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We investigate two coupled nonlinear cavities that are coherently driven in a dissipative environment. We
perform semiclassical, numerical, and analytical quantum studies of this dimer model when both cavities
are symmetrically driven. In the semiclassical analysis, we find steady-state solutions with different photon
occupations in two cavities. Such states can be considered analogs of the closed system double-well
symmetry-breaking states. We analyze the occurrence and properties of these localized states in the system
parameter space and examine how the symmetry-breaking states, in the form of a bistable pair, are associated with
the single-cavity bistable behavior. In a full quantum calculation of the master equation dynamics that includes
quantum fluctuations, the symmetry-breaking states and bistability disappear due to the quantum fluctuations. In
the quantum trajectory picture, we observe enhanced quantum jumps and switching, which indicate the presence
of the underlying semiclassical symmetry-breaking states. Finally, we present a set of analytical solutions for the
steady-state correlation functions by using the complex P representation and discuss its regime of validity.
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I. INTRODUCTION

Experimental advances in generating strongly interacting
photons opened the opportunity to explore various many-body
quantum phenomena in a new context [1-3]. Photonic systems
are unique in the sense that it is naturally an open quantum
system where the addition and destruction of photons can be
accomplished by drive and dissipation in a controlled way.
Thus it is an ideal system to study many outstanding questions
on open-system dynamics, dissipative phase transitions [4,5],
and the effects of interactions in a dissipative environment.
The simplest model to study strongly interacting bosons on
a lattice is the celebrated Bose—Hubbard model where atoms
have on-site interactions and can hop across lattices [6,7].
There have been several recent proposals [8—12] on achieving
this model with photons and open systems, such as with
photons in coupled cavity arrays, superconducting circuit
QED and polaritons. With added drive and dissipation, the
Bose—Hubbard model does not exhibit superfluid or Mott
insulator phases but gives rise to mixed-state nonequilibrium
steady states and phases [13—16], the nature and generation of
which are not fully understood.

A starting point for understanding the complex dynamics
of driven dissipative photonic cavity arrays can be a two-site
model. Such a two-site driven dissipative nonlinear model
may be realized with systems such as two coupled photon
cavities [17], circuit QED systems [18], and two coupled
micropillars [19]. This system is also referred to as a photonic
molecule [20], dimer, or a double well. For the closed system,
the physics of double well has been studied in great detail
[21-26], giving rise to phenomena such as the Josephson ef-
fect, matter-wave interference and self-trapped and symmetry-
breaking states, among others. For open systems, studies of two
coupled cavities have appeared in several contexts in both the-
ory [27-35] and experiment [17,18,36,37]. For an end-driven
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cavity, studies focused on the topics of unconventional photon
blockade [31-33] and multistability [17], among others. For
symmetrically driven cavities, studies appeared on quantum
correlations [29], classical to quantum phase transitions for
a Jaynes—Cummings dimer [18], and symmetry breaking for
incoherent drives [36], among others.

In this article, we explore the physics of two coupled
nonlinear cavities in a dissipative setting where both sites are
driven coherently and symmetrically. We perform semiclas-
sical and quantum analysis of the system, investigating the
complex interplay of many competing terms such as hopping,
interaction, drive, dissipation, and detuning. In a semiclassical
treatment, we show that the nonequilibrium steady states have
asymmetric number density in the two cavities in addition
to the expected symmetry-preserving states. These states are
the driven-dissipative analog of the closed system double-well
symmetry breaking or self-trapped states [21-23] with a funda-
mental difference that these are not minimum-energy states but
long-time steady states resulting from the competition in drive
and dissipation. These can be understood from the bistability
of a single driven cavity; when two cavities are coupled with
small but nonzero tunneling, the low-density and high-density
bistable branches of a single cavity are hybridized to form
two symmetry-breaking steady states with unequal photon
occupations in the two cavities. Beyond a critical coupling and
drive, the symmetry-breaking states do not form. We analyze
the occurrence and stability of the semiclassical solutions,
finding that there can be up to nine solutions, a maximum of
four of which are stable containing pairs of symmetry-breaking
and symmetry-preserving states in a multistable region. We
delineate a phase diagram for the symmetry-broken states in
the parameter space of drive and tunneling.

We then study the system by solving the full quantum-
mechanical master equation and by using the method of
quantum trajectories [38—41]. In a full quantum treatment,
when quantum fluctuations are taken into account, the
symmetry-breaking states are no longer seen, similar to
the case of single-cavity bistable states [42]. However, in
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quantum-trajectory simulations of the dynamics, we show
that quantum jump statistics of number differences reveal the
presence of underlying semiclassical bistability, indicating the
presence of symmetry-breaking states. Finally, we present a set
of analytical expressions for the steady-state correlation func-
tions using the complex P representation [42,43] expressing
the master equation in the form of Fokker—Planck equation.
The solutions work for small tunnel couplings; we discuss the
regime of validity of the solutions in the parameter space.

