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Optical flux pump in the quantum Hall regime
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A seminal gedankenexperiment by Laughlin describes the charge transport in quantum Hall systems via the
pumping of flux. Here, we propose an optical scheme which probes and manipulates quantum Hall systems
in a similar way: When light containing orbital angular momentum interacts with electronic Landau levels, it
acts as a flux pump which radially moves the electrons through the sample. We investigate this effect for a
graphene system with Corbino geometry and calculate the radial current in the absence of any electric potential
bias. Remarkably, the current is robust against the disorder which is consistent with the lattice symmetry, and
in the weak excitation limit, the current shows a power-law scaling with intensity characterized by the novel
exponent 2/3.
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Introduction. Multipole transitions beyond the dipole ap-
proximation apply when the Bohr radius of the quantum state
is larger or comparable to the excitation wavelength. This is
rarely the case for atoms or quantum dots [1–6]. However,
in the quantum Hall regime, wave functions can be extended
to a length scale comparable to optical wavelengths [7–12],
and the coherence is topologically protected against dephasing
[10,13]. Consequently, multipole transitions become possible
[14–17]. Specifically, if the optical field has an orbital angu-
lar momentum (OAM) [5,18], these transitions can transfer
angular momentum from photons to electrons, and an interest-
ing interplay between topological properties of electrons and
photons may be observed [19–21]. Similar effects also exist
in synthetic quantum Hall system made of Rydberg polaritons
[22]. Outside the quantum Hall regime, incoherent multipole
interactions between light and condensed-matter systems have
been experimentally studied [23–27]; and many theoretical
efforts have been performed [28–30]. However, there has been
no observation of coherent multipole interaction with quan-
tum Hall states, to the best of our knowledge. In this context,
disorder may play an important role as it mixes eigenstates of
angular momentum, but previous studies have largely ignored
its effect [15–17].

Here, to observe such a topological interplay, we theoret-
ically study the interaction between light with OAM and a
graphene device with Corbino geometry in the quantum Hall
regime, see Fig. 1(a). We focus on the radial dynamics of
the electrons in LLs upon illumination of light with nonzero
OAM and propose an OAM-induced photocurrent measure-
ment. We solve the Bloch equations incorporating the optical
coupling, acoustic phonon relaxation, potential disorders, ef-
fective boundaries, and Pauli blockade. In particular, we first
consider an ideal system without disorder which simplifies
to a translationally invariant model which can be analytically
solved. This yields an expression for the OAM-induced cur-
rent, which scales with pump intensity to the power of 2/3.

Second, we take into account short- and long-range disorders
and boundary effects without intervalley mixings and numeri-
cally solve the Bloch equations. The results show that a radial
current is generated as a result of electrons moving outward
or inward between orbitals upon absorbing a photon with
OAM. The current’s direction and amplitude is determined
by the OAM of the light with respect to the magnetic field.
Remarkably, this is similar to the Laughlin pump [31] where a
magnetic flux induces a spectral flow of the electrons’ OAM,
whereas in our scheme the flux is replaced by a light beam
with a phase winding. We find that the current is reduced for
larger disorder strength. However, we can recover the current
through applying a voltage bias. Finally, we show that the
numerical simulated current matches the scalings predicted
analytically.

Landau levels in graphene. The system considered is a
Corbino-shape graphene device [32,33] under a strong out-
of-plane magnetic-field B as shown in Fig. 1(a). The magnetic
field quenches the kinetic energies of the electrons and their
states manifest as LLs. Here we consider two LLs, the zeroth
LL (LL0) and the first LL (LL1). Under an achievable high
magnetic field of 15 T, for example, the frequency correspond-
ing to the transition between the two LLs is around 35 THz
which lies in the midinfared optical regime. In graphene, very
few other transitions match the same energy due to the inhar-
monic level spacing, and only LL0 to LL1 is allowed when
the Fermi level is set in between them. We refer to transitions
between different LLs as interband, whereas those among
orbitals inside a LL as intraband. We ignore carrier-carrier
interaction since the timescales make the Coulomb interaction
irrelevant as we will show later. Also, we limit our discussion
to the K valley and ignore the spin degree of freedom. Without
any disorder, the spinor wave functions for LL0 and LL1 in the
K valley of graphene are given as [34],

�̄0,m̄ =
(

0
|0, m̄〉

)
, �̄1,m̄ = 1√

2

(|0, m̄〉
|1, m̄〉

)
. (1)
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(a) (b)
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FIG. 1. (a) The illustration of the proposed setup. The Corbino-
structured sample is concentric with the OAM beam. The OAM-
induced current is measured between the inner and the outer electric
contacts. (b) In a pristine system, the orbitals in each Landau level
(LL) are degenerate in energy. The optical selection (red arrows)
leads to an increase in OAM (for positive �) and phonon relaxations
(blue arrows) maintain the OAM. This equivalently leads to a di-
rectional transport of electrons. (c) In a system with disorder and
confinement, the LLs are broadened in the bulk whereas the energy of
the edge orbitals (shaded region) rises quickly. Only the edge states
couple and relax pair wisely whereas the disordered bulk eigenstate
may couple and relax to more than one eigenstate.

There are two quantum numbers for �̄s,m̄, the LL index s ∈
{0, 1}, and the orbital index m̄ ∈ Z+, which corresponds to
OAM in the chosen symmetric gauge. In real space, each
orbital �s,m̄ looks like a circular ring [7], and the radius of
the ring increases as rm̄ = √

2m̄lc, where lc is the magnetic
length. Without disorder, energies of these orbitals in each LL
are degenerate as shown in Fig. 1(b).

To account for disorder, we include a disorder poten-
tial consistent with the symmetries of the lattice Vdis =
γ [u0(r, θ )I + u(r, θ ) · σ ] where γ is the strength of the dis-
order; γ u0(r, θ ) represents the long-range disorder arising
from, e.g., charge impurities and γ u(r, θ ) is the short-range
disorder associated with, e.g., defects, variations of sub-
lattice potentials (uz), and tunneling rates (ux, uy) [14,35].
Intervalley scatterings [36] are not considered in this valley-
polarized model and corresponding intervalley effects may not
be compatible. To account for boundary effects, we include
a confinement potential Vcf = VcH(r − rmax), where H(·) is
the Heaviside step function. This modeling of confinement,
without intervalley scattering, applies to, e.g., electrostatically
defined edges [10,37] or zigzag edges [36]. We diagonalize
the potential for LL0 and LL1 individually, and obtain the
disordered LL eigenstates,

�0,m =
∑

m̄

cm
0,m̄�̄0,m̄, �1,m =

∑
m̄

cm
1,m̄�̄1,m̄. (2)

Here we assume γ � δ, where δ is the cyclotron energy (the
LL gap), and, thus, the two LLs do not mix. Because of the
disorder, m does not represent OAM anymore but numerates
the orbitals with respect to their energy as the LL degeneracy

has been lifted. We truncate our system size such that m < m∗,
where m∗ is the maximum index of the possibly occupied or-
bitals in our simulation, determined by the size of the sample
through rmax = √

2m∗lc assuming that the coherence length is
larger than the system size. With Vdis and Vcf , the orbitals in
the bulk will give rise to LL broadening, whereas the orbitals
on the physical edges increase energy with m [Fig. 1(c)].

