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High-order multipole radiation from quantum Hall states in Dirac materials
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We investigate the optical response of strongly disordered quantum Hall states in two-dimensional Dirac
materials and find qualitatively different effects in the radiation properties of the bulk versus the edge. We show
that the far-field radiation from the edge is characterized by large multipole moments (>50) due to the efficient
transfer of angular momentum from the electrons into the scattered light. The maximum multipole transition
moment is a direct measure of the coherence length of the edge states. Accessing these multipole transitions
would provide new tools for optical spectroscopy and control of quantum Hall edge states. On the other hand,
the far-field radiation from the bulk appears as random dipole emission with spectral properties that vary with the
local disorder potential. We determine the conditions under which this bulk radiation can be used to image the
disorder landscape. Such optical measurements can probe submicron-length scales over large areas and provide
complementary information to scanning probe techniques. Spatially resolving this bulk radiation would serve as
a novel probe of the percolation transition near half filling.
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I. INTRODUCTION

The advent of graphene and other two-dimensional (2D)
materials has significantly increased the number of optically
accessible, two-dimensional electron systems that exhibit the
quantum Hall effect [1–4]. These materials can be engineered
into devices with nearly atomic scale precision, enabling
advances in the manipulation and spectroscopy of quantum
Hall states [5,6]. As compared to low-frequency transport
and electrical control, optical methods do not require ohmic
or superconducting contacts and can be reconfigured on
submicron-length and sub-ps time scales. Motivated by the
prospect for quantum optical manipulation of quantum Hall
states in these materials, we investigate fundamental effects
in their optical response when the wavelength of light is
much less than the size of the sample. This knowledge can be
used to design optical-based protocols for spatially resolved
manipulation and spectroscopy of quantum Hall states.

Optical studies of quantum Hall systems display a rich
phenomenology due to the strong effect the magnetic field
has upon the electronic orbitals and levels. For laboratory
magnetic fields, intraband Landau-level transitions typically
lie in the far-infrared (IR) portion of the electromagnetic
spectrum [7–11]. The long wavelength of these transitions
enables several novel applications to quantum optics [12–22],
but increases experimental difficulty. Interband transitions
can cover a wide range of wavelengths depending on the
band structure and have been extensively studied in AlGaAs
heterostructures for spectroscopy of fractional quantum Hall
states [23–29]. Inter-Landau-level transitions in graphene have
been spectroscopically probed from terahertz up to optical
frequencies [30–38]. In the transition-metal dichalcogenides,
the magneto-optical response is typically dominated by ex-

citonic effects due to the large exciton binding energy in
these materials [39–45]. However, optical signatures of inter-
band Landau-level transitions have been directly observed in
WSe2 [46].

In this paper, we investigate 2D materials whose low-
energy band structure can be approximately described by
a Dirac model, which we refer to as 2D Dirac materials
(2DDMs). We show that the quantum Hall edge states support
high-order, radiative multipole transitions. These transitions
are a consequence of the large electronic coherence length
and topological translation symmetry of the edge states, but
have been overlooked in previous treatments of the optical
response of quantum Hall systems. Accessing these transitions
would allow novel methods for optical spectroscopy and
manipulation of integer and, potentially, fractional quantum
quantum Hall edge states. On the other hand, the radiation
from the bulk of the 2DDMs is dominated by dipole emission,
whose spectral properties are correlated with the disorder
landscape. We find the conditions under which these bulk
optical transitions can be spatially resolved, which enables
optical imaging and manipulation of the potential landscape
of the quantum Hall states.

Consider a 2DDM in the integer quantum Hall regime
with an electron-hole pair excited above the Fermi level. At
integer filling, standard arguments show that the majority of
the states in the bulk are localized due to disorder [47]. When
the localization length of the electron-hole pair is much less
than the optical wavelength, the optical radiation in the far field
will appear as dipole emission, but with a spectrum that varies
with the local disorder potential [see Fig. 1(a)]. This argument
demonstrates that spatially mapping out the emission spectrum
across the sample will reveal correlations in the disorder on
the scale of the optical wavelength.
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FIG. 1. (a) In the presence of a large magnetic field, the electronic
states of the 2DDM are quantized into Landau levels, which we
index by their angular momentum −h̄m. The majority of the states in
the bulk are localized by disorder, leading to interband radiation
dominated by dipole emission. The spectrum of this radiation is
spatially correlated with the disorder potential. Here, Ec(v) refer to
the energy of the conduction (valence) band and EF is the Fermi
energy. (b) An electron excited at the edge of the system can emit
light with orbital angular momentum h̄� by recombining with a hole
in the state, m′ = m − �.

As the electron-hole pair approaches the edge, the situation
changes dramatically because these states are not localized and
exhibit electronic coherence that extends across the entire sam-
ple [47]. Furthermore, due to the magnetic field, the edge states
carry a large angular momentum. In principle, this angular
momentum can be transferred into the optical radiation during
emission. Such a transfer process is necessarily associated with
the presence of higher-order multipole moments in the far-field
radiation.

