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Enhancement of superconductivity with external phonon squeezing
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Squeezing of phonons due to the nonlinear coupling to electrons is a way to enhance superconductivity as
theoretically studied in a recent work [Kennes et al., Nat. Phys. 13, 479 (2017)]. We study quadratic electron-
phonon interaction in the presence of phonon pumping and an additional external squeezing. Interference
between these two driving sources induces a phase-sensitive enhancement of electron-electron attraction, which
we find as a generic mechanism to enhance any boson-mediated interactions. The strongest enhancement of
superconductivity is shown to be on the boundary with the dynamical lattice instabilities caused by driving. We
propose several experimental platforms to realize our scheme.
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Optical excitation of infrared-active (IR-active) phonon
modes allows for ultrafast pumping of solid-state systems into
nonequilibrium states exhibiting a wide range of exotic prop-
erties [1]. In particular, this enables manipulation of magnetic
states [2], charge orders [3], and superconductivity [4,5]. A
possible explanation of the transient enhancement observed
in [4] is the parametric driving of Raman phonons by IR
phonons [6,7]. Enhanced [8] quantum fluctuations of phonon
modes lead to a stronger phonon-mediated attraction between
electrons, thus enhancing the superconductivity.

Another proposed mechanism of transient superconductiv-
ity enhancement is based on a nonlinear coupling between
electrons and phonons [9,10]. In this case, the squeezing of
phonons is generated directly by the electron-phonon interac-
tion, since the coupling is quadratic in the phonon operator. As
shown in [10] due to this nonlinearity, the effective interaction
is enhanced proportionally to the coherent excitation rate of
the phonon mode.

In this Letter, we clarify the role of squeezing and study
the possibility of enhancement of superconductivity by an
additional external parametric drive. We consider a model
that combines both ingredients—the linear and parametric
driving of phonons that are nonlinearly coupled to electrons.
In order to illustrate the influence of parametric driving on a
bosonic degree of freedom [a, a†] = 1 and introduce a related
terminology, we define the Hamiltonian of a parametrically
driven harmonic oscillator [11] with a bare frequency ω0

as HPO = ω0â†â − D(â2e2iωpt + â†2e−2iωpt )/2 where D stands
for the squeezing strength and ωp is the parametric driving
frequency. One can show that the expectation value of the
quadrature X̂θ ≡ âeiθ+iωpt + H.c. decreases for θ = π and in-
creases for θ = 0, with respect to a local oscillator. We refer
to these quadratures as “squeezed” and “antisqueezed,” re-
spectively. Similarly, the corresponding retarded correlation
function of these quadratures, which determines the strength
of mediated interaction by these bosonic modes, can decrease
or increase in a phase-sensitive fashion (see the Supple-

mental Material [12] for spins as an illustrative example).
Consequently, the squeezing of proper phonon quadrature can
significantly amplify the phonon-mediated electron-electron
interaction. Moreover, the parametric drive can soften the
phonon modes that further amplifies the electronic interaction.
In this work, we demonstrate that such amplifications lead
to the enhancement of superconductivity, by analytically and
numerically employing the Migdal-Eliashberg theory. The su-
perconducting critical temperature Tc is shown in Fig. 1(c) as
a function of external phonon squeezing rate D. The external
parametric drive that is the crucial element of our proposal
can be achieved by either exploiting intrinsic photon-phonon
coupling nonlinearities [13] or by using a parametric optical
amplifier in an optical cavity to produce squeezed light [14]
as schematically shown in Fig. 1(a).

To be specific, we study a two-dimensional superconductor
interacting with an infrared-active optical phonon mode and
consider the coupling to be quadratic in a phonon opera-
tor [4,9,10]. Linear coupling terms can also be present without
affecting the results below. The full Hamiltonian of the system
reads as Ĥfull = Ĥp + Ĥe + Ĥe-p + V̂ (t ):

Ĥp =
∑

q

ωqâ†
qâq

︸ ︷︷ ︸
Hp

+
∑
k,σ

(εk − μ)ĉ†
k,σ ĉk,σ

︸ ︷︷ ︸
He

+ g

N

∑
σ,k,q,q′

c†
k+q−q′,σ ĉk,σ φ̂qφ̂−q′

︸ ︷︷ ︸
He-p

, (1)

where N denotes the total number of lattice sites, q is the
lattice quasimomentum vector, ωq and εk respectively stand
for the phonon and electron dispersions, ĉk,σ is the elec-
tron annihilation operator, and φ̂q ≡ âq + â†