Light-matter interaction. We illuminate the sample with a
laser beam which is in resonance with the interband transition
between LL0 and LL1. The beam is concentric with the center
of the sample and may contain a nonzero OAM as shown in
Fig. 1(a). See Ref. [38] for the scenarios where the beam is
partially blocked or shifted away from the center.

The light-matter interaction is obtained with the minimal
coupling p → p − eA,

HI(t ) = evFA(t ) · σ, (3)

where vF is the Fermi velocity, A(t ) is the vector potential of
light and it can be expressed as

A(t ) = A0(r, θ )e−iωt + A∗
0(r, θ )eiωt , (4)

A0(r, θ ) = A(r)ei�θp. (5)

Here, A(r) is the mode of the light, which can be the Bessel
mode [39], or the Laguerre-Gauss mode [5]; p is the in-plane
polarization of the field. The twisted phase term ei�θ represents
the OAM carried by the light, and � counts the OAM.

In the interaction picture, i.e., after a unitary transformation
which describes the system in a rotating frame with frequency
ω, the time dependence is removed from the Hamiltonian, and
we have the light-matter interaction Hamiltonian in graphene
as HI = evFA(r)(ei�θσ− + e−i�θσ+) where we assume that the
field is right-circular polarized, i.e., p = p+. Only the off-
diagonal terms are nonzero, and they correspond to interband
optical transitions between LL0 and LL1 [38].

Bloch equations. We define the annihilation and creation
operators am, a†

m for electrons in orbital m in LL0, and bm, b†
m

for LL1. They satisfy {am, a†
m′ } = {bm, b†

m′ } = δm,m′ . We can
rewrite the light-matter interaction as

HI =
∑
m,m′

	m′,mb†
m′am + 	∗

m′,ma†
mbm′ . (6)

The Rabi frequency for each pair of orbitals is obtained as
	m′,m = 〈�0,m|HI|�1,m′ 〉. It takes nonzero values only for
interband couplings between LL0 and LL1, but there is no
optical couplings between orbitals inside the same LL. With-
out disorder, m coincides with the OAM of the orbital, and
	m′,m = 	0(�)δm′,m+�. With disorder, this still holds approx-
imately for edge states but not in the bulk where arbitrary
orbitals can be coupled.

The Hamiltonian for the LLs in graphene reads Hel =∑
m μ(0)

m a†
mam + μ(1)

m b†
mbm. Here μ(0)

m and μ(1)
m are the energies

of orbitals in LL0 and LL1, respectively. The total Hamil-
tonian is given as H = Hel + HI. We define the interband
polarization as Pm,m′ = 〈a†

m′bm〉 and intraband polarizations
as T (0)

m,m′ = 〈a†
m′am〉 for LL0, T (1)

m,m′ = 〈b†
m′bm〉 for LL1 as illus-

trated in Fig. 1(b). When m = m′, the intraband polarization
equals the occupation T (0/1)

m,m = ρ (0/1)
m .
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From the Heisenberg equation of motion, we derive the
coupled Bloch equations: for intraband polarizations of LL0,

Ṫ (0)
n,n′ = i�(0)

n′,nT (0)
n,n′ + S(0)

n (1 − ρ (0)
n )δn,n′

+i
∑

m

(	m,n′P∗
m,n − 	∗

m,nPm,n′ ), (7)

for intraband polarizations of LL1,

Ṫ (1)
n,n′ = i�(1)

n′,nT (1)
n,n′ − S(1)

n ρ (1)
n δn,n′

− i
∑

m

(	n,mP∗
n′,m − 	∗

n′,mPn,m), (8)

for interband polarizations,

Ṗn,n′ = −i�n,n′Pn,n′ − D
1

2
(S(0)

n′ + S(1)
n )Pn,n′

−i
∑

m

(
	n,mT (0)

m,n′ − 	m,n′T (1)
n,m

)
, (9)

within the rotating frame with respect to the laser frequency
ω, �

(s)
n,n′ = εsn − εsn′ , and �n,n′ = ε1n − � − ε0n′ . We choose

D = 10 to make the dephasing of the coherence much faster
than the decay occupation lifetimes [38,40].

We also include interband acoustic phonon relaxation
[40–42]. In Eqs. (7)–(9), S(0)

n , S(1)
n are the scatter-in rate

for LL0 and scatter-out rates for LL1, respectively: S(0)
n =∑

n′ n,n′ρ
(1)
n′ and S(1)

n = ∑
n′ n′,n(1 − ρ

(0)
n′ ); n,n′ is the

interband-polarization relaxation rate. The average relaxation
time follows as τ = 1/〈n,n′ 〉. See Ref. [38] for modeling
details of the relaxation.

Other relaxation mechanisms are not relevant in our case.
For optical phonons in graphene, they are off-resonant with
the energy gap. For Coulomb scatterings, we only excite car-
riers between the two lowest LLs, and other levels are either
completely filled or empty, so Coulomb scattering is much
slower than phonon scattering. Depending on the substrate,
Coulomb scattering may become even slower due to screen-
ing.

Average radial position and the OAM-induced current.
Without disorder and confinement, and with initial polariza-
tions set to zero, the Bloch equations, Eqs. (7)–(9), reduce to
a set of independent two-level systems. Their exact solution
yields a compact expression for the current in the weak exci-
tation limit,

Ir (�) = e

(
4|	0(�)|4

D2

)1/3

. (10)

This is the maximum current one may get without disorder.
Notably, it shows a novel scaling power of 1/3, which is a
result of the Boltzmann scattering [38,40,42–44]. For � much
smaller than the total number of orbitals considered, we can
approximate Ir (�) = Ir , independent of �. We use Ir as a ref-
erence scale in the following discussions.

Once we include disorder in the system, the Bloch equa-
tions are solved numerically, and we determine the current
by evaluating the average radial position of electrons, 〈r〉 =
Tr{ρ̂ r̂}. Semiclassically, we define the average current as
I = √

m∗ e
lc

d〈r〉
dt . The factor

√
m∗ takes into account the cir-

cumference of the outer edge [38].

