

tons that are completely distinguishable in time [88]. We show that the interference
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observed in the spectral correlations of detected photons can be manipulated by

changing the relative delays between the photons at the input. The interference is

completely wiped out for longer delays between photons, that is when the spectral

resolution of the detectors is not sufficient to erase the temporal distinguishability

of the photons. Moreover, we observe that the symmetries of the optical network

and the spectral wavefunctions of photons are reflected in the measured spectral

correlations. Finally, we also demonstrate spectral correlations in inverse-HOM in-

terference using two time-bin entangled photons where both photons arrive either

“early” or “late” [41]. In this case, we observe that the interference is sensitive

to the phase between the two components of the entangled state, unlike the case

of unentangled photons where interference is insensitive to small fluctuations in

delay between the photons. Our experimental setup could easily be extended to

introduce time-varying dispersion using phase modulators and realize the temporal

boson sampling scheme of Ref. [66].

6.2 Two-photon frequency-resolved detection

To demonstrate our scheme, we discuss first the interference of two temporally

distinguishable photons in our setup (Fig. 6.1). The two-photon interference can

be analyzed using the spectral correlation function Γ (ω1, ω2, τ), which is the prob-

ability of detecting two photons at the two detectors, with frequencies ω1 and ω2,

respectively and τ = t2− t1 is the relative delay between photons at the input. The

72



TIA

Ref.
CBG

Ref.

BS

PBS

HWP

Polarizer

ppKTP

PC

Ti-Sapph

PD

Circulator

DM

Fig. 6.1: Schematic of the experimental setup to observe frequency-resolved interfer-

ence of two photons with a relative delay τ . PBS:Polarization beam-splitter ,

CBG:chirped Bragg grating, TIA: time-interval analyzer , HWP: half-wave plate,

PC: polarization controller, PD: photo-diode.

correlation function in our setup is given by [82,83],

Γ (ω1, ω2, τ) =
∣∣∣ψ1 (ω1)ψ2 (ω2) e−i(ω1t1+ω2t2) + ψ1 (ω2)ψ2 (ω1) e−i(ω2t1+ω1t2)

∣∣∣2, (6.1)

where ψ1(2) (ω) is the spectral wavefunction of the first (second) photon. The spec-

tral correlation function depends on t1 and t2 only through the delay τ and exhibits

interference fringes as a function of (ω1 − ω2), with fringe separation 2π/τ [66].

Furthermore, because the photons are in a single spatial mode, the unitary trans-

formation describing our optical network adds an overall phase to the photonic

wavefunctions and therefore, does not contribute to the interference.

In our experiment, we generate photon pairs using spontaneous parametric

down conversion (SPDC) (Fig. 6.1). A periodically-poled potassium titanyl phos-
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phate (ppKTP) crystal (30 mm length) is pumped using a pulsed (≈ 1.6 ps) 50 mW

Ti-Sapphire laser ≈ 775.5 nm which generates orthogonally polarized, spectrally-

degenerate photon pairs at telecom wavelengths via Type-II collinear SPDC. We

separate the two orthogonally polarized photons using a polarization beam-splitter

(PBS) and introduce a relative delay (τ) between them. We rotate the polariza-

tion in one of the arms such that the two photons are identically polarized and

collect them into a single fiber using a beam-splitter. We then use a chirped fiber

Bragg grating (CBG), two superconducting nanowire detectors (SNSPDs) and a

time-interval analyzer (TIA) to measure the spectral correlations between photons.

This setup realizes a time-of-flight spectrometer where the arrival time of dis-

persed photons is used to infer their frequency spectrum [62, 82, 83, 90, 91]. Specif-

ically, the frequency ωi of a photon detected at the detector i is related to the

time-of-arrival tdi at the detector as (ωi − ω0) =
(
tdi − td0i

)
/φ′′. Here, ω0 is the peak

frequency of the photonic spectral wavepacket and td0i is the peak arrival time of the
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photonic temporal wavepacket at the detector i. φ′′ ' 3196 ps2 is the group delay

dispersion (GDD) of the CBG. In our measurements, we set the central frequency ω0

(corresponding to the time td0) to be zero such that ωi is actually the detuning from

the central frequency. The spectral resolution (δω) of our spectrometer is limited by

the timing jitter (≈ 100 ps) of the nanowire detectors and is ≈ 5 GHz. Furthermore,

the finite delay between the input photons contributes to the timing uncertainty in

td0 and marginally lowers the spectral resolution of our spectrometer for input delay

values approaching the inherent timing jitter of the detectors.

6.2.1 JSI and Pulse-width of generated photons

We use type-II SPDC in a 30-mm-long PPKTP crystal to generate two- and

four-photons in our experiment. The crystal has a poling period of 46.2 µm and is

held at a temperature of 30◦ C. We pump the crystal using a pulsed Ti:sapphire

laser (≈80 MHz, 1.6 ps) set at a wavelength of ≈ 775.5 nm such that the spectra

of generated photons (≈ 1551 nm) is well within the passband of our CBG (≈533

GHz, centered at 1550.9 nm). Figures 6.2(a-c) show the spectra of the horizon-

tally (H) and vertically (V) polarized photons measured using a tunable filter and

a superconducting nanowire detector, the joint spectral intensity of the two-photon

wavefunction measured using CBG as a time-of-flight spectrometer, and the HOM

interference dip. We observe small ellipticity in the JSI that also manifests in the

two-photon spectral correlations. We also note that there is a small mismatch in the

spectra of generated photons that reduces the visibility of the HOM interference.

The visibility can be improved by spectral filtering or by using a crystal with ex-
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tended phase matching [92]. Using HOM interference, we estimate the upper bound

on the single-photon pulsewidth to be ≈1.7 ps (Fig. 6.2(b)). This agrees well the

value of ≈1.55 ps that we estimate by fitting numerical simulation results to the

experimentally measured data in the two-photon interference.

6.2.2 Two-photon Frequency-resolved Interference Results

Figures 6.3(a-d) show quantum interference fringes in the measured spec-

tral correlations [Γ (ω1, ω2) , 2-fold coincidences] for different delays between the two

photons. The interference fringes can be seen more clearly by plotting the number

of coincidences as a function of the frequency separation ω2−ω1 (Figs. 6.3(i-l)). As

expected, the fringe separation decreases as 1/τ (Fig. 6.3(m)). Moreover, we see

that the visibility of the interference decreases with increasing delay (Fig. 6.3(n)),

disappearing completely for τ & 150 ps (Fig. 6.3(d)). This is because of the resid-

ual distinguishability following spectrally resolved detection for time delays that

approach the inverse of the spectral resolution δω. The interference visibility could,

in principle, be restored by increasing the spectral resolution of the detector so that

the condition δω � 1/τ is satisfied [66, 80, 87]. Our experimental results agree well

with the simulation results (Figs. 6.3(e-h)). We note that similar interference in

spectral correlations has been observed in Refs. [82,83] using the two spatial modes

of a HOM interference setup. By contrast, in our setup, the two delayed photons

are in a single spatial mode. Furthermore, the large GDD of our CBG allows us to

observe interference between photons that are separated by delays as long as 100 ps,

which is more than 50 times the single-photon temporal pulse-widths (estimated to
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calibrated using HOM interference.

77



be ≈ 1.55 ps). For each delay setting, the data was acquired for 12 minutes and the

maximum number of coincidence counts (normalization factor) in Figs. 6.3(a-d) is

313, 277, 267, and 198, respectively, in a 1 GHz frequency bin.

6.2.3 Fringe Visibility

Figures 6.3 shows interference fringes in the normalized coincidence counts as

a function of frequency detuning (ω2 − ω1). From the plot, the interference fringe

contrast seems to decrease with the increasing frequency detuning (ω2 − ω1). This

apparent decrease in the contrast is mainly because of the lower coincidence counts

as we move away from the center of the two-photon spectral intensity distribution.

Therefore, to better estimate the visibility of the interference, we use the ratio

of coincidence counts to accidental counts (product of singles counts on the two

detectors), shown in Fig. 6.4(a). We choose a window of 2 ns on each side from

the center to further remove the contribution from the edges. Fig. 6.4(b) shows

CAR as a function of (ω2 − ω1). From this plot, we calculate the fringe visibility as(
Imax − Imin

)
/
(
Imax + Imin

)
, where Imax and Imin are averages of the peak maxima

and minima, respectively. We used this visibility measurement scheme for all the

data presented in Figures 6.3.
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6.3 Three-photon frequency-resolved detection

6.3.1 Three-photon Frequency-resolved Interference Results

Next we discuss the experimental setup and our observation of three-photon

interference using frequency-resolved detection. We pump the ppKTP crystal at

higher power (400 mW) to ensure a higher probability of generating two pairs of

photons. We use a PBS and two non-polarizing beam splitters to probabilistically

split the four photons into four spatial modes (see Fig. 6.5(a)). We then introduce

relative delays between the photons using two-photon interference measurements as

a calibration tool, and combine three of the four spatial modes into a single fiber

using a tritter (3×3 beam-splitter). As before, the three photons are then dispersed

using the CBG, separated using a tritter and their spectral correlations are measured
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using three detectors connected to the TIA. The fourth photon is used to trigger

the TIA.

