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It has been experimentally established that the occurrence of charge density waves is a common feature of
various underdoped cuprate superconducting compounds. The observed states, which are often found in the form
of bond density waves (BDWs), usually occur in a temperature regime immediately above the superconducting
transition temperature. Motivated by recent optical experiments on superconducting materials, where it has
been shown that optical irradiation can transiently improve the superconducting features, here we propose an
approach for the enhancement of superconductivity by the targeted destruction of the BDW order which we
expect to be more efficient than the previous methods. Since BDW states are usually found in competition with
superconductivity, suppression of the BDW order enhances the tendency of electrons to form Cooper pairs after
reaching a steady state. By investigating the optical coupling of gapless, collective fluctuations of the BDW
modes, we argue that the resonant excitation of these modes can melt the underlying BDW order parameter. We
propose an experimental setup to implement such an optical coupling using two-dimensional plasmon-polariton
hybrid systems.

DOI: 10.1103/PhysRevB.101.224506

I. OVERVIEW

Cuprate high-temperature superconductors, which are
made up of quasi-two-dimensional (quasi-2D) layers of cop-
per oxide materials, have been a subject of intense interest in
quantum condensed matter physics since their experimental
discovery in the 1980s [1] (see [2,3] for a review of the prop-
erties of these materials). A major feature of these systems is
the onset of variety of orders at low temperatures [4–8]. More
specifically, there is now mounting experimental evidence that
at low temperatures in the underdoped region spontaneous
breaking of crystalline symmetries and translational symme-
tries result in charge density wave states, characterized by the
nontrivial modulation of charge density. Since this modulation
is centered on the bonds of the square lattice rather than on
the sites, these modes are often referred to as “bond density
waves” (BDWs). These states have been detected universally
in all cuprate families, via various experimental techniques
such as scanning tunneling microscopy (STM) and x-ray scat-
tering [9–16]. While the debate is still ongoing regarding the
microscopic origin of the BDW state, temperature-dependent
measurements in the presence of magnetic fields and external
pressure suggest that the BDW order and superconductivity
(SC) compete over a wide doping region [10,17–26].

This competition between the BDW and SC orders can be
explained phenomenologically by considering the Ginzburg-
Landau theory of the SC order parameter �, and BDW order
parameter �. From symmetry considerations, one can write a
Ginzburg-Landau theory for the total free energy as a function
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of the temperature T [27,28],

F[�,�] = a�(T )|�|2 + b�(T )|�|4 + a�(T )|�|2
+ b�(T )|�|4 + C(T )|�|2|�|2, (1)

where the exact values of the coefficients and their tempera-
ture dependence are determined from the electronic theory in
terms of the polarization functions [29]. Also for simplicity,
we have suppressed gradient terms.

We note that the coefficient of the last term in the free
energy, which couples the SC and BDW orders, is always pos-
itive: C(T ) > 0. Therefore, any decrease in the BDW order
� energetically favors the formation of the superconducting
order �. Consequently, we can imagine a protocol where we
start above the superconducting critical temperature Tc, where
only the BDW order is present. Then, by driving the system
in such a way as to suppress the BDW order we can enhance
the tendency toward superconductivity. Upon establishing a
steady state, we therefore expect that the superconducting
order will be greater than its equilibrium value, which in the
case of T > Tc is zero.

Experimentally, this competition between charge density
waves and superconductivity has been used to achieve higher
values of Tc in out-of-equilibrium settings. In particular, it
has been shown, in a number of experiments, that irradiation
with terahertz laser fields for a duration of hundreds of fem-
toseconds transiently enhances signatures of electron-electron
pairing in cuprates [30–35]. Theoretically, this effect has often
been attributed to the resulting lattice deformations of the
Cu-O bonds, which melt the existing charge density wave
orders [29,36–43]. Alternatively, in other models, it has been
shown that a combination of the oscillatory behavior between
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FIG. 1. (a) Experimental scheme for generating surface
plasmon-polaritons, using a 2D high carrier conductor such as
doped graphene, on top of a cuprate superconductor. Irradiation
with terahertz laser fields creates surface plasmon-polariton waves
propagating along the conductor and penetrating inside adjacent
CuO2 planes with a bond density wave condensate. The color pattern
on the CuO2 plane displays the real part of the charge modulation
Pi j on the center of the bonds in a bond density phase with (for
purposes of illustration) a diagonal wave vector Q = (π/2, π/2).
(b) Schematic depiction of processes after irradiation with light.
Absorption of photons by the electrons in the bond density ground
state excites these electrons to higher energy states. After the
inclusion of electron-electron and electron-phonon scattering
processes, the effective exhaustion of the bond density wave channel
enhances the formation of Cooper pairs in the nonequilibrium steady
state of the system.

superconductivity and charge density waves [44] can result in
the dynamical enhancement of superconductivity, when other
initially vanishing superconducting pairings are incorporated
[45] (see [46] for a recent review of the field).

Here, inspired by these experiments, we propose an optical
approach to directly melt competing electronic modes in a tar-
geted way [Fig. 1(a)]. In contrast to the current experimental
methods, which indirectly weaken the BDW state by stimulat-
ing phononic vibrations [30–33,35], our proposal is focused
on the efficient optical destruction of the BDW order via
optically exciting its collective phase modes. The associated
excitations are the phase (phasons) and amplitude collective
modes of the BDW order parameter. In this work, we focus
on the phase mode of the BDW order, since it has a gapless
spectrum (being the Goldstone mode of the BDW phase) and
can also be optically driven at low energies. Specifically, since
interactions within the copper-oxygen planes are believed to
play the dominant role in superconductivity in cuprates, we
study the electromagnetic response of the phason mode within
a single quasi-2D plane. We argue that by exciting phase
modes inside these planes, their fluctuations will deplete the
BDW order and, therefore, provide an environment more
conducive to the formation of nonequilibrium superconduc-
tivity. The interplay between the drive and inherent relaxation
mechanisms, as depicted in Fig. 1(b), then allows for the
existence of out-of-equilibrium steady-state superconductors.

