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Thermal radiation as a probe of one-dimensional electron liquids
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Motivated by recent developments in the field of plasmonics, we develop the theory of radiation from
one-dimensional electron liquids, showing that the spectrum of thermal radiation emitted from the system
exhibits signatures of non-Fermi liquid behavior. We derive a multipole expansion for the radiation based on
the Tomonaga-Luttinger liquid model. While the dipole radiation pattern is determined by the conductivity of
the system, we demonstrate that the quadrupole radiation can reveal important features of the quantum liquid,
such as the Luttinger parameter. Radiation offers a probe of the interactions of the system, including Mott physics
as well as nonlinear Luttinger liquid behavior. We show that these effects can be probed in current experiments
on effectively one-dimensional electron liquids, such as carbon nanotubes.
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I. INTRODUCTION

Plasmons are fundamental excitations of electron liquids
that emerge from the coupling between the collective mo-
tion of charge and the electromagnetic field. In conventional
metals in three dimensions, plasmons are gapped to high fre-
quencies, typically above the ultraviolet. However, plasmon
excitations at the surface of metals [1] (surface plasmons)
or in low-dimensional electron systems such as semiconduc-
tor heterostructures, graphene or carbon nanotubes become
gapless [2–5]. As a result, such plasmons can be studied in
more experimentally accessible frequency ranges—from the
microwave to the optical domain [6–14]. The exploitation of
these low-dimensional plasmons for technological applica-
tions including biosensing, optical communication, and infor-
mation processing is a burgeoning field of research [15–17].

Plasmons play a central role in the emergent physics
of low-dimensional electron systems. In particular, one-
dimensional (1D) electron liquids, where electron-electron
interactions play a crucial role, represent an important excep-
tion to Landau’s Fermi liquid theory [18–20]. A conventional
formalism to treat such 1D systems is the Tomonaga-Luttinger
liquid (TLL) framework in which the excitations are de-
scribed by free bosons with an acousticlike spectrum. For
repulsive interactions, the velocity of these excitations v is
renormalized from the Fermi velocity vF , with v > vF . How-
ever, this picture is not exact, and short distance behavior
and nonlinearities can give rise to physics beyond the TLL
paradigm [21–25]. Experimentally, the most common manner
in which 1D systems are probed is by electron transport.
However, transport measurements are often dominated by the
properties of Fermi-liquid leads and DC measurements do not
directly reveal interaction effects [26]. More generally, direct
signatures of non-Fermi liquid behavior remain challenging to
observe experimentally [27].

In this work, we demonstrate that thermal radiation in
the optical range can serve as a novel probe of non-Fermi

liquid behavior in 1D systems. Within the TTL framework,
we develop the theory of radiation from a generic 1D elec-
tron liquid, in terms of a multipole expansion in the small
parameter v/c, valid for long systems (i.e., much longer than
the wavelength of typical radiation). We show that the dipole
radiation offers an alternative probe of the AC conductivity,
σ (ω) [28]. One of the key predictions of the TLL model
is the renormalization of v due to interactions. We demon-
strate how v can be gleaned from the thermal radiation,
by considering both dipole and quadrupole emission. Our
work also shows how radiation offers a probe of more subtle
effects. We calculate the effect of Mott insulating behavior
on the radiative properties of a 1D liquid. Additionally, we
show that the quadrupole radiation field reveals subtle sig-
natures of nonlinear TLL effects. Finally, our theory allows
us to make detailed predictions of these effects for carbon
nanotubes.

Carbon nanotubes are well suited to studies of thermal radi-
ation [29]. Their large (∼eV) bandwidths allow the Luttinger
liquid regime to be probed at room temperature. Although the
radiation from carbon nanotubes has been studied in the con-
text of single electron physics [30] and quantized plasmons
[27,31], the implications of non-Fermi liquid behavior on the
radiation has, to our knowledge, not been explored.