Figures 6.5(b-e) show the measured spectral correlations between the three

photons (using four-fold joint detections) as a function of the frequency detunings

measured at the second and the third detectors, relative to that of the first detector,

that is, (ω2 − ω1) and (ω3 − ω1). We analyze three different delay scenarios 1:

(τ21, τ31) ≈ (0, 15) ps, 2: (20, 40) ps and 3: (10, 25) ps, where (τ21, τ31) are the delays

of the second and the third photon, respectively, relative to the first photon. We

observe that the interference landscape changes significantly with the relative delays

between photons. For delays symmetric under exchange of two of the photons

(τ21, τ31) ≈ (0, 15) and (20, 40) ps, the interference fringes are periodic along both

axes. By contrast, in the case of asymmetric delays (10, 25) ps, the constructive

correlations are more prominent along the cross-sections ω2 = ω1 (vertical), ω3 = ω1

(horizontal) and ω2 = ω3 (diagonal). However, irrespective of the delays between the

photons, we always observe a constructive interference for zero frequency detuning,

that is, when ω2 − ω1 = 0 = ω3 − ω1 [see Eq.6.1]. We also analyze the scenario

when the spectral resolution of our setup is not high enough to erase the temporal

distinguishability of photons (Fig. 6.5(e)), and, as expected, we do not observe any

interference.

We see that the interference patterns shown in Figs. 6.5(b-e) are symmetric

under any permutation of the frequency detunings, for instance, ω2 ↔ ω3 or ω3 ↔

ω1, etc. This permutation symmetry is simply a manifestation of the symmetry of

our optical network [80]. We again emphasize that the interfering photons propagate
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in a single fiber. The tritter, together with the three detectors, at the output simply

emulates a number-resolving detector and does not contribute to the interference.

Moreover, the interference landscape is also symmetric under reflections ωi ↔ −ωi,

for all i, where i = 1,2,3 is the detector number, because of the symmetric frequency

spectra of the input photons [80].

6.3.2 Reduced three-photon interference

Here, we show how the integration of the three photon interference over

one of the frequencies, reveals information about multiple pairwise interferences.

The three-photon correlation function, Γ (ω1, ω2, ω3) = ψ∗ (ω1, ω2, ω3)ψ (ω1, ω2, ω3)

where, ψ (ω1, ω2, ω3) is the three-photon spectral wave function at the detectors, and

is associated with the different ways in which three photons with spectral amplitudes

E1, E2, E3 at the input,injected at times t1,t2,t3 can trigger the three detectors at

frequencies ω1,ω2,ω3. It is given as,

ψ (ω1, ω2, ω3) = E1 (ω1)E2 (ω2)E3 (ω3) e−iω1t1e−iω2t2e−iω3t3

+ E1 (ω2)E2 (ω1)E3 (ω3) e−iω2t1e−iω1t2e−iω3t3

+ E1 (ω1)E2 (ω3)E3 (ω2) e−iω1t1e−iω3t2e−iω2t3

+ E1 (ω2)E2 (ω3)E3 (ω1) e−iω2t1e−iω3t2e−iω1t3

+ E1 (ω3)E2 (ω1)E3 (ω2) e−iω3t1e−iω1t2e−iω2t3

+ E1 (ω3)E2 (ω2)E3 (ω1) e−iω3t1e−iω2t2e−iω1t3 (6.2)

We rewrite the above equation by separating the contribution of ω3 as,

ψ (ω1, ω2, ω3) = ψ12E3 (ω3) e−iω3t3 + ψ13E2 (ω3) e−iω3t2 + ψ23E1 (ω3) e−iω3t1 . (6.3)
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Here

ψij = Ei (ω1) e−iω1tiEj (ω2) e−iω2tj + Ej (ω1) e−iω1tjEi (ω2) e−iω2ti (6.4)

such that Γij =
∣∣ψ∗ijψij∣∣ is the two-photon correlation function between photons with

input times ti and tj respectively and is independent of ω3. When the three-photon

correlation function is integrated over measured frequencies at one of the detectors,

here ω3,

∫ ∞
−∞

Γ (ω1, ω2, ω3) dω3 =

∫ ∞
−∞

ψ∗ (ω1, ω2, ω3)ψ (ω1, ω2, ω3) dω3

=

∫ ∞
−∞

[
|ψ12|2 |E3 (ω3)|2 + |ψ13|2 |E2 (ω3)|2 + |ψ23|2 |E1 (ω3)|2

+ ψ∗12ψ13E
∗
3 (ω3)E2 (ω3) e−iω3(t2−t3)

+ ψ∗12ψ23E
∗
3 (ω3)E1 (ω3) e−iω3(t1−t3)

+ ψ∗13ψ23E
∗
2 (ω3)E1 (ω3) e−iω3(t1−t2) + c.c

]
dω3 (6.5)

The first three terms are pairwise interferences between photon pairs (1,2), (1,3),

(2,3). The remaining terms integrate out to zero, given the single photon spec-

tral wavefunctions are smooth functions of ω. Therefore, the three-photon spectral

correlation function integrated over one of the frequencies is given as

∫ ∞
−∞

Γ (ω1, ω2, ω3) dω3 ∝ |ψ12|2 |E3 (ω3)|2 + |ψ13|2 |E2 (ω3)|2 + |ψ23|2 |E1 (ω3)|2 , (6.6)

where, the intensities of three single-photon spectral wavefunctions contribute to

the weights of the pairwise interferences. Fig. 6.6 shows the measured three-photon

correlation function integrated over ω3 and plotted as a function of the frequency

separation (ω2 − ω1), for different delay settings.
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Fig. 6.6: Measured three-photon correlation function integrated over ω3, as a function of

the frequency separation (ω2 − ω1) for different delay settings.

The measured three-photon interference is dictated by the 3! three-photon

detection amplitudes associated with the possible ways in which the three photons

can trigger the three detectors. However, it is instructive to integrate the three-

photon correlation function over one of the frequencies (here ω3) and analyze the

reduced interference as a function of the relative frequency detunings at the other

two detectors (ω2 − ω1). Fourier analysis of this 1D plot then reveals the beat notes

corresponding to the multiple pairwise interference terms between the three photons

(Figs. 6.5(j-m)). When the input delay values are configured to be (τ21, τ31) ≈

(0, 15) ps, there is only one possible delay combination between any two photon

pairs and the corresponding Fourier transform shows a single peak (highlighted by

the dashed red line) at 15.7 ps. For (20, 40) ps, there are two possible combinations

and accordingly we observe two peaks in the Fourier transform, at 20.9 ps and 40.4

ps. For (10, 25) ps, there are three possible combinations and as expected, we see

three beat notes in the Fourier transform, at 10.4 ps, 15.7 ps and 26.1 ps. The

peak delay values agree well with the expected values to within 1.3 ps, the temporal
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resolution of the Fourier transform. For the three-photon interference experiment,

we used a pump power of 400 mW and measured a four-photon generation rate of

≈ 8000 s−1. The data in Figures 6.5(b-e) was acquired for 270, 270, 180, and 390

minutes, and the maximum number of four-fold coincidence counts (normalization

factor) is 325, 286, 289, and 167, respectively, in a 3 GHz frequency bin.

6.3.3 Miscellaneous probability contributions in three-photon interference

Our three-photon interference setup uses one polarization beam splitter and

two non-polarizing beam splitters to probabilistically split two pairs of orthogonally

polarized photons into four spatial modes (Fig. 6.5(a)). We use one of the modes to

trigger the TIA, and use the other three modes along with delay lines and a tritter

to achieve a configuration of three photons at times (t1, t2, t3) in one output port

of the tritter (before the CBG). Due to the probabilistic nature of beam splitters,

three photons with time-delays (t1, t1, t3) and (t2, t2, t3) are also generated with a

probability of 0.25, in addition to the desired (t1, t2, t3) events which occur with a

probability of 0.5. In Fig. 6.7 we compare the simulated three-photon interference

results, with and without these unwanted events. These events do not generate

any new beat frequencies and therefore, do not drastically alter the three-photon

interference pattern; we observe a fidelity of ≈0.99 between the two plots. These

events could easily be removed using two ppKTP crystals to generate two photon

pairs. Nevertheless, our experimental observations match very well with our simu-

lations. We achieve a fidelity of ≈0.95 for each of the three scenarios presented in

Fig. 6.5(b-d). The small loss in observed fidelities is because of the small ellipticity
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Fig. 6.7: Simulated three-photon interference, (a) without and, (b) with the extra prob-

ability terms, for delays (τ21, τ31) = (10, 25) ps.

in the joint spectral intensity of the photons.

6.3.4 Photon generation rates

The measured two- and four-photon generation rates as a function of pump

power are shown in Fig. 6.8. For the two-photon interference experiment, we used a

pump power of 50 mW and the measured two-photon generation rate at the output

of the SPDC was ≈ 2.1× 105 s−1. The insertion loss of the CBG was measured to

be 1.7 dB, and the per-channel excess insertion losses of the fiber beam splitter and

the tritter were measured to be ≈0.4 dB and ≈0.5 dB, respectively.