(b)(a) (d)

(c) (e)

FIG. 2. (a) We illustrate the model used in the simulation. In total
100 orbitals are considered. The confinement is chosen such that 80
are bulk states whereas ten are outer edge states and ten are inner
edge states. At t = 0, the bulk states in LL0 are filled below the Fermi
level EF, whereas others are empty. We use � = +1 to illustrate the
optical selection rules. In the bulk, states can couple to many others,
whereas on the edge only the states with OAM difference equal to �

are strongly coupled. (b) The wave function of a bulk state in real
space is shown. The bulk state is localized, and the phase of the
wave function is disordered as shown in (c). (d) The edge state is
delocalized, and the twisted phase of the wave-function (e) shows a
well-defined OAM.

Results. In the simulation, we consider m∗ = 100 orbitals
in each LL [Fig. 2(a)]. In these orbitals, 80 of them are
affected by the disorder in the bulk [Figs. 2(b) and 2(c)]
and become localized, whereas the ten remain delocalized
[Figs. 2(d) and 2(e)] on the outer edge, and the other ten are
delocalized on the inner edge. We set the Fermi energy such
that initially the 80 orbitals in the bulk are filled whereas the
others are empty. We vary the average relaxation time τ from
50 fs to 10 ps [45]. For the light beam, we choose the vortex
to be located in the hole of the Corbino disk such that on the
disk the intensity profile can be assumed to be homogeneous
A(r) = A0. In fact, spatial variations of the intensity profile
away from the vortex do not affect the results. The vector
potential is represented as |A0| = E0/ω. Here, the electric
field is chosen as E0 = 8.50 × 105 V/m which is accessible
experimentally.

We turn on the continuous-wave laser and solve the Bloch
equations of the system Eqs. (7)–(9) to obtain the single-
particle density matrix ρ̂ as a function of time. The average
relaxation rate of electrons between LLs in graphene can vary
depending on the magnetic field [45,46]. For τ = 10 ps, we
observe Rabi oscillations for different �’s as shown in Fig. 3(a)
where the occupation of LL1 is plotted as a function of time.
These oscillations are quickly damped, which can be under-
stood as a result of optically induced diffusion. Specifically,
light with OAM couples to orbitals which are distant from
each other, and, therefore, electrons diffuse with OAM excita-
tion. Since orbitals have different couplings strength due to a
random disorder, they have inhomogeneous Rabi frequencies.
While electrons diffuse into disordered states, the number of
the Rabi frequencies participating increases, and, therefore,
the total oscillation is damped. For τ = 50 fs, we do not see
significant Rabi oscillations as shown in Fig. 3(b) because of
the faster relaxation compared to the Rabi frequency.

We evaluate the observables 〈r〉 and I as a function of time.
In Fig. 3(c), we plot the average position of the 80 electrons
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(a) (b)

(c) (d)

FIG. 3. (a) We plot the occupation of LL1 as a function of time
for different �’s. We observe Rabi oscillations which are damped.
(b) For the average relaxation time τ = 50 fs, one does not see
Rabi oscillation because of the fast relaxation compared to the Rabi
frequency. (c) The average radial position of electrons as a function
of time for various OAM excitations for τ = 50 fs. (d) The semiclas-
sical current corresponding to (c) for various OAM excitations.

as a function of time for excitations with different �’s. We
find that for positive OAM, 〈r〉 increases with time, and larger
OAM values lead to a faster increase. The resulting current is
plotted in Fig. 3(d).

We average the current from Fig. 3(d) after it reaches
equilibrium, and in Fig. 4(a) we plot this average as a func-
tion of disorder strength γ for OAM = +1 and τ = 50 fs. It
shows that larger disorder diminishes the OAM-induced cur-
rent. This is expected because stronger disorder may introduce
couplings between more disorder eigenstates and invalidate
the pairwise selection rules of the orbitals. However, we can
recover the current from disorder through a voltage bias.

Voltage biases control the system properties through the
DC-Stark effect [47] or the Franz-Keldysh effect [40]. Here,
we use a DC voltage to bias the two contacts of the sample
and induce a DC current through the sample. Simplistically,
this is equivalent to adding a potential gradient onto the radial
direction of the sample [48–50]. Experimentally, the DC bias
does not interfere with the OAM-induced current because
one may chop the laser and make the OAM-induced current
alternating. Then the alternating signal may be picked out
by using a frequency-locked lock-in amplifier as a standard
technique used in optoelectronics [51,52].

By having a small voltage bias across the Corbino sam-
ple, we can restore the rotational symmetry of the sample
against disorders. In this way, the pairwise optical selection
rules become valid again. As shown in Fig. 4(a), we plot
the average current for voltage biases Vb = 10, 30 mV and
without bias. Indeed, we see that voltage biases can recover
the OAM-induced current.

In Fig. 4(b), we plot the average current as a function of the
total number of orbitals considered in the simulation (system
size). It shows that the OAM-induced current is independent
of the system size. In this simulation it is assumed that the

(a) (b)

(c) (d)

FIG. 4. (a) We plot the average current as a function of disorder
strength γ with various bias voltages Vb = 0, 10, 30 mV. Increasing γ

leads to a decrease in the average current. We apply a DC voltage bias
Vb across the sample to recover the current. We find a bias increases
the average current. Here we use � = +1, τ = 50 fs. (b) We plot
the average current for OAM = +1, τ = 50 fs as a function of total
number of orbitals (system size) considered in the simulation. The
average current stays constant. (c) We plot the simulated current I
as a function of pump intensity on log-log scales and compare with
the reference current Ir multiplied by a constant 0.21 (orange line).
(d) We plot the simulated I as a function of average relaxation rate
 = 1/τ on log-log scales and compare with the reference current
Ir multiplied by a constant 0.22 (orange line). The simulated results’
scalings match very well with the analytical predictions.

coherence length always exceeds the system size. Indeed, it
has been demonstrated that the coherence length in graphene
in the quantum Hall regime can be as long as several microm-
eters [9–12], comparable to the wavelength of the excitation.

Finally, we study the scaling of the OAM-induced current
with pump intensity and relaxation. We have obtained an ana-
lytical expression for the current in Eq. (10) for a disorder-free
system in the weak pumping regime. In Figs. 4(c) and 4(d), we
plot the simulated OAM-induced current I for various pump
intensities P and average relaxation times τ , respectively, in a
disordered system. We compare with the scaling in Eq. (10),
and they match very well. Therefore, the scaling of the OAM-
induced current is not affected by the disordered bulk.