−q is the phonon
displacement field operator. Phonons are linearly and para-
metrically driven at frequency ωp with the corresponding
driving strengths α and Dq. The external driving Hamiltonian
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FIG. 1. Steady-state enhancement of superconducting transition
temperature Tc. (a), (b) Sketch of the setup: 2D superconductor on an
optomechanical membrane. Phonon squeezing is induced by (a) the
squeezed light produced by the optical parametric oscillator and
(b) time modulation of the classical input light. (c) Superconducting
transition temperature as a function of the parametric driving strength
D for optimal value of the detuning δ, assuming the phonon driving is
fixed at α = 0.2ω0: parametrically driven phonons (blue). The corre-
sponding phonon excess noise S ≡ N−1

∑
q〈φ̂qφ̂−q〉 is shown in the

inset. The frequency of the IR-active phonon mode is taken to be
ω0 = 0.17 eV corresponding to the frequency of the infrared-active
phonon mode of the K3C60 fulleride superconductor [6,9].

reads

V̂ (t ) = 2α cos(ωpt + θα )φ̂0 +
∑

q

Dq cos(2ωpt + θD)φ̂qφ̂−q,

(2)

where θα,D are the relative phases of linear and paramet-
ric drivings. As we discuss below, these phases allow one
to control the strength of coupling to electrons. We note
that the model becomes dynamically unstable at strong para-
metric drive Dq [11]. This is manifested in the exponential
growth of the phonon displacement 〈φ̂q〉, as a function of
time. Therefore, we impose ωq − ωp � Dq to avoid such an
instability.

The external drive induces a finite expectation value of
the zero-momentum phonon mode 〈φ̂0〉. We treat this in
terms of mean-field theory and keep quadratic fluctuations.
We perform two unitary transformations of the Hamiltonian
equation (1). First, we consider the frame, rotating at the
phonon driving frequency ωp, which transforms bosonic vari-
ables as âq → âqe−iωpt . Second, we perform a shift of the
zero-momentum bosonic variables âq → âq + ā0δq,0, where
ā0 denotes the adiabatic steady-state coherence to the lowest

order in 1/ωp (see Supplemental Material):

ā0 ≡ α
D0ei(θα−θD ) − δ0e−iθα

δ2
0 − D2

0

. (3)

Finally, we perform the rotating-wave approximation and dis-
card the rotating at frequencies ∝2ωp, by assuming that the
driving frequency ωp is the largest energy scale in the sys-
tem. As shown in the Supplemental Material, the effective
coupling in the model is maximized for the following choice
of driving phases θD = π, θα = 0. This choice corresponds to
antisqueezing of the quadrature to which electrons are cou-
pled. With these approximations and neglecting all nonlinear
and rotating contributions, the phonon Hamiltonian and the
electron-phonon Hamiltonians are transformed as

Ĥph =
∑

q

δqâ†
qâq −

∑
q

Dq

2
(âqâ−q + â†

qâ†
−q), (4)

Ĥint = geff√
N

∑
σ,q

ĉ†
k+q,σ ĉk,σ (âq + â†

−q), (5)

where the detuning δq ≡ ωq − ωp and the effective electron-
phonon coupling is geff = 2g|ā0|/

√
N . Equation (4) is

equivalent to a nondegenerate multimode parametric oscilla-
tor [11] below the parametric instability threshold for δq �
Dq, which can be diagonalized by means of the Bogolyubov
transformation âq = cosh(rq)b̂q + sinh(rq)b̂†

−q with ζq =
2−1arctanh(Dq/δq). We find Ĥph = ∑

q

√
δ2

q − D2
q b̂†

qb̂q and

Ĥint = N−1/2geff
∑

σ,q eζq ĉ†
k+q,σ ĉk,σ (b̂q + b̂†

−q)eiqri . Close to
the parametric instability Dq ∼ δq, the coupling scales as
eζq ∝ (1 − Dq/δq)−1/4. Equations (4) and (5) are therefore
equivalent to a conventional Holstein model [15] with the
softened phonons and an enhanced electron-phonon coupling.
As we show below, the combination of these factors can lead
to an enhanced Tc compared to the configuration without
squeezing.

In order to show this enhancement, we consider the
squeezed electron-phonon model of Eqs. (4) and (5) within
the equilibrium Migdal-Eliashberg (ME) theory [16,17] and
provide an estimate of the superconducting phase tran-
sition temperature Tc. ME theory relies on the Migdal
theorem that allows one to neglect vertex corrections to
the electron Green’s function provided they are much
faster than phonons. In the case of the effective Holstein

model (4), (5), this is characterized by
√

δ2
q − D2

q 
 EF,

where EF is the Fermi energy. The remaining equations for
the electronic and phonon self-energies form a closed set
of equations, which can be solved self-consistently, and we
consider the formulation of the theory above the critical
temperature T � Tc.