6.4 Entangled two-photon Frequency resolved detection

Finally, we demonstrate frequency-resolved interference of two photons which

are entangled in their arrival times. In particular, we consider time-bin entangled
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states of the form |Ψ〉 = |2〉e |0〉l− e−iϕ |0〉e |2〉l where both the photons at the input

are in the ‘early’ time-bin (at time t1) or in the ‘late’ time-bin (at t2) and ϕ is

the phase associated with the delay between the photons. The spectral correlation

function at the output of our optical network (Fig. 6.1) is then given as

Γ (ω1, ω2, τ) =
∣∣∣ψ1 (ω1)ψ2 (ω2) e−i(ω1+ω2)t1 + ψ1 (ω2)ψ2 (ω1) e−i(ω1+ω2)t2

∣∣∣2. (6.7)

The correlation function now exhibits interference fringes as a function of the two-

photon phase ϕ = (ω1 + ω2) τ , where τ = t2 − t1 is the relative delay between the

photons. This interference is similar to the time-reversed HOM interference where

the photons are path-entangled, that is, they arrive together at either port of the

beam-splitter [41]. The two photons can then exit the beam-splitter in the same

port or in different ports, depending on the phase ϕ.
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6.4.1 Generation of polarization and time-bin entangled photons

We use a HWP set to 22.5o before the PBS of the setup shown in Fig. 6.9(a) to

generate polarization-entangled photon pairs in the two-photon interference setup.

The HWP acts as a 50:50 beam-splitter in the polarization domain and when the

two-photon spectral wavefunction is symmetric under exchange of photons, gener-

ates polarization-entangled state |Ψ〉 = |2〉H |0〉V − |0〉H |2〉V [62, 93, 94]. To ensure

the symmetric wavefunction, we use a band-pass filter with a bandwidth of ≈ 0.6

nm. To verify this entanglement, we measure the number coincidences in the two

arms of the PBS as a function of the HWP angle [94] (Fig. 6.9). The coincidence

counts follow a cosine function with a period of 44(2)o, half of that expected for

single photons. We observe the coincidences to be minimum at 22.5(5)o, that is,

when the two photons are polarization-entangled. The interference visibility is cal-

culated to be 83.0(6)%. The low interference visibility is due to temporal walk-off

between the H and V photons in the PPKTP crystal which leads to a small temporal

distinguishability between the two photons at the HWP.

As shown is Chapter 5, we use a PBS to introduce a relative delay between the

two orthogonal polarization modes and achieve the time-bin entangled state |Ψ〉 =

|2〉e |0〉l− e−iϕ |0〉e |2〉l. The phase ϕ was actively stabilised using a continuous-wave

telecom laser with tunable wavelength. We verified the two-photon entanglement

using coincidence measurements in the time domain (Fig. 6.9(c)). As before,

we use a PBS to spatially separate the H and the V polarized photons. We then

introduce a large delay (≈5 ns) for the V-polarized photons such that they can be
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Fig. 6.9: (a) Experimental setup to verify polarization entanglement. (b) Measured coinci-

dences (blue) as a function of the half-wave plate angle. Red solid line is a cosine

fit to the data. (c) Experimental setup to verify time-bin entanglement. (d)

Measured joint-temporal intensity at HWP angle of 21.5◦, and (e) coincidences

as a function of the half-wave plate angle.

temporally distinguished from the H-polarized photons. Subsequently, we change

their polarization to H, and combine the two arms using a beam splitter. The H

and the V polarization states now correspond to the ‘early’ and the ‘late’ time-bin

states, respectively. Fig. 6.9(d) shows the measured temporal correlations between

the two output ports of the beam splitter, when the HWP angle is set to 22.5◦. As

expected, we observe four coincidence peaks corresponding to the scenarios when

both the photons arrive in the ‘early’ time bin (e− e), or in the ‘late’ time bin

(l − l), and one photon arrives ‘early’ and the other ‘late’ (e− l, andl − e). Fig.

6.9(e) shows the total coincidence counts in the e− e and l− l bins, and in the e− l

and l− e bins, as a function of the HWP angle. Similar to the polarization resolved
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measurements, we observe that the coincidence counts follow a cosine curve, and

when the HWP angle is ≈ 22.5◦, the two photons are in the time-bin entangled state

|Ψ〉 = |2〉e |0〉l − e−iϕ |0〉e |2〉l. The interference visibility for coincidence counts in

the e− e and l − l time bins is ≈ 90% and that for the e− l and l − e time bins is

≈ 79%.

6.4.2 Entangled photons Frequency-resolved Interference Results
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Fig. 6.10: (a-b, c-d) Measured and simulated spectral correlations for time-bin entangled

photon pairs, with the phase factor ∆ϕ = 0 and π. (e-f) Measured coincidences

as a function of (ω1 + ω2).

Figures 6.10(a),(b) show the measured and simulated spectral correlations for

the time-bin entangled two-photon state where we set t2 − t1 = 40 ps, much longer
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than the single photon pulsewidths (estimated to be ≈ 5.4 ps following the bandpass

filter). We observe interference fringes in the correlations as a function of two-photon

phase (ω1 + ω2) τ (Fig. 6.10(c)). This contrasts the interference for a separable state

of two-photons with a delay (Fig. 6.3) where interference pattern is rotated by 90◦

because of its dependence on (ω1 − ω2) τ . Furthermore, as in the time-reversed

HOM interference, the interference observed here is sensitive to small changes in

the two-photon phase ϕ. For example, by introducing an additional small delay

∆τ (few fs) such that ∆ϕ = (ω1 + ω2) ∆τ = π, we observe the complimentary

interference where the peaks are replaced by troughs and vice-versa (Figs. 6.10(d-

f)). We note that the decrease in the observed visibility for the interference of

time-bin entangled photons compared to the unentangled photons (Fig. 6.3) is

because of the sensitivity to path length fluctuations in the interferometer and also

the imperfections in entangled state preparation.For this part, we pump the SPDC

at 100 mW, and each data set was acquired for 20 minutes. The maximum number

of counts in Figures 6.10(a,b) is 180, in a frequency bin of 1 GHz.

6.5 Summary

In this chapter, we have demonstrated frequency-resolved interference of three

photons that are separated in time using a single dispersive element. Using a larger

number of photons and a time-varying dispersion element, such as, a phase modula-

tor, our setup could realize temporal boson sampling in a single spatial mode with

easily reconfigurable unitary transformation and explore phase transitions in the
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complexity of sampling [66,95]. Our scheme can also be used to implement scalable

multi-boson correlation sampling where the photonic correlations are sampled over

spatial as well as temporal/spectral modes at the input/ouput of a random linear

optical network with multiple spatial modes [84, 87]. Finally, these experimental

results may pave the way to new techniques for the experimental characterization

of optical networks and their input photonic states with potential application in

quantum information processing and metrology [80,96,97].
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Chapter 7: Miscellaneous Experimental Techniques

7.1 Signal Recovery and Amplifier for Time-lens

7.1.1 Introduction

In chapter 5, we implemented a time-lens technique to measure temporal

and spectral correlations of time-bin entangled photons for resolutions smaller than

the detector jitter. One of the key components of the setup was an Electro-Optic

modulator (EOM) which acts as a spatial equivalent of a lens. We need to drive

the EOM with an RF signal such that photons generated are centered around the

quadratic region (Fig. 7.1(a)) of the phase. To accomplish that, we need to sync the

RF drive to the laser. One could have used an external signal generator to generate

the required RF signal, but most signal generators accept only a tolerance of ± 50

Hz in deviation from the input reference frequency. However, the photo-diode in our

780nm Ti-Sapphire laser could only produce a sync signal to an accuracy of .5 MHz

and hence was not suited to work with external signal generators. For these reasons,

we designed a custom signal-recovery printed circuit board (PCB) and an amplifier

which could generate a signal synced to the laser and produce an RF sinusoidal wave

of 2.8 GHz and Vm = 12 V. Here, we discuss the design and operation of the PCBs.
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Fig. 7.1: (a) Input pulses should synchronized such that the pulse should be centered

around the quadratic phase of the EOM. (b) Block diagram showing generation

of an RF sinusoidal wave.

7.1.2 Setup

The successful operation of the temporal lens requires: (1.) synchronization

between the electrical signal that drives the EOM and the Ti-Sapphire laser and (2.)

minimization of the jitter between them. Preservation of low jitter has been guaran-

teed with the use of high-speed differential logic integrated circuits (IC) connected

on printed circuit board (PCB) through microstrips and coplanar waveguides. Fig.

7.1(b) shows the block diagram for generation of RF signal. We use a fast photode-

tector (Thorlabs DET025A) after the Ti-Sapphire laser to get the pulse information
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which is then processed by the clock recovery circuit to produce a synchronized

clock with the laser. A part of the clock is sent to a time-interval analyzer to pro-

vide timing information of the incoming pulses. A voltage-controlled delay is used

to control the timing of the pulses with respect to the RF wave. The clock is then

fed to phase-locked loop (PLL) to produce a high frequency square wave synchro-

nized with the clock. The signal is then amplified through a pre-amplifier and a

voltage variable attenuator is used to control the amplitude of generated signal.