Discussion. We have proposed a measurement of the cur-
rent resulting from the interactions between light with OAM
and orbitals in LLs in graphene. We utilize the optical se-
lection rules from the edge states, whose OAM is preserved
due to the confinement potential, and adding a voltage bias
extends the selection rules to even more states. The dynamics
is an analogy to the Laughlin pump in the sense that flux
insertion pumps charge through the system. In our scheme,
however, this flux is added/removed by OAM of light through
a nonadiabatic process rather than adiabatically by a magnetic
field. We find a scaling of the current with pump intensity
to the power of 2/3 as a result of Pauli blockade. This re-
sult, analytically obtained for the system without disorder,
also holds for disordered systems as confirmed by numerical
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simulations. This coherent interplay with vortex light provides
new strategies to probe and manipulate the topology of matter.

Not limited to graphene, similar effects could also be seen
in other systems, such as conventional two-dimensional elec-
tron gas [53] where neglecting of Coulomb interactions is
better justified due to strong screenings. On the other hand,
Coulomb interactions and dynamical screenings [54] may
play an important role in other materials, such as transition
metal dichalcogenide [55–57], and, therefore, in the future,
it will be interesting to study how the OAM-induced cur-
rent is affected by Coulomb interactions. Furthermore, this
idea of OAM-included current might be useful in probing
the topology of the fast-developing field of twistronics where
correlated phases beyond LLs have been observed [58–60].
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I. BLOCKED BEAM

We investigate the effect that part of the OAM beam is blocked by a contact bridge, as shown in Fig. S1(a). It is
found that when the width of the bridge increases, the average OAM-incduced current slowly decreases as shown in
Fig. S1(b).

FIG. S1: (a) We study the scenario that there is a bridge contact on top across the Corbino sample, which blocks
part of the OAM beam. The width of the bridge contact is δb. (b) We plot the average OAM-induced current with
OAM=+1, as a function of δb/dmax and the current slowly decreases.
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II. DISPLACED BEAM

We investigate the effect that the OAM beam’s singularity is displaced from the center of the Corbino sample, as
illustrated in Fig. S2(a). The average current sharply drops as a function of displacement δs. A similar situation has
been studied in [1] for atoms.

FIG. S2: (a) We study the effect that the OAM beam is shifted away from the center of the Corbino sample by a
distance of δs. (b) We plot the average OAM-induced current as a function of δs/dmax and find that the current drops
sharply after a threshold.

III. LIGHT-MATTER INTERACTION

The light matter interaction is obtained with the minimal coupling p→ p− eA,

HI(t) = evFA(t) · σ, (S1)

where A(t) is the vector potential of light and it can be expressed as,

A(t) = A0(r, θ)e−iωt + A∗0(r, θ)eiωt, (S2)

A0(r, θ) = A(r)ei`θp. (S3)

Here, A(r) is the mode of the light. In the rotating frame with frequency ω, we remove the time-dependence and we
have the light-matter interaction Hamiltonian in graphene as,

HI = evFA(r)(ei`θσ− + e−i`θσ+) (S4)

where we assume that the field is right-circular polarized, i.e. p = p+.
We define the annihilation, creation operators am, a†m for electrons in orbital m in LL0 and bm, b†m for LL1. They

satisfy, {am, a†m′} = {bm, b†m′} = δm,m′ . We can rewrite the light-matter interaction as,

HI =
∑
m,m′

Ωm′,mb
†
m′am + Ω∗m′,ma

†
mbm′ (S5)

The Rabi frequency for each pair of orbitals is obtained as, Ωm′,m = 〈Ψ0,m|HI|Ψ1,m′〉. We can also list some useful
relations for a and a†, [

a, a†a
]

= {a, a†}a = a (S6)[
a†, a†a

]
= −a†{a†, a} = −a†, (S7)

same relations apply for operators b and b†.

IV. OPTICAL BLOCH EQUATIONS

The Hamiltonian for the LLs in graphene reads, Hel =
∑
m µ

(0)
m a†mam+µ

(1)
m b†mbm. Here µ0

m and µ1
m are the energies

of orbitals in LL0 and LL1 respectively. The total Hamiltonian is given as,

H = Hel +HI. (S8)
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We define the interband polarization as, Pm,m′ = 〈a†m′bm〉 and intraband polarizations as T
(0)
m,m′ = 〈a†m′am〉 for LL0,

T
(1)
m,m′ = 〈b†m′bm〉 for LL1. We have the relation T

(s),∗
m,m′ = T

(s)
m′,m. When m = m′, the intraband polarization is

essentially the occupation T
(0/1)
m,m = ρ

(0/1)
m

The Heisenberg equation of motion is given as, −i ∂∂t Ô = [H, Ô], where Ô = Pm,m′ , T
(s)
m,m′ . From this, we derive the

coupled optical Bloch equations.

IV.1. Interband polarizations

As an example, we derive for the interband polarizations P ∗n′,n = 〈b†n′an〉. The commutator of P ∗n′,n with Hel is,[
Hel, b

†
n′an

]
=
∑
m

µ0
m

[
a†mam, b

†
n′an

]
+
∑
m

µ1
m

[
b†mbm, b

†
n′an

]
= −µ(0)

n b†n′an + µ
(1)
n′ b
†
n′an

= (µ
(1)
n′ − µ(0)

n )b†n′an

= ∆n′,nb
†
n′an (S9)

The commutator with HI is,[
HI, b

†
n′an

]
=
∑
m,m′

[
Ωm′,mb

†
m′am + Ω∗m′,ma

†
mbm′ , b†n′an

]
(S10)

The first term in Eqn. (S10) is, [
b†m′am, b

†
n′an

]
= b†m′b

†
n′aman − b†n′b

†
m′anam = 0. (S11)

The second term in Eqn. (S10) is,[
a†mbm′ , b†n′an

]
= bm′b†n′a

†
man − b

†
n′bm′ana

†
m

= (δm′,n′ − b†n′bm′)a†man − b
†
n′bm′(δn,m − a†man)

= a†manδm′,n′ − b†n′bm′δn,m (S12)

Using Eqn. (S11), (S12) with Eqn. (S10) and combining with Eqn. (S9), we can arrive at the commutator with the
total Hamiltonian H, [

H, b†n′an

]
= ∆n′,nb

†
n′an +

∑
m

(Ω∗n′,ma
†
man − Ω∗m,nb

†
n′bm), (S13)

i.e.,

Ṗ ∗n′,n = i∆n′,nP
∗
n′,n + i

∑
m

(Ω∗n′,m.T
(0)
n,m − Ω∗m,nT

(1)
m,n′). (S14)

This gives the optical Bloch equation for the interband polarization, as given in the main paper but without the
scattering terms.