II. LUTTINGER LIQUID

We consider the radiation from a long system [see
Fig. 1(a)], such that the length L of the system greatly
exceeds the characteristic wavelength 1/q of the excitations
of the 1D liquid. This condition gives L � h̄v/kBT and
ensures that finite size quantization is not reflected in the
emission spectrum [31]. Electromagnetic fields couple to
matter via

Hint = −e
∫

dr J(r, t ) · Arad(r, t ), (1)
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FIG. 1. (a) Thermal radiation from an armchair carbon nanotube.
(b) Shaded area indicates regions in the (q, ω) plane for which the
dynamic structure factor S(q, ω) is nonzero for (i) the Tomonaga-
Luttinger model at zero temperature (black line) and (ii) an electron
gas at zero temperature (shaded region). The dotted line shows the
relation ω = cq/ cos θ , which is the condition for momentum to be
conserved. (c) The angular dependence of the radiated power for
a pure dipole (orange inner shell) and dipole with a quadrupole
correction (blue outer shell) where the scale of the quadrupole
correction has been exaggerated.

where Arad is the vector potential corresponding to the
radiation field and J(r, t ) is the three-dimensional electron
number current. Specializing to the case of a 1D electron
liquid oriented along the z axis, we introduce the 1D electron
number current operator j1D(z, t ) whose Fourier transform is
given by

j1D,k =
∫

dz e−i|k|z cos θ j1D(z, t ), (2)

where k is the wave number of the emitted photon and θ is the
angle between k and the z axis, see Fig. 1. The spontaneous
emission rate involving a transition between the many-body
states |n〉 and |m〉 with energies h̄ωn,m is given by Fermi’s
golden rule,

d2Ṅn→m

dω d�
= πe2

h̄ε0

ω2

(2πc)3 |〈m| jk|n〉|2|ẑ · ε̂∗|2,

×δ(ωn − ωm − ω), (3)

where ε̂ is the photon’s polarization. The total rate at which
photons are emitted, Ṅ , can be obtained by summing Eq. (3)
over all initial and final states. The result can be written in
terms of the (current-current) structure factor S(q,−ω) [32].
We obtain

1

L

d2Ṅ

dω d�
= 2παc

ω2

(2πc)3

S
(

ω
c cos θ,−ω

)
ω

sin2 θ, (4)

where c is the speed of light. This expression contains the
following factors: the fine structure constant α ≈ 1/137, a
photon phase space factor ∝ ω2, and S(q,−ω), which for
ω > 0 is related to the loss spectrum of the system [33]. In

deriving Eq. (4), we have assumed that the coherence length
associated with S(q,−ω) is much smaller than the length L of
the system. For a system in thermal equilibrium,

S(q,−ω) = 2χ ′′
j j (q,−ω)

eβ h̄ω − 1
, (5)

where χ ′′
j j (q, ω) is the imaginary part of the current-current

correlator and β = 1/kBT . Equation (5) follows from detailed
balance, i.e., S(q, ω) = eβ h̄ωS(q,−ω).

The spatial dependence of the emitted radiation profile is
obtained by expanding χ ′′

j j (qω, ω) in the small parameter v/c,
which effectively corresponds to the small q expansion

χ ′′
j j (q,−ω) = χ ′′

j j (0,−ω) + 1

2!

∂2χ ′′
j j (0,−ω)

∂q2
q2 + .... (6)

Only even powers of q are allowed for a system with inversion
and time-reversal symmetries. Due to the factor |ẑ · ε|2 =
sin2 θ in Eq. (4), χ ′′

j j (0,−ω) controls the dipole radiation.
Since q ∝ cos θ in Eq. (4), the second term in Eq. (6) describes
quadrupole radiation, which is also studied in this work.

The TLL model describes the low energy properties of a
strongly correlated degenerate electron system. For a nonin-
teracting electron gas, the low-energy excitations are particle-
hole excitations which move at the Fermi velocity vF . For
short-ranged interactions, the charge excitations of the system
can be described by the TLL Hamiltonian

H0 = h̄v

2

∫
dx

[
K (∂xθ )2 + 1

K
(∂xφ)2

]
, (7)

where the charge density is given by ρ = n + ∂xφ/
√

π while
the current is j = v∂xθ/

√
π [19]. This Hamiltonian can be

obtained by bosonizing the electron operators. The quantized
form of the charge excitations of the LL are referred to as
plasmons. The many-body states appearing in Eq. (3) can be
characterized by the occupation number of the corresponding
modes. Equation (1) describes the coupling of these plasmons
to photons.