The signal is amplified through a pre-amplifier and filtered through two low pass

filters (Minicircuits VLF-3400+) to make it a sinusoidal wave by preserving only

the fundamental frequency. An additional amplifier is used to achieve the desired

operational RF power. Finally, the output RF signal is fed to the EOM.

We make two PCBs, one for signal recovery to generate the desired frequency

and one for an amplifier to amplify the signal. The amplifier is made in a separate

board as it needs additional cooling, less RF interference, and operates at higher

voltage whereas all the components in signal recovery board operate at 5V.

We use Eagle software to design the schematic and placement of components

for both the PCBs. Our PCBs are four layer boards where routing is accomplished

through copper traces. Depending on the complexity of the circuit, multiple layers

of the board are used and different layers are connected through Via’s. Most of the

unused space on the board is grounded to prevent any floating voltages on individual

components. All the copper traces for various signals are designed such that they are

impedance-matched to 50Ω. The inputs and outputs are coupled SMA connectors.

Fig. 7.2 shows the board diagram for the signal recovery and the amplifier circuit.
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7.1.3 Signal Recovery Board

The schematic of the signal generation circuit is shown in Fig. 7.3. The in-

coming signal from the fast photo-diode is amplified using low noise wide-bandwidth

amplifier (Mini-circuits PMA3-83LN+). A fast comparator (Analog Devices AD-

CMP572) with an adjustable threshold converts the signal into a clock using a flip

flop (Onsemi NBSG53) in toggle mode. The output of the flip flop is a square wave

with 50% duty cycle. A 1:2 differential fanout buffer (OnSemi NBSG11) is used to

provide a clock reference that can be sent to the TIA. The other part of the clock

goes through a digitally programmable delay (Onsemi MC10EP195) that provides

a range of 1 ns with 10 ps increments. We use a commercial integrated PLL evalu-

ation board (Analog Devices ADF4350) to generate an high frequency output wave

≈ 2.8 GHz which is programmable using a 3-wire interface. The produced RF signal

is filtered through a low-pass filter (Mini-circuits LFCN-3800+) to remove higher

harmonics and results in a sinusoidal wave. The sin wave generated is then am-

plified using a pre-amplifier (Mini-circuits PMA3-83LN+) and then passed through

a voltage-controlled variable attenuator (RFMD RFSA2013). This allows fine tun-

ing of the final peak-to-peak voltage applied to the EOM. The signal generated

from the signal recovery board is then passed through an additional pre-amplifier

(Minicircuits ZX60-83LN-S+) and a low pass filter (Minicircuits VLF-3400+) before

being sent to the GaN power amplifier. The programmable elements like comparator

thresholds, delay, and attenuation are controlled using a micro-controller (Teensy)

with an USB interface. Fig. 7.4(c) shows the picture of the signal recovery PCB.
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7.1.4 Amplifier

We use a high powered GaN monolithic amplifier (TGA2975-SM) to generate

a gain of 30dB over a wide range of frequencies, 2.7 - 3.5GHz. The amplifier has a

peak saturation of 35V which is well within our designed range of operation. The

schematic of the circuit is shown in Fig. 7.4(a). An RF3025 absorptive switch is

used to turn off or on the RF input power to the amplifier. The amplifier has a

biasing up and down procedure that need to be correctly followed for successful

operation of the amplifier. The bias up procedure used for the amplifier is:

1. Set ID limit to 1.3 A, IG limit to 8 mA

2. Apply −2.7 V to VG

3. Apply +28 V to VD; ensure IDQ is approx. 0 mA

4. Adjust VG until IDQ = 175 mA (VG ≈ −2.7 V Typ.)

5. Turn on RF supply

and the bias-down procedure used for the amplifier is:

1. Turn off RF supply

2. Set VD to 0 V

3. Turn off VD supply

4. Turn off VG supply

We designed the circuit surrounding the amplifier to adhere to the biasing procedures

and corresponding expanded schematic is shown in Fig. 7.5. The circuit works such

that the gate voltage is switched on before the drain voltage to the amplifier. This is

accomplished using a charge pump, some transistors and diodes. The voltage supply
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to the amplifier is the voltage required for the drain voltage, 28 V. We use a voltage

regulator to bring down the voltage from 28 V to +4 V which is then converted to -8

V using a charge pump. The output of the charge pump is connected to two circuits,

one driving the drain voltage and the other driving the gate voltage. The connection

to the gate is designed such that gate voltage is activated much before the charge

pump reaches to -8 V. Hence, drain voltage activates after the gate voltage has

been applied. Similarly, drain voltage is turned off before the gate voltage during

discharge. This ensures the correct biasing operation of the amplifier.

In the gate voltage driving circuit, a voltage reference followed by a poten-

tiometer is used to bring the voltage down to -2.7 V and a buffer is used to isolate

any RF interference or ripple in the DC supply. The drain voltage driving circuit

makes use of two transistors, an NPN bipolar junction transistor (BJT) and a P-

type metal-oxide-semiconductor (P-MOS) such that the drain voltage is turned on

when the charge pump is lower than -7.2V. An LC circuit is used to filter the RF

noise or interference in the drain voltage.

We optimize the amplifier operation by controlling the gate voltage through

a potentiometer and by looking at the current consumption of the amplifier as well

the gain produced. Additionally, the amplifier has to be cooled to dissipate heat.

We use two heat sinks, one on the top and the other on the bottom of the board

and use fans to cool the amplifier (Fig. 7.4(b)). Using a 20GHz oscilloscope, we

look at the amplified signal through a 30dB attenuator and compare with the clock

generated. We observe that the waveforms have less than 50 ps jitter between them.
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7.1.5 Labview Control

We control the frequency, delay, and amplitude of signal generated through a

micro-controller Teensy and a labview interface. The arduino code to control teensy

is given in Appendix C. We use Serial Peripheral Interface (SPI) communication

protocol to communicate with Teensy. Fig. 7.6(b) shows the labview interface used

to control the system. The amplitude and phase controls are in the other settings

panel. Threshold 1 and threshold 2 control the discriminator settings for the clock

generation. The PLL settings control the frequency of RF signal generated. The

labview program runs in a continuous loop and we can choose to either update

one parameter, such as amplitude, or all the parameters at once. The program is
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Fig. 7.6: Labview control for signal generation.

designed in such a way that it updates the registers in the Teensy, and the labview

program can be closed without affecting the state of the system.
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7.2 Spontaneous Parametric Down conversion Photon Pair

Generation in a non-linear crystal

7.2.1 Theory of Spontaneous Parametric Down conversion

Entangled-pair sources are frequently used in quantum information and quan-

tum communication [30,31,55]. One of the most common ways to generate entangled

photons is using spontaneous parametric down conversion (SPDC) [98]. We gen-

erate photon-pairs through type-II collinear SPDC process where a pump photon

splits into signal and idler photons in a non-linear crystal. The energy conversation

equation gives ωi+ωs = ωp, where ωi,s,p are the frequencies of idler, signal and pump

photons respectively. The joint-spectral intensity of the output of SPDC is given

by [99,100]

|Ψ(ωi, ωs)|2 ∝ e−
(ωi+ωs−ωp0)

2τ2p
4log(2) sinc

(
∆k(ωi, ωs)L

2

)2

(7.1)

where ωs,i are the frequencies of the signal and idler photons, L is the length of

the crystal. ωp0 is the central frequency of the pump and τp is the width of the

pump. The efficiency of the SPDC is maximum when the phase matching condition

∆k(ωi, ωs) = ki(ωi) + kw(ωs) − kp(ωi + ωs) + 2π
Λ

is satisfied. Here, kj(ωj) is the

frequency-dependant propagation constant and Λ is the poling period of the crystal.

From equation 7.1, the width of the generated two-photon spectrum depends

on the temporal pulse-width of the pump beam and length of the crystal. By

choosing different pulse-widths and crystal lengths, one could manipulate the joint

spectral intensity (JSI) to create say, a separable state. For example, a choice of
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1.6 ps pulse-width and 30 mm crystal in our system creates JSI which is close to a

circle. Measured JSI is shown in Fig. 7.7(b) which matches well with the simulation

in Fig. 7.7(a).

0

100

-100

Experiment(b)

0 100-100

0

100

-100

0 100-100

(a) Simulation

Fig. 7.7: (a-b) Simulated and measured Joint spectral distribution for parameters of pump

width of 1.6 ps and 30 mm crystal length.

7.2.2 Design Parameters

In this section, we go through the experimental parameters in our SPDC setup.

