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Electronic transport is localized in low-dimensional disordered media. The addition of gauge fields to
disordered media leads to fundamental changes in the transport properties. We implement a synthetic gauge
field for photons using silicon-on-insulator technology. By determining the distribution of transport
properties, we confirm that waves are localized in the bulk and localization is suppressed in edge states. Our
system provides a new platform for investigating the transport properties of photons in the presence of
synthetic gauge fields.
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Photons provide a natural and convenient medium to
investigate fundamental quantum transport properties [1,2].
Using photons, one can selectively excite states, and
observe both the spectral and spatial responses throughout
the material, which are challenging tasks in electronic
systems. Experimental efforts studying gauge fields with
photons have been limited to the microwave domain [3–7],
while investigations in the optical domain have remained
elusive. This is due to the fact that magneto-optic effects—
the simplest source of coupling between gauge fields and
photons—are extremely weak at optical frequencies.
Recently though, there have been a significant number
of proposals to synthesize gauge fields for optical photons
[8–13]. In particular, two concurrent experiments showed
exemplary signatures of topological edge states through
direct imaging [14,15]. Here we report the first observation
of the robust nature of topologically protected edge states
using an analysis of the statistics of transport properties
(transmission and delay). We use a 2D lattice of coupled
ring resonators with a synthetic magnetic field, imple-
mented using silicon-on-insulator technology. By consid-
ering the distribution of Wigner delay times [16,17], we can
unambiguously distinguish nonlocalized diffusive transport
in lossy edge states from tunneling through localized bulk
states. Finally, we compare the transmission of topologi-
cally ordered edge states to the transmission in a topologi-
cally trivial one-dimensional system.
Our experiments are performed on a two dimensional

lattice of coupled ring resonators [18] [Fig. 1(a)]. The ring
resonators are coupled using another set of link rings which
are designed to be antiresonant to the main ring resonators,
i.e., the length of the connecting rings is slightly longer than
the main rings so as to acquire an extra π phase shift. The
link resonators are spatially shifted, along the y axis, with
respect to the main lattice-site resonators such that transit-
ing photons acquire a phase yϕ when hopping along the x
axis at a lattice site with row index y [8]. Therefore, a round

trip along any plaquette [consisting of 4 ring and 4 link
resonators, see Fig. 1(a)] results in a total accumulated
phase of magnitude ϕ with a � sign corresponding to the
direction (clockwise or counterclockwise) of travel along
the plaquette. Here we only excite and measure the
counterclockwise mode in the main ring resonators, with
the input port as indicated in Fig. 1(a). This system is
equivalent to a uniform synthetic magnetic field with flux ϕ
penetrating each plaquette of a 2D photon gas, with the
tight-binding Hamiltonian

H0 ¼ −J
X

x;y

â†xþ1;yâx;ye
−iϕy þ â†x;yâxþ1;yeiϕy

þ â†x;yþ1âx;y þ â†x;yâx;yþ1; ð1Þ

where J is the coupling rate between the on-site rings, and
âx;y and â†x;y are the photon annihilation and creation
operators at a main resonator site with indices x, y.
For an infinite lattice, the energy eigenvalues of this

Hamiltonian constitute the famous Hofstadter butterfly
spectrum [8]. The eigenvalues group into allowed energy
bands separated by band gaps, forming a topological
insulator. For a finite lattice, the band gaps are populated
with so-called edge states. The edge states are unidirec-
tional, clockwise (or counterclockwise) propagating states,
with their wave function confined to the perimeter of the
lattice. We call these long-edge and short-edge states
[Fig. 1(a)], respectively, because of the length they travel
along the lattice edge from input to output port. These states
are in sharp contrast with the eigenstates in the allowed
energy bands, which are called bulk states. In the presence
of lattice disorder, such as resonance frequency mismatch
and coupling variations, bulk states become localized as the
sample size exceeds the localization length [Figs. 1(c)–(f)]
[19]. In our system, bulk states are localized in even the
smallest samples (4 × 4). Edge states, on the other hand, are
topologically protected and their wave functions are robust
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against disorder in the lattice. As a result, edge state wave
functions propagate along the entire edge of the lattice
irrespective of the lattice size, although their intensity falls
due to absorption and scattering loss from waveguide
surface roughness. Our goal here is to leverage quantitative
measurements of transmission and delay time to unambig-
uously demonstrate the robust nature of edge states and
distinguish them from bulk states. We show that edge state
transport is diffusive and the delay distribution is Gaussian
and centered at the average, while for bulk states the delay
distribution is asymmetric with the peak value being well
below the average, similar to the localization typical in one
dimension [17,20,21].
We implemented this system using silicon-on-insulator