We start by defining the fully renormalized imaginary-
time propagators G −1

k = iωn − (εk − μ) − �k(iωn), D−1
k =

D (0)−1
k (iωm) − �k(iωn), where the unperturbed squeezed

phonon propagator is D (0)
q (iωm) = −2(δq + Dq)/(ω2

m + δ2
q −

D2
q) and ωn = π (2n + 1)/β, ωm = 2πm/β, m, n ∈ Z denote

fermionic and bosonic Matsubara frequencies, respectively.
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FIG. 2. Enhancement of superconductivity. (a) Electronic and
phononic self-energies within Migdal-Eliashberg theory. Solid and
dashed lines respectively stand for the fully renormalized elec-
tron and phonon propagators. (b) Superconducting Tc as a function
of the detuning δ: configuration without squeezing D = 0 (blue),
D = 0.1ω0 (orange), and D = 0.2ω0 (green); and optimal values
(red dashed). Dotted curves correspond to the exact numerical so-
lution of the Migdal-Eliashberg equations (6)–(8) on a discretized
momentum-frequency lattice.

The electronic and phononic self-energies obey the equa-
tions [15], as diagrammatically shown in Fig. 2(a):

�k(iωn) = − g2
eff

βN

∑
m,q

Dk−q(iωn − iωm)Gq(iωm), (6)

�k(iωn) = 2g2
eff

βN

∑
m,q

Gq(iωm)Gq−k(iωm − iωn). (7)

These equations define the properties of the normal state of the
electron gas. In order to find the superconducting transition
temperature, we solve the linearized self-consistent equation
for the pairing vertex �k:

�k(iωn) = − g2
eff

Nβ

∑
q

Dk−q(iωn − iωm)�q(iωm)

× Gq(iωm)G−q(−iωm). (8)

The highest-temperature solution of this equation defines the
critical temperature Tc. We provide an analytical solution of
Eqs. (6)–(8) under several simplifying assumptions. In par-
ticular, we assume that the detuning δq and the squeezing
parameter Dq do not depend on momentum q. In this case,
the only momentum dependence in Eqs. (6) and (7) is due to
the electron polarization operator. The latter Eq. (7) contains
static ωn = 0 and dynamical contributions ωn �= 0. The static
contribution is responsible for the phonon softening due to
the interaction with electrons and it is generally important
at strong couplings. In addition, it effectively enhances the
electron-phonon interaction [18]. The dynamical contribution

describes the Landau damping. We neglect the dynamical
contribution as it is smaller than the first Matsubara frequency
term in the denominator of D in the relevant temperature
ranges [18]. In addition, we restrict the polarization oper-
ator in Eq. (7) to its zeroth Matsubara component taken
with respect to the unperturbed fermionic Green’s function:
�k(iωn) ≈ −2ν0g2

eff, where ν0 ≡ N−1 ∑
k δ(EF − εk ) is the

density of states at the Fermi energy EF. We note that accord-
ing to this definition, ν0 has the dimension of inverse energy.
Under these assumptions the renormalized phonon propagator
takes the following form:

D (iωn) = −2(δ + D)

ω2
n + (δ2 − D2)(1 − 2λ0)

, (9)

where the effective electron-phonon coupling is defined
as λ0 = 2ν0g2

eff/(δ − D). The antisqueezing manifests it-
self as an excess noise of the phonon field φ̂q, which
is found by taking the Matsubara frequency sum in
Eq. (9) in the T → 0 limit 〈φ̂qφ̂−q〉 = −β−1 ∑

n Dq(iωn) ≈√
(δ + D)/[(1 − 2λ0)(δ − D)]. We see that the phonon fluc-

tuations are enhanced by interaction with electrons and by
external squeezing in a multiplicative way.

Since the right-hand sides of Eqs. (6) and (8) do not
depend on momentum k, the dependence can be eliminated
by taking an average over Fermi surface �n → 〈�k(iωn)〉FS,
�n → 〈�k(iωn)〉FS. An approximate analytical solution of
these equations is known [19,20], and yields the following
expression for the critical temperature:

Tc =
√

(δ2 − D2)(1 − 2λ0)

1.2
e−1.04[(λeff+1)/λeff], (10)

where the effective coupling strength is defined as λeff =
λ0/(1 − 2λ0) [18], and the first term in this expression stands
for the effective phonon bandwidth, which corresponds to the
poles of Eq. (9) with respect to the Matsubara frequency.
At strong coupling, λ0, the system undergoes a transition
to charge-density phase [17,18,21]. In Eq. (10), it manifests
itself as singularity of λeff at λcr

0 = 0.5. Due to the vertex
corrections neglected in Eqs. (6)–(8), the exact Monte Carlo
treatment of the Holstein model [17] predicts a slightly dif-
ferent value λcr

0 ≈ 0.4. In the following, we will restrict all
system parameters such that λ0 � λcr

0 in order to avoid this
instability.