A pulsed Ti-sapphire laser around ≈ 775 nm is pumped through a PPKTP crystal

to produce photon pairs at 1550.9 nm. The polling period of 30 mm crystal is

46.2 µm and phase matched at 30◦ C. Fig. 7.8 shows the experimental setup for

SPDC. One of the design parameters of the experiment is to determine the lenses

needed to achieve the maximum efficiency. In order to determine the lens, we look

at the optimal pump-width when focussed in the crystal. Ref. [101] has shown that
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Fig. 7.8: Experimental setup for SPDC.

pump-width should be chosen such that the L/b = 2.84, where b is the confocal

parameter to maximize the photon pair generation. This condition comes from

trying to maximize the efficiency of the photon generation and number of photon-

pairs generated which are inversely correlated [102]. The resultant beam-width,

wo, at the focus is derived from the rayleigh length, b = 2zR = 2πω2
o

λ
. Here, λ

is wavelength of the light used. The corresponding focal length, f, of the lens is

calculated from the equation 2ωo = (4λ
π

)(f/D), where D is the input beam diameter

of the pump. For a crystal length of 30 mm, we determine that a focal length of 4τ

(100 mm) is closest for maximizing the efficiency for 775 nm. Similarly, by optimizing

the output diameter of the 1550 beam to the specifications of the collimator used

for light collection and the focal length equation, we determine 100 mm lens gives

the maximum output coupling after the SPDC. The efficiency of our SPDC setup

is measured to be 25% by taking the ratio of coincidences to singles.
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7.3 Joint Spectral Intensity measurement using a chirped bragg

grating

Spectral correlations are commonly used to measure frequency statistics be-

tween photons, which is often helpful in characterizing a two-photon source. One

method of characterization includes measuring Joint Spectral Intensity (JSI). Though

it doesn’t provide the phase information, it is still helpful in many scenarios like

quantum walks [54,64] and boson sampling [32,65,66]. Traditionally, JSI is measured

using a beam splitter and two scanning monochromators. The technique measures

the JSI by looking at coincidences and performing a 2D scan of the monochroma-

tors. The number of photon counts at a given point are low (since the bandwidth

is very small), which also requires a longer integration time. This leads to slower

measurements requiring the source to be stable over long periods.

One promising technique to measure JSI is to use a time-of-flight spectrometer

which maps the frequency information into time [90]. This works on the principle

that in an optical medium, shorter wavelengths travel slower than long wavelengths

for a positive dispersion. Hence, the corresponding frequencies can be mapped

to time when they travel in a dispersive medium. We use chirped bragg grating

(CBG) of group delay dispersion (GDD = -3190 ps2) as the dispersive element.

This technique enables a single shot measurement of JSI where all the photons

contribute to the JSI and lead to faster acquisition times. Here, we show a typical

setup for measuring JSI of photon pairs produced from SPDC using CBG (Fig.
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Fig. 7.9: (a) Experimental setup for measuring JSI (b) Measured JSI using CBG.

7.9(a)). The photons are separated by a polarizing beam-splitter (PBS) into two

channels and the polarization is made identical for both the channels through a

half-wave plate (HWP). A delay (5 ns) is introduced between the photons, which

is longer than their temporal pulsewidths so that they don’t interfere when sent

through the CBG. The photons are then combined through a PBS and sent through

the CBG. The coincidences are then collected from a time-interval analyzer (TIA)

using a beam-splitter and two single photon nanowire superconducting detectors

(SNSPDs).

The frequency ωi of a photon detected at the detector i is related to the time-

of-arrival tdi at the detector as (ωi − ω0) =
(
tdi − td0i

)
/φ′′. Here, ω0 is the peak

frequency of the photonic spectral wavepacket and td0i is the peak arrival time of

the photonic temporal wavepacket at the detector i. φ′′ is the GDD of the CBG.

In our measurements, we set the central frequency ω0 (corresponding to the time

td0) to be zero such that ωi is actually the detuning from the central frequency. The

frequency resolution of the setup is determined by the dispersion of the CBG and

the timing jitter of the detector and is calculated to be ≈ 5 GHz. We note that the
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beam-splitter used to measure the coincidences has two possibilities, one early/late

photons going to detectors 1/2 or the late/early photons going to detectors 1/2,

which results in two symmetric images of JSI. Since resultant spectrum measured

is symmetric, we look at one half of the spectrum to calculate the JSI. Fig. 7.9(b)

shows a typical example of measured JSI using CBG.

7.4 Simultaneous measurement of Hong-Ou-Mandel dip for

different frequencies

We use identical photon pairs in many applications of quantum optics and

quantum communications. One of the prominent tests to characterize indistinguish-

ably of photons is Hong-Ou-Mandel (HOM) [47]. When two identical photons with

a delay are interfered at a beam-splitter, the coincidences measured at the output of

the beam-splitter exhibits a dip when the delay is zero and is the result of quantum

interference. The visibility of the dip determines the indistinguishably of photons

and is a commonly used to characterize different photon sources. One of the ex-

periments we wanted to implement was to use HOM to realize the robust quantum

transport in edge states in our topological devices. We wanted to look at HOM

interference by sending one path of the photons through the topological device and

the other through a delay stage, and interfering them. In the process, we designed

a technique to perform HOM interferences simultaneously for different frequencies.

We realize this by using a CBG to map the frequency to time. Fig. 7.10(a) shows

the experimental setup used to perform simultaneous HOM. The setup is similar to
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different wavelengths.

JSI, where two photons are separated using a PBS and interfered with a delay τ at

a beam-splitter. The two channels are then delayed with a large delay greater than

the temporal pulse-widths and then combined with a PBS. We use a PBS instead of

a BS here, to maximize the number of coincidences. The output of a PBS is passed

through a CBG and the timing of the coincidences are measured using a TIA after

passing through a BS and two SNSPDs.

We find the coincidences for a given frequency by looking at the coincidences in

corresponding frequency windows (mapped by the CBG) of photons in the spectrum.

Fig. 7.10(b) shows a sample contour plot of coincidences with respect to frequencies

and delay τ . Fig. 7.10(c) shows the extracted HOM data for different frequencies.

Using this technique we improve the acquisition time and simultaneously get HOM
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data for all the frequencies in the input photon spectrum.
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Chapter 8: Conclusions and Outlook

Silicon photonics is a rapidly expanding platform to create integrated optical

circuits for use in communications, sensing and quantum applications. However,

fabrication disorder hinders their scalability by altering their functionality. Topo-

logical edge states are shown to be robust against fabrication-induced disorder. By

using the robust nature of topological edge states, we can design devices which would

perform superior to an array of ring resonators in the presence of disorder. In this

work, we demonstrated a topological model (anomalous Hall) using ring resonators

and studied two possible quantum applications of these topological models.

We began by demonstrating a photonic analogue of the anomalous Hall effect

where the device exhibits edge states even when the net magnetic field is zero. We

showed the presence of edge states by using transmission and imaging spectroscopy.

Furthermore, we realized a topological trivial to non-trivial boundary interface in the

device to show the tunability of the device by just changing the resonance frequencies

of the site rings. Next, we used the edge states of an anomalous Hall device to

generate indistinguishable photon pairs using spontaneous four-wave mixing. We

demonstrated that the linear dispersion of the edge states lead to an efficiency phase

matching condition resulting in maximum generation of photons in the edge band.



We also showed the tunability of the generated bi-photon spectrum in the edge

band by changing the pump frequencies. We also confirmed the indistinguishability

of photons by performing a Hong-Ou-Mandel experiment. Next, we studied the

quantum transport in an integer quantum Hall device. Our simulations showed that

edge states preserve two-photon correlations in the presence of disorder whereas the

bulk does not. This illustrates that edge states of a topological devices can be used

for quantum transport experiments.

In the process of realizing the quantum transport experiment, we devised two

new techniques in quantum optics. We used an electro-optic modulator based time-

lens technique to resolve photons which would not have otherwise been possible

due to limited single-photon detector resolution. We measured the joint spectral

correlations as well as the joint temporal correlations to show that the time-lens

also maps from time to frequency. Next, we showed frequency-resolved interference

of photons distinguishable in time in a setup that can be extended to perform boson

sampling in time. We also showed that entangled photons behave similar to a time-

reversed Hong-Ou-Mandel where the interference is sensitive to phase. Finally, we

showed some miscellaneous experimental techniques such as design and construction

of electronics for time-lens and a way to measure joint spectral distributions using

a time-of-flight spectrometer.

We now describe two potential future experiments that could be based on this

work.
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8.1 Temporal Boson Sampling

In Chapter 7, we showed that photons distinguishable in time can be interfered

by performing a frequency-resolved detection. As mentioned in the chapter, one can

extend our setup to perform temporal boson sampling. Boson sampling is one of

the benchmarks to achieve quantum supremacy [32, 73]. By measuring the proba-

bility statistics of photons travelling in an optical network, one can approximately

compute the permanent of a matrix, a problem believed to be classically hard in

complexity. Spatial mode boson sampling (SMBS) has been demonstrated experi-

mentally where the interference happens between various spatial modes of system

using beam-splitters [33]. By contrast, boson sampling in time (where the modes

are time-bins) requires fewer resources compared to SMBS [66].