The article is organized as follows: In Sec. I, we introduce
the model. In Sec. II, we present semiclassical analysis and
analyze the driven-dissipative symmetry-breaking states. In
Sec. III, we present quantum trajectory analysis and full
quantum treatment of the master equation. In Sec. IV, we
derive analytical solutions for the steady-state correlation
functions and summarize our results in Sec. V.

II. MODEL

We consider two cavities with Kerr nonlinearity [42] that
are coupled by tunneling [18,36]. The cavities are coherently
driven in a dissipative setting, with both drive and dissipation
acting equally on both sites. Figure 1 shows a schematic
drawing of the setup. The system can be described by the
following Hamiltonian:

N U
A =—J@la, +aba) + 3(&?&% +al’ad)
+ Aw(alay + ala) + F@] +al) + F*@) + ), (1)

where @, and @, are the annihilation operators for the two
cavities labeled 1 and 2. Here J is the intercavity tunneling
strength, U is the anharmonicity or the nonlinear Kerr-type
interaction strength, F is the driving field for cavity 1 and 2,
and Aw = w, — wp is the detuning, after the rotating-wave
approximation for the drive term. w, and wp are the cavity
resonance frequency and driving frequency, respectively.
Tunnel couplings occur due to the overlap of the spatial profile
of the cavity modes and can be engineered in a large arrays
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FIG. 1. Schematic drawing of our model system of two coupled
photonic cavities. Effective photon-photon interactions within each
cavity give rise to a Kerr nonlinearity with strength U and intercavity
mode overlap contributes to tunneling with strength J. The system
is coupled to a Markovian bath and photons can decay or leak out
with rate . Coherent pumping (F') replenishes the photons. We treat
the case when drive and dissipation are the same for both cavities.
Two coupled cavities are the simplest setting for an array of coupled
cavities where the interplay of dissipation, drive, and interaction plays
a crucial role that are being investigated in a wider context.
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of resonators, e.g., in silicon rings [44,45], photonic crystal
cavities [46], and exciton-polariton systems [17].

For our open system, there can be photon losses induced
by spontaneous decay or cavity leakage. In the approximation
that the system is weakly coupled to a Markovian bath, the
dynamics of the density matrix can be modeled by a quantum
master equation in the Lindblad form:

0p . o o aat L A Ant
i —i[H,p] + y[2(a1pa; + a0a,)
—@la, +alayp - p@la) +alar), @

where y is the dissipation rate in each cavity. We set i = 1
throughout.

III. SEMICLASSICAL ANALYSIS

Ignoring quantum fluctuations, the mean-field amplitudes
for the field operators are o = (a;), o = (d»). We assume
o) = /nie' and oy = /nye'®, where ny, n, are occupation
numbers and 6y, 6, are phases for the two cavities, and An =
ny —ny, A =0; — 6. In the semiclassical approximation
the correlation functions factorize, and the equations of motion
become
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Here, f(ajaf) =« +iUajaf andk =y +iAw.

We find the steady states of these equations by solving
the four coupled differential equations (3), examining the
long-time dynamics for different sets of initial conditions.
For most values of parameters we get a single steady state.
However, for the value of parameters F/y =2.6,J/y =
0.1,U/y =0.6, Aw/y = —3, we get four different steady
states as depicted in Fig. 2 showing their long-time dynamics.
We take y = 1 for all our calculations in this article, essentially
giving other parameters in units of dissipation. Two of the
steady states have equal number of photon occupations in
the two cavities, as in Figs. 2(a) and 2(b): one with low
occupations and the other with higher occupations. We refer
to these states as symmetry-preserving states. In addition to
these, we get steady states where the photon occupations are
different in the two cavities as shown in Figs. 2(c) and 2(d).
This pair of states are asymmetric, mirror images of each
other, and localized more in one of the cavities. We refer to
these states as symmetry-breaking states. These states are the
driven-dissipative analog of the symmetry-breaking states in
Josephson coupled junctions which have been observed with
ultracold atoms and photons in closed systems [21,22,25].
Unlike the single-cavity semiclassical solutions, the phases
here are important because the relative phase between the two
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FIG. 2. Semiclassical dynamics to reach the steady states in a
Bose—-Hubbard dimer. For our model, there are nonequilibrium steady
states where more photons are localized in one well than the other,
a driven-dissipative analog of the symmetry-breaking states of a
closed-system double well. Panels (a) and (b) show dynamics where
the steady states have equal number of photons in the two cavities:
(a) low-density state and (b) high-density state. Panels (c) and (d)
show how states with unequal numbers of photons in the two cavities
are reached. Symmetry-breaking states come in pairs and are always
in a multistable regime. The parameter values are F'/y = 2.6, J/y =
0.1, U/y =0.6, Aw/y = —3. The four steady states are reached
with four different initial values of (n1, 01, n,, 6,).