IV.2. Intraband polarization

As an example, we derive for LL1 intraband polarizations. The intraband polarizations are T
(1)
n,n′ = 〈b†n′bn〉. The

commutator with Hel is, [
Hel, b

†
n′bn

]
=
∑
m

µ0
m

[
a†mam, b

†
n′bn

]
+
∑
m

µ1
m

[
b†mbm, b

†
n′bn

]
=
∑
m

µ1
mb
†
n′bn(δm,n′ − δm,n)

= ∆
(1)
n′,nb

†
n′bn (S15)
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The commutator with HI is,[
HI, b

†
n′bn

]
=
∑
m,m′

[
Ωm′,mb

†
m′am + Ω∗m′,ma

†
mbm′ , b†n′bn

]
= −

∑
m,m′

Ωm′,mb
†
n′amδm′,n +

∑
m,m′

Ω∗m′,ma
†
mbnδn′,m′

= −
∑
m

(Ωn,mb
†
n′am − Ω∗n′,ma

†
mbn) (S16)

Note that in the derivation of Eqn. (S16), we have used the relations,[
b†m′am, b

†
n′bn

]
= b†m′amb

†
n′bn − b†n′bnb

†
m′am

= (b†m′b
†
n′bn − b†n′bnb

†
m′)am

= (b†m′b
†
n′bn − b†n′(δn,m′ − b†m′bn))am

= ({b†m′ , b
†
n′}bn − b†n′δn,m′)am

= −b†n′amδn,m′ , (S17)

and, [
a†mbm′ , b†n′bn

]
= a†m(bm′b†n′bn − b†n′bnbm′)

= a†m(δn′,m′bn − b†n′{bm′ , bn})
= a†mbnδn′,m′ (S18)

Combining Eqn. (S15) and Eqn. (S16), we arrive at,[
H, b†n′bn

]
= ∆

(1)
n′,nb

†
n′bn −

∑
m

(Ωn,mb
†
n′am − Ω∗n′,ma

†
mbn), (S19)

i.e.,

Ṫ
(1)
n,n′ = i∆

(1)
n′,nT

(1)
n,n′ − i

∑
m

(Ωn,mP
∗
n′,m − Ω∗n′,mPn,m), (S20)

which is the optical Bloch equation for intraband polarizations in LL1 as given in the main paper, without the
scattering terms.

IV.3. The optical Bloch equations

We add the Boltzmann scattering terms into the optical Bloch equations and arrive at the complete set of the
optical Bloch equations, for intraband polarizations,

Ṫ
(0)
n,n′ = i∆

(0)
n′,nT

(0)
n,n′ + i

∑
m

(Ωm,n′P ∗m,n − Ω∗m,nPm,n′) + S(0)
n (1− ρ(0)

n )δn,n′ , (S21)

Ṫ
(1)
n,n′ = i∆

(1)
n′,nT

(1)
n,n′ − i

∑
m

(Ωn,mP
∗
n′,m − Ω∗n′,mPn,m)− S(1)

n ρ(1)
n δn,n′ , (S22)

for interband polarizations

Ṗn,n′ = −i∆n,n′Pn,n′ − i
∑
m

(Ωn,mT
(0)
m,n′ − Ωm,n′T (1)

n,m)−D1

2
(S

(0)
n′ + S(1)

n )Pn,n′ , (S23)

To check the indices for the optical Bloch equations, we can start with the occupation conservation. For occupations,
we take n=n′ and we sum over n, we can get the time derivative of the total occupation as,

ρ̇ =
∑
n

(ρ̇(0)
n + ρ̇(1)

n )

= i
∑
n,m

(Ωm,nP
∗
m,n − Ω∗m,nPm,n)− i

∑
n,m

(Ωn,mP
∗
n,m − Ω∗n,mPn,m))

= 0. (S24)

Thus, the total occupation is conserved indicating that the indices are correct.
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FIG. S3: We plot Ωm,m+` as a function of m for fixed `’s using Eqn. (S26). The coupling is approximately
independent of m for m > 15.

V. ANALYTICAL ANALYSIS

V.1. Translational symmetry

Without disorder or edge confinement, the orbitals in graphene LLs can be treated approximately as translational
symmetric in the orbital index m. By translational symmetric, we mean the relaxation rates and the optical coupling
(Rabi frequency) between orbitals do not depend on m. In order to justify this, we divide our following discussion
into two parts: relaxation rates and optical couplings.

The relaxation rate is simple to be justified as not dependent on m. This is because the phonon relaxation rates are
determined by the overlap of the wavefunctions [2]. In a system without any disorder or edge, the overlap of orbitals

with different m is always zero while with the same m, the overlap is a constant 1/
√

2.

Does the optical coupling or the Rabi frequency Ωm,m+` between Ψ0,m+` and Ψ1,m, depend on m or `? Physically,
the possible dependence of Ωm,m+` on m and ` can be attributed to two aspects: 1, the twisted phase difference
between the wavefunctions; 2, the spatial overlap of the wavefunctions in the real space controlled by m and `. The
phase difference in the first aspect is compensated by the additional OAM provided by the light and thus should not
contribute. Here, we focus on the second aspect.

To take account of the spatial dependence, we calculate overlap of wavefunctions assuming the phase difference has
been compensated. Specifically, we take m+ ` orbital in LL0 and m orbital in LL1,

Ψ0,m+` =

(
0

|0,m+ `〉

)
,Ψ1,m =

1√
2

(
|0,m〉
|1,m〉

)
. (S25)

We calculate the couplings of the two wavefunctions, assuming the system is illuminated by a circularly polarized
OAM=` light with a homogeneous intensity,

Ωm,m+` = evF〈Ψ0,m+`|A(r)|Ψ1,m〉 = evF
A(r)√

2

(−i)`√
m!(m+ `)!

Γ(m+
`

2
+ 1). (S26)

With fixed `’s, we plot Ωm,m+` as a function of m in Fig. S3. It is found that if m is large enough, the wavefunction
overlap does not depend on the value of m or ` anymore. In other words, Ωm,m+` becomes independent of m if m is
large enough. From Fig. S3, we can see the critical value for m (for ` ≤ 3) is approximately 15. This means that m
needs to be larger than 15 in order to have the translational symmetry assumption valid.

On the other hand, we plot Ωm,m+` as a function of ` with fixed m’s in Fig. S4. It is found that the overlap decays
with `. This means that the optical coupling depends on the value of `. However, as shown in Fig. S4, the decay
is slower for larger m. In the simulations, we consider ` < 2 and m between 15 and 115; thus we may ignore the
dependence by using Ω0(`) = Ω0.