We can implement temporal boson sampling by changing the phase on the in-

put photons. This can be accomplished by implementing a time-varying dispersion

using phase modulators. By driving an electro-optic modulator (EOM) with a sinu-

soidal RF wave, one could operate in the linear region of the wave or the parabolic

region. As the photons are separated in time, different pulses experience different

phases and would realize permanents of different matrices. In addition, using an

arbitrary function generator on the EOM would allow us to implement any random

unitary matrix without the need for the phase control required in SMBS. Use of

random unitary matrices would enable us to perform temporal boson sampling in

time using the above setup.
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8.2 Two-photon experiment in Topological Devices

In Chapter 5, we simulated the transport of time-bin entangled photons in

a topologically non-trivial device. We tried different approaches such as sum-

frequency generation, time-lens, simultaneous Hong-Ou-Mandel (HOM) for different

wavelengths to realize this experiment. The main limiting factor in all these exper-

iments is the loss in the device. The overall loss in our topological devices are ≈

25-30 dB including the grating couplers. This results in an effective loss of 50-60

dB for coincidences when the photons go through the chip. In all the experiments

we tried to realize, the acquisition time was in the order of tens of hours. However,

the Ti-sapphire laser used to generate 1550 nm photons has a stability of about

10 hours and the single photon superconducting nano-wire detectors can only work

for continuously 20 hours after which a cool down procedure should be re-initiated.

Hence, all the above mentioned techniques have failed due to these limitations.

The experimental technique (frequency-resolved interference) we developed in

Chapter 6 has a low loss and could be potentially used to realize the two-photon

quantum transport experiment. A potential proposed experiment could be imple-

mented as follows. Two photons with a delay of 40 ps with frequency bandwidth

close to that of the lattice are sent into the lattice and the spectral correlations at

the output are measured. Since the dispersion in edge states are linear, the fringes

in the edge band width would have equal fringe spacing with period corresponding

to 40 ps. In contrast, the bulk bands would exhibit varying dispersion from device to

device and the fringe pattern in the bulk band would have an unpredictable pattern.
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By observing this behavior across devices, one could show the robustness of the edge

states against fabrication induced disorder in quantum transport experiments.
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Appendix A: Device parameters

In this appendix, we discuss the specifications of the fabricated anomalous Hall

devices. Most of the specifications are similar to the integer quantum Hall devices

fabricated in the same platform as given in [53]. The anomalous Hall devices are fab-

ricated in silicon-on-insulator (SOI) platform using deep-UV projection lithography

at a commercial foundry (IMEC, Belgium). The schematic of the silicon waveguide

is shown in Fig. A.1(a). A silicon strip waveguide sits on a 2µm layer of silicon

oxide. The silicon dioxide layer is grown on top of a silicon substrate of ≈ 500µm.

The silicon waveguide is covered with a layer of silicon dioxide of about 2µm on top

to reduce the scattering losses from the waveguide. The width and height of the

waveguide is 510nm and 220nm respectively. This structure supports propagation

of only a single TE mode and we use polarization controllers in our experiments to

match the supported polarization. The device is fabricated to support propagation

of telecom wavelengths around 1550nm. The estimated effective refractive index

neff and group refractive index ng are 2.46 and 4.07 respectively at 1550nm.

We use focussing grating couplers to couple the light from the fiber in and

out of the devices. The grating coupler focusses the 10µm mode from the fiber into

500nm in the waveguide. The grating couplers have a loss of 6dB per coupler.
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Fig. A.1: (a) Schematic of a silicon waveguide used in the structure. (b) Schematic of

the anomalous Hall device which consists of a 2D array of race track resonators.

Inset shows the microscopic image of the device.

The device consists of a two dimensional array of race track rings as shown in

Fig. A.1(b). A race track resonator has been implemented as opposed to a ring,

since the same amount of coupling would lead a smaller gap between the rings and

would be a challenge to fabricate. The devices are 70µm in diameter and length of

the coupling regions is about 7µm. The coupling gap between the rings is chosen to

be 180nm such that coupling between the rings, J is estimated to be 15.6(4) GHz.

The free-spectral range is measured to be ≈ 1THz (8nm). This is much greater

than the bandwidth of the device ≈ 125GHz (1nm) and hence the single mode

approximation is valid. The estimated delay in each ring is about 3.5 ps whereas

the round trip of each ring is around 1 ps. The average number of trips that the light

makes in each ring is about 3.5. The ring resonators have a low loaded quality factor

Q of about 1500. The loaded Q includes the loss to the input and output waveguides

in the system. The low Q (larger bandwidth) design is used here because the edge

states in the system will be well resolved. The loss in the system, κin = 2.9GHz. The
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cross-coupling strength κ = .48 and the absorption coefficient, α = 15.8m−1. The

backscattering in these devices from surface roughness and couplers is suppressed

and measured to be 25dB lower than the forward propagation.
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Appendix B: Simulation of delay and transmission spectra in an

anomalous Hall device

Here, we discuss the procedure to simulate the propagation of electric field

in an anomalous Hall device as also shown [53]. The Hamiltonian to the system is

given by

H =
∑
<i,j>

(ω0 −M) â†i âi + (ω0 +M) b̂†i b̂i

− J
(
â†jai + b̂†j b̂i + â†j b̂ie

−iφi,j + h.c.
)
, (B.1)

Here, âi and b̂i are the annihilation operators corresponding to site rings A and B,

respectively, at lattice site index i = (x, y) and the summation < i, j > is only over

nearest and next-nearest neighbours. J is the coupling strength between nearest and

the next-nearest neighbor sites, and φi,j = ±π/4 is the direction-dependent hopping

phase between sites A and B. By changing the sign of φi,j, we can excite the other

pseudo-spin in the system. The schematic of the system is shown in Fig. B.1.

For a finite system with site rings N , the Hamiltonian of the system can be

written as an NxN matrix. We represent the two dimensional system as an one

dimensional array of rings arranged linearly. The diagonal terms in the Hamilto-

nian matrix are the energies of site rings which are also given by their resonance
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Fig. B.1: (a) Schematic of the 2D array of ring resonators, with site-rings A(blue)and

B(red) coupled using link-rings (grey). Top-left inset: microscope image of

the device. Top-right inset: the two pseudospin degree of freedom, up and

down, which correspond to the clockwise and the counterclockwise circulation

of photons in the site rings, respectively. Center inset: schematics for nearest-

neighbor hopping (left) and next-nearest-neighbor hoppings (center and right)

for the pseudospin-up. (b) Schematic of the 2D lattice. Red and blue circles

indicate A and B lattice sites respectively. Solid lines denote nearest-neighbor

hoppings between A and B sites, with hopping phases indicated. Dashes indicate

next-nearest neighbor hoppings. The gauge flux is ±π in a single plaquette, and

zero over a unit cell of 2 plaquettes (shaded yellow).
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frequencies, ω0 −M and ω0 + M for A and B. The off-diagonal elements in the

matrix gives the coupling terms between the site rings. For example, the coupling

term between nearest neighbours is given by −Je±iπ/4 whereas, coupling between

next nearest neighbours is given by −J .

The coupled rate equations are given by a set of differential equations [5,9,53]

dâi
dt

= i [HL, âi]− κinâi − (δi,I + δi,O)κexâi − δi,I
√

2κexξI(t), (B.2)

db̂i
dt

= i
[
HL, b̂i

]
− κinb̂i − (δi,I + δi,O)κexb̂i − δi,I

√
2κexξI(t), (B.3)

The first term on the right gives the coupling between the rings and self-coupling

i.e. the resonance frequencies of the rings. The second term gives the loss rate κin

in the rings from scattering and attenuation. The third term is the loss of energy

from coupling to input (I) and output (O) waveguides, where κex is the loss rate

associated with the coupling. The last term is the input energy to the lattice, where

input electric field ξI(t) is coupled to the lattice using a waveguide coupler. Here,

the electric field is normalized to power. If the input electric field is a continuous

wave of the form ξIe
−iωt, we can use the rotating frame approximation and simplify

the equations to

−iωai = i [HL, ai]− κinai − (δi,I + δi,O)κexai − δi,I
√

2κexξI , (B.4)

−iωbi = i [HL, bi]− κinbi − (δi,I + δi,O)κexbi − δi,I
√

2κexξI , (B.5)

ai and bi are the expectation operators of the operators âi and b̂i respectively. The

conversion of â/b̂i to ai/bi is justified because the Hamiltonian is linear. These set
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of coupled linear equations can be solved using matrix methods as there no longer

have time dependence in them.