cavities cannot be gauged away. For the symmetry-preserving
states we find A6 = 0, and for the symmetry-breaking states,
we have A9 # 0.

Alternatively, we set %(x = 0 to find the steady states:

0=F —o flajo)) +iJaa,

0=F"—of ff(ye)) —iJe;,

0=F —orf(ae)+iJa,
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Here we have four equations with four unknowns n;, n,, 6,
and 6, that are real. For certain parameter values, there can be
more than one real solutions, up to a maximum of nine, out
of which a maximum of four are stable. This is the regime
of multistability. The stable solutions that we obtain with this
method match with what we obtain from the previous method
by looking at the long-term dynamics starting with different
initial conditions.

We find stability by introducing small fluctuations to the
steady state, obtaining linearized equations for the fluctu-
ations and examining their eigenvalues. Introducing small
fluctuations about the steady state «;(¢) = oy + &;(), 2(t) =
o + @ (1),

) a(t) a(t)
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Here the stability matrix A is as follows:

kK +i2mU  iafU iJ 0
i —ia?U  «*—i2mU 0 —iJ
- —iJ 0 k+i2nU  ialU ’
0 iJ —ia?U  «* —i2nmU

(6)

where ¥k = y + i Aw. When the real part of the eigenvalues
of A are positive the solution is stable. Furthermore, we look
at the determinant and trace, as done in Ref. [42], for which
the Hurwitz criterion for stability requires that the trace and
determinant of this matrix is nonzero and positive for stable
eigenvalues.

We can further analyze the steady-state equations (4) to get
two state equations:

|FI> = mly* 4+ (Uni + Aw)’] — y J/niny sin AD
—2J /nny(Un; + Aw)cos A8 + J?n,,

|FI* = naly? + (Uny + Aw)*] + y J J/ning sin A8
—2J /nny(Uny + Aw)cos A + J?ny.  (7)

Equations (7) capture the parameter dependence for both the
symmetry-preserving and symmetry-breaking semiclassical
steady states. For symmetry-preserving states, when n; =
ny =n, A =0, and J 5 0, this simplifies to one equation:

|F|* = nly? + (Un + Aw)’] = 2Jn(Un + Aw) + J*n.
(®)

Further taking the limit J = O reproduces the single-cavity
result of Drummond and Walls [42]:

|FI* = nly? + (Un + Aw)*. 9)

Equation (9) is the bistability-state equation for a single cavity.
The extension of this to a coupled cavity gives us the state
equations (7) and (8), expressing the dependence of J in going
from a single-cavity bistability to the coupled-cavity bistability
and multistability.

The symmetry-breaking states are borne out of the bistable
behavior of a single cavity. We can understand this by introduc-
ing an infinitesimal coupling to the two cavities, as illustrated
in Fig. 3. As soon as we turn on J, two bistable branches split
into four steady states whose number occupations suggest that
they are made up of the low- and high-density bistable states of
individual cavities in this fashion: (low, low), (high, high),
(low, high), (high,low). The (low, high) and (high, low)
states are the symmetry-breaking states. For a single cavity,
there are three solutions to the semiclassical equations: two
are stable and one is unstable. Coupling the two cavities gives
rise to a maximum of nine solutions in some regime, out of
which a maximum of four are stable. There are regions of
one, two, or four stable solutions. The regime of four stable
solutions is the multistable region where two solutions are
symmetry-preserving states and two are symmetry-breaking
states. Figure 3(c) shows both a stable and unstable branch of
the solutions marked in blue circles and red dots, respectively.
A pair of symmetry-breaking states never appear in isolation
but always come with a pair of symmetric states.
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FIG. 3. From single-cavity bistability to dimer multistability and driven-dissipative symmetry-breaking states. Panel (a) shows the
semiclassical solutions in the limit of a single cavity when there is no coupling (J = 0). Blue circles and red dots denote stable and
unstable states, respectively. For a fixed drive F//y = 2.6 [denoted by a vertical line in panels (a) and (c)], panel (b) depicts the change in the
steady-state photon occupations as the coupling J/y slowly increases—four solutions originate from the two branches of the single-cavity
solutions. Panel (c) depicts all the solutions, both stable and unstable, which there are at most nine in some regimes, a maximum of four of
which are stable. For F/y = 2.6, we enter a regime of multiple solutions, two symmetry-preserving states and a pair of symmetry-breaking

states. Same parameters are used as in Fig. 2.