We now analyze Eq. (10) by varying δ and D while assum-
ing geff is fixed. In the absence of squeezing (D = 0), we find
the maximum Tc with respect to the detuning δ being equal to
T max

c ≈ 0.4g2
effν0. This value, being expressed in terms of the

optimal detuning, is equal to T max
c ≈ 0.08δ, which reproduces

the known result [17,22]. In order to study the influence of
squeezing on the superconducting temperature, we assume
the squeezing parameter D is fixed to some positive value.
In this case a new maximum with respect to δ is straight-

forwardly found to be T max
c (D) ≈ 0.25

√
g2

effν0D in the limit

when D � g2
effν0. It is achieved at δmax ≈ D + 5g2

effν0. This
combination of squeezing and detuning saturates the bare
electron-phonon coupling to λ0 ≈ λcr

0 , which is approximately
independent of D and δ. The effective phonon bandwidth
for the optimal detuning scales as

√
(δ2 − D2)(1 − 2λ0) ∝
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FIG. 3. Superconducting critical temperature Tc as a function of
the linear driving α and parametric driving strength D. The detuning
is chosen to produce the strongest effect at each point. The strongest
enhancement is achieved at the boundary of the lattice instability
region.

√
g2

effν0D, which determines the scaling of Tc at large squeez-
ing. The enhancement can therefore be seen as increasing
the effective bandwidth of phonons while keeping the effec-
tive coupling fixed to its maximal value [17,22]. In general,
geff also depends on D and δ due to being proportional
to the steady-state phonon occupation. The presented anal-
ysis can be straightforwardly extended to take this into
account.

We now compare the analytical prediction for the critical
temperature with the numerical self-consistent solution of
Eqs. (6) and (8) performed in a discretized 52 × 52 momen-
tum and 400 Matsubara frequency lattice space. We consider
the external driving α = 0.25ω0 to be fixed, while we vary
the detuning δ. The critical temperature as a function of the
detuning is shown in Fig. 2 for several values of the squeezing
parameter D. The smallest detuning of all curves corresponds
to λ0 ≈ λcr

0 . The maximum Tc is achieved at the lowest pos-
sible δ in agreement with the analytical expression provided
above. We study the effect of linear α and parametric D
driving on superconducting Tc for optimal values of detuning
δ (Fig. 3). The external squeezing allows one to achieve strong
enhancement at much lower driving intensities α, and the
strongest effect is achieved on the boundary of the lattice
instability regimes.

We now discuss two possible experimental realizations of
our idea to generate phonon squeezing. The first proposal
exploits the intrinsic photon-phonon coupling nonlineari-
ties [13]. For illustration purposes, we consider a simplified
model of two-dimensional electron lattice gas with the
nearest-neighbor tunneling rate J ≈ 0.2ω0, corresponding to
the K3C60 fulleride superconductor [6,9]. We assume that
the infrared-active phonon mode with Debye frequency ω0 ≈
0.17 eV being driven by a bichromatic light at frequencies
ωp and 2ωp. For an estimate of achievable phonon paramet-
ric driving rate, we take the values achieved with phonon
parametric amplification [13] D ∝ 0.1ω0 as achieved at field
values of the order of 10 MV/cm. Here we focus only
on pairing induced by external driving. In our simulations
we consider the electron-phonon coupling coefficient g ≈
0.1ω0 [9] and the electron density of states ν0 ≈ 0.6ω−1

0 . We
note that in deriving Hamiltonians (4) and (5) we neglected

the terms rotating at ∝2ω0 [23] (see Supplemental Material)
which may induce heating for broader-band materials. Our
simplified analysis can be extended with taking these rotating
terms into account perturbatively [6]. With the parameters
above we estimate the bare electron-phonon coupling g2ν0 ≈
0.006ω0. The corresponding values of the critical temperature
are shown in Fig. 1(c).

In the second approach, we consider a two-
dimensional [24] superconductor optomechanical membrane
optomechanically coupled to a cavity mode as shown
in Figs. 1(a) and 1(b). Experimentally, the cavity
optomechanical coupling to the two-dimensional (2D)
van der Waals system has recently been demonstrated
in [25–27]. The main challenge in this case is to control
the high-frequency phonons as the critical temperature,
Eq. (10), is proportional to the overall frequency range of
the phonon modes. Coupling of light to high-frequency
phonons has been demonstrated in several setups including
the optomechanical disk resonators [28] and high-frequency
bulk acoustic phonons [29]. We consider two possible ways
of phonon squeezing as illustrated in Fig. 1. First, squeezing
can be achieved via hybridization with photons which are
parametrically driven [14,30]. Alternatively, as we show in
the Supplemental Material [31], squeezing of membrane
can be performed by a very specific time modulation of
incoming light. By assuming a frequency range of the order
of 100 GHz, as achieved in resonators based on acoustic
distributed Bragg reflectors [32–37], we can estimate the
achievable enhancement to be of the order of Tc ∝ 3 K for the
same parameter ratio as provided in the previous paragraph.
The main limiting factor is the effective phonon bandwidth
which is substantially reduced due to squeezing close to
the parametric instability. However, the analysis presented
in this Letter is restricted to the isotropic case, i.e., when
Dq = D, δq = δ. The momentum dependance of the Dq
and δq, which is generally present in experiment, provides
an additional degree of freedom. In particular, this allows
one to control the effective phonon dispersion independently
of the coupling strength. The enhancement of electron
interaction may be expected in the case of parametrically
driving only the phonons with q = 2kF , where kF is the Fermi
momentum.