To this end, we derive a low-energy effective theory for the
phason mode of the BDW order from the “hot-spot model”
of cuprate superconductors [47,48]. This is a minimal the-
oretical model, built upon the experimental facts regarding
the competing orders in cuprates, which does not rely on

a particular microscopic mechanism underlying the orders.
The model allows us to obtain the optical response of the
BDW collective modes, which determines the properties of
their optical coupling. From this result, the optical power
absorbed by these modes is calculated and used to obtain a
phenomenological estimate for the melting rate of the BDW
order parameter.

More importantly, we derive the momentum-energy match-
ing condition between the matter and optical modes. Experi-
mentally, this condition cannot be realized via conventional
optical methods since the speed of light is nearly two orders
of magnitude higher than the Fermi velocity of electrons
in solids, which determines the propagation speed of BDW
collective modes. Nevertheless, by hybridizing photons with
surface plasmons and creating hybrid modes known as “sur-
face plasmon-polaritons” (SPPs), the propagation of light can
be confined along a metal-dielectric interface [49], which
shrinks the effective wavelength of light. Concretely, placing
a 2D (semi)metal sheet, e.g., graphene, silver, beryllium, in
contact with a dielectric slab, the optical properties of the
metallic system are modified so that the effective wavelength
of photons traveling along the metal-insulator interface, λsp,
is shrunk by the surface plasmon-polariton confinement ratio
λsp/λo, where λo labels the wavelength of photons in vac-
uum [50]. Thus, by creating a heterostructure of a cuprate
superconductor and an appropriate metal-dielectric SPP, as is
schematically illustrated in Fig. 1(a), the energy and momen-
tum mismatch can be remedied in a relatively wide range of
frequencies.

The pumping of the system out of the BDW manifold is
counterbalanced by transition elements from the excited state
to the SC state and back to the BDW state as schematically
depicted in Fig. 1(b). These transition rates together form a
nonlinear rate equation for the density matrix, whose solutions
determine the steady-state behavior of the system. Even after
placing a surface plasmon-polariton material on top of our
superconductor, there are no relevant transitions out of the SC
state with which our pumping scheme is resonant. As super-
conductivity is the closest subleading instability, we expect an
enhancement of superconductivity to naturally follow.

In the rest of this work, we focus on the optical melting of
the BDW order and the resultant suppression.

II. MODEL AND RESULTS

A. Model

The BDW state is described by an incommensurate bond
density wave order where the modulations of the charge are,
for a single-band model, located on the Cu-Cu bonds, or in
models with more bands on the oxygen sites, rather than the
Cu atoms [51]. Denoting the BDW ordering wave vector by
Q, the BDW order is characterized by a charge expectation
value �Pi j on the links of the lattice, with the form factor

Pi j = 1

V
eiQ·(ri+r j )/2

∑
k

eik·(ri−r j )PQ(k), (2)

where V denotes the volume of our system. This instability
can be obtained from consideration of the phenomenological
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t-J-V model [29,51,52], whose Hamiltonian is

Ht-J-V =
∑
i, j;σ

ti jc
†
i,σ c j,σ + 1

2

∑
〈i, j〉

JSi · S j + 1

2

∑
〈i, j〉

V nin j, (3)

where the spin and density operators at site i are given by Si =∑
σσ ′ c†

i,σ τ̂σσ ′ci,σ and ni = ∑
σ c†

i,σ c j,σ , respectively. Here, τ̂

labels the spin operator, and Greek indices in the summation
run over σ, σ ′ = {↑,↓}. The hopping amplitude ti j usually
includes up to the third-nearest-neighbor hoppings; J and
V denote the nearest-neighbor spin-spin and density-density
interaction strengths, respectively. In terms of the electronic
operators, the BDW state is characterized by the nonzero
expectation value �Pi j = ∑

σ 〈c†
iσ c jσ 〉.

It should be noted that while the BDW wave vector Q
is usually observed to be axial [10,18,19], i.e., Q = (Q, 0),
or (0, Q), in the t-J-V model introduced above, the optimal
instability is found to be diagonal: Q = (±Q,±Q) [51].
Nonetheless, we expect the nature of our results, after slight
modifications, can be applied to other forms of bond density
waves with different orientations of the ordering.

In this study, we suppose that there is a spontaneous sym-
metry breaking down to orders with one of these BDW vectors
Q = (−Q, Q). The periodicity of modulation is from three to
five lattice constants and the angular symmetry of these orders
has been found to be predominantly of “d-wave” (B1g) sym-
metry, PQ(k) = cos(kx ) − cos(ky) [52]. The spatial profile of
this order parameter for a diagonal wave vector is shown
in Fig. 1(a), where a commensurate wave with periodicity
of 4 is displayed for purposes of illustration. The dynamics
of the BDW collective modes emerge from electronic degrees
of freedom.

In this work, we employ the “hot-spot” approximation,
which allows for considerable improvement in the analyti-
cal tractability of the problem. By restricting to momentum
neighborhoods of the so-called hot spots on the Fermi surface,
the points formed by the intersection of the Fermi surface
and the magnetic Brillouin zone, one obtains the low-energy
hot-spot model [48,52,53]. These are strongly coupled to each
other via antiferromagnetic spin fluctuations with momentum
K = (π, π ) [48,54], which are commonly believed to be
important for the formation of superconductivity in cuprates
[55]. There are eight such electron regions, but for solutions
which preserve the time-reversal symmetry, the hot-spot re-
gions are block-diagonalized into two coupled sets. One such
set is depicted in Fig. 2, labeled by ψσa where a = 1, . . . , 4
and σ = ↑,↓. Furthermore, by imposing d-wave symmetry
in the Brillouin zone, the hot-spot regions 1 and 2 become
redundant with regions 3 and 4. Hence, in the following, we
only keep one pair of hot spots in our calculations, which will
be combined into the spinor 	