In Fig. 4 we analyze the steady-state number and phase
differences between the two cavities and delineate a phase
diagram in the J/y — F/y phase. Figure 4(b) shows the
number difference An as a function of J/y for a fixed F/y,
and we see that the self-trapped states appear as soon as we turn
on J and disappears for a critical J/y. Here the positive and
negative values of An represent the pair of symmetry-breaking
states while the symmetric states are on the zero of the
y axis. Similarly, Fig. 4(c) shows the dependence on F/y
for a fixed J/y. With many such slices for fixed F/y and
J/y, we can now draw a phase diagram for the presence of
symmetry-broken states in the tunneling-drive (J/y — F/y)
plane for Aw/y = —3 and different interactions U/y = 0.6
[Fig. 4(a)]land U/y = 6 [Fig. 4(d)]. The shades differentiate
three regions with one, two, and four stable steady states. The
region labeled 1 has one stable symmetry-preserving steady
state. The region labeled 2 is a bistable regime with two
symmetry-preserving states which continues to grow as J/y
and F'/y increases. The boundaries of the bistability region can
be obtained from the analytic expression (8) which basically
gives the turning points for the coupled-cavity bistability in
a similar way as can be derived for a single cavity [42]. The
boundaries of the bistability region are shown in Figs. 4(a)
and 4(d), having a near linear relationship in F/y and J/y.
The region labeled 4 and shaded dark blue is the region of
multistability with two symmetry-breaking states in addition
to two symmetry-preserving states. The symmetry-breaking
region shrinks and straightens upward as we increase the
nonlinearity U/y as shown in Fig. 4(d). The characteristics
of this region are intimately connected to the whole parameter
space of detuning, nonlinearity, and that of bistability. We
note that the symmetry-breaking region always stays inside
the bistability region, and therefore cannot go beyond the
bistable phase boundaries to the right, where the slope a
higher slope as U/y increases. As a function of J/y, the
phase diagram shows a reentrant behavior as we can see
in Fig. 4(a) near F/y = 3. To gain a better understanding,
we depict the phase diagrams in two other parameters;
in the tunneling-detuning (J/y — AQ/y) and tunneling-

interaction (J/y — U/y)planes, forfixed F/y =3.5,U/y =
0.6 [Fig. 4(e)] and F/y =3.5,AQ/y = —3 [Fig. 4(f)], re-
spectively. The symmetry-breaking regions which are shaded
can be thought of as a cut in the multidimensional space of
J/y, ARQ/y, F/y,U/y). In Fig. 4(e), at detuning AQ/y =
—3, we see that the symmetry-breaking region matches that of
Fig. 4(a) at F'/y = 3.5; but the exact form of dependence in
detuning is only apparent from the full diagram. One common
feature we see is that there is always a maximum value of
J/y, and a range of AQ/y, U/y, F/y values that confines
the symmetry-breaking regions.

In our model we do not break any symmetry of the
system externally. Yet we get steady states which break
the symmetry of the system and a stability diagram where
there are multiple states for a single value of drive. For
coherent pumping as we treat here, this driven dissipative
symmetry breaking has not yet been observed. We note
that the recent observation of spontaneous mirror symmetry
breaking in coupled photonic-crystal nanolasers [36] used
incoherent pumping for which the mechanism and results
are different in that the symmetry-breaking states are not
related to bistability as in our case. In terms of the bifurcation
properties, unlike the supercritical pitchfork bifurcations in
experiment [36], we get here subcritical bifurcation [47]
as associated with bistable behavior. Pumping just one end
cavity excites the system modes in a different way and gives
rise to multistability [28], which has been recently observed
in photonic microcavities [17]. Creating an external phase
asymmetry such as in drive (driving two sites with ' and —F)
or tunneling (using J instead of —J in the Bose—Hubbard
Hamiltonian), also gives rise to symmetry-broken states,
whose criticality and entanglement has been investigated
recently [48]. Analysis from the perspectives of semiclassical
discrete nonlinear Schrodinger equation (DNLS) for lattices
and soliton physics have been reported in Ref. [49].