(SOI) technology. The devices were fabricated at the IMEC
foundry using deep-UV projection photolithography [14].
The resonator waveguide cross section is 510 nm in width
and 220 nm in height, which allows only a single TE mode
to exist in waveguides. The coupling region between all
rings consists of a linear waveguide section of 7 μm with
coupling gap of 180 nm, resulting in a uniform coupling
rate J. The system is probed using input and output
waveguides coupled to the lattice, with a coupling rate
κex [Fig. 1(a)]. Light coupled to the lattice at the input port
travels through the lattice and appears at the drop port. The
fraction of input light which does not couple to the lattice
travels to the through port. The light backscattered, due to
waveguide surface roughness and reflections in the cou-
pling region, is directed to the backscattering port. The
backscattered light intensity is about 30 dB lower than that
observed at the drop port, indicating negligible back-
scattering. The main disorder terms affecting our system

are the resonance frequency mismatch of the main ring
resonators (Δω0), variations in the resonator coupling
strength (ΔJ), variations in the resonator loss rate (Δκin)
and disorder in the hopping phase (Δϕ). We have charac-
terized all these disorder contributions to our system using
single ring devices [22]. For transmission and delay-time
measurements, we use an optical vector analyzer (LUNA
OVA5000) based on swept wavelength interferometry [25].
The Wigner delay time (single channel) for propagation is
then calculated as a derivative of phase with respect to
angular frequency. Unlike transport time, Wigner time can
be negative for anomalous dispersion regions around a
phase jump. The negative delay values also appear in
simulations where the delay is calculated similarly.
Figures 2(a) and 2(b) show the observed transmission

and delay spectra at the drop port for eight different 8 × 8
lattice size devices. While the spectra differ significantly
because of intrinsic fabrication variations in waveguide
dimensions, we can already see the first manifestation of
robust edge states in the form of two regions with sup-
pressed variance across devices, in both the transmission
and delay spectra (red and green shaded). Since edges states
are topologically constrained to travel along the lattice
edge, device-to-device fabrication variations in system
parameters do not affect the edge state wave functions
as much as they do for bulk states. Edge states therefore
show reduced variation. Using numerical modeling includ-
ing our measured values for disorder [22], as shown in
Figs. 2(c) and 2(d), we can identify these regions as the
long edge and the short edge.
We next analyze the delay distribution to distinguish the

behavior of edge and bulk states. This approach provides an

FIG. 1 (color). (a) SEM image of a 2D lattice with the measurement setup. Light is coupled into the lattice or chain at input port
exciting a counterclockwise rotating mode. The output at the drop port is measured using an optical vector network analyzer (OVA). An
erbium-doped fiber amplifier (EDFA) and variable optical attenuator (VOA) are used to control input power along with a polarization
controller. (b) SEM image of a 1D device with 10 main rings. Main rings are coupled using link rings similar to 2D devices.
(c) Simulated edge state intensity and (d) bulk states intensity for an 8 × 8 lattice averaged over 50 realizations. The edge states span the
long edge of the lattice, whereas the bulk states are localized near the input port. (e),(f) Simulated intensity images for edge and bulk
states in a 15 × 15 lattice. The long-edge wave function still extends across the lattice edge, but the bulk state is again localized with
localization extent independent of lattice size.
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unequivocal signature of localization [17,20,26].
Figures 2(e) and 2(f) show the measured and simulated
delay distributions for the edge and bulk states in 8 × 8
lattice-sized devices and highlight the remarkable differ-
ence between edge and bulk states. For edge states, the
delay distribution normalized to its average (in actuality, we
used root mean square to allow for negative delay values) is
approximately Gaussian with a Gaussian width indepen-
dent of system size. This behavior is characteristic of
diffusive transport as seen previously in one-dimensional
systems [18]. The bulk state distribution is, however,
asymmetric with the most probable value being less than
the average. This feature is reminiscent of transport
governed by localization which also has been observed
earlier in the microwave regime for one-dimensional
systems [17]. For localized transport, the delay spectrum
exhibits spikes [see Fig. 2(b)] which manifest in the
asymmetric delay statistics. These spikes appear due to
resonant tunneling through localized states in the bulk [27].
Therefore, even in the presence of loss, delay distribution
can clearly differentiate two different regimes of transport
in the same photonic system. Our measured results show a
good match with numerical modeling. We observe similar
behavior for other lattice sizes as well [22].
A test to further establish the topologically protected

nature of edge states would be a comparison of the
transmission scaling with system size for an edge state
against that of a topologically trivial 1D system [18,28],

both with similar degrees of disorder. Fabrication-induced
disorder in a 1D ring resonator array leads to a spread in the
resonance wavelengths of the resonators. This impedes the
forward propagation of light, increases backreflection, i.e.,
less light is coupled into the array, and, hence, the trans-
mission at output is reduced [29]. Ultimately, as the array
length increases, Anderson localization halts transmission
of the light [30–32]. Edge states, on the other hand, are
unidirectional and immune to reflection caused by disorder.
Therefore, transmission through edge states is expected to
be less affected.
Figure 3(a) shows the measured average transmission