†
k = (ψ†

1,k, ψ
†
2,k ). Nonetheless,

in the final results, we also collect the contributions from the
condensation of electron-hole (e-h) pairs in regions 3 and 4,
which are simply related to those of regions 1 and 2 by a C4

rotation.
Note that as in Fig. 2, the momentum axes in the vicinity

of hot spot 1 are not exactly aligned with the original X,Y
axes in the Brillouin zone. Therefore, we define the X1 and
Y1 axes, which are perpendicular and tangent to the Fermi
surface, respectively, and are rotated by a tilt angle δ with

FIG. 2. Fermi surface of a square lattice model with up to
three-nearest-neighbor hopping amplitudes. Different colors specify
different doping levels. “Hot-spot” regions 1 and 2, represented
by black dots on the Fermi surface, are connected to regions 3
and 4, respectively, by the antiferromagnetic vector K = (π, π ). In
the bond density wave phase, electron-hole pairs separated by the
momentum Q = (−Q, Q), corresponding to the separation of hot
spots 1 and 2, are condensed. X1 and Y1 are the perpendicular and
tangent axes to the Fermi surface at hot spot 1, respectively. On the
upper right corner the tilt angle θδ defines the angle between the
hot-spot axes and the Brillouin zone axes. For the purpose of visual
convenience, this angle is exaggerated.

respect to the original X and Y axes of the Brillouin zone.
More explicitly, for an arbitrary wave vector k = (kx, ky) its
projection along the rotated axes can be expressed in terms of
θδ according to(

kx1

ky1

)
=

(− sin(θδ ) cos(θδ )
− cos(θδ ) sin(θδ )

)(
kx

ky

)
. (4)

This angle is doping dependent, and near the SC optimal
doping (δ ≈ 1/8) this angle is negligible: θ � π . Starting
from a lattice kinetic energy with up to third-nearest-neighbor
hoppings, we can effectively obtain the dispersion in the
continuum limit. In the vicinity of regions 1 and 2, this
dispersion relation can be expanded up to quadratic order in
the momentum deviation from the hot spots

ε1,k = ε2,−k = vkx1 + γ k2
y1
, (5)

where the parameters v and γ label the hot spots’ Fermi
velocity and band curvature, respectively. Due to the C4

symmetry of the Fermi surface the dispersion relation around
regions 3 and 4 can be determined in terms of v and γ in a
similar manner. We denote the UV momentum cutoff around
the hot spots by k� � πa−1 and in order to be consistent
in our approximations the curvature must satisfy γ ∼ 1/k�.
For future convenience, we use the Fermi velocity and the
lattice constant of copper oxide planes a to define an effective
hopping amplitude, th = v/a, which forms a natural energy
scale for the free-electron dynamics. In what follows, we take
h̄ = 1.

Above the SC phase transition temperature, condensation
occurs in the BDW channel such that the mean-field order pa-
rameter �Q(k) acquires a nonzero expectation value. Fluctu-
ations about this mean-field solution describe the correspond-
ing collective motions of the quasiparticles in this phase which
can be coupled to external probes such as electromagnetic
fields.
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As mentioned above, due to spin-exchange interactions,
electrons in regions 1 and 2 are coupled to electrons in
regions 3 and 4. In the BDW phase, this coupling can be
described by the dynamical BDW pairing field �q(τ ) =
g
∑

k ψ
†
4,k− q

2
(τ )ψ3,k+ q

2
(τ ). Using this approximation the con-

tinuum limit of the t-J-V model in the BDW phase generates
an interaction as follows:

Hρ-ρ
int = −

∑
k,k′,q

g	†
k+ q

2
V̂ 	k− q

2
	

†
k′− q

2
V̂ 	k′+ q

2
, (6)

where the short-range interaction vertex V̂ in terms of the
Pauli matrices σ̂1,2,3 in the hot-spot basis is V̂ = σ̂2. The
associated BDW pairing field with this Hamiltonian reads

�q(τ ) = g
∑

k

ψ
†
2,k− q

2
(τ )ψ1,k+ q

2
(τ ), (7)

where τ is the imaginary time. As a complex field, �q(τ )
can be decomposed into its Higgs [56] and phason modes
(�H

q ,−i�G
q ) = (�q ± �

†
−q)/2 which identify the amplitude

and phase fluctuations, respectively. The latter is a current-
carrying mode which is associated with the sliding motion
of electrons [57–59]. Since these two kinds of fluctuations
decouple from one another and only the latter is linearly
optically active, in the following we only focus on phase fluc-
tuations and henceforth take �q to mean solely the phaselike
component.

Since our goal is the enhancement of SC in the regime
where SC is the subleading instability, we consider tem-
peratures above the SC transition temperature. Under these
circumstances the hybridization of superconducting and BDW
fluctuations can be ignored [60], and therefore in the following
we suppress the spin indices.

B. Phason dispersion

After condensation of e-h pairs in the BDW phase,
�Q(k) = φPQ(k), with an amplitude φ, the mean-field Hamil-
tonian becomes

H =
∑

k

	
†
k

(
ε1k φ

φ ε2k

)
	k + 1

g
φ2. (8)

Note that due to the d-wave symmetry of the ordering, e-h
pairs around hot-spot regions 1 and 2 and regions 3 and
4 acquire the same condensation value φ. Hybridization of
electrons in the bands ε1,2 results in an energy gap dk =√

(εd
k )2 + φ2 where we have introduced the “energy dif-

ference” εd
k = (ε2,k − ε1,k )/2. After diagonalizing the above

Hamiltonian the corresponding energy of the quasiparticles in
the “valence” and “conduction” bands becomes

Ec,v
k = εm

k ±
√(

εd
k

)2 + φ2, (9)

where the “mean energy” is defined as εm
k = (ε2,k + ε1,k )/2.