IV. QUANTUM ANALYSIS

To understand more features of the driven dissipative Bose—
Hubbard dimer, here we analyze the problem by quantum
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FIG. 4. Phase diagram for symmetry-breaking states. Panels (a)
and (d) show a phase diagram showing the presence of symmetry-
breaking states (the region labeled 4) in the tunneling-drive (J/y —
F/y)planefor Aw/y = —3 and different values of U/y = 0.6 and 6,
respectively. The area labeled 1 has one symmetry-preserving steady
state, 2 has two symmetry-preserving states in a bistable region,
while 4 has two symmetry-breaking and two symmetry-preserving
states. Panel (b) shows An and A6 as a function of J for a fixed
F = 2.6. Panel (c) shows An and A6 as a function of F/y for a fixed
J/y = 0.1. These depict how the symmetry-breaking states appear
and disappear as a function of tunneling and drive. We see that there
is acritical J/y value beyond which the symmetry-breaking states do
not appear. To gain a better insight, panels (e) and (f) depict the phase
diagram in the tunneling-detuning (J/y — AQ/y) and tunneling-
interaction (J/y — U/y) planes, for fixed F/y =3.5, U/y =0.6
and F/y =3.5, AQ/y = —3, respectively. The shaded regions
contain symmetry-breaking states.

mechanically taking into account the quantum fluctuations
and using two methods: first, we examine the dynamics by
numerically solving the Lindblad master equation and, second,
we do a quantum trajectory or Monte Carlo wave-function
analysis [38—41].

PHYSICAL REVIEW A 94, 063805 (2016)

In Fig. 5(b) we show quantum steady-state values overlaid
on the semiclassical multistability diagram. For the quantum
analysis, we use the Fock basis |m,m;), where m; and
my are the occupations in cavities 1 and 2, respectively. A
resulting equation of motion can now be constructed for
the density-matrix elements following the Lindblad master
equation (2). We now integrate the equation of motion by using
fourth-order Runge—Kutta to look at the long-time evolution
and determine the steady state. We find the quantum steady
states to be unique for each value of the drive. Occupation
(n) and normalized second-order correlator (g'») are shown
in Fig. 5(b) as a function of drive, where g® = WZ# In
the multistability region, g® exhibits a peak which is due
to the presence of enhanced quantum fluctuations that cause
the underlying semiclassical multistability. This is similar to
the case of single-cavity bistability [42]. However, the g®
signatures only indicate that this is a region of bistability or
multistability without giving us any clue about the presence of
symmetry-breaking states. To reveal this feature, we perform
quantum trajectory analysis below.

Quantum trajectory method provides exact results for phys-
ical observables under the ensemble averaging of trajectories
of wave functions. We specifically analyze quantum jumps in
the multistable region and analyze signatures of the underlying
semiclassical symmetry-breaking solutions. First, we pick a
specific driving field F/y = 2.6 to run the quantum trajectory
simulations. Simulation results are analyzed in Fig. 5: Fig. 5(a)
shows a histogram of the quantum jumps as they happened as
a function of the occupation numbers of one cavity plotted
vertically along the semiclassical multistability diagram. The
two peaks of the histogram coincide with the lower and
upper branches of the multistability diagram as expected
for bistability. Now if we investigate the dynamics of n,
and n, separately, a typical such evolution for a single
trajectory is given in Fig. 5(c). This shows clearly that the
photons spend most of the time fluctuating near the two
bistable branches. Figure 5(d) shows a magnified region
where the two cavities have unequal populations during the
evolution. A histogram of jumps in the variable of photon
population difference (An = ny — ny) for F//y = 2.6isshown
in Fig. 5(f). The distribution in Fig. 5(f) not only shows a
single peak at An = 0, but also broad side peaks at An # 0.
For comparison, Figs. 5(e) and 5(g) show the statistics for
quantum jumps outside the multistable region at F/y =
2.0 and F/y = 3.2, respectively, showing single Lorentzian
peaks at An = 0. The highest peaks centered at An =0
correspond to the jumps related to symmetry-preserving states,
whereas we interpret the broad side peaks of the distribution
as originating from the symmetry-breaking states. In our
model, the symmetry-breaking states always coexist with the
symmetric states. So the side peaks are always overshadowed
by a prominent central peak. As for a quantum signature of
driven-dissipative symmetry-breaking states, we show here
that a typical quantum trajectory reveals this feature. Recent
experiments [50] have used homodyne detection of photocur-
rents to detect the quantum trajectory underlying a bistability
and, thus, the observation of quantum features of dimer
symmetry-breaking states should be within experimental
reach.
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FIG. 5. Analysis of quantum trajectory simulations. Panel (a) depicts a histogram of quantum jump statistics for photon occupations for
cavity 1 for a sample trajectory in the bistable regime when F'/y = 2.6, plotted along the y axis of panel (b), which gives the multistability
diagram for the same parameters as in Fig. 3(c). Panel (b) also shows the exact quantum steady-state values of n and g'® obtained from the
Lindblad master equation, showing unique values in the multistable regime and an enhancement of g® due to quantum fluctuations. Panels
(c) and (d) show the actual dynamics of n; and n, for F/y = 2.6 showing a sample quantum trajectory run. The magnified region in panel (d)
shows that the two cavities can have unequal population during the dynamics which is enhanced when symmetry-breaking states exist. In the
space of photon number difference An, histograms are depicted for (e) F/y =2, (f) F/y = 2.6, and (g) F/y = 3.2, where the vertical axes
are shown on an arbitrary scale. Panel (f) shows enhanced population difference described by a Lorentzian with broad side peaks indicating
underlying symmetry-breaking states. On the other hand, panels (e) and (g) is in regions outside multistability and have single central peaks.
The number difference statistics thus contain signatures of underlying symmetry-breaking bistability.