To examine the nature of the spontaneously emitted
radiation, we also decompose the optical field into eigenmodes
of Lz about the center of the 2DDM sample with orbital
angular momentum (OAM) h̄� and longitudinal momentum
h̄k. Such states are known as cylindrical vector harmonics and
are closely related to the cylindrically symmetric Laguerre-
Gaussian modes within the paraxial approximation [48]. Due
to disorder, the electrons on the edge will not be in a pure
angular momentum eigenstate, but will be in a superposition
of angular momentum states narrowly peaked around the value
me ∼ r2

e /�2
c , where re is the approximate radius of the edge

and me is the angular momentum quantum number defined
in a gauge-invariant manner in Appendix A. The multipole
transitions arise because any electron in the conduction band
in the angular momentum state m can conserve total angular
momentum by recombining with a hole in the valence band
in the state m′ and emitting light with OAM � = m − m′ [see
Fig. 1(b)]. We find that these transitions are allowed with a
nearly uniform branching ratio up to a cutoff give by 2πre/λ,
where λ is the optical wavelength. When the dephasing of the
electron transport on the edge is included, this scaling should
be modified to �φ/λ, where �φ is the coherence length of the
edge states.

These arguments are quite general and demonstrate that
the multipole radiation is a direct consequence of the large
electronic coherence length of the edge states. To understand
the behavior and scaling of these transitions in more detail, we
consider a cylindrically symmetric edge below such that the
multipole radiation pattern can be calculated analytically.

II. DIRAC MODEL

We consider the low-energy Dirac Hamiltonian of the form
(neglecting spin)

H = h̄v k · τ + m0v
2τz, (1)

where v is the Dirac velocity, k = (kx,ky) is the in-plane wave
vector, τ = (τx,τy,τz) are Pauli matrices operating on the Dirac
pseudospin, and m0 is the effective Dirac mass. At zero mag-
netic field, the spectrum of H is ε(k) = ±

√
m2

0v
4 + v2|k|2. For

large Bz, the energy spectrum is quantized into degenerate Lan-
dau levels at energies εn = sign(n)

√
m2

0v
4 + h̄2ω2

c |n|, where
n is an integer, ωc = √

2v/�c is the cyclotron frequency, and
�c = √

h̄/eBz is the magnetic length. Throughout this work,
we restrict our discussion to a single valley for simplicity.

The light-matter interaction for H can be found through the
usual prescription k → k − eA/c,

Hint = ev√
2c

[τ+A∗
+(x,y) + τ−A∗

−(x,y)]e−iωt + H.c., (2)

where A± = (Ax ± iAy)/
√

2 are the σ± circularly polarized
components of the vector potential A in the plane of the 2D
material. Due to the Dirac band structure, the pseudospin
operators τ± couple the nth Landau level to both n ± 1 and
−n ± 1. This leads to the optical selection rule for σ± circularly
polarized light: n → n′ with |n′| = |n| ± 1 [30].

We represent the single-particle states in the symmetric
gauge, in which case the eigenstates |n,m〉 take the form [49]

〈x,y|n,m〉 ∝
(

αn

√|n|D|n|−1
ū ū|n|+m

βn

√
2i�cD

|n|
ū ū|n|+m

)
e−|u|2/4�2

c , (3)

where u = x + iy, Dū =− u/2�2
c acts as a raising operator on

the Landau-level eigenfunctions, (α0,β0)T = (0,1), and, for
n > 0 (n < 0), (αn,βn)T are the positive (negative) eigenvec-
tors of the 2 × 2 matrix,

Hn =
(

m0v
2 h̄ωc

√|n|
h̄ωc

√|n| −m0v
2

)
, (4)

whose eigenvalues are the energy eigenvalues εn. We represent
the OAM eigenstates for the optical field in the basis of cylin-
drical vector harmonics [48], which take the form E(x,y,z) =∑

�,k E�,k(r)ei�θ+ikz, where r = |u| and θ = tan−1(y/x).

III. RADIATION FROM THE EDGE

We first consider the light emission from the edge states of
the quantum Hall system. The edge can either be formed by
an external confining potential, at an interface with vacuum
or another material, or from an abrupt change in the local
dielectric environment. An externally applied potential will
generally lead to identical confining potentials for the Landau
levels in the conduction and valence band. As a result, the
optical transitions between edge states will be degenerate with
the transitions in the bulk.