In order to study the dynamics of the BDW fluctuations,
we need to go beyond the mean-field Hamiltonian. This
procedure may be done by applying a Hubbard-Stratonovich
transformation to the interaction in Eq. (6). The resulting

interaction is

He−φ =
∑
k,q

	
†
k+ q

2
ĥe−φ

k,q 	k− q
2
+

∑
q

1

g
�†

q�q, (10)

where ĥe−φ

k,q = σ̂2�q. To derive the dispersion relation of
phason modes we calculate the two-particle Green’s function
in the BDW phase channel. In the usual way, the poles of
this object correspond to the dispersion of the associated
excitation, i.e., the BDW phase mode. In the random phase
approximation (RPA), this propagator is calculated by trac-
ing out electrons from the effective action. The result can
be compactly written Seff [�] = ∑

q D−1
q �q�−q, where we

have employed combined notation for energy-momentum q =
(ω, q), with bold symbols indicating the spatial momenta. As
shown in the Methods section the BDW propagator Dq re-
ceives contributions from both inter- and intraband processes.
However, in the low-temperature limit, T � φ, the latter are
negligible and the leading order in frequency and momentum
terms of the inverse propagator can be derived analytically,

D−1
q = 1

4d3
�

[
v2

B

(
q2

x + q2
y + 2qxqy sin(2θδ )

) − ω2
]

+O(ω4, q4), (11)

where θδ is the doping dependent in Eq. (4) and the BDW
velocity is

vB = v√
2

(
1 + φ2(

φ2 + v2k2
�

) − 4

3v4
γ 2k2

�

)1/2

, (12)

which for small condensation fields asymptotically ap-
proaches vB ≈ v/

√
2. The

√
2 factor in vB is due to the fact

that the total polarization bubble �φ
q contains contributions

from both regions 1 and 2 and regions 3 and 4. For doping
levels in the range θδ ∈ [0, π/4], the momentum dependence
in the dispersion relation interpolates between the isotropic
form (q2

x + q2
y )1/2 and |qx ± qy|. The latter case is associated

with vanishing values of doping where the Fermi surface be-
comes a π/4-rotated square in the Brillouin zone. In this limit
the response function of BDW modes can be obtained with-
out applying the hot-spot approximation (see the Appendix).
However, the former limit is most similar to the optimal
doping regime in cuprates and will therefore be the limit of
main interest in this paper.

In Fig. 3 the dispersion relation which corresponds to the
poles of Re(Dφ

q ) is plotted as a solid black line. As can be seen
in this figure the linear dispersion relation is satisfied in the
frequency regime ω < 2φ corresponding to the regime where
the frequency is within the BDW energy gap.

C. Phason-photon coupling

The optical response of phason modes arises from the
paramagnetic coupling of electronic current to the gauge
potential A. From the standard minimal gauge coupling one
finds the electron-photon interaction

Ĥ e−A =
∑
k,q

	
†
k+ q

2
eAq · (vm,k Î − vd,kσ̂3)	k− q

2
, (13)
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FIG. 3. Intensity map of the inverse Green’s function of bond
density wave phason D−1(ω, qx ) as a function of frequency and
momentum qx for qy = 0. The solid line denotes the zeros of the
inverse Green’s function, corresponding to the dispersion of the
phason mode. For this plot, we have chosen γ [av] = 0.5, φ[th] =
0.05, and kBT [th] = 0.01, where a, v, and th label the lattice constant,
Fermi velocity, and the effective hopping amplitude, respectively.

where we have used the notation vm,d
k = ∇k(εm

k , εd
k ) for the

mean and difference Fermi velocities, respectively. This leads
to a net paramagnetic response for phason modes which can
be expressed as

SA−φ =
∑

q

ie�q · (A−q�q − Aq�−q), (14)

where �q = �m
q + �d

q is composed of the “mean” and “differ-
ence” momentum-dependent optical coupling strengths of the
phason field, which receive contributions from vm

k , vd
k velocity

vertices, respectively. At low temperatures, T � φ, and for
negligible θδ the leading-order terms in the gradient expansion
of the optical couplings take the form

�d
q = −2vω

φd�

(x̂ − ŷ), (15)

�m
q = 4γ 2vk2

�

(
3φ2 + 2v2k2

�

)
9φ3d3

�

ωqxqy(x̂ − ŷ), (16)

where d� =
√

φ2 + v2k2
� . Note that the interaction vertex

vanishes in the limit of dc fields and its dominant component
is parallel to the BDW wave vector Q. Also, from the mo-
mentum dependence of the “mean” term and its relative sign
with respect to the “difference” term it can be deduced that
at a fixed wave vector |q| the associated effective coupling
strength is strongest when qx = −qy.

D. Optical conductivity

While the “local” nonequilibrium optical conductivity of
superconductors has been recently studied [61], here we are
primarily interested in the “nonlocal” behavior of the con-
ductivity associated with excitation of the BDW collective
modes when the resonance condition is satisfied. Having
calculated the coupling interaction vertex and the self-energy
of phason modes the nonlocal conductivity can be extracted in
a straightforward manner by integrating out the BDW fields

FIG. 4. Intensity map of the resistive part of the conductiv-
ity Re σxx(ω, q) = σyy(ω, q), for diagonal momentum qx = qy and
model parameters γ [av] = 0.5, φ[th] = 0.05, and kBT [th] = 0.01.
The peak response, indicating maximum power absorption, indicates
resonance with the BDW phason mode. The appearance of a gap
in the conductivity at low momenta, even though the phason is still
gapless, is due to the vanishing of phason-photon coupling for small
q [cf. Eq. (15)].

and obtaining an effective action for photons. The Feynman
diagrams required in the calculation of the optical response of
collective modes [57] are presented in Fig. 6. The final result
of these diagrams for the complex conductivity is

σαβ (ω, q) = ie2�α
q �

β
−qDq

ω
, (17)

where α, β = {x, y}. Inserting the results of Eqs. (15) and
(16) in the conductivity tensor, we conclude that at low tem-
perature the conductivity tensor satisfies σxx = σyy = −σxy ≡
σdiag. Hence, from Ohm’s law, Jα = σαβEβ , J and E being the
current density and the electric field, respectively, it can be
inferred that the maximum optical dissipation can be obtained
when the electric field of the laser is along the diagonal or
more generally parallel to the BDW wave vector Q.