Below we discuss some insights into the physical mecha-
nism of multistability and symmetry breaking. Multistability
in coupled cavities has the same origin as that of the
bistability in a single cavity. In the semiclassical limit of a
driven dissipative cavity, nonlinearity gives rise to two stable
steady-state solutions. In a quantum treatment, the quantum
fluctuations leads to switching between these semiclassical
states, and the density matrix is unique. We identify similar
effects for two coupled cavities, as illustrated in this section. In
coupled cavities, nonlinearity gives rise to multiple solutions
corresponding to multiple minima in the steady-state potential
landscapes. However, the inclusion of quantum fluctuations
leads to switching among multiple semiclassical solutions.
More specifically, by analyzing the individual quantum trajec-
tories, we find that photons jump between the stable branches
in a way that reveals symmetry breaking in number difference.

In a closed system, symmetry-breaking or self-trapped
states appear due to nonlinearity getting larger than tunnel-
ing such that staying in one cavity minimizes the energy.
In contrast, in an open driven-dissipative system, energy
minimization does not determine the steady states, and we
could not find a simple relation among the parameters of
nonlinearity, tunneling, drive, and detuning that could explain

the symmetry-breaking states. However, Eqs. (7) and (8),
combined with the stability analysis, give relationships among
the parameters for symmetry-breaking and multistable states.
We have presented phase diagrams for particular set of
parameters, and one can understand the symmetry-breaking
states as a hybridization of unequal density bistable states
from each individual cavity surviving in the coupled cavity
limit for small coupling.

V. ANALYTIC SOLUTION FOR THE STEADY STATE

Analytic solutions for steady states of driven-dissipative
systems are very rare. For a single cavity with Kerr nonlin-
earity, analytic solutions for the steady-state was presented
by Drummond and Walls in Ref. [42]. Since then, there
have been a number of instances where analytic solutions
have been obtained for various scenarios in a single-cavity,
such as with two-body loss [51]. Drummond and Walls [42]
used the complex P representation to obtain a Fokker—Planck
equation and present closed-form analytic expressions for
the correlation functions. We apply a similar technique here
for the two-coupled nonlinear cavities and present analytic
solutions for the correlation functions expressed as a series.
The solutions are applicable for small J and deviate slowly
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from the exact numerical results as J is increased. Considering In comparison to the single-cavity case [42], the additional
the fact that no analytic solutions are known for coupled term in the dimer Hamiltonian is the hopping term,
cavities, we present our investigations here which may find —J (&Iaz + &;& 1). After a rotating-wave approximation, the

applications in the study of the weak-coupling limit and in  contribution of this term to the master equation dynamics
finding an improved solution. A short derivation is provided

becomes i][&f&z + &;&1,,6].
below.

Now the full master equation with Kerr nonlinearity is

J

U

p = —iAwlala) + alay, p) — iE[aFa% +al’ad, pl+ [Fa] + F*ay, pl + [Fal + F*a,, p
+iJlala, + ala,, pl + y[2aipal — pala, — alaipl + y12apal — pala, — alayp). (10)

The contribution to the P function dynamics from the hopping term is

- dp
/dotla)( | dia) /dot[lJ(ATAzlot)(al+a1a2|a)(otl)—lJ(Ia)(OtIATAz+Iot><0£|A1&z)]P(a)

. ad ad . ] 0 4 .
= /da!z][(a—l + )Olz + <87[2 +a;>a1:| - zJ|:<aTlI +a1)a; + (874 +a2>a{j|,|oe)(oz|P(a),

(11)
where @ = («;, aI, o, a;). Now the Fokker—Planck equation for the P function is given as
0 . . 1 . -
EP(O[) =|0.Au(a) + Eap.avD;w(a) P(a), (12)

where the drift matrix and the diffusion vector are, respectively,

. 2 1 .
/ca1+an al—F—f—tJaz _anlz 0 0 0
K* lU*oz1 o] — F*—iJot; 0 +,‘Ua1fz 0 0
AM = ) DMU = . 2
/cotz—i—anzaz F+iJo 0 0 —iUa; 0 3
t 0 0 0 +iUa,.