In conclusion, we find that it is valid to assume that the system is translational symmetric when m is large. The
Rabi frequency does not depend on m when m > 15. On the other hand, since we consider small `(≤ 2) for the
excitation, we can drop the dependence of the Rabi frequency on ` as well, by simply having Ω0(`) = Ω0.
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FIG. S4: We plot Ωm,m+` as a function of ` for fixed m’s using Eqn. (S26). The coupling decreases with `. But for
` < 2, we may approximate the coupling independent of `.

FIG. S5: An infinite system is divided into subsystems made of two levels, as shown in the shaded region.

V.2. Reference current Ir

In this section, we show how we arrive at the analytical expression for the reference current Ir. We consider an ideal
model without disorder, composed of an infinite number of orbitals in each LL, as shown in Fig. S5. In this context,
we have translational symmetry in each LL, as explained in section V.1. We further assume that the OAM=` beam
is in resonance with the two LLs so the detuning terms are ignored.

Because of translational symmetry, at equilibrium we have ρ
(0)
m = ρ

(0)
n and ρ

(1)
m = ρ

(1)
n for any n,m. Thus, the

intraband polarizations should be zero, T
(0)
m,n = 0, T

(1)
m,n = 0 for n 6= m. Also, only certain orbitals are optically

coupled. In our case, we use OAM=` so that Ωn,m = Ω0δn,m+`. On the other hand, the relaxation is pairwise as well.
Specifically, the relaxation is only between orbitals with index n in LL1 and n in LL0.

Now we focus on the individual two-level element of the system. Specifically, we divide the infinite systems into
elements which are made of two levels, as shown in the shaded region in Fig. S5. In the shaded region, we isolate two
levels which as a whole is a building block of the total system. First we take a look at the interband polarizations,

Eqn. (S23). Knowing that T
(0)
m,n = 0, T

(1)
m,n = 0 for n 6= m and ρ

(0)
m = ρ

(0)
n , we can simplify Eqn. (S23) as,

Ṗn,n′ = −i(Ωn,n′ρ
(0)
n′ − Ωn,n′ρ(1)

n )−D1

2
(S

(0)
n′ + S(1)

n )Pn,n′ (S27)

Since the Rabi coupling is only between orbitals with OAM difference equal to `, i.e. Ωn,n′ = Ω0δn,n′+`, we can
further simplify Eqn. (S27) to,

Ṗn+`,n = −i(Ωn+`,nρ
(0)
n − Ωn+`,nρ

(1)
n+`)−D

1

2
(S(0)
n + S

(1)
n+`)Pn+`,n

= −iΩn+`,n(ρ(0)
n − ρ

(1)
n+`)−D

1

2
(Γρ(1)

n + Γ(1− ρ(0)
n+`))Pn+`,n

= −iΩn+`,n(ρ(0)
n − ρ

(1)
n+`)−D

1

2
(Γρ(1)

n + Γ(1− ρ(0)
n ))Pn+`,n

= −iΩn+`,n(2ρ(0)
n − 1)−DΓ(1− ρ(0)

n )Pn+`,n. (S28)
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In the derivation, we have used the relation S
(0)
n = Γρ

(1)
n and S

(1)
n = Γ(1−ρ(0)

n ). We also use the relation ρ
(1)
n+` = ρ

(1)
n ,

ρ
(0)
n+` = ρ

(0)
n , because of translational symmetry. In addition, ρ

(1)
n = 1 − ρ(0)

n as a result of occupation conservation
and translational symmetry.

In the equilibrium, we have Ṗn+`,n = 0 and with Eqn. (S28) we obtain,

Pn+`,n =
−iΩn+`,n(2ρ

(0)
n − 1)

DΓ(1− ρ(0)
n )

=
iΩn+`,n

DΓ
(2− 1

1− ρ(0)
n

) (S29)

With this, we switch to the equation of occupations in a LL0 orbital, derived from Eqn. (S21),

ρ̇(0)
n = i(Ωn+`,nP

∗
n+`,n − Ω∗n+`,nPn+`,n) + S(0)

n (1− ρ(0)
n )

= −2Im(Ωn+`,nP
∗
n+`,n) + Γρ(1)

n (1− ρ(0)
n ) (S30)

We plug Eqn.(S29) into Eqn. (S30) and obtain,

ρ̇(0)
n = −2Im(Ωn+`,nP

∗
n+`,n) + Γρ(1)

n (1− ρ(0)
n )

= 2
|Ωn+`,n|2

DΓ
(2− 1

1− ρ(0)
n

) + Γ(1− ρ(0)
n )2

= 2
|Ω0(`)|2

DΓ
(2− 1

1− ρ(0)
n

) + Γ(1− ρ(0)
n )2, (S31)

where we change the notation for Ωn+`,n to Ω0(`) because of translational symmetry. We need to solve Eqn. (S31)

to get the time evolution of ρ
(0)
n . We firstly take a qualitative look of Eqn. (S31). Using the typical parameters

Ω0(`) = 2π/(0.1 ps), D = 10,Γ = 1/(50 fs) used in the paper, we can solve Eqn. (S31) numerically, and plot the

occupation ρ
(0)
n as a function of time in Fig. S6. The initial condition is ρ

(0)
n (0) = 1. For small t, the first term

of Eqn. (S31) is predominant, giving a very large negative slope. As ρ
(0)
n decreases, the absolute value of the first

term becomes small and the second term becomes comparable to the first at the end of the dynamics. Eventually an
equilibrium is reached.

Then we can solve for the equilibrium occupation analytically at t→∞. The result yields a complicated expression,

ρ(0)
n (t→∞) = 1− 1

3

 4 32/3A

3

√√
3
√
A2Γ3(64A+ 27Γ)− 9AΓ2

−
3

√
3
√

3
√
A2Γ3(64A+ 27Γ)− 27AΓ2

Γ

 ,

(S32)

where A = |Ω0(`)|2
DΓ .

When the equilibrium is reached, the two terms in Eqn. (S31) cancel each other and there is a persistent current
along the radial direction. The first term in Eqn. (S31) is from optical couplings and the second term is the relaxation
from the orbital right above. Since relaxation does not directly give rise to a radial current, our radial current is
purely from the first term in Eqn. (S31). Specifically, the current at equilibrium is,

Ir(`) = 2e
|Ω0(`)|2

DΓ
(

1

1− ρ(0)
n (t→∞)

− 2), (S33)

where e is the electron charge. ρ
(0)
n (t → ∞) is as given in Eqn. (S32). Note that, compared to the original term in

Eqn. (S31), we add a minus sign in Eqn. (S33) because a positive current corresponds to a decrease of ρ
(0)
n .