In order to selectively address the edge states, it is desirable
to have a difference in dispersion between the edge states in the
conduction and valence bands [see Fig. 1(b)]. Such a difference
in slope can arise at a sharp interface due to local modifications
of the band structure [50]. In the case of graphene with a
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FIG. 2. (a) Low-energy band structure of graphenelike Dirac
material for zero magnetic field. Here, m0 and v are the Dirac mass
and velocity, respectively, and we only show one of the two valleys.
(b) Amplitude of the cylindrical vector harmonic |E�| for � = 100
with λ0 = 600 nm and index of refraction n0 = 3.2. Because the size
of the optical vortex increases as -λ�, an edge state with radius re

(black circle) can only spontaneously emit into modes with � � re/-λ.
(c) Branching ratio for spontaneous emission into different � modes
for two different values of re/-λ. We took Dirac parameters for WSe2

(m0v
2 ≈ 1 eV and v ≈ 106 m/s [51]) embedded in GaP, Bz = 11 T,

n = 0, and -λ = 30 nm.

vacuum interface, the dispersion of the quantum Hall edge
states depends on whether the edge termination is of armchair
or zigzag type [50]. For |n| > 0, however, all edge states
disperse with the opposite sign in the conduction and valence
band, which allows these optical transitions to be spectrally
distinguished from the bulk. This analysis can be generalized
to include a Dirac mass and one finds that the opposite slope of
the conduction and valence band is preserved. Alternatively,
one can consider an edge formed by a change in the local
dielectric environment, e.g., an additional layer of insulating
material such as h-BN. In this case, the change in the dielectric
screening will modify the contribution of electron-electron
interactions to the interband Landau-level transitions [37],
which will result in optically addressable edge states.

For the case of a cylindrically symmetric edge, the edge
states are approximately given by the angular momentum
states |n,m〉, whose size rm ≈ √

m�c is equal to the radius of
the edge re. As we noted above, one can achieve optical Raman
transitions between edge states by transferring orbital angular
momentum into the light field. To understand the scaling of
the multipole emission with increasing �, we note that light
with OAM � has an optical vortex in the center of size greater
than or equal to -λ�, where -λ = λ/2π [see Fig. 2(b)]. Beyond
this radius, the average intensity of the light is independent
of �. This implies that the emitted light will contain multipole
contributions up to the maximum value �max = re/-λ, where
re is the radius of the edge. In addition, �max will be cut off
by the finite coherence length of the edge states �φ , arising
from electron-electron interactions, intervalley scattering, and

phonon scattering. For integer quantum Hall states in GaAs,
the coherence length was measured via transport methods to
be at least 10–20 μm [52], which is much greater than the
relevant optical wavelengths.

To understand this effect more quantitatively, we decom-
pose the radiative emission rate γm of an excited electron in the
state |n + 1,m〉 into all the multipole moments γm = ∑

��0 γ �
m

[53]. Each individual component can be found using Fermi’s
golden rule for the emission into the free-space modes with a
specified �. We give the matrix elements in Appendix B. Two
illustrative examples are shown in Fig. 2(c) for the n = 0 to
n = 1 transition with Dirac parameters for single-layer WSe2.
We plot the branching ratio γ �

m/γm for two different edge
radii, which confirms the scaling analysis from above. For
re = 1.5 μm, we find a nearly uniform distribution for the
spontaneous emission out to � = 50. Inclusion of disorder will
modify the shape of the distributions in Fig. 2(c), but it will not
reduce �max, which is simply a result of the large coherence
length of the edge states compared to -λ.

IV. RADIATION FROM THE BULK

We now consider the optical emission from the localized
states in the bulk of the 2D material at integer filling.
In particular, we show that the disorder landscape can be
reconstructed through optical imaging of the scattered light.
We can include disorder in the Dirac model by adding all
terms consistent with the symmetries of the hexagonal lattice
(neglecting intervalley scattering) [54],

Hdis = u0(r)I + u(r) · τ . (5)

The first term u0 corresponds to long-range diagonal disorder
arising from, e.g., charged impurities, while the other terms are
associated with shorter-range effects such as, e.g., variations
in the two sublattice potentials (uz), tunneling rates (ux,y), or
the presence of vacancies and defects.

The projection of Hdis into the Landau levels leads to
smoothing of the disorder on the scale of �c. This produces
a potential landscape for each Landau level Un(x,y) =
〈x,y|Trτ (PnHdisPn)|x,y〉, where Pn is a projector into the nth
Landau level and Trτ traces over the pseudospin states. This
landscape gives rise to (1) an adiabatic shift of the edge position
and (2) localized states in the bulk. Thus, the edge multipole
effects remain the same, while the bulk radiation becomes
dominated by transitions between localized states, each with a
different spectral signature [see Fig. 1(a)].