The propagation speed of the plasmons differs from vF

which can be deduced from the Fermi velocity of graphene
(for the case of armchair carbon nanotubes near half filling,
vF ≈ 1.0 × 106 m/sec). The quantity K = vF /v is a mea-
sure of the strength of the interactions. The noninteracting
limit corresponds to K = 1. For a 1D system with transverse
size R, K = [1 + (2Ne2/π h̄vF ) ln(Rs/R)]−1/2, where Rs is
the screening length of the Coulomb interaction [3,34]. The
parameter N is the number of channels, e.g., in carbon nan-
otubes N = 4, arising from two spin and valley degrees of
freedom, and typically K ≈ 0.2–0.3.

Given that it is the current that couples to the radia-
tion field, the structure factor corresponding to the retarded
current-current correlator χ j j controls the emission spectrum
of the system. The current-current correlator of a Luttinger
liquid is given by

χ j j (q, ω) = v

2π

(
ω

ω − vq + i/τ
+ ω

ω + vq + i/τ

)
, (8)

where τ−1 is the plasmon damping rate, which will be dis-
cussed below. Equation (8) can be obtained from the density-
density correlator χρρ and the continuity equation in the form
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q2χ j j = ω2χρρ [20]. The two terms in Eq. (8) represent right-
and left-moving charged excitations moving with a speed v.

Taking the imaginary part of Eq. (8) yields χ ′′
j j (q,−ω) ∝∑

± δ(ω ± vq) (with τ → ∞). The on-shell condition
ω = ±qv is incompatible with momentum conservation,
ω = cq/ cos θ [see Fig. 1(a)]. We are apparently led to the
conclusion that the TLL model does not admit radiation. The
vanishing of the off-shell spectral weight for the TLL model
can ultimately can be traced to the integrability of the model
(see, e.g., Ref. [35]). Integrable models have the property that
the excitations of the system are infinitely long lived.

In a real quantum liquid, the lifetimes of the plasmonic ex-
citations are rendered finite due to corrections not accounted
for in the TLL model as well as coupling to the external
environment. The latter may include impurities, phonons,
and lossy materials [27]. Here, we account for these effects
by considering an open Luttinger liquid which is coupled
to a bath of harmonic oscillators [36,37]. It is found that
the damping rate τ−1(q, ω) depends on the spectral function
J (q, ω) which is a function of the coupling to the external
modes and the density of these modes [36]. In particular,
we have that Re τ−1(q, ω) ∝ J (q, ω)/ω for ω > 0. The case
of J (q, ω) ∝ |ω| corresponds to an Ohmic bath and is char-
acterized by an ω-independent damping rate. The dipole
radiation is controlled by J (0, ω). We take J (0, ω) ∝ ωα+1

where α is not necessarily an integer. This gives τ−1(0, ω) =
(ω/ω∗)α/τ0. The case α = 0 corresponds to the Ohmic case.
The case of a system coupled to three-dimensional acoustic
phonons described by α = 2 is shown in Fig. 2(b) [37].

III. THERMAL RADIATION

Dipole contribution. The dipole contribution to the radi-
ation is determined by the conductance since, according to
the Kubo formula, the first term of the expansion in Eq. (6)
can be written limq→0 χ ′′

j j (q,−ω) = h̄ω
e2 Re σ (ω). The dipole

spectrum can thus be written as

1

L

d2Ṅdip

dω d�
= 1

8π3ε0c3

ω2 Re σ (ω)

eβ h̄ω − 1
sin2 θ, (9)

where Ṅdip is the rate at which photons are emitted in the
dipole channel. This result demonstrates that the spectrum
of emitted radiation offers a powerful probe of σ (ω). For
the Ohmic case with α = 0, Eq. (8) corresponds to a Drude
conductivity for σ (ω). The emission spectrum (integrated
over all solid angles) is given by

1

L

dṄdip

dω
= 4αv

3π2c2

[
ω2τ (0, ω)

1 + (ωτ (0, ω))2

]
1

eβ h̄ω − 1
. (10)

Figure 2 shows the spectrum of the dipole emission for both
Ohmic and non-Ohmic baths.