In Fig. 4, we have plotted the real part of the diagonal opti-
cal conductivity σdiag(ω, q), which determines the dissipated
power in the system, according to Joule’s law, at a nonzero
temperature. From this plot, we can determine the optimal
driving frequency for melting of the BDW modes. Note that in
this figure the low-frequency and low-momentum behavior of
the optical conductivity qualitatively differs from the behavior
observed in Fig. 3. This is due to the additional dependence
of the conductivity on the optical interaction vertices and
their nontrivial frequency dependence, which was derived in
Eqs. (15) and (16). In general, there are additional paramag-
netic and diamagnetic contributions, which are insignificant
under the resonance condition and, therefore, ignored in our
study.

Besides numerical computations the conductivity can be
analytically evaluated for low frequencies at zero temperature,

σdiag(ω, q) = 16ie2v2ωd�

φ2
[
v2

Bq2 − (ω + iη)2
] , (18)
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where q2 = q2
x + q2

y for vanishing θδ . Note that we have
retained a positive infinitesimal imaginary shift η in the fre-
quency to explicitly demonstrate the retarded analytic struc-
ture of this result.

E. BDW melting rate

Once the real part of conductivity is inserted into Joule’s
law, the absorbed power density can be evaluated. In the zero-
temperature limit where the optical conductivity is given by
Eq. (18) and for a resonant narrow-linewidth laser field with
a vector potential amplitude of A0 and frequency ω0 the time-
averaged absorbed power density can be expressed as

P̄ = A2
0ω

2
0

4πv2d�

φ2
δ(ω0 − vBq). (19)

In this relation the Dirac δ function encodes the spectral
behavior of the BDW collective modes and appears due to
the infinitesimal quantity η → 0+ in Eq. (18). Note that once
the resonance condition for the laser wavelength is satisfied
the delta function can be integrated over, which results in a
finite value for the dissipated power density.

When the resonance condition is satisfied the energy ab-
sorbed from the drive allows for electrons to leave the con-
densed BDW state. One can obtain a phenomenological upper
bound for the melting rate of the BDW order parameter by
assuming that after leaving the BDW phase electrons do not
return to this state, i.e., equating the optical power density
with the rate of change in the mean-field energy density of
the BDW phase,

d

dt

(φ2

g

)
= −1

2
A2

0ω
2Re{σ (ω, q)}. (20)

Provided that the initial value of the order parameter is suffi-
ciently large, a low-temperature approximation for the optical
conductivity is permissible in the early stage of the melting
process. In this regime Eq. (20) can be integrated,

φ(t ) = (
φ4

0 − rt
)1/4

, (21)

where we have defined r ≡ 8πgd�v2A2
0ω

2
0. For a small irradi-

ation power this relation can be further recast to a linear decay
with a rate equal to r/4φ3

0 . In SI units, for a laser field with a
frequency around 5 THz and an electric field of 107 V/m, the
melting time scale tmelt � φ4

0/r is in the range of picoseconds,
comparable to what has been observed for the melting time
scale observed when melting via phonon excitation [30,62].

To investigate the time dependence of the order parameter
beyond this limit we numerically solve Eq. (20). Figure 5
displays the results of this computation when the laser field’s
frequency and wave vector are resonant with the phason ab-
sorption and the initial value of the order parameter is chosen
such that we are deep inside the BDW phase. Moreover, we
utilize the fact that optical coupling can be maximized for
diagonal wave vectors qx = ±qy. In this figure three curves
are displayed, corresponding to different laser frequencies
while other parameters are kept equal. As explained above
for early times the melting process demonstrates a nearly
linear decay. This behavior is followed by a saturating be-
havior when the order parameter becomes comparable to the

FIG. 5. Melting of the BDW order parameter as a function of
time. The time evolution is plotted for three different frequencies of
the laser field with the photon momentum being determined by the
resonance condition. The red line shows the equilibrium temperature
at which the melting process is carried out, for reference.

temperature. In this regime the nontrivial φ dependence of
the optical conductivity starts to emerge which results in an
overall deceleration of the melting process. Also, comparison
of different curves indicates that since the power density
increases with the frequency the order parameter decay rate
is higher at larger frequencies.

It should be borne in mind that in any experimental re-
alization of this technique a finite fraction of the electrons
after being driven out from the BDW phase will eventu-
ally recondense into the BDW phase due to the subsequent
electron-electron and electron-phonon interactions. Hence,
our phenomenological computation is an upper bound on
determining the melting rate of the BDW order parameter.

F. Plasmonic engineering

Since the BDW phase transition temperatures could reach
around 150 K, the proposed frequency regime in our approach
is ω � 5 THz. In this frequency regime doped graphene hosts
plasmons that simultaneously have low losses and significant
wavelength confinement ratios. For a graphene sheet mounted
in a substrate with a relative dielectric constant εr , at a given
frequency ω the SPP confinement can be approximated as

λsp

λo
≈ α

4μ

εr

1

(ω + iτ−1)
, (22)

where the fine structure constant is α = e2/4πε0 ≈ 1/137,
and τ and μ denote the electron relaxation time and the chem-
ical potential of doped graphene, respectively [63,64]. This
relation is a reasonable approximation provided the frequency
of photons is smaller than the optical phonon frequency of
graphene, ωOph ≈ 50 THz, which is compatible with our
proposal.

Equation (22) indicates that the wavelength of plasmons
can be adjusted by varying the doping level of graphene
or using different dielectric substrates. Recently, it has been
observed that this confining ratio can be amplified as high as
300 [65] for frequencies as low as a few terahertz, which is
close to the confinement potential required for our proposal.

224506-6



OPTICAL ENHANCEMENT OF SUPERCONDUCTIVITY … PHYSICAL REVIEW B 101, 224506 (2020)

An even higher confinement ratio of up to nearly 103 is re-
ported in other van der Waals materials [49,66]. In the relevant
frequency regime for our system, topological materials such
as Bi2Te3 accommodate surface plasmon-polariton modes,
albeit with a relatively low quality factor. Nevertheless, since
we can consider an array of laser fields, this drawback does
not affect our experimental setup. Therefore, the frequency
and momentum matching in our desired frequency regime is
accessible with the current technology.