To see how these spectral signatures can be used to
image the disorder landscape, we consider near-resonant
excitation between Landau levels with σ+ polarized light
and a probe whose frequency ω� is scanned through the
resonance h̄ω� = εn+1 − ε−n. The disorder in the optical
transition frequency, U (x,y) = Un+1(x,y) − U−n(x,y), for
n = 0 is shown in Fig. 3(a). To obtain the spatial profile of
emitted light, we approximate the far-field emission pattern
by a convolution of U (x,y) with the filter function ηλ(r) =
sin(4πr/λ)/π2r2, which arises from the diffraction limit.
Here, λ = [(hn0/c)(εn+1 − ε−n)]−1 is the central wavelength
of emitted light and n0 is the index of refraction of the
surrounding substrate. We construct the disorder potential
by finding the probe frequency at which the local scattered
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FIG. 3. (a) The disorder potential U (x,y) for the interband transitions between Landau levels. (b) U (x,y) can be reconstructed by correlating
the amplitude of spatially resolved scattered light with the frequency of the incoming probe. We took the 2DDM to be embedded in GaP
(n0 = 3.2) in a 10 T magnetic field with λ0 = 1 μm. The optical imaging is able to resolve spatial features down to the diffraction limit
λ0/2n0 ≈ 160 nm.

light reaches its maximum amplitude. The resulting optically
reconstructed disorder potential is shown in Fig. 3(b). In
practice, this reconstruction will be limited by the numerical
aperture (NA) of the imaging system. The diffraction limit
in free space is NA � 1; using, e.g., a solid-immersion lens,
one can enhance the upper limit of the NA by the index
of refraction of the lens [55]. Alternatively, super-resolution
techniques would enable imaging far below the diffraction
limit [56,57].

As we are treating the disorder in degenerate, first-order
perturbation theory, we can see from Eq. (4) that for massless
Dirac fermions, U (r) is dominated by the τx disorder, while
for sufficiently massive Dirac fermions, U (r) is dominated by
τz disorder. A related measurement in massive 2DDMs could
be used to indirectly map out the diagonal disorder term u0(r)
by going away from integer filling. In particular, the exciton
binding energy will vary with the local carrier density due to
screening effects. Thus, mapping out the exciton line across
the sample would reveal variations in the local carrier density,
which, in the partially filled, disordered quantum Hall regime,
are directly correlated with the underlying disorder potential
[58,59].

V. ELECTRON-ELECTRON INTERACTIONS

In our analysis, we have largely neglected the effect of
electron-electron interactions on both the disorder landscape
and the optically excited electron-hole pair. Near integer
filling, the interactions will have a minimal effect on the bare
disorder potential because the electronic state is incompress-
ible and cannot screen the disorder [58,59].

The dominant effect of the electron-hole interactions is to
lead to Landau-level mixing and magnetoexciton formation,
which have to be considered separately for the bulk and the
edge. On the edge, magnetoexciton effects are weak because of
the predominantly linear dispersion of the edge states. Landau-
level mixing can then also be ignored because the electron and
hole are both delocalized and interact weakly. For the bulk,
our analysis assumes that the magnetoexciton binding energy
εb is much less than the strength of the disorder potential.

However, in the opposite limit of strongly bound excitons, the
τ disorder will lead to spatial variations in εb. As a result, we
expect our conclusions about mapping the τ disorder to remain
valid in this limit, provided that the disorder potential contains
long-range correlations compared to the magnetoexciton Bohr
radius.

VI. CONCLUSION

We have studied the properties of the optical radiation
from integer quantum Hall edge states in Dirac materials. We
showed that the optical emission from the bulk of the 2DDM
reflects the disorder landscape and, at the edge, high-order
multipole transitions become allowed. As a result, this work
establishes that high-order multipole radiation is an important
component of the optical spectroscopy and control of quantum
Hall states and related topological systems. Furthermore, these
large multipole moments may be useful for applications that
make use of light with large orbital angular momentum [60].
Although in this work we have focused on effects which are
independent of electron-electron interactions, extending the
optical spectroscopy and control techniques described here to
study fractional quantum Hall systems or magnetoexcitons is
a rich avenue for further investigation.
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APPENDIX A: GAUGE-INDEPENDENT DERIVATION
OF OPTICAL SELECTION RULES

The Dirac Hamiltonian in the presence of a constant
magnetic field in the z direction can be diagonalized in
a gauge-independent manner by introducing the canonical
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momentum operators and guiding center coordinate operators
(h̄ = 1),

π = k + eA0

c
, (A1)

R = (X,Y ) = (
x + �2

cπy,y − �2
cπx

)
. (A2)

These operators satisfy canonical commutation relations
[πx,πy] = i/�2

c and [X,Y ] = −i�2
c , which allows one to

define commuting bosonic operators associated with these
coordinates,

a = i�c√
2

(πx + iπy), (A3)

b = X − iY√
2�c

. (A4)

In terms of these operators, the Hamiltonian takes the form

H = iωc(a†τ+ − aτ−) + m0v
2τz, (A5)

which is independent of b. We define the generalized angular
momentum operator [61]

Lz = a†a − b†b − τz/2 + 1/2, (A6)

which commutes with H . In the symmetric gauge, Lz =
xky − ykx − τz/2 + 1/2 is equivalent to the usual angular
momentum operator with the added term (1 − τz)/2. The
simultaneous eigenstates of H and Lz in the K valley are
defined, for n �= 0, as

|n,m〉 = (a†)|n|−1(b†)m+|n|−1

√
(m + |n|)!√|n|!