The output drop port field of the lattice is given by ξD =
√

2κex aO/ bO using

the input-output formalism. The transmission spectra is simulated by taking values

of |ξD|2 for the different frequencies whereas, the wigner delay is calculated by taking

the derivative of the phase τD = d
dω

(
ξD
|ξD|

)
.
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Appendix C: Arduino code for Teensy operation

1 #include "SPI.h"
2
3 //Control 4 bits to select the data to send
4 //0x0- Amplitude
5 //0x1- Delay
6 //0x2- Threshold 1
7 //0x3- Threshold 2
8 //0x4- PLL setting
9

10 // 0 is false and 1 is true
11 class Data {
12 public:
13 unsigned int Amplitude, Delay, Threshold_1, Threshold_2

;
14 unsigned int Amplitude_prev = 1, Delay_prev = 1,

Threshold_1_prev = 1, Threshold_2_prev = 1;
15
16 bool rfenable, fastlockenable, refby2, prescaler, mtld,

feedback ; //PLL
17 unsigned int Frequency, rfPower, ChargepumpCurr,

ClkDivValue, integer, rcounter, dividervalue,
RFdivider ; //PLL

18 //Data stream for PLL in order
19 //1.4 bit rfenable
20 //2.4 bit refby2
21 //3.8 bit Frequency
22 //4.8 bit rfPower
23 //5.8 bit ChargepumpCurr
24 //6.8 bit integer
25 //Total 10 bytes
26
27 byte reg[6][4];//Registers to write for PLL
28 byte comm[3][3];//commands to send to DAC
29



30 Data() { // Initialize some setting which can be
changed later if needed

31 ClkDivValue = 150;
32 fastlockenable = 1;
33 mtld = 0;
34 //Initialize some with safe values
35 prescaler = 0;
36 Frequency = 3000;
37 rfPower =3;
38 ChargepumpCurr = 9;
39 integer = 120;
40 Amplitude = 3500;
41 Delay = 10;
42 Threshold_1 = 2500;
43 Threshold_2 = 2000;
44 rfenable = 0;
45 refby2 = 1;
46 rcounter = 1;// by default 1 for lower input

frequencies
47 feedback = 1;//0-divided 1-fundamental
48 RFdivider = 0;//0=1, 1=2, 3=4,..6=64
49 dividervalue = (Frequency*(pow(2,RFdivider)))/(

integer*.125);
50 }
51
52 };
53
54 Data *data;
55 int PLL_LEpin = 10; //Chipselect of PLL
56 int DAC_LEpin = 15; //Chipselect of DAC’s
57 int D0 = 16 , D1 = 9, D2 = 8, D3 = 7, D4 = 6, D5 = 5;//

Delay chip pins
58 int D6 = 4, D7 = 3, D8 = 2, D9 = 1, D10 = 0;
59
60 void updatePLL() {
61 unsigned long int_r0=0, int_r1=0, int_r2=0, int_r3=0,

int_r4=0, int_r5=0; // temp int for registers
62
63 if (data->Frequency > 3600) {
64 data->prescaler = 1;
65 }
66 else data->prescaler = 0;
67
68 data->dividervalue = (data->Frequency*(pow(2,data->

RFdivider)))/(data->integer*.125);
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69
70 //prepapare the registers
71
72 int_r0 = (data->integer << 15); // sets int value
73 byte r0Ary[] = { lowByte(int_r0 >> 24), lowByte(int_r0 >>

16), lowByte(int_r0 >> 8), lowByte(int_r0) };
74 memcpy(&data->reg[0], &r0Ary, sizeof(r0Ary));
75
76 int_r1 = (data->prescaler << 27) +// Prescaler 0-4/5

and 1-8/9
77 (1 << 15) + // phase value = 1
78 (2 << 3) + // modulus value = 2
79 1; // register value
80 byte r1Ary[] = { lowByte(int_r1 >> 24), lowByte(int_r1 >>

16), lowByte(int_r1 >> 8), lowByte(int_r1) };
81 memcpy(&data->reg[1], &r1Ary, sizeof(r1Ary));
82
83 int_r2 = (0 << 26) + // muxout
84 (data->refby2 << 24) +// Divide-by-2
85 (data->rcounter << 14) + // r-counter = 1
86 (data->ChargepumpCurr << 9) + // charge pump

- 0-15
87 (10 << 5) + // digital lock detect + polarity

+ powerdown
88 2; // register value
89
90 byte r2Ary[] = { lowByte(int_r2 >> 24), lowByte(int_r2

>> 16), lowByte(int_r2 >> 8), lowByte(int_r2) };
91 memcpy(&data->reg[2], &r2Ary, sizeof(r2Ary));
92
93 int_r3 = (data->ClkDivValue << 3) + //Clock divider

value
94 (data->fastlockenable << 15) +// Enable fast

lock
95 3; // (all zero, except register control value =

3);
96 byte r3Ary[] = { lowByte(int_r3 >> 24), lowByte(int_r3 >>

16), lowByte(int_r3 >> 8), lowByte(int_r3) };
97 memcpy(&data->reg[3], &r3Ary, sizeof(r3Ary));
98
99 int_r4 = (data->feedback << 23) + // divided/fundamental

feedback
100 (data->RFdivider << 20) +//RF divider select
101 (data->dividervalue << 12) + // band select

clock divider
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102 (data->mtld << 10) + // Mute till lock
103 (0 << 9) + // vco powerdown = false; MTLD = 1;

aux output = divided;
104 (0 << 6) + // aux out enable + aux output power

= {-4, -1, 2, 5dbm}
105 (data->rfenable << 5) + // RF OUTPUT ENABLED
106 (data->rfPower << 3) + // RF output power = 5dbm
107 4; // register select
108 byte r4Ary[] = { lowByte(int_r4 >> 24), lowByte(int_r4 >>

16), lowByte(int_r4 >> 8), lowByte(int_r4) };
109 memcpy(&data->reg[4], &r4Ary, sizeof(r4Ary));
110
111 int_r5 = (1 << 22) + (3 << 19) + 5; // lock detect pin

mode = digital lock detect
112 byte r5Ary[] = { lowByte(int_r5 >> 24), lowByte(int_r5 >>

16), lowByte(int_r5 >> 8), lowByte(int_r5) };
113 memcpy(&data->reg[5], &r5Ary, sizeof(r5Ary));
114
115 SPI.beginTransaction(SPISettings(2000000, MSBFIRST,

SPI_MODE0));
116
117 unsigned int reg12[6];
118
119 reg12[0]=0x500000;
120 reg12[1]=0x8011;
121 reg12[2]=0x1008F42;
122 reg12[3]=0x84B3;
123 reg12[4]=0x9C803C;
124 reg12[5]=0x580005;
125
126 // write the registers
127 for (int j = 5; j >= 0 ; j--) { // Order from R5 to R1
128 digitalWrite(PLL_LEpin, LOW);
129 // Writes the data
130 for (int i = 0; i < 4 ; i++) {
131 SPI.transfer(data->reg[j][i]);
132 }
133 digitalWrite(PLL_LEpin, HIGH);
134 }
135 }
136
137 void updateamplitude() {
138 if (data->Amplitude_prev != data->Amplitude) {
139 analogWrite(A14, data->Amplitude ); // Attenuation

control
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140 }
141 data->Amplitude_prev = data->Amplitude;
142 }
143
144 void updatedelay() {
145 if (data->Delay_prev != data->Delay) {
146 unsigned int temp = data->Delay / 10;
147 digitalWriteFast(D0, HIGH && (temp & 0x001));
148 digitalWriteFast(D1, HIGH && (temp & 0x002));
149 digitalWriteFast(D2, HIGH && (temp & 0x004));
150 digitalWriteFast(D3, HIGH && (temp & 0x008));
151 digitalWriteFast(D4, HIGH && (temp & 0x010));
152 digitalWriteFast(D5, HIGH && (temp & 0x020));
153 digitalWriteFast(D6, HIGH && (temp & 0x040));
154 digitalWriteFast(D7, HIGH && (temp & 0x080));
155 digitalWriteFast(D8, HIGH && (temp & 0x100));
156 digitalWriteFast(D9, HIGH && (temp & 0x200));// Phase

control
157 digitalWriteFast(D10, LOW);//Cascading latch
158 }
159 data->Delay_prev = data->Delay;
160 }
161
162 void initializeDAC() {
163 unsigned long int_com0;
164
165 int_com0 = (7 << 19) +//update ref
166 1; // ref on
167 byte com0Ary[] = { lowByte(int_com0 >> 16), lowByte(

int_com0 >> 8), lowByte(int_com0) };
168 memcpy(&data->comm[0], &com0Ary, sizeof(com0Ary));
169 SPI.beginTransaction(SPISettings(16000000, MSBFIRST,

SPI_MODE2));
170 digitalWrite(DAC_LEpin, LOW);
171 for (int i = 0; i < 3 ; i++) {
172 SPI.transfer(data->comm[0][i]);
173 }
174 digitalWrite(DAC_LEpin, HIGH);
175 }
176
177 void updateDAC(int number) {
178 unsigned long int_com1, int_com2;
179
180 int_com1 = (3 << 19) + // update DAC1
181 (0 << 16) + //DAC1 address
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182 data->Threshold_1; // Data threshold
183
184 byte com1Ary[] = { lowByte(int_com1 >> 16), lowByte(

int_com1 >> 8), lowByte(int_com1) };
185 memcpy(&data->comm[1], &com1Ary, sizeof(com1Ary));
186
187 int_com2 = (3 << 19) + // update DAC2
188 (1 << 16) + //DAC2 address
189 data->Threshold_2; //Data threshold
190 byte com2Ary[] = { lowByte(int_com2 >> 16), lowByte(

int_com2 >> 8), lowByte(int_com2) };
191 memcpy(&data->comm[2], &com2Ary, sizeof(com2Ary));
192
193
194 if (number == 1) {
195 if (data->Threshold_1_prev != data->Threshold_1) {
196 // Writes the data
197 SPI.beginTransaction(SPISettings(16000000, MSBFIRST,

SPI_MODE2));
198 digitalWrite(DAC_LEpin, LOW);
199 for (int i = 0; i < 3 ; i++) {
200 SPI.transfer(data->comm[1][i]);
201 }
202 digitalWrite(DAC_LEpin, HIGH);
203 }
204 data->Threshold_1_prev = data->Threshold_1;
205 }
206 else if (number == 2) {
207 if (data->Threshold_2_prev != data->Threshold_2) {
208 SPI.beginTransaction(SPISettings(16000000, MSBFIRST,