*
K ozz—ont2 a — F —lJOtl

To have a specific form of analytic solutions for the steady states of the Fokker—Planck equation, the potential conditions
must be satisfied [42]. Now let us check whether the potential conditions, 9, V, = 9,V,,, are satisfied for this multidimensional
Fokker—Planck equation. Here,

(5 +2)4 - 2ad - Lo
2t i2F*—2Jal
V, = (D) A, + 8, Dyo) = (g =)y 2w j (13)
+(%+2)£_2“i_%;§
(B ) B

Denoting o, ai, o, oz; as 1, 2, 3, 4, respectively, we find 9, V, = 0, V| = =2, 3Vy = 04V3 = -2, 0,Vy = 94V; =0, and
0y V3 = 03V, = 0. These four potential conditions are satisﬁed However, two potential conditions are not satisﬁed Vs =
U 2,33‘/] ————and82V4 U |2,84‘/2 - .2 Here 3]V3—33V] lf()t] =0 and82V4—84V2 lfOll —0(2 Theyare
also approxunately satlsﬁed in the 11m1t that J /U is small We present the analytic solutions under this restricted condition.
The steady-state P function is

Py = exp (—/ Vpd&>

2 F+J F+J [ F + Joao)* i F + Jap)* ,
(c 2)04((1 2y (c 2) T(d D exp | == (F 4+ Jap) n GF 4+ Jay) n (F 4+ Jaa) . (F+ Jay) +2a1a1+2a2a; '
U aj o aI oz;

(14)
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We can rewrite the steady-state P function as

2—c) pt(2—d) p(2— 2—d
P =B OB BOBY >exp{

2|:(1F+ ) /3 <1F+i)*
U g.) ! Bi

0[1 ‘81

where ¢ = i2k/U,d = (i2k/U)*, k = y +iAw, and B =

|
SIS
1
0

~

+

PHYSICAL REVIEW A 94, 063805 (2016)

w7+ 5)e)

2 2
] +——+ —T} (15)
,31,31 BB,

r , B = 2 = % We now get the analytic expression
@

[

for any order of correlations. The zeroth-order correlator or the normahzatlon 1ntegral 1s

4
Ite.d) = 2m) ny'nynzlmymylms!
ny,ny,n3,my,ny,ms 172223 2k SR 2 s

2J

2n1+m1
) (%

ny+nz+mo+ms3 2oF 2¢4+2d+2n1+2m—4
) < Y )

xT N e+n;+ns—n)CNd+n +ms —m)T e+ my 4+ ny —n3)D7Nd + my + may — m3). (16)

The first-order on-site correlation function (occupation) is

GV = @2n)?

ni'ny!nslmy\myms!
ny,na,n3,mp,my,ms3 1 2 3 1 2 3

fol(c—l—nl +n3 —np + l)Ffl(d—l—nl + m3

and the second-order on-site correlation function is

G? = @2n)*

ni'no!ng!mylmyms!
ny,na,n3,my,my,ms 1203 ! 2 3

2n|+m1 2] ny+nz+mo+ms3 2oF 2c+2d+2n142m -2
2. (%) (%)

—my+ DI Ne+my +ny —n)THd +my +my—ms3),  (17)

2n1+m1 27 ny+n3+mo+ms3 2F 2¢+2d+2n142m,
2 (%) (7)

xT N e+n+nm—nm+ 2 "d+n+ms—m+ 2T Ne+m+n,—n)T'd+m +my—m3).  (18)

A comparison of the results of the analytic solutions
and numerical solutions of the master equation is shown
in Fig. 6. In Fig. 6(a), for the set of parameters used, it is
clear that the numeric and analytic results match very well
for occupations n and second-order correlation G(lz). For
small values of drive, however, the normalized second-order
correlator g = G'®/n? shows a deviation. This is due to the
fact that, for this specific value of parameters, slight deviations
in G(lz) in the numerator and n? in the denominator enhances
the discrepancies when n is very small. The mismatch could
also be due to the potential condition not satisfied in that
region, as discussed earlier. In Fig. 6(b) we show comparisons
for increasing J/y for a fixed F/y and find deviations that
come from the potential conditions not being satisfied. For
increasing coupling, the solutions deviate more and more,
being comparable for small values of J/y.