In conclusion, we studied the enhancement of super-
conductivity due to an externally induced squeezing. The
phase-sensitive squeezing enhances quadrature fluctuations of
the phonon field leading to exponentially stronger interac-
tion, while reducing the spectral bandwidth of phonons. We
study the competition of these two effects numerically and
analytically and find a parameter range of enhanced supercon-
ductivity. The effective squeezed Holstein model describing
the system allows one also to dynamically suppress coupling
to a certain range of phonon modes. The strength of the
suppression is exponential. This can be very useful in the
case when superconductivity competes with other types of
instabilities, e.g., charge-density wave instability. By decou-
pling from the phonon modes responsible for the instability,
one can enhance the superconducting transition. This opens
up a way to engineer an effective electron-phonon interact-
ing model which suppresses polaronic/charge-density wave
tendencies.
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I. ENHANCEMENT IN ENSEMBLE OF
TWO-LEVEL SYSTEMS

To illustrate the effect of squeezing on the mediated
interaction and the phase-sensitive nature of the in-
crease/decrease of the interaction strength, we study the
case of spins coupled to a bosonic modes. While the
focus of the main text is on electrons in 2D, here we
present the key idea using a toy model with spins. More-
over, such a phase-sensitive nature was not discussed in
previous works on the subject [13]. To be concrete, we
study interaction of an ensemble of N two-level systems
(TLS) with the squeezed bosonic mode. We demonstrate
a phase-sensitive enhancement analogous to those stud-
ied in the main text. We first define the raising/lowering
operators for TLS as σ±i and the bosonic annihilation
operator as a. We consider the following Hamiltonian:

H = ω0a
†a+ ωa

N∑
i=1

σ+
i σ
−
i

+
D

2

(
e2iφDa2e2iωat + e−2iφDe−2iωata†2

)
+ g

(
a+ a†

) N∑
i=1

(
σ+
i + σ−i

)
where ωa is the transition energy of a two-level system,
ω0 is the frequency of a bosonic mode and D denotes
the squeezing rate. We transform into rotating frame
a → ae−iωat−iφD and σ−i = σ−i e

−iωat. By denoting the
detuning δ = ω0−ωa we get and performing the rotating-
wave approximation (RWA):

H = δa†a+
D

2

(
a2 + a†2

)
+ g

(
e−iφDaJ+ + eiφDa†J−

)
,

where we denoted J± =
∑
σ±i , [J+, J−] = 2Jz. By

performing the Bogolyubov transformation a = ub+ vb†

with u = cosh [r] , v = sinh [r], r = arctanh [−D/δ] we
get:

H =
√
δ2 −D2b†b

+ g(b{e−iφDu
∑
i

σ+
i + eiφDv

∑
i

σ−i }+ H.c.)

We now perform adiabatic elimination of bosonic mode
by means of the Schrieffer-Wolff transformation:

H ′ = e−SHeS = H +
1

2
[H,S] + . . . (1)

with

S =
2g√

δ2 −D2

(
b
{
e−iφDuJ+ + eiφDvJ−

}
− b†

{
e−iφDvJ+ + eiφDuJ−

})
,

By taking the necessary commutators in (1) we get:

H ′ = −g2

{
e−2iφDD

δ2 −D2
J+2 +

De2iφD

δ2 −D2
J−2

}
− g2 δ

δ2 −D2

(
J+J− + J−J+

)
− g2

√
δ2 −D2

(
2b†b+ 1

)
Jz

In order to represent this result in a more physically-
appealing form, we transform variables as J±e∓iφD →
J± and denoting Jx/y = 1

2 (J+ ± iJ−) we find:

H ′ = −g2

{
1

δ −D
(Jx)

2
+

1

δ +D
(Jy)

2

}
− g2

√
δ2 −D2

(
2b†b+ 1

)
Jz

We therefore find that interaction is enhanced in one
quadrature and decreased in the other. We note that the
definition of Jx/y is arbitrary without external reference.

II. DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this section, we provide technical details of the
derivation of the effective Hamiltonian Eqs. (4, 5) of the
main text. We treat phonon dynamics in terms of mean-
field theory and keep quadratic fluctuations. We rep-
resent phonon operators as φ̂q = 〈φ̂0〉δq,0 +

˜̂
φq. The

mean-field set of equations reads:

d

dt
〈φ̂0〉 = ω0〈π̂0〉, (2)

d

dt
〈π̂0〉 = −ω0〈φ̂0〉 − 4α cos (ωpt+ ψα)

− 4〈φ̂0〉D0 cos (2ωpt+ ψD) , (3)
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where we defined the “momentum” operator π̂0 ≡ i(a†0 −
a0). In deriving these equations we neglected coupling
to the electrons. The latter may induce frequency shift.
The resulting effective Hamiltonian for fluctuating part
is (we omit tildes for shortness):

Hph =
∑
q

ωqâ
†
qâq +

∑
q

Dq cos (2ωpt+ ψD) φ̂qφ̂−q,

(4)

Hint =
2g

N

∑
σ,k,q

ĉ†k+q,σ ĉk,σφ̂q〈φ̂0〉

+
g

N

∑
σ,k,q

ĉ†k,σ ĉk,σ〈φ̂0〉2, (5)

where we neglected the quadratic in φ̂ electron-phonon
coupling in Hint. The second term in Eq. (5) stands
for the renormalization of the chemical potential. As
shown in section below, the mean field value 〈φ̂0 (t)〉 ≈
2Re[ā0e

−iωpt], where

ā0 = α
D0e

i(ψα−ψD) − δ0e−iψα
(δ2

0 −D2
0)

.

We now transform into the frame rotating at ωp and ne-
glect all high-frequency rotating terms:

Hph =
∑
q

(ωq − ωp) a†qâq

+
∑
q

Dq

2

(
eiψD âqa−q + e−iψDa†−qa

†
q

)
(6)

Hint =
2g

N

∑
σ,k,q

c†k+q,σck,σ

(
âqā
∗
0 + a†−qā0

)
. (7)

We find an effective Holstein model provided in the main
text. In deriving the Hamiltonian (6),(7) we neglected
the following terms rotating at 2ωp:

Hrot =
∑
q

Dq

2

(
ei(2ωpt+ψD) + e−i(2ωpt+ψD)

)(
aqa
†
q + a†−qa−q

)
,

+
2g

N

∑
σ,k,q

ĉ†k+q,σ ĉk,σ

(
aqā0e

−2iωpt + a†−qā
∗
0e

2iωpt
)

+
g

N

∑
σ,k,q

ĉ†k,σ ĉk,σ
(
ā2

0e
−2iωpt + ā∗20 e

2iωpt
)
.

This approximation is valid as soon as there are no pos-
sible resonant transitions in the electron gas caused by
the rotating terms.

III. STEADY STATE PHONON PROPERTIES

Here we consider properties steady state properties of
phonon modes. We first approximately solve the mean

field set of equations Eqs. (2, 3). For that we assume
〈φ̂0 (t)〉 ≈ 2Re

[
ā0e
−iωpt

]
and find ā0 neglecting coupling

to higher frequency components. We note that by mak-
ing this ansatz we neglect terms rotating at 3ωp, 5ωp, . . .
which produce only rapidly rotating terms in Eqs. (2, 3).

This results in the following equations:

(
ω2

0 − ω2
p

)
ā0 = −2D0ω0ā

∗
0e
−iψD − 2αω0e

−iψα(
ω2

0 − ω2
p

)
ā∗0 = −2D0ω0ā0e

iψD − 2αω0e
iψα

The solution is:

ā0 = α
4D0ω

2
0e
i(ψα−ψD) − 2ω0

(
ω2

0 − ω2
p

)
e−iψα((

ω2
0 − ω2

p

)2 − 4D2
0ω

2
0

) (8)

Using ω0 = ωp+δ0 and expanding in the limit ωp/δ0 →
∞ we find:

ā0 ≈ α
D0e

i(ψα−ψD) − δ0e−iψα
(δ2

0 −D2
0)

(9)

Phonon propagator In Eq. (7) electrons are
effectively coupled to the phonon field Φ̂q =(
âqe
−i arg(a0) + a†−qe

i arg(a0)
)

. We now derive bare
propagator of this field

DR [ω] = −i
∫ ∞

0

eiωt〈[Φq (t) ,Φ−q (0)]〉

We start with the set of Heisenberg equations of motion
with respect to the bare phonon Hamiltonian Eq. (6):

d

dt
âq = −iδqâq − iDqe

−iψDa†−q

d

dt
a†−q = iδqa−q + iDqe

iψD âq

Solving them we find the imaginary-time propagator:

Dq [iωn] =
2(Dq cos(ψD + 2 arg(a0))− δq)

ω2
n + δ2 −D2

q

(10)

Numerator of this expression is maximized by e.g. the
following choice of driving phases ψD = π and ψα = 0:

Dq [iωn] =
−2(Dq + δq)

ω2
n + δ2

q −D2
q

A. Phonon dissipation

We now consider the possible phonon dissipation. We
note that Migdal-Eliashberg formalism takes into account
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the dissipation due to the interaction with electrons.
We therefore consider the dissipation that comes from
other processes like phonon-phonon interactions [5]. We
take dissipation in the simplest Markovian form with the
momentum- and frequency- independent rate γ [5]. It is
straightforward to show that the bare phonon propagator
is modified as follows [6]:

D (0)
q [iωn] =

−2(Dq + δq)

ω2
n + γ2 + 2γ |ωn|+ δ2

q −D2
q

(11)

Renormalizing this propagator with the fermion loop as
discussed in the main text we find:

Dq [iωn] =
−2(Dq + δq)

ω2
n + γ2 + 2γ |ωn|+

(
δ2
q −D2

q

)
(1− 2λ0)

.

(12)
We note that it corresponds to the Lorentz spectral den-
sity of the propagator:

Dq [iωn] =
1

π

∫ ∞
0

dx2 {ρ (x)− ρ (−x)}
x2 + ω2

n

(13)

with

ρ (x) =

(
Dq + δq

δ̃q

)
γ

γ2 +
(
x− δ̃q

)2 , (14)

where δ̃q =
√

(1− 2λ0)
√
δ2
q −D2

q. The retarded re-

sponse function DR
q [ω] can be readily found by perform-

ing the analytic continuation in e.g. Eq. (13) iωn → ω+
i0+. We can now estimate the modification of the critical
temperature due to γ using [11]. Again representing the
critical temperature as [2] Tc = ωln

1.2 exp
{
−1.04λeff+1

λeff

}
.

As in the main text the λeff is essentially related to the
(Fermi-surface-averaged) static propagator (12):

λeff = −ν0g
2
effD [0]

=
λ0(δ2 −D2)

γ2 + (δ2 −D2) (1− 2λ0)

≈ λ0

(1− 2λ0)

(
1− γ2

(δ2 −D2) (1− 2λ0)

)
Here we omitted the momentum indices as in the main
text. Using Eq. 14 we can now estimate the average
phonon frequency ωln as [11]:

ωln ≡ exp

{∫∞
0
dω lnω

ω (ρ (x)− ρ (−x))∫∞
0
dω 1

ω (ρ (x)− ρ (−x))

}

≈ δ̃ exp

{
− πγ

2ω0

}
,
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Figure 1. Retarded propagator Eq. (15) as function of
the parametric driving phase ψD assuming ψα = 0, ωp =
0.7ω0, D = 0.15ω0, α = 0.01ω0: numerical calculation based
shown in blue, analytical estimate using high-frequency ex-
pansion to lowest order gives λ0 ≈ 4 g

2ν0
N
|ā0|2 Dq (0) where

Dq (0) is Eq. (10) and ā0 is given in Eq. (8).

where in the last line we expanded in small γ. We thus
see that both λeff and ωln are decreased in the presence
of dissipation which is taken in the form of Lorentz noise.

B. Regime of large detuning

In this section we provide a simple method of deter-
mining the pairing strength beyond the high-frequency
expansion of the phonon propagator. We start with the
model Eq. (5) where the electrons couple to the time-
dependent field 〈φ0 (t)〉 φ̂q (t). Alternatively to the cal-
culation in the main text, the pairing strength can be
estimated [3, 8] by taking the static retarded propagator
of the corresponding field:

λR ≡ 4
g2ν0

N

∫ t0+2π/ωp

t0

dt0

∫ ∞
t0

dte−ε(t−t0)

× 〈φ̂0 (t)〉〈φ̂0 (t0)〉
〈[
φ̂q (t) , φ̂−q (t0)

]〉
. (15)

Here we averaged over the period of the oscillation of
the probe field. λR is completely equivalent to the bare
phonon coupling strength λ0 computed in the main text.
As shown in Fig. 1 the numerical estimate based on
Eq. 15 is in good agreement with the high-frequency ex-
pansion even when the detuning is not small.

IV. ELIASHBERG EQUATIONS

By denoting Σ [k, iωn] ≡ iωn [1− Z [k, iωn]] in the
particle-hole symmetric case and averaging Eqs. (6-8) of
the main text over the Fermi surface Γn → 〈Γk (ωn)〉FS,
Zn → 〈Zk (ωn)〉FS we get [4, 10]:
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Γn =
π

β

∑
m

λeff [iωn − iωm]
Γm

Zm |ωm|
,

Zn = 1 +
π

β

∑
m

λeff [iωn − iωm]

(
ωm
|ωm|

)
,

where λeff [iωn − iωm] = ν0g
2
effD [ϑ, iωn − iωm].