(
αn

√
(m + |n|)|n|
βna

†b†

)
|0〉 (A7)

and, for n = 0, as

|0,m〉 = (b†)m√
m!

(
0
1

)
|0〉. (A8)

To understand the selection rules, we consider a plane-wave
incident on the 2DDM with in-plane circular polarization σ+
and in-plane wave vector k⊥x̂ directed along the x axis. Using
the representation for the position operator x = �c(b + b† +
a + a†)/

√
2, we can write the light-matter interaction in a

frame rotating with the optical field in terms of the quantum
Hall creation and annihilation operators,

Hint = A0(τ+e−ik⊥�c(b+b†+a+a†)/
√

2 + H.c.). (A9)

In this representation, we can see that the plane wave acts as a
product of coherent-state displacement operators Da(α)Db(α)
with amplitude α = ik⊥�c/

√
2, i.e.,

a e−iq�c(a+a†)/
√

2|0〉 = aDa(α)|0〉 = α|α〉. (A10)

Focusing on the n = 0 state for simplicity, we see that acting
with Hint on |0,m〉 leads to the state

Hint|0,m〉 = A0Db(α)
(b†)m√

m!

(
Da(α)

0

)
|0〉

= A0
(b† − α∗)m√

m!

(
Da(α)Db(α)

0

)
|0〉. (A11)

To evaluate the selection rules, we first note that we can
neglect the effect of the displacement operator Da(α) in the
second line of Eq. (A11) because |α| <

√
2�c/-λ  1 (here

the first inequality follows because k⊥ < 2π/λ). Surprisingly,
however, one is not justified in neglecting α in either the
prefactor of this expression or in Db(α). To understand this
result, we expand Eq. (A11) into the basis |1,m〉 as

Hint|0,m〉 ≈ A0

m∑
j=0

(
m

j

)
(b†)m−j (−α∗)j√

m!

(
1
0

)
|0,α〉

= A0α1e
−|α|2/2

∑
�

Fm,�(α)|1,m + �〉, (A12)

Fm,�(α) =
√

(m + �)!

m!
α�

m∑
j=j�

(
m

j

)
(−1)j |α|2j

(� + j )!
, (A13)

where j� = max(0, − �). Evaluating this sum and using
Sterling’s formula n! ≈ √

2πn(n/e)n, we find that the
multipole moments are actually perturbative in rmk⊥/� =√

m�ck⊥/� and not �ck⊥/� as one would naively expect. In
particular, in the regime where rmk⊥/� < 1, we find the scaling

〈1,m + �|Hint|0,m〉 ∼
(

rmk⊥
�

)�

, (A14)

which is identical to the scaling we find for the cylindrical
vector harmonics in this regime.

For rmk⊥/� > 1, one has to use the nonperturbative ex-
pression from Eq. (A13) to evaluate the multipole transition
moments. Similar to the multipole radiation that we found for
the cylindrical vector harmonics, one finds (after averaging
over k⊥) that this expression is approximately independent
of � in this regime. Thus we see that the gauge-independent
representation of the plane-wave response is nearly identical
to the response we found for the cylindrical vector harmonics
discussed in the main text.

APPENDIX B: SPONTANEOUS EMISSION OF EDGE
STATE IN SYMMETRIC GAUGE

In this section, we define the cylindrical vector harmonic
solutions to Maxwell’s equations. We quantize these modes,
give the expressions for the matrix elements used to calculate
the spontaneous emission of the edge states, and evaluate
the scaling of the spontaneous-emission rate with increasing
OAM.

To construct the cylindrical vector harmonics, we start
with the cylindrically symmetric solutions to the Hemholtz
equation, (∇2 + k2

0

)
ψ�,k(r) = 0, (B1)

which take the form

ψ�,k(r,θ,z) = eikz+i�θJ�(k⊥r). (B2)

Here, (r,θ,z) are the cylindrical coordinates such that
(x,y,z) = (r cos θ,r sin θ,z), � is an integer that labels the
orbital angular momentum, k is the longitudinal wave vector,
k⊥ =

√
k2

0 − k2, and J�(·) are the Bessel functions of the first
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kind. We can construct vector solutions as [48]

M�,k = ∇ × (ẑ ψ�,k)

k⊥
, (B3)

N�,k = ∇ × M�,k

k0
. (B4)

We can use these solutions to construct a complete basis for
the transverse solutions to Maxwell’s equations in free space
in terms of the vector potential in the Coulomb gauge,

A1
�,k = A0 M�,k, (B5)

A2
�,k = A0 N�,k, (B6)

where A0 is the amplitude. The energy density of Ai
�,k is

given by

u = ω2ε0

2k2
⊥

(|M�,k|2 + |N�,k|2)|A0|2. (B7)