and its standard deviation across a number of chips (95 in
total) for the long-edge state band in 2D lattice and the
midband of the 1D array as a function of system size, i.e.,
the number of resonators traveled from input to output
(excluding the link resonators). Transmission in both the
long-edge state as well as the 1D system decays exponen-
tially with system size. A linear fit to measured trans-
mission (in dB) in the long-edge band gives the decay slope
as −0.75ð20Þ dB per ring but for 1D transmission the slope
is−0.93ð16Þ dB per ring, where uncertainties represent one
sigma standard deviation. Transmission along the long-
edge state can be seen to decay at a slower rate when
compared to 1D transport. Simulation results using the
experimentally estimated parameters are also presented in
the figure. The simulated transmission decay slopes are
−0.66ð2Þ and −1.06ð5Þ dB per ring, respectively, for the
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FIG. 2 (color). (a) Measured transmission and (b) delay-time spectra for eight 8 × 8 lattice size devices. The spectra have been
normalized and shifted along the x axis to superpose them [22]. Two regions with reduced variance in transmission and delay are
indicated (shaded red and green). The noisy bulk states region is shown in blue. (c),(d) Simulated transmission and delay with the
average (solid blue line) and 95% confidence band (gray shaded area) determined from the standard deviation across devices.
(e),(f) Measured and simulated delay statistics for edge and bulk states. The delay distribution for edge states is Gaussian, indicating
diffusive transport. For bulk states the distribution is asymmetric, showing localized transport. Data is taken across 8 devices. The delays
are normalized to the average (rms) and the overall delay distribution is normalized to the in-band average and the delay distribution is
normalized such that the area under the curve is unity.
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long-edge state and one dimension. The experimental and
simulation results are seen to agree, given that the number
of devices measured for each lattice size is only ≈8 versus
the 5000 realizations for each simulation. In order to
differentiate the decay of transmission with system size
resulting from resonator losses characterized by κin, from
losses due to disorder—both resulting in exponential
attenuation—we plot the simulated result for transmission
without disorder (presented as a dashed line). In that zero
disorder limit, both the 2D and 1D systems are similarly
attenuated by loss with a decay rate of 0.46 dB per ring.
We, therefore, observe that disorder affects both 2D and 1D
systems, but transport in edge states is less susceptible to
disorder.
Figure 3(b) shows the measured and simulated

average delay and its standard deviation for short-edge

and long-edge-state bands. The measured delay, when
plotted against the number of rings on the short and long
edges of the lattice, increases linearly with a slope
3.9(9) ps and 5.4(1.0) ps per ring respectively for long-
and short-edge states. The simulated delay slopes are
3.2(2) and 4.4(1) ps per ring, respectively. Again, the
experimental results are in agreement with simulations.
Also shown in the figure, for comparison, is the measured
delay in 1D devices. That delay follows the same scaling
as the edge states. However, it can be seen that the
standard deviation in delay for 1D devices is less than that
for edge states. This is contrary to the case of a uniform
magnetic field where the standard deviation of delay in
edge states remains smaller than in a 1D system [8].
Using simulations we have verified that this is due to the
fabrication disorder of Δϕ in the 2D lattice. We further
compare the delay distribution for edge states and a 1D
system. The normalized delay distribution for long-edge
states in a 15 × 15 lattice, and for midband and band ends
of a 30 ring 1D array are shown in Fig. 3(c). We see that
for both edge states and the midband of a 1D array,
transport is diffusive, the distribution is Gaussian and the
width of the distribution is independent of system size.
However, the band edges of the 1D array are localized.
Using simulations, we also find that as the array length
increases beyond 70 rings, even the midband of the 1D
system shows localization.
The silicon-on-insulator technology provides a suitable

platform to investigate the statistical effects of synthetic
gauge fields on various transport properties and to dem-
onstrate the localization of bulk states and the robustness of
edge states. Such a system could pave the way to inves-
tigate the effects of other gauge fields, including those with
magnetic monopoles and floquet properties, with or with-
out Abelian features on bosonic transport. Moreover, the
addition of enhanced optical nonlinearity in these ring
resonator structures opens the door to intriguing questions
on the nature of solutions for nonlinear transport in systems
with topological order.
Certain commercial equipment, instruments, or materi-

als are identified in this Letter to foster understanding.
Such identification does not imply recommendation or
endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or
equipment are necessarily the best available for the
purpose.
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CHARACTERIZATION