Unlike the single-cavity case, the series here do not sumto a
closed-form hypergeometric function. Instead the computation
involves a series involving six variables leading to difficulties
in the convergence of the series. Due to the properties of
the gamma function, sometimes the series converges fast.
More specifically, I'(x) increases very fast with x when x
is positive. Thus, if we have the the detuning positive (i.e.,
the real part of ¢ and d positive), the summation can converge
for indices (11, ny, n3, my, mp, m3) up to around 10. If we
have the detuning negative, we may need to compute up to a
bigger index to make the series converge. We have checked the
results for convergence for indices up to 30. For a smaller ratio
of J/U as in our example in Fig. 6, convergence is faster. It is
conceivable that we can use Monte Carlo sampling techniques
to perform this multidimensional sum.

(

A more fundamental issue is the regime of validity
of the analytic expressions originating from the potential
conditions as discussed earlier: 81 V3 U 2, a3V = _Ué
and ,Vy = — U rz’ V) = U ﬁ The potentlal conditions
are approx1mately satisfied when J/U is small. From our
investigation we find that, when J/U is small, as shown in
Fig. 6, the analytical results are comparable to the numerical.
The potential conditions are also satisfied when o) = ay,
which involves both the occupation and phase in the two
cavities to be equal. In the regime where quantum fluctuations
are important such as in the bistability and the symmetry-
breaking region, «; # o and the potential conditions are
more likely to be violated. Analytical results are rare for
a driven-dissipative system, especially when going beyond
a single cavity. The results presented here, although with a
restricted regime of validity, are therefore important in our
view. The analytic solutions presented here can be extended to
multiple cavities.

VI. CONCLUSION

We investigated the physics of two coupled nonlinear
cavities in a lossy setting where both sites are driven co-
herently and equally. We performed semiclassical, quantum,
and analytical analyses of the system. In a semiclassical
treatment, we find that the nonequilibrium steady states can
have asymmetric number density in the two cavities which
appear in addition to the symmetry-preserving states. These
states are the driven-dissipative analog of the double-well
self-trapped or symmetry-broken states. Their appearance
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FIG. 6. A comparison of analytic and numeric solutions for
parameters U/y =4, Aw/y = -3, J/y =0.1. For this set of
parameters, our analytic expressions give a very good match with the
exact numerics for the first- and second-order correlation functions
n and G® shown in panel (a). For small drives F'/y, the normalized
second-order correlation g(z), however, deviates. Please see the
discussions in the text for explanations. Panel (b) shows comparisons
for a fixed F/y =3 and varying coupling J/y. We find that, for
small values of J/y, the solutions are comparable but deviate slowly
as we go to higher J/y.

can be understood from the bistability of a single driven
cavity; when two cavities are coupled, the low-density and
high-density branches of single-cavity bistable states hybridize
to form two symmetry-breaking states with unequal photon
occupations in the two cavities. We examined the properties
and stability of the semiclassical solutions, finding that there

PHYSICAL REVIEW A 94, 063805 (2016)

can be up to nine solutions of which a maximum of four are
stable, giving rise to a pair of symmetry-preserving and a pair
of symmetry-breaking states. We presented a phase diagram
for these states in the tunneling-drive space.

We further studied the system by using the method of quan-
tum trajectories and by solving the full quantum-mechanical
master equation. In a full quantum treatment, when quantum
fluctuations are taken into account, the coupled cavity bistable
self-trapped states no longer appear, a case similar to that
of single-cavity bistability. However, in a quantum trajectory
analysis of the dynamics, we found that a histogram of
quantum jumps in number differences reveal the presence of
semiclassical bistability with a strong indication of symmetry-
breaking states. Finally, we presented analytical solutions for
the steady-state correlation functions using the complex P
representation and forming a Fokker—Planck equation. We
pointed out the regime of validity and limitations of this
analytic solution.

Coupled-cavity arrays are an exciting system to explore
a host of important phenomena such as nonequilibrium
dynamics, open-system physics, strongly interacting photons,
and quantum many-body physics. We took the simplest
coupled-cavity model of a dimer and analyzed it by using
several different methods. The physics explored here and our
predictions are within experimental reach in coupled-cavity
dimers, in terms of multistable states and single-trajectory
measurements. Besides fundamental physics, bistability and
dimers have applications in optical memories and quantum
correlation devices. The insights we gained on semiclassical
and quantum nature of photons for two coupled cavities can
also be useful for an array.
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