We plot the equilibrium current Ir as a function of Ω0(`) and Γ in Fig. S7. D = 10 is taken as a constant here. We
can see the current increases with faster Rabi oscillation and faster relaxation.

In the weak pumping regime (A � Γ), we can simplify Eqn. (S32). The equilibrium occupation taken to the first
order is,

ρ(0)
n (t→∞) = 1− 2

3
√

4
(
A

Γ
)1/3 (S34)

We can plug Eqn. (S34) in Eqn. (S33) and obtain a neat expression for the radial current in the limit A� Γ,

Ir(`) = 2e
|Ω0(`)|2

DΓ
(

3
√

4

2
(
DΓ2

|Ω0(`)|2
)1/3 − 2)

= e

(
4|Ω0(`)|4

D2Γ

)1/3

(S35)
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FIG. S6: We plot the occupation ρ0,n as a function of t, by numerically solving Eqn. (S31). An equilibrium is
reached at the end.

FIG. S7: We plot the current Ir as a function of Ω0 and Γ, based on Eqn. (S33). Ir increases with faster Rabi
oscillation and faster relaxation. The parameters we use in most of our simulations:

Ω0(`) = 2π/(0.1 ps),Γ = 1/(50 fs) are represented with the cross.

V.3. Two level systems with conventional scattering

In order to get a deeper understanding of the electrons’ behaviors, we simplify the Bloch equations shown above
to describe a two level system (TLS). In this and the following sections, we solve the Bloch equations for a TLS with
conventional and Boltzmann scatterings, respectively. Note that the OAM illuminated LLs cannot be considered as
isolated TLSes and the full analysis has been given above. However from these two sections, we aim to understand
where the novel scaling in Eqn. (S35) is from.

In this section, we simplify the Bloch equation to describe a TLS and use the relaxation rate from the conventional
spontaneous scattering: Γρ [3], instead of the Boltzmann scattering Γ(1 − ρ)ρ. Specifically, the scattering rates are
given as,

ρ̇ee = −Γρee

ρ̇gg = Γρee

ρ̇eg = −Γ

2
ρeg. (S36)

In order to describe a TLS, we simplify Eqn. (S28) and (S30) to the following,

ρ̇eg = −iΩeg(2ρgg − 1)− Γ

2
ρeg (S37)

ρ̇gg = i(Ωegρ
∗
eg − Ω∗egρeg) + Γρee

= −2Im(Ωegρ
∗
eg) + Γ(1− ρgg), (S38)
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where the notation Ωn+`,n in Eqn. (S28) and (S30) has been changed to Ωeg. We obtain the equilibrium by setting
ρ̇eg = 0, ρ̇gg = 0,

ρeg = −2iΩeg
Γ

(2ρgg(t→∞)− 1) (S39)

ρgg(t→∞) = 1−
2Im(Ωegρ

∗
eg)

Γ
. (S40)

In the weak excitation limit Ωeg � Γ, we use the first term in Eqn. (S38) combining with Eqn. (S39), (S40) to
arrive at the “equilibrium current” for a TLS,

ITLS
r = 4e

|Ωeg|2

Γ
, (S41)

which is intuitively consistent with a TLS in terms of scaling.
In summary, we replace the Boltzmann scatterings in the Bloch equations for OAM illuminated LLs with con-

ventional scatterings, and arrive at the same scaling for a conventional TLS. This hints that the difference in the
scalings of Eqn. (S35) and (S41) originates from distinct relaxations. To corroborate this, in the next section we use
a conventional TLS but with Boltzmann scattering terms to replicate the novel scaling.

V.4. Two level systems with Boltzmann scattering

The OAM illuminated LLs should not be considered as isolated TLSes and the full analysis is given in sections V.1
and V.2. However in order to capture some of the electron behaviors in OAM illuminated LLs, we modify the Bloch
equations for a TLS with Boltzmann scattering terms,

ρ̇gg = i(Ωegρ
∗
eg − Ω∗egρeg) + Γρee(1− ρgg) (S42)

ρ̇ee = −i(Ωegρ∗eg − Ω∗egρeg)− Γρee(1− ρgg) (S43)

ρ̇eg = −iΩeg(ρgg − ρee)−
1

2
Γ(ρee + 1− ρgg)ρeg (S44)

In the equilibrium, Eqn. (S42-S44) are all equal to 0. Since ρee = 1− ρgg, Eqn. (S44) gives,

ρeg =
iΩeg

Γ
(2− 1

1− ρgg
). (S45)

Plug Eqn. (S45) into (S42), we obtain,

ρ̇gg =
2|Ωeg|2

Γ
(2− 1

1− ρgg
) + Γ(1− ρgg)2. (S46)

We can see Eqn. (S46) is the same as Eqn. (S31). Therefore, the 1/3 scaling appeared in Eqn. (S35) also applies to
a TLS with Boltzmann scattering terms. Here, we demonstrate that the novel scaling is not due to the degenerate
orbitals in LLs, but rather due to the Boltzmann scattering terms.

V.5. Inhomogeneous electron density with radius

In the analysis in sections V.2-V.4, we use a translational symmetric model. Even though the system is translational
symmetric in terms of m, it is not in terms of radius r since the orbital radius rm ∝

√
m, as shown in Fig. (S8). Here,

we show that the current given in Eqn. (S35) is not affected and it is conserved over the sample.
The definition of current is the electron density times the average radial position changing rate. The electron density

is not a constant, but rather it is dependent on m. Therefore, we have,

Ir = e
dρ

dr
· dr
dt

= e
dρ

dt
, (S47)

where dρ/dr is the carrier density with r and dr/dt is the changing rate of the electrons’ radial position; dr =
2(
√
m+ 1 −

√
m)lc is the spacing between the adjacent orbitals but it’s canceled out in the final expression of the

equilibrium current. As a result, the current as in Eqn. (S35) is conserved over the sample, independent of the index
of the orbital m or the radial position r. In the simulations where we consider disorder, we take into account this
inhomogeneous electron density with radius by adding a factor

√
m∗, as we will discuss in section VI.3.
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FIG. S8: In real space, the orbitals locate closer to each other as m increases. This makes the charge density per
radius increases with m.

VI. SIMULATION

VI.1. Effective edge

The system size in the simulation is limited by m∗. It corresponds to the maximum index of the possibly occupied
orbitals, which is also close to the number of electrons considered in the simulation. Our simulation is valid until a
point where the electrons arrive on the maximum orbital m∗. Therefore, we stop the simulation before a significant
amount of electrons accumulate near the edge.