We quantize these modes by placing them in a large
cylindrical box of radius R and length L. After quantization,
the normalization constant A0 is set by the condition

∫
d3r u =

h̄ω, where ω = ck0,

A0 =
√

h̄k⊥
2ε0LRω

. (B8)

The key quantities that enter the calculations of the main
text are the dipole matrix elements between the different
Landau-level states. We now give explicit expressions for the
matrix elements between the n = 0 and n = 1 Landau levels.
The n = 0 and n = 1 Landau level in the K valley takes the
form

|0,m〉 = N0
m

(
0
ūm

)
e−|u|2/2�2

c , (B9)

|1,m〉 = N1
m

(
α1ū

m+1

β1

√
2�ci

[
m + |u|2

2�2
c

]
ūm

)
e−|u|2/2�2

c , (B10)

where

N0
m =

√
2

�m
c

√
m!

, (B11)

N1
m =

√
2

�m+1
c

√
(m + 1)!

i
√

2�c√
|α1|2 + |β1|2(10 + 9m)

(B12)

are normalization constants. For n � 0,(
αn

βn

)
= 1√

2|En|(|En| + m0v2)

(
h̄ωc

√|n|
m0v

2 + |En|
)

, (B13)

and for n > 0,(
αn

βn

)
= 1√

2En(En + m0v2)

(
m0v

2 + En

−h̄ωc

√
n

)
, (B14)

where En = sign(n)
√

m2
0v

4 + h̄2ω2
c |n|. The dipole matrix

elements are given by

M
�,k,i
m′,m = 〈1,m′| ev√

2
τ+ Ai

�,k · σ̂ ∗
+|0,m〉

k0rm k0rm (k0rm)2

γ ∼ constant

k0rm 1

γ ∼ (k0rm/ )2

FIG. 4. Scaling of multipole emission rate γ� with increasing
orbital angular momentum quantum number � in the regime where
the dipole approximation breaks down, k0rm � 1.

= ev√
2
α1N

1
m′N

0
m

∫
dr rm′+m+1e−r2/�2

c

× Ai
�,k · σ̂ ∗

+δm′,m−�, (B15)

σ̂± = (x̂ ± iŷ)/
√

2 = e±iθ (r̂ ± iθ̂ )/
√

2, and δnn′ is the Kro-
necker delta function. These integrals can be expressed
analytically in terms of hypergeometric functions.

The spontaneous-emission rate to emit light with orbital
angular momentum � during a radiative transition from |1,m〉
to |0,m + �〉 is given by Fermi’s “golden rule” as

γ� = 2π
∑
k,k⊥,i

∣∣M�,k,i
m,m+�

∣∣2
δ(c

√
k2 + k2

⊥ − E1 + E0). (B16)

The quantity γ�/
∑

� γ� is plotted in Fig. 3(c) of the main text.
To understand the scaling predicted by this equation, we

note that in the generic case where �c  -λ and �  m,m′, we
can approximate the integral in Eq. (B15) by replacing the pho-
tonic mode by its value at r = rm. This follows because the
mode function Ai

�,k varies on the scale of 1/k⊥ > -λ, so it can be
pulled out of the integral over the electronic wave functions,
which are peaked at r = rm with a width given by �c. This
implies the scaling

∣∣M�,k,i
m,m+�

∣∣2 ∼ [J�(k⊥rm)]2. (B17)

As a result, we can find the scaling of γ� by looking at the
different scalings of the Bessel function. This is illustrated in
Fig. 4 in the regime k0rm � 1.

For k⊥rm  �2,

∣∣M�,k,i
m,m+�

∣∣2 ∼ cos2(k⊥rm − π�/2 − π/4), (B18)

which oscillates with �. However, in evaluating γ�, we average
over k⊥, which washes out these oscillations. As a result, in
this regime, γ� is approximately independent of �, in agreement
with the full calculations shown in Fig. 3(c) of the main text.
In the opposite limit k⊥rm � √

�,

∣∣M�,k,i
m,m+�

∣∣2 ∼ (k⊥rm)2�

(�!)2
∼

(
k⊥rm

�

)2�

, (B19)

where we used Stirling’s approximation from above. In this
regime, γ� recovers the typical behavior for higher-order
multipole transitions and decreases exponentially with �.
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A. Imamoğlu, Science 346, 332 (2014).

[30] Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E.
Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, Phys. Rev.
Lett. 98, 197403 (2007).

[31] P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C.
Berger, W. A. de Heer, and M. Potemski, Phys. Rev. B 80,
245415 (2009).

[32] M. Orlita, C. Faugeras, R. Grill, A. Wysmolek, W. Strupinski,
C. Berger, W. A. de Heer, G. Martinez, and M. Potemski,
Phys. Rev. Lett. 107, 216603 (2011).