For the remainder of the paper, we focus on the case of
an Ohmic bath with τ (0, ω) = τ0. The salient features of the
spectrum depend on the ratio η = kBT τ0/h̄. In the regime
η < 1, the spectrum mimics that of a classical black body
and is characterized by a lack of quantum coherence. For
η  1,

Ṅdip

L
= 8ζ (3)α

3π2

vτ0(kBT )3

c2 h̄3 (11)
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FIG. 2. (a) Log-log plot of the spectrum of photon emission in
the dipole channel for a TLL coupled to an Ohmic bath for various
values of η = kBT τ0/h̄. (b) Same as (a) with Ohmic (α = 0) and
super-Ohmic baths (α = 1, 2) with 1/τ (0, ω) = (ω/ω∗)α/τ0, h̄ω∗ =
kBT/100, and η = 10.

and the emission spectrum has the black-body form for
a hypothetical cylinder of radius αvτ0 with an emissivity
ε = 0.04. This physics may be relevant to the observation
of thermal black-body radiation seen in metallic carbon nan-
otubes [29].

In the opposite regime η � 1, the TLL bosons are phase
coherent and one expects the strongest signatures of non-
Fermi liquid behavior in the radiation. In this case, the total
rate at which photons are emitted goes as Ṅdip ∝ T/τ0, and
the spectrum dṄdip/dω achieves its maximum near ω = τ−1

0 .
The rate at which energy (per unit length) is lost to radiation
in this regime is

Ṗdip

L
= 2αv(kBT )2

9c2 h̄τ0
. (12)

This can be compared with the total power dissipated per unit
length, which is given by πT 2/6h̄vτ0 [19]. Thus, the ratio
of power emitted as radiation to the total dissipated power is
roughly α(v/c)2, which is consistent with our assumption that
only a small portion of dissipation is due to radiation.

Drude behavior in σ (ω) itself should not be taken as
evidence of TLL behavior. Although Eq. (8) formally depends
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on v, one finds that if τ0 is independent of energy, then
σ (ω) becomes insensitive to interactions and the renor-
malization effects of v. This follows from the f -sum rule∫ ∞

0 Re σ (ω) dω = πe2n/2m. Consequently, the Luttinger pa-
rameter cannot be extracted from the dipole radiation alone.
As we will show below, v can be extracted if the quadrupole
emission is also known. The observation of a plasmon velocity
v with v > vF would be a signature of TLL physics.

Quadrupole contribution. The quadrupole contribution to
the radiation can be gleaned from the q2 term in the expansion
of χ ′′

j j (q, ω) [see Eq. (6)]. The correction to the distribution
of emitted radiation arising from the quadrupole channel is
given by

1

L

dṄquad

dω
= 4αv3

15π2c4τ0

[
3(ωτ0)6 − (ωτ0)4(

1 + (
ωτ0

)2)3

]
1

eβ h̄ω − 1
. (13)

The correction to the radiated power arising from the
quadrupole radiation goes as Ṅquad ∝ T . Relative to Eq. (9),
Eq. (13) is suppressed by a factor (v/c)2. This relation allows
for a determination of v and thus gives K provided vF is
known.

Nonquadratic perturbations to H0. Perturbations to H0

involving sine-Gordon terms as well as nonlinearities in the
Luttinger model give rise to perturbations to χ ′′

j j (k, ω). The
density dependence of the Luttinger parameters v and K give
rise to scattering among the bosonic quasiparticles [21]. The
interaction between right- and left-moving bosons is described
by

Hγ = γ

∫
dx

[
(∂xϕL )2∂xϕR − (∂xϕR)2∂xϕL

]
, (14)

where the chiral fields ϕR/L = 1
2 (θ ∓ φ). The parameter

γ ∝ h̄[∂n(vK ) − ∂n(v/K )] (15)

and is thus controlled by the density dependence of the Lut-
tinger parameters v and K ; as such, γ vanishes for the standard
Luttinger liquid case in which v and K are independent of
electron density n.