SPI_MODE2));
209 digitalWrite(DAC_LEpin, LOW);
210 for (int i = 0; i < 3 ; i++) {
211 SPI.transfer(data->comm[2][i]);
212 }
213 digitalWrite(DAC_LEpin, HIGH);
214 }
215 data->Threshold_2_prev = data->Threshold_2;
216 }
217
218 }
219
220
221 void setup() {
222 data = new Data();
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223 Serial.begin(9600);
224 analogWriteResolution(12);
225 //pinMode(A14, OUTPUT);
226 pinMode(16, OUTPUT); //D0
227 pinMode(9, OUTPUT); //D1
228 pinMode(8, OUTPUT); //D2
229 pinMode(7, OUTPUT); //D3
230 pinMode(6, OUTPUT); //D4
231 pinMode(5, OUTPUT); //D5
232 pinMode(4, OUTPUT); //D6
233 pinMode(3, OUTPUT); //D7
234 pinMode(2, OUTPUT); //D8
235 pinMode(1, OUTPUT); //D9
236 pinMode(0, OUTPUT); //D10
237 pinMode(10, OUTPUT); //PLL LE
238 pinMode(15, OUTPUT); //DAC LE
239 digitalWrite(PLL_LEpin, HIGH);
240 digitalWrite(DAC_LEpin, HIGH);
241 SPI.begin();
242 initializeDAC();
243 updateDAC(1);
244 updateDAC(2);
245 updatePLL();
246 updatedelay();
247 updateamplitude();
248
249 }
250
251 void loop() {
252 char controlByte;
253 int tmpamp, tmpdly, tmpthr1, tmpthr2, tmpPLL[5]; // temp

variables
254 byte temp1, temp2 , temp[12];
255 while (Serial.available() < 2) {};
256 controlByte = Serial.read();
257 switch (controlByte) {
258 case 0://Amp
259 {
260 temp1 = Serial.read();
261 temp2 = Serial.read();
262 tmpamp = temp2 << 8 | temp1;
263 memcpy(&data->Amplitude, &tmpamp, sizeof(tmpamp));
264 updateamplitude();
265 }
266 break;
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267 case 1://Delay
268 {
269 temp1 = Serial.read();
270 temp2 = Serial.read();
271 tmpdly = temp2 << 8 | temp1;
272 memcpy(&data->Delay, &tmpdly, sizeof(tmpdly));
273 updatedelay();
274 }
275 break;
276 case 2://Threshold 1
277 {
278 temp1 = Serial.read();
279 temp2 = Serial.read();
280 tmpthr1 = temp2 << 8 | temp1;
281 memcpy(&data->Threshold_1, &tmpthr1, sizeof(tmpthr1

));
282 updateDAC(1);
283 }
284 break;
285 case 3://Threshold 2
286 {
287 temp1 = Serial.read();
288 temp2 = Serial.read();
289 tmpthr2 = temp2 << 8 | temp1;
290 memcpy(&data->Threshold_2, &tmpthr2, sizeof(tmpthr2

));
291 updateDAC(2);
292 }
293 break;
294 case 4:// PLL setttings
295 {
296 for (int i = 0; i < 12; i++) {
297 temp[i] = Serial.read();
298 }
299 tmpPLL[0] = temp[3] << 8 | temp[2]; //Frequency
300 tmpPLL[1] = temp[5] << 8 | temp[4]; //rfPower
301 tmpPLL[2] = temp[7] << 8 | temp[6]; //

ChargepumpCurr
302 tmpPLL[3] = temp[9] << 8 | temp[8]; //integer
303 tmpPLL[4] = temp[11] << 8 | temp[10]; //integer
304 //update the data structure
305 memcpy(&data->rfenable, &temp[0], sizeof(temp[0]));
306 memcpy(&data->refby2, &temp[1], sizeof(temp[1]));
307 memcpy(&data->Frequency, &tmpPLL[0], sizeof(tmpPLL

[0]));
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308 memcpy(&data->rfPower, &tmpPLL[1], sizeof(tmpPLL
[1]));

309 memcpy(&data->ChargepumpCurr, &tmpPLL[2], sizeof(
tmpPLL[2]));

310 memcpy(&data->integer, &tmpPLL[3], sizeof(tmpPLL
[3]));

311 memcpy(&data->RFdivider, &tmpPLL[4], sizeof(tmpPLL
[4]));

312
313 updatePLL();
314 }
315 break;
316 default:
317 break;
318 }
319
320 delay(100);
321
322 }
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Nature Photonics, 8(11):821, 2014.



[12] Alexander B Khanikaev and Gennady Shvets. Two-dimensional topological
photonics. Nature Photonics, 11(12):763, 2017.

[13] Tomoki Ozawa, Hannah M Price, Alberto Amo, Nathan Goldman, Moham-
mad Hafezi, Ling Lu, Mikael C Rechtsman, David Schuster, Jonathan Simon,
Oded Zilberberg, et al. Topological photonics. Reviews of Modern Physics,
91(1):015006, 2019.

[14] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi. Topologi-
cally robust transport of photons in a synthetic gauge field. Phys. Rev. Lett.,
113(8):087403, 2014.

[15] P St-Jean, V Goblot, E Galopin, A Lemâıtre, T Ozawa, L Le Gratiet, I Sagnes,
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[33] Nicolò Spagnolo, Chiara Vitelli, Marco Bentivegna, Daniel J. Brod, Andrea
Crespi, Fulvio Flamini, Sandro Giacomini, Giorgio Milani, Roberta Ramponi,
Paolo Mataloni, Roberto Osellame, Ernesto F. Galvão, and Fabio Sciarrino.
Experimental validation of photonic boson sampling. Nature Photonics, 8:615–
620, Jun 2014.

[34] Jean-Luc Tambasco, Giacomo Corrielli, Robert J. Chapman, Andrea Crespi,
Oded Zilberberg, Roberto Osellame, and Alberto Peruzzo. Quantum interfer-
ence of topological states of light. Science Advances, 4(9), 2018.

[35] Andrea Blanco-Redondo, Bryn Bell, Dikla Oren, Benjamin J. Eggleton,
and Mordechai Segev. Topological protection of biphoton states. Science,
362(6414):568–571, 2018.

135



[36] Matthew D Eisaman, Jingyun Fan, Alan Migdall, and Sergey V Polyakov. In-
vited review article: Single-photon sources and detectors. Review of scientific
instruments, 82(7):071101, 2011.

[37] Georg Harder and et.al. An optimized photon pair source for quantum circuits.
Opt. Express, 21(12):13975–13985, Jun 2013.

[38] Christoph Simon, Hugues De Riedmatten, Mikael Afzelius, Nicolas Sangouard,
Hugo Zbinden, and Nicolas Gisin. Quantum repeaters with photon pair sources
and multimode memories. Physical review letters, 98(19):190503, 2007.

[39] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum-enhanced
positioning and clock synchronization. Nature, 412:417–419, 2001.

[40] Offir Cohen, Jeff S. Lundeen, Brian J. Smith, Graciana Puentes, Peter J.
Mosley, and Ian A. Walmsley. Tailored photon-pair generation in optical fibers.
Phys. Rev. Lett., 102:123603, Mar 2009.

[41] Jun Chen, Kim Fook Lee, and Prem Kumar. Deterministic quantum splitter
based on time-reversed hong-ou-mandel interference. Phys. Rev. A, 76:031804,
Sep 2007.

[42] Joshua W Silverstone, Damien Bonneau, Kazuya Ohira, Nob Suzuki, Haruhiko
Yoshida, Norio Iizuka, Mizunori Ezaki, Chandra M Natarajan, Michael G
Tanner, Robert H Hadfield, et al. On-chip quantum interference between
silicon photon-pair sources. Nature Photonics, 8(2):104, 2014.

[43] Jiakun He, Bryn A. Bell, Alvaro Casas-Bedoya, Yanbing Zhang, Alex S. Clark,
Chunle Xiong, and Benjamin J. Eggleton. Ultracompact quantum splitter of
degenerate photon pairs. Optica, 2(9):779–782, Sep 2015.

[44] Vittorio Peano, Martin Houde, Florian Marquardt, and Aashish A. Clerk.
Topological Quantum Fluctuations and Traveling Wave Amplifiers. Phys.
Rev. X, 6:041026, 2016.

[45] T. Shi, H. J. Kimble, and J. I. Cirac. Topological phenomena in clas-
sical optical networks. Proceedings of the National Academy of Sciences,
114(43):E8967–E8976, 2017.

[46] CW Gardiner and MJ Collett. Input and output in damped quantum systems:
Quantum stochastic differential equations and the master equation. Phys. Rev.
A, 31(6):3761, 1985.

[47] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time
intervals between two photons by interference. Phys. Rev. Lett., 59:2044–2046,
Nov 1987.
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[64] Andreas Schreiber, Aurél Gábris, Peter P Rohde, Kaisa Laiho, Martin
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