V. MULTIMODE CAVITY OPTOMECHANICS

In this section we show that the effective parametric
driving of the out-of-plane phonons Eq. (4) in a multi-
mode cavity optomechanical setting. Mathematical for-
malism is essentially an extension of [1, 7, 12] to a multi-
mode cavity case. By denoting the annihilation operator
of photon field with the transverse momentum k as Ek,
the photon-phonon Hamiltonian reads:

Hint =
gph√
N

∑
k,q

E †k+qEkφq (16)

Hphon =
∑
q

ωqa
†
qaq (17)

Hphot = ωcav
∑
k

E †kEk + ζ
(
E0e

iΩ1t + E †0 e
−iΩ1t

)
(18)

where gph is the photon-phonon coupling constant, ζ
stands for the cavity driving rate, ωcav is the cavity fre-
quency. In addition, we assume that photons are para-
metrically driven at the frequency 2Ω2 with the driving
strength ξk:

Hpar =
∑
k

ξk
2

(
EkE−ke

2iΩ2t + E †kE †−ke
−2iΩ2t

)
(19)

We now linearize the interaction Hamiltonian assuming
the driving is strong enough and get:

Hint =
ζssgph√
N

∑
q

(
E †qe

−iΩ1t + E−qe
iΩ1t

)
φq (20)

where the mean-field cavity coherence is 〈E0〉 ≈ ζsse−iΩ1t

with ζss = −ζ/(ωcav −Ω1). We now transform to the in-
teraction picture: Eq → Eqe

−iΩ2t and aq → aqe
i(Ω2−Ω1)t

and neglect all rotating terms:

Hint ≈
ζssgph√
N

∑
q

(
E †qaq + Eqa

†
q

)
(21)

Hphon =
∑
q

δqa
†
qaq (22)

Hphot = ∆cav
∑
k

E †kEk (23)

Hpar =
∑
k

ξk
2

(
EkE−k + E †kE †−k

)
(24)

where ∆cav = ωcav − Ω2 and δq = (ωq − Ω1 + Ω2).
Adiabatic elimination of cavity modes. We First do
the Bogolyubov transform: Ek = uqγ

†
q + vqγ−q and

Λk =
√

∆2
cav − ξ2

k. And second, we eliminate γq assum-
ing it is in vacuum state. For Λk � δq :

Hphon =
∑
q

(
δq +

∆cav

∆2
cav − ξ2

q

ζ2
ssg

2
ph

N

)
a†qaq

+
ζ2
ssg

2
ph

2N

∑
q

ξq
∆2

cav − ξ2
q

(
a−qaq + a†qa

†
−q

)

A. Squeezing by light modulation

In this section we consider the multimode membrane
squeezing by light modulation in analogy to [9]. We start
with the Hamiltonian Eqs. (16-18):

Hint =
gph√
N

∑
k,q

E †k+qEkφq (25)

Hphon =
∑
q

ωqa
†
qaq (26)

Hphot = ωcav
∑
k

E †kEk +
(
ζ∗ (t) E0e

iΩ1t + ζ (t) E †0 e
−iΩ1t

)
(27)

We note that the driving Hamiltonian is now time de-
pendent ζ (t). We now transform into the rotating frame
with respect to the laser carrier frequency Ω1 and dis-
place the cavity variables by their mean-field value: E0 →
ζ(t)
∆cav

+ E0, where ∆cav = Ω1 − ωcav. Assuming ∆cav is
the largest energy scale we find:
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Hint ≈
gph

∆cav
√
N

∑
q

(
E †qζ (t) + ζ∗ (t) E−q

) (
aq + a†−q

)
(28)

+
gph√
N

|ζ (t)|2

∆2
cav

φ0 (29)

(30)

Hphon =
∑
q

ωqa
†
qaq (31)

Hphot = −∆cav
∑
k

E †kEk (32)

We now assume ζ (t) = ζ cos ((ω0 − ξ) t), where ω0 =
ωq=0 and ξ is some frequency offset that we identify be-
low. We transform phonon modes into rotating frame
with respect to ω0 − ξ :

Hint ≈
gphζ

2∆cav
√
N

∑
q

(
E †q

(
aq + a†−q

)
+ E−q

(
aq + a†−q

))
(33)

(34)
(35)

Hphon =
∑
q

(ωq − ω0 + ξ) a†qaq (36)

Hphot = −∆cav
∑
k

E †kEk (37)

We now eliminate the cavity mode and find:

Hint ≈ −
g2
phζ

2

4∆3
cav

∑
q

(
aq + a†−q

) (
a−q + a†q

)
(38)

Hphon =
∑
q

(ωq − ω0 + ξ) a†qaq (39)

We now see that upon choosing ξ =
g2phζ

2

4∆3
cav

we can para-
metrically excite the phonon mode.
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