III. DISCUSSION

We have presented here a scheme for enhancing super-
conductivity via the resonant melting of a competing or-
der. Compared to the previous methods of optically driving
phononic modes in cuprates [30–33,35], we expect that our
proposal should be more efficient, because one can directly
engineer the plasmonic modes whose microscopic properties
are well known. To be more specific, the current explanation
of enhancement of superconductivity in the phonon-driving
scheme involves photon-phonon and phonon-electron cou-
pling. In other words, one relies on a microscopic theory of
both coupling mechanisms. In contrast, our scheme relies on
direct photon-electron coupling and, therefore, requires the
knowledge of only one form of coupling. Furthermore, in
the phonon-driving schemes, according to the current under-
standing, the optical driving serendipitously modulates the
system such that superconductivity becomes more favorable
and charge density waves become suppressed. In contrast, in
our approach, we design the light-matter coupling in a such
a way that charge density waves (CDWs) are guaranteed to
be melted. Specifically, we are able to tailor the plasmon-
polariton dispersion to match the CDW collective modes,
something that is not possible in a bulk material.

While in this work we have not directly considered the
interplay between irradiation and superconductivity, it should
only play a secondary effect on the applicability of our
proposal. This is because, in contrast to the BDW order,
which couples linearly to light, superconductivity can only
couple quadratically to photons due to gauge invariance of
the electromagnetic field. Consequently, such processes are
beyond linear response and the optical power that could be
dissipated in the superconducting condensate is quartic in
the amplitude of the laser field, in contrast to the quadratic
behavior we derived in Eq. (19). Similarly, we can argue that
the coupling of light to the collective modes of the spin order
should be insignificant. This is because usually such effects
are strong only when the system has a nonvanishing magnetic
order. Therefore, we expect that spin fluctuations should be
more relevant in the study of undoped cuprate materials where
the system is in a Mott-insulating phase and has a finite
antiferromagnetic order parameter.

Furthermore, by tuning the energy and momentum of light
to be resonant with BDW phason modes, we expect the re-
sponse of the BDW to be much stronger than the nonresonant
processes such as spin fluctuations which may be unfavorable
for superconductivity. By controlling such adverse effects, via
reservoir engineering techniques, we expect that the net effect
of our resonant irradiation protocol would be an enhancement
of superconductivity.

We should also mention that in principle a similar analyt-
ical study of BDW with a uniaxial wave vector is possible.
Indeed, we expect that similar results would be obtained such
as obtaining a linear dispersion relation for the collective
modes with a velocity which would be of the same order of
magnitude. Also, we expect that the optical coupling of these
modes would be most efficient when the wave vector of the
laser field is along the same direction as the BDW wave vector.

Finally, we point out that the same technique may be
applied not only to cuprate materials but also to other strongly
correlated systems such as iron-pnictide superconductors or
bismuthates [67] where two or more competing or intertwined
orders are coexistent. More generally, such optical pumping
schemes could become a new tool in the manipulation of
correlated states of electrons.

IV. METHODS

To diagonalize the original mean-field Hamiltonian in
Eq. (8), we apply a unitary transformation, Uk, to the original
spinor. The rotated spinor is denoted by 	̃k = Uk	k. The
rotation matrix up to gauge choice is

Uk =
(

νk −uk
uk νk

)
, (23)

where in the above the rotation coefficients are

uk = rk(
1 + r2

k

)1/2 , νk = 1(
1 + r2

k

)1/2 , (24)

and rk = φ/(εd,k + dk ). Next, the combined interaction
Hamiltonian in Eqs. (10) and (13) is transformed to the new
basis

H int =
∑
k,q

	̃
†
k+ q

2
h̃int

k,q	̃k− q
2
, (25)

where

h̃int = (
eAq.vm,kw

(0)
k,q + iw(2)

k,q�
G
q

)
σ̂0 − ew(1)

k,qAq.vd,kσ̂1

+ (
ieAq.vm,kw

(2)
k,q + w

(0)
k,q�

G
q

)
σ̂2 − ew(3)

k,qAq.vd,kσ̂3

(26)

and in the above equation we have defined the coherence
factors w

(i)
k,q as

w
(0)
k,q = ν(k+)ν(k−) + u(k+)u(k−), (27a)

w
(1)
k,q = u(k+)ν(k−) + ν(k+)u(k−), (27b)

w
(2)
k,q = ν(k+)u(k−) − u(k+)ν(k−), (27c)

w
(3)
k,q = ν(k+)ν(k−) − u(k+)u(k−), (27d)

where k± = k ± q/2.
The building blocks of the required Feynman diagrams in

Fig. 6 are the e-h correlation functions. These correlations
can be calculated in the imaginary-time Matsubara formal-
ism. We introduce Matsubara frequencies which at inverse
temperature β = 1/T are given by ωm = 2πmT and εn =
2π (n + 1/2)T for bosonic and fermionic fields, respectively.
Ultimately, in order to obtain the causal (retarded) response of
the system, we will analytically continue to real frequencies
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= +=

=

= ; =

FIG. 6. Feynman diagrams of polarization functions. Solid,
dashed, and wiggly lines represent electrons’, phasons’ and photons’
propagators, respectively. Top: On the left is the polarization diagram
of phason modes, and on the right is the phason-Photon interaction
vertex. Middle: Phason propagator obtained from a Dyson equation
summation of phason polarization diagrams. Bottom: Collective
mode’s contribution to the conductivity by exchanging phason fields.

iωm → ω + iδ+. Introducing the fermionic Green’s functions
Gn,k = (iεn − εa(k))−1 the e-h correlations are obtained after
the frequency summation

χa,b
q,k = T

∑
n

Gn+m,k+ q
2
Gn,k− q

2

=
nF

(
Eb

k+ q
2

) − nF
(
Ea

k− q
2

)
iωm + Eb

k+ q
2
− Ea

k− q
2

, (28)

where the Fermi-Dirac distribution nF (E ) = (1 + eβE )−1 is
obtained after performing the fermionic Matsubara frequency
summation and a, b = {v, c} indexes the lower (valence) and
upper (conduction) bands’ eigenenergies according to Eq. (9).