[33] S. Maëro, A. Torche, T. Phuphachong, E. Pallecchi, A. Ouerghi,
R. Ferreira, L.-A. de Vaulchier, and Y. Guldner, Phys. Rev. B
90, 195433 (2014).

[34] H. Funk, A. Knorr, F. Wendler, and E. Malic, Phys. Rev. B 92,
205428 (2015).

[35] C. Faugeras, M. Amado, P. Kossacki, M. Orlita, M. Kühne,
A. A. L. Nicolet, Y. I. Latyshev, and M. Potemski, Phys. Rev.
Lett. 107, 036807 (2011).

[36] S. Goler, J. Yan, V. Pellegrini, and A. Pinczuk, Solid State
Commun. 152, 1289 (2012).

[37] C. Faugeras, S. Berciaud, P. Leszczynski, Y. Henni, K. Noga-
jewski, M. Orlita, T. Taniguchi, K. Watanabe, C. Forsythe, P.
Kim et al., Phys. Rev. Lett. 114, 126804 (2015).

[38] G. Nazin, Y. Zhang, L. Zhang, E. Sutter, and P. Sutter, Nat. Phys.
6, 870 (2010).

[39] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe,
Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill et al.,
Phys. Rev. Lett. 113, 266804 (2014).

[40] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis,
and A. Imamoglu, Nat. Phys. 11, 141 (2015).

[41] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos,
V. Zólyomi, J. Park, and D. C. Ralph, Phys. Rev. Lett. 114,
037401 (2015).

[42] G. Wang, L. Bouet, M. M. Glazov, T. Amand, E. L. Ivchenko,
E. Palleau, X. Marie, and B. Urbaszek, 2D Mater. 2, 034002
(2015).

[43] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G.
Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Nat. Phys.
11, 148 (2015).

[44] A. A. Mitioglu, P. Plochocka, Á. G. del Aguila, P. C. M.
Christianen, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K.
Maude, Nano Lett. 15, 4387 (2015).

[45] R.-L. Chu, X. Li, S. Wu, Q. Niu, W. Yao, X. Xu, and C. Zhang,
Phys. Rev. B 90, 045427 (2014).

[46] Z. Wang, J. Shan, and K. F. Mak, Nat. Nanotechnol. 12, 144
(2016).

[47] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981); B. I. Halperin,
ibid. 25, 2185 (1982).

[48] C. F. Bohren and D. R. Huffman, Absorption and Scattering of
Light by Small Particles (Wiley, New York, 1983).