The scattering processes arising from the terms in Hγ con-
tribute to τ (ω) giving rise to a correction to the conductivity
δσ (ω) ∼ γ 4ω3 + O(ω5) for the case of a system with broken
Galilean invariance [38]. This term contributes to the dipole
radiation and corresponds to an integrated flux Ṅdip which
scales as T 6. A more significant contribution to the radiation
arises as a correction to the quadrupole term (13). Computing
the corrections to χ ′′

j j (q, ω) which arise from Hγ at 1-loop, we
find

δχ ′′
j j (q, ω) ∼ γ 2q2

h̄2v
, (16)

for ω � vq. This result may also be obtained from the
continuity equation and the analogous result for the density-
density correlator [23,24]. Physically, δχ ′′

j j (q, ω) arises from
the relaxation of left- and right-moving bosons such that their
momenta nearly cancel. The best chance to observe the effects
of Eq. (16) are in systems with very small effective electron
mass.

At half filling, carbon nanotubes can exhibit a Mott gap
[39]. In the Luttinger liquid framework, a careful microscopic

description of the Coulomb interaction at this filling gives
rise to a variety of sine-Gordon like terms in the bosonization
treatment [38,40,41]. A Luttinger liquid calculation for carbon
nanotubes then shows that for �  h̄ω  kBT , such terms
may be treated as a perturbation and give rise to a correction
to the conductivity which goes as δσ (ω) ∼ �2T 1−2K [3,40].
For η � 1, the integrated flux Ṅdip would receive a correction
scaling as ∼T 2−2K .

Experimental considerations. We now discuss the implica-
tions of our theory for carbon nanotubes. A typical value of the
plasmon velocity is v = 3.0 × 106 m/sec, with K ≈ 0.3. At
T = 800 K, with τ0 = 1 psec, we have η ≈ 100 [42–44]. In-
tegrating Eq. (10) gives Ṅdip/L ≈ 2 × 106 photons/(sec μm).
The scaling relation Ṅ ∝ L is expected to hold as long as
the length of the tube L satisfies L � vτ0 ≈ 1 μm. The ra-
diated power is given by 4 × 105 eV/(sec μm). For radia-
tion in the quadrupole channel, Ṅquad ≈ 0.3(v/c)2Ṅdip ≈ 10
photons/(sec μm). For a given experimental setup, the total
absorbed power will depend on the solid angle subtended by
the detector.

Measurement of the quadrupole contribution to the ra-
diation requires first establishing the symmetry axis of the
emitter. Then, a comparison of the radiation emitted (either the
number of photons or the power per unit time) at two distinct
angles θ1 and θ2 can be used to fix the ratio of radiation in
the dipole and quadrupole channels, allowing a determination
of v and K provided vF is known. In addition to the ‘intrinsic’
quadrupole moment predicted here, an additional contribution
to the quadrupole radiation would arise for a finite length
system even if the radiation were emitted only in the dipole
channel. This geometric effect would scale as L2 whereas the
quadrupole effects described here are proportional L.

IV. CONCLUSIONS

In this work, we have developed a general theory of ra-
diation from a 1D non-Fermi electron liquid. We find that
dipole and quadrupole radiation taken together can be used
to pinpoint Luttinger behavior in a 1D system. An inter-
esting aspect of our results is that in the strongly damped
limit, the dipole spectrum of a LL coupled to an Ohmic
bath mimics the spectrum of a three-dimensional black body
which may partially explain a previous experiment [29]. A
clear signature of TLL physics is the characteristic power-
law renormalization we predict due to Mott insulating be-
havior. Quadrupole radiation also bears subtle signatures of
nonlinear TLL effects by revealing the interactions between
bosonic quasiparticles. Our work is readily generalized to
experimental setups that measure optical conductivity and
demonstrates that rich physics is encoded in the quadrupole
radiation profile such as the Luttinger liquid parameter. More
broadly, integrating strongly-correlated electron systems with
nanophotonic devices could allow for more novel probes of
the radiative output.
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