From here, one can find the saddle point of the partition
function which requires the mean-field BDW order parameter
to satisfy

1

g
=

∑
k

1

2dk

(
nF

(
E v

k

) − nF
(
Ec

k

))
,

where the momentum summation is limited to the UV mo-
mentum cutoff around the hot spots

∑
k = ∫

d2k/(2k�)2.
To take into account the collective modes, we must in-

clude Gaussian fluctuations of electrons above the mean-field
solution. To do so, we integrate out the electrons in the
partition function, which gives rise to a number of terms in
the effective action for the phason modes and their interaction
with photons. Decomposing the total interaction Hamiltonian
in terms of the Pauli matrices h̃int = h̃int

α σ̂α , and using the
energy-momentum convention q = (ωm, q), the effective ac-
tion is calculated in the rotated basis in terms of the Green’s
functions,

Seff
αβ = 1

2

∑
k,q

tr
(
G̃k+ q

2
h̃int

q;ασ̂αG̃k− q
2
h̃int

−q;β σ̂β

)
, (29)

where the trace is taken over fermionic degrees of freedom.
It should be emphasized that in the above formalism all the
different combinations of Pauli matrix indices α and β which
contribute to a single physical process must be included. This
functional approach is equivalent to employing the RPA to

evaluate the resulting Green’s function of phason fields which
is plotted on the top line of Fig. 6. Considering the coupling
constant g as the noninteracting Green’s function of the phase
mode D0, the Dyson equation is

D−1
q = (

D0
q

)−1 + �φ
q

= 1

g
+

∑
k

[
1

4

((
1 − f̃ (φ)

k,q

)(
χvv

q + χ cc
q

)

+ (
1 + f̃ (φ)

k,q

)(
χvc

q + χ cv
q

))]
, (30)

where f̃ (φ)
k,q are coherence factors originating from the rotation

of spinors from the 1,2 basis to the v, c bands:

f̃ (φ)
k,q =

φ2 + εd
k+ q

2
εd

k− q
2

dk+ q
2
dk− q

2

. (31)

Next, the optical coupling of BDW fields can be expressed
in terms of the e-h correlations

�m
q =

∑
k

vm
k

φ
(
εd

k+ q
2
− εd

k− q
2

)
2dk+ q

2
dk− q

2

(
χvv

k,q + χ cc
k,q − χvc

k,q − χ cv
k,q

)
(32)

and

�d
q =

∑
k

vd
k

[(
φ

2dk− q
2

− φ

2dk+ q
2

)(
χvv

k,q − χ cc
k,q

)

−
(

φ

2dk+ q
2

+ φ

2dk− q
2

)(
χvc

k,q − χ cv
k,q

)]
. (33)

As it is illustrated in the bottom line of Fig. 6 this interaction
vertex appears in photons’ polarization tensor. Notice that
the related process only includes the collective contributions
to the susceptibility originating from the exchange of BDW
phason modes.

�A
αβ (q) = δ2Seff [A]

δAα
q δAβ

−q

= e2�α
q �

β
−qDq, (34)

where α, β = {x, y}. The associated nonlocal conductivity
is given by σαβ (ω, q) = i�A

αβ (q, ω)/ω. For θδ ≈ 0 only the
diagonal terms of this tensor have a significant value. For
the numerical computation of the retarded Green’s functions
in the frequency domain we apply a shift along the vertical
axis ω → ω + iη. Numerically, this leads to a Lorentzian
approximation for the real part of the conductivity.

Energy absorption rate. For a general probe field Ŷ we
associate a coupling Hamiltonian. We define the susceptibility
of operator X̂ with respect to the operator Â as

χXY (t, t ′) = iθ (t − t ′)〈[X̂ (t ), Ŷ (t ′)]〉. (35)

For a sinusoidal perturbation f (t ) = f0 cos(ωt ) at frequency
ω0 and with amplitude f0, the calculation of the energy
absorption rate yields

Q = 1
2 f 2

0 ω0 Im{χ̃XY (ω0)}, (36)
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where χ̃XY denotes the Fourier transform of the susceptibility.
The appropriate susceptibility in this problem is the polariza-
tion tensor �A

q . Next, by equating the energy absorption rate
with the melting rate of the ground-state energy we obtain a
nonlinear differential equation for the time dependence of the
BDW field φ(τ ) which we solve by the Runge-Kutta method.
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APPENDIX: PHASON DISPERSION NEAR
HALF FILLING

In this section, we present our results for the dispersion
relation of BDW phasons near half filling. In this limit, we
are able to go beyond a low-energy hot-spot model. However,
since the dispersion relation of the quasiparticles has nodal
lines in the Brillouin zone the momentum integrals appearing
in the particle-hole correlations need to be regularized. At
low dopings the Hubbard model on a square lattice is sus-
ceptible to the formation of d-wave charge density waves at
wave vector Q = (π, π ) [68]. Therefore, in the following, we
assume a density-density interaction whose dominant mean-
field solution is a d-wave BDW state

Hρ-ρ
int = −

∑
k,k′,q

gfk fk′c†
k− Q−q

2 ;σ
ck+ Q−q

2 ;σ c†
k′+ Q−q

2 ;σ ′ck′− Q−q
2 ;σ ′ ,

(A1)

where fk is the d-wave symmetry factor fk = cos(kx ) −
cos(ky) and Q = (π, π ). It should be borne in mind that,
unlike the hot-spot model, here, the momentum summations
are initially evaluated over the whole Brillouin zone. How-
ever, in the BDW phase, in order to avoid overcounting the
fermionic degrees of freedom, the new Brillouin zone should
be identified with the magnetic Brillouin zone of the original
square lattice model to reflect the period doubling due to
symmetry breaking. Doing so introduces an additional index
for fermions, describing A or B sites within the period-doubled
lattice. The BDW order parameter is then defined as