235439-7

https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRevLett.116.086601
https://doi.org/10.1103/PhysRevLett.116.086601
https://doi.org/10.1103/PhysRevLett.116.086601
https://doi.org/10.1103/PhysRevLett.116.086601
https://doi.org/10.1038/nnano.2016.42
https://doi.org/10.1038/nnano.2016.42
https://doi.org/10.1038/nnano.2016.42
https://doi.org/10.1038/nnano.2016.42
https://doi.org/10.1038/nphys4084
http://arxiv.org/abs/arXiv:1703.00110
https://doi.org/10.1103/PhysRevB.84.241307
https://doi.org/10.1103/PhysRevB.84.241307
https://doi.org/10.1103/PhysRevB.84.241307
https://doi.org/10.1103/PhysRevB.84.241307
https://doi.org/10.1038/nphys3559
https://doi.org/10.1038/nphys3559
https://doi.org/10.1038/nphys3559
https://doi.org/10.1038/nphys3559
https://doi.org/10.1103/PhysRevB.93.155437
https://doi.org/10.1103/PhysRevB.93.155437
https://doi.org/10.1103/PhysRevB.93.155437
https://doi.org/10.1103/PhysRevB.93.155437
https://doi.org/10.1103/RevModPhys.84.1709
https://doi.org/10.1103/RevModPhys.84.1709
https://doi.org/10.1103/RevModPhys.84.1709
https://doi.org/10.1103/RevModPhys.84.1709
https://doi.org/10.1063/1.96506
https://doi.org/10.1063/1.96506
https://doi.org/10.1063/1.96506
https://doi.org/10.1063/1.96506
https://doi.org/10.1103/PhysRevB.78.073406
https://doi.org/10.1103/PhysRevB.78.073406
https://doi.org/10.1103/PhysRevB.78.073406
https://doi.org/10.1103/PhysRevB.78.073406
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/nphys3164
https://doi.org/10.1038/srep12646
https://doi.org/10.1038/srep12646
https://doi.org/10.1038/srep12646
https://doi.org/10.1038/srep12646
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevA.91.033821
https://doi.org/10.1103/PhysRevLett.109.267403
https://doi.org/10.1103/PhysRevLett.109.267403
https://doi.org/10.1103/PhysRevLett.109.267403
https://doi.org/10.1103/PhysRevLett.109.267403
https://doi.org/10.1103/PhysRevLett.109.267404
https://doi.org/10.1103/PhysRevLett.109.267404
https://doi.org/10.1103/PhysRevLett.109.267404
https://doi.org/10.1103/PhysRevLett.109.267404
https://doi.org/10.1126/science.1216022
https://doi.org/10.1126/science.1216022
https://doi.org/10.1126/science.1216022
https://doi.org/10.1126/science.1216022
https://doi.org/10.1103/PhysRevB.89.165406
https://doi.org/10.1103/PhysRevB.89.165406
https://doi.org/10.1103/PhysRevB.89.165406
https://doi.org/10.1103/PhysRevB.89.165406
https://doi.org/10.1364/JOSAB.33.000C80
https://doi.org/10.1364/JOSAB.33.000C80
https://doi.org/10.1364/JOSAB.33.000C80
https://doi.org/10.1364/JOSAB.33.000C80
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/nphys3850
https://doi.org/10.1103/PhysRevLett.61.605
https://doi.org/10.1103/PhysRevLett.61.605
https://doi.org/10.1103/PhysRevLett.61.605
https://doi.org/10.1103/PhysRevLett.61.605
https://doi.org/10.1103/PhysRevLett.65.637
https://doi.org/10.1103/PhysRevLett.65.637
https://doi.org/10.1103/PhysRevLett.65.637
https://doi.org/10.1103/PhysRevLett.65.637
https://doi.org/10.1103/PhysRevLett.65.641
https://doi.org/10.1103/PhysRevLett.65.641
https://doi.org/10.1103/PhysRevLett.65.641
https://doi.org/10.1103/PhysRevLett.65.641
https://doi.org/10.1103/PhysRevLett.65.1056
https://doi.org/10.1103/PhysRevLett.65.1056
https://doi.org/10.1103/PhysRevLett.65.1056
https://doi.org/10.1103/PhysRevLett.65.1056
https://doi.org/10.1016/S0038-1098(03)00628-8
https://doi.org/10.1016/S0038-1098(03)00628-8
https://doi.org/10.1016/S0038-1098(03)00628-8
https://doi.org/10.1016/S0038-1098(03)00628-8
https://doi.org/10.1038/nphys273
https://doi.org/10.1038/nphys273
https://doi.org/10.1038/nphys273
https://doi.org/10.1038/nphys273
https://doi.org/10.1126/science.1258595
https://doi.org/10.1126/science.1258595
https://doi.org/10.1126/science.1258595
https://doi.org/10.1126/science.1258595
https://doi.org/10.1103/PhysRevLett.98.197403
https://doi.org/10.1103/PhysRevLett.98.197403
https://doi.org/10.1103/PhysRevLett.98.197403
https://doi.org/10.1103/PhysRevLett.98.197403
https://doi.org/10.1103/PhysRevB.80.245415
https://doi.org/10.1103/PhysRevB.80.245415
https://doi.org/10.1103/PhysRevB.80.245415
https://doi.org/10.1103/PhysRevB.80.245415
https://doi.org/10.1103/PhysRevLett.107.216603
https://doi.org/10.1103/PhysRevLett.107.216603
https://doi.org/10.1103/PhysRevLett.107.216603
https://doi.org/10.1103/PhysRevLett.107.216603
https://doi.org/10.1103/PhysRevB.90.195433
https://doi.org/10.1103/PhysRevB.90.195433
https://doi.org/10.1103/PhysRevB.90.195433
https://doi.org/10.1103/PhysRevB.90.195433
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevB.92.205428
https://doi.org/10.1103/PhysRevLett.107.036807
https://doi.org/10.1103/PhysRevLett.107.036807
https://doi.org/10.1103/PhysRevLett.107.036807
https://doi.org/10.1103/PhysRevLett.107.036807
https://doi.org/10.1016/j.ssc.2012.04.020
https://doi.org/10.1016/j.ssc.2012.04.020
https://doi.org/10.1016/j.ssc.2012.04.020
https://doi.org/10.1016/j.ssc.2012.04.020
https://doi.org/10.1103/PhysRevLett.114.126804
https://doi.org/10.1103/PhysRevLett.114.126804
https://doi.org/10.1103/PhysRevLett.114.126804
https://doi.org/10.1103/PhysRevLett.114.126804
https://doi.org/10.1038/nphys1745
https://doi.org/10.1038/nphys1745
https://doi.org/10.1038/nphys1745
https://doi.org/10.1038/nphys1745
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1038/nphys3203
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1088/2053-1583/2/3/034002
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1038/nphys3201
https://doi.org/10.1021/acs.nanolett.5b00626
https://doi.org/10.1021/acs.nanolett.5b00626
https://doi.org/10.1021/acs.nanolett.5b00626
https://doi.org/10.1021/acs.nanolett.5b00626
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1103/PhysRevB.90.045427
https://doi.org/10.1038/nnano.2016.213
https://doi.org/10.1038/nnano.2016.213
https://doi.org/10.1038/nnano.2016.213
https://doi.org/10.1038/nnano.2016.213
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
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