We simulate the edge using an effective potential. In particular, the effective edge confinement potential is a step
function, since it has been observed that the rising potential on the edge is very sharp [4]. The details of the edge states
may depend on the type of the edge [5]. Specifically, the edge could be zigzag or armchair, or gate-defined. However,
the details of the edge should not affect the results because what is necessary in order to have the OAM-induced
current is to have the edge states lifted in energy, from the disordered bulk.

The effective confinement potential for LL0 depends on the valley index [6]. In particular, the potential for the
K valley is Vc while for the K ′ valley, it is −Vc. This gives rise to two branches of edge states for LL0. However,
electrons’ behaviour of moving outward/inward under an OAM illumination does not depend on valley index since
edge states from both valleys have defined OAMs.

In the simulation, we do not consider screening. The effects of screening on the edges might give rise to compressible
and imcompressible stripes [4, 7, 8]. We want to note that this does not affect the twisted phase of the delocalized
edge states and our conclusions are still valid.

VI.2. Relaxation

We consider acoustic phonon relaxation in the simulation and ignore other relaxation mechanisms. The details of
the phonon relaxation are given as in [2, 9]. The carrier phonon relaxation is described by the Hamiltonian,

Hphon =
∑
ifpµ

(gpµif a
†
faibpµ + gpµif

∗
a†iafb

†
pµ), (S48)

where µ is the mode of the phonon. The carrier phonon matrix element with momentum p is given as,

gpµif =

∫
drΨ∗f (r)V µphon(p)Ψi(r). (S49)

The coupling potential is,

V µphon(p) =

(
V1 V2

V ∗2 V1

)
= ipDµ

p

(
g1 cosψ−P g2e

−iξψ+

P

−g2e
iξψ+

P g1 cosψ−P

)
, (S50)

where V1 is the scalar deformation potential and V2 is the modulated hopping due to the phonons. g1 = 16 eV and
g2 = −1.5 eV. P = eipR is the plane wave factor. Dµ

p =
√
~/MAωp,µ, where the mass density M = 7.6×10−8 gcm−2

and A is the area of graphene. In the long wavelength limit, we can ignore the plane wave factor P in the coupling
potential.

For clean orbitals without disorder, as in Eqn. (S25), we can get the carrier phonon matrix element, from Eqn. (S49)
as,

|gpµif | = |pD
µ
p

∫
dr

1√
2
V ∗2 | = |pDµ

p

A√
2
V2|. (S51)
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FIG. S9: Illustration of the calculation of current. At time t, the radial carrier distribution is shown as the
gray-shaded region. It has a average radius of r̄(t). After an interval δt, the distribution is changed to the

red-shaded region, which has an average radius r̄(t+ δt).

For the disordered orbitals, we plug in the disordered wavefuntions shown as in Eqn. (2) in the main text, the
carrier phonon matrix elements become,

|gpµ,disn,n′ | = |pDµ
p

A√
2
V2

∑
m̄

cn
′,∗

1,m̄c
n
0,m̄| (S52)

For an orbital in LL1, the total scattering rate is a sum over all the possible phonon momentum p,

Γn,n′ =
2π

~
∑
p

|gpµ,disn,n′ |2δ(∆E) =
8π3

A~

∫
dp|gpµ,disn,n′ |2δ(∆E)

=
16π4

A~

∫
dpp|gpµ,disn,n′ |2δ(∆E).

(S53)

Note that, A
(2π)2

∑
p =

∫
dp =

∫
dφ
∫
dpp. We use δ(∆E) to represent the broadenings of the individual orbitals

within LLs.
In the integrand of Eqn. (S53), |gpµ,disn,n′ | is dependent on ωp,µ, which is the dispersion of phonons, through Dµ

p .
Suppose we are in the low energy regime where the dispersion of acoustic phonons can be approximated by,

ωp,ΓA = νp,ΓA|p|, (S54)

where νp,ΓA is the phonon velocity. Within this approximation, we can have Eqn. (S53) as,

Γn,n′ =
8π4

Mνp,ΓA
g2

2 |
∑
m

cn0,m̄c
n′,∗
1,m̄ |2

∫
dpp2δ(∆E)

=
8π4

M~ν2
p,ΓA

g2
2 |
∑
m

cn0,m̄c
n′,∗
1,m̄ |2p2

0

= Γ0|〈Ψ1,n′ |Ψ0,n〉|2

(S55)

Here, p0 = (εn− ε′n)/νp,ΓA is the momentum corresponding to the energy difference between the two orbitals n and

n′. Γ0 = 8π4

M~ν2
p,ΓA

g2
2p

2
0 is a constant dependent on the intrinsic properties of the sample. Accordingly, we define the

average relaxation time as τ = 1/〈Γn,n′〉. In the simulation, we vary τ between 50 fs and 10 ps.
If considering the Pauli exclusion, we add the Boltzmann scattering rate between states |1, n′〉 and |0, n〉 as,

S(0)
n =

∑
n′

Γn,n′ρ
(1)
n′ (S56)

S
(1)
n′ =

∑
n

Γn,n′(1− ρ(0)
n ) (S57)

VI.3. Current

The current of our interest is induced by the OAM of light. It has been demonstrated that an optical field can
induce ultra-fast currents [10, 11]. But in our case, the current is different. Specifically, the current is composed of two
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ingredients: excitation and relaxation. When the selection rules are valid, the excitation couples orbitals with different
OAMs and equivalently, the electrons are transported spatially along the radial direction. The relaxation brings down
the electrons from high energy, making the movement of electrons continuous. In the meantime, other current sources
(photovoltaics, drifting, diffusion, etc.) are greatly suppressed due to the orthogonality of the wavefunctions.

We illustrate the calculation of current in Fig. S9. Suppose the distribution of carriers in the sample at time t, as
illustrated in the gray-shaded region in Fig. S9, has an average radius r̄(t). After a small interval δt, the distribution
becomes as shown in the red-shaded region with an average radius of r̄(t+ δt). In the Corbino structure, the current
is expressed as,

I = ρ2DvC

=
e

πl2c

r̄(t+ δt)− r̄(t)
δt

2π
√

2m̃lc

= 2
√

2m̃
e

lc

d〈r〉
dt

, (S58)

where C = 2πr̄(t) is the circumference of the orbital m̃ which corresponds to the the average radius r̄(t) =
√

2m̃lc;
v = (r̄(t + δt) − r̄(t))/δt is the group velocity of the electrons; ρ2D = e/(πl2c) is the carrier density in a 2D system.
Since m∗ is the characteristic index of the system size, we can rewrite the current Eqn. (S58) up to a constant as,

I =
√
m∗ elc

d〈r〉
dt .
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