�q = g
∑

k

fkc†
k+ Q−q

2

ck− Q−q
2

, (A2)

where we sum over all internal fermionic indices. After
condensing the interaction Hamiltonian at 〈�q=0〉 = φ the
mean-field (MF) Hamiltonian becomes

HMF =
∑

k

	
†
k

(
εk− Q

2
− fkφ

− fkφ εk+ Q
2

)
	k + 1

g
φ2, (A3)

where 	
†
k = (c†

k− Q
2

, c†
k+ Q

2

). Also, the dispersion relation can

be described by the first- and second-nearest-neighbor hop-
pings t and t ′,

εk = −2t (cos kxa + cos kya) + 4t ′ cos(kxa) cos(kya). (A4)

Notice that the only difference of this MF Hamiltonian and the
hot-spot model is the fact that the symmetry factor fk appears
in the off-diagonal component of the Hamiltonian vertex.
The energy of the quasiparticles when the nearest-neighbor
hopping is included reads

dk =
√(

εd
k

)2 + f 2
k φ2, (A5)

where εm,d
k = 1

2 (εk+Q/2 ± εk−Q/2). The self-consistency equa-
tion for the coupling strength g is obtained at the saddle point
of the effective action,

g−1 =
∑

k

f 2
k

2dk
(nF (−dk ) − nF (dk )). (A6)

The BDW dispersion and its optical coupling can be studied
by incorporating the interaction fluctuations over the MF
solution:

Hint =
∑
k,q

	
†
k+ q

2

(
eAq.

(
vm

k − vd
k

) −i fk�q

i fk�q eAq.
(
vm

k + vd
k

)
)

	k− q
2
.

(A7)

The calculation of the Green’s function of the phason fields is
similar to the main text’s derivation and follows from Eq. (29):

D−1
q = (

D0
q

)−1 + �φ
q

= 1

g
+

∑
k

f 2
k

4

[(
1 − f̃ (φ)

k,q

)(
χvv

q + χ cc
q

)
+ (

1 + f̃ (φ)
k,q

)(
χvc

q + χ cv
q

)]
. (A8)

As before, the coherence factors f̃ (φ)
k,q display the rotation

of spinors from the 1,2 basis to the v, c bands:

f̃ (φ)
k,q =

φ2 fk+ q
2

fk− q
2
+ εd

k+ q
2
εd

k− q
2

dk+ q
2
dk− q

2

. (A9)

The phason’s dispersion relation is determined from the poles
of Dq. At the zero-temperature limit these poles can be calcu-
lated analytically by expanding the Green’s function in powers
of the momentum q. This expansion is more conveniently
performed in a π/4-rotated basis q̃x,y = qx ± qy, because the
momentum summation must be performed in the magnetic
Brillouin zone |q̃x,y| � π ,

D−1
q =

∑
k

f 2
k

8d3
k

[
−ω2 + dk

2
q̃i j ∂̃i jdk + 3ω2q̃i j ∂̃i jdk

8dk

− 1

16
(q̃i j ∂̃i jdk )2 + dq̃i jmn∂̃i jmndk

96

]
+ O(ω4, q6),

(A10)

where we have introduced the compact notation q̃i j = q̃iq̃ j ,
and ∂̃i j = ∂2

∂ k̃i∂ k̃ j
. Also according to the Einstein notation a

summation over the repeated coordinate indices is presumed.
Note that the momentum integrals in the above are divergent.
This is because the energy gap has nodal lines along kx = −ky:

dk =
√

φ2(cos(kx ) − cos(ky))2 + t2(sin(kx ) + sin(ky))2.

(A11)

Furthermore, it can be shown that inclusion of longer-range
hopping amplitudes when constrained to preserve the C4

224506-9



DEHGHANI, RAINES, GALITSKI, AND HAFEZI PHYSICAL REVIEW B 101, 224506 (2020)

symmetry of the square lattice does not eliminate this nodal
line. Therefore, to regularize the integrals we consider a small
C4-symmetry-breaking hopping which makes the integrals
finite yet large. Therefore, to evaluate the zeros of the inverse
Green’s function D−1

q , we need to consider the terms with the
most divergent behavior. Under this constraint we reach

D−1
q ≈

∑
k

f 2
k

2d3
k

[
(q̃xq̃y)2

16
(∂̃xydk )2 − ω2

]
. (A12)

Recalling that q̃x,y = (qx ± qy), we can see that the disper-
sion relation of the phason field up to some regularization-
dependent coefficient is

ω ∝ |(qx − qy)(qx + qy)|. (A13)

Note that, similar to the results of the hot-spot model in
the extreme limit of θδ = 0, the dispersion relation could
be a function of (qx ± qy) factors. Hence, at the low-doping
limit, the anisotropic symmetry structure of the phason field
becomes more pronounced. It should be also pointed out that
the peculiar quadratic dispersion which arises at this level
of the truncation of the Taylor expansion of D−1

q is due to
the fact that in our model the manifold in which the band
gap vanishes is a one-dimensional nodal line instead of some
isolated nodal points. Therefore, for more generic models,
where the singularity of the correlation functions is a discrete
zero-dimensional manifold, one should reproduce the more
conventional linear behavior which is expected for phase
modes.
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Szymczak, and M. Pękała, Competition of superconductivity
and charge density waves in cuprates: Recent evidence and in-
terpretation, Adv. Condens. Matter Phys. 2010, 681070 (2010).

[18] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen,
J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy,
A. Watenphul et al., Direct observation of competition be-
tween superconductivity and charge density wave order in
YBa2Cu3O6.67, Nat. Phys. 8, 871 (2012).

[19] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,
C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G.
Hawthorn, F. He et al., Long-range incommensurate charge
fluctuations in (Y, Nd)Ba2Cu3O6+x , Science 337, 821 (2012).

[20] Tao Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier,
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