To characterize the system parameters, we use one ring resonator with two coupling waveguides (add-drop filter - ADF) and
one ring resonator with a single coupling waveguide (all-pass filter - APF), designed with the same parameters as those ofthe
rings in the lattice. Transmission measurements were made on 26 single ring ADFs on different chips. Using these measurements
κin, κex andJ were measured to be 2.35 GHz, 37.8 GHz and 32.0 GHz with a relative standard deviation of 20%, 4% and 4%
respectively. The magnetic fluxφ is designed to beπ

2
. For 1D devices, the measured bandwidth was less than that expected from

simulations withJ=32 GHz. Therefore, for 1D simulations, a corrected value ofJ=25 GHz was used. A similar procedure was
used earlier to estimateJ for a 1D array of coupled resonators in [1]. Fabrication errors also result in a variation of the resonance
frequencyν0 of the rings in a given lattice. The standard deviation∆ν0 was estimated using transmission measurements on
three chips with five all-pass filters each, with a physical separation of the APFs commensurate to rings in a lattice.∆ν0 can
then be used to calculate the deviation of optical path length and hence∆φ in the link rings.∆ν0 was estimated to be 27.5 GHz
and∆φ to be 0.1.

CALIBRATION OF SPECTRA

Each transmission and delay spectrum shown in this work is normalized to the corresponding measurement made away from
the resonance band, at the through port. The measurements thus normalized give the actual transmission and delay incurred
only through the lattice and excludes those in the coupling waveguides and connecting fibers. Because of the intrinsic spread
in resonance frequencies resulting from fabrication disorders, the measured and simulated spectra have been shifted along the
frequency axis to superpose them. Since the spectra are expected to be disparate in the bulk region [2], we can rely only onthe
edge state regions to superpose them. For measured spectra,we therefore first do a manual coarse shift to align similar looking
features in the expected edge state regions of the spectra. This accounts for∆ν0 across various chips (which is much greater
than∆ν0 for a given lattice). Then we analyze the standard deviationof transmission and delay across devices as a function
of frequency and find that the edge states are evident as regions with reduced noise. To verify this evidence for edge states
and also to align them further, we require an algorithm basedon quantitative measurements of transmission (T) and delay-time
(τ ). Weighted delay timeW (ν) = T (ν)τ(ν) is one parameter that accounts for both our measurements andhas been used
extensively to study transport properties in random media [3, 4]. For completely random transport, as is the case for bulk states,
we expect increased variations inT (ν) andτ(ν) and hence also inW (ν) as a function of frequency. On the contrary, transport
through the edge states band follows a definite path and should therefore display regions with reduced variance inW (ν). We
accordingly use the standard deviation ofW (ν) to look for edge state regions and align the measured spectra. Each spectrum is
shifted such thatfν given by

fi =
σν(Ti(ν))

Ti(ν)
+

σν(τi(ν))

τi(ν)
, (S1)

wherei refers to device index, is minimized in the designated edge state bands. The bandwidth of the long edge is found
to be≈10 GHz, independent of the device size while the short edge iswider (12.5 GHz - 19 GHz). For our analysis, we fix
the bandwidth of the short- and long-edge regions to be 10 GHzfor all devices. For simulated spectra, we follow exactly the
same protocol except for the course shift which is not required. The spectra have not been shifted along y axis and there isno
re-scaling of the spectrum.
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FIG. S1. (a,b,c,d)Measured and simulated transmission anddelay spectra for 15×15-lattice-sized devices. (e,f) Measured and simulated delay
distribution. The data is taken across 8 devices.

NUMERICAL SIMULATIONS WITH NOISE

For numerical simulations of the transmission and delay spectrum we use coupled mode analysis treating the ring resonators
as lumped elements [2]. In the tight binding approximation,the resonators are coupled only to their nearest neighbors with a
coupling rateJ . As shown in the supplementary section of [5],J includes the response of connecting rings. The Hamiltonianof
the system is characterized by the resonance frequency of each ring resonatorω0, its coupling rate to its nearest neighborsJ , the
magnetic phaseφ acquired when hopping along nearest neighbors along x-axisandκex, the coupling rate to probe waveguide.

To include lattice disorder into this Hamiltonian, we impose random variations on each of the parameters with a gaussian
probability distribution around the mean. For each numerical realization of the lattice, each resonator ring has noiseadded to it
resonance frequency, coupling rate to neighboring resonators and also to the magnetic phase acquired in hopping along x-axis.
To get mean transmission and delay, we then average the results over 5000 realizations for each device type. Required simulation
parameters and their deviations, characterizing the system and its disorder, have been measured using multiple add-drop filters
as described above.

The fact that the measured transmission scales exponentially and the delay scales linearly with the number of rings on the
edge of the lattice, and both match well with the simulated results, reinforce our claim that the low noise areas are in fact the
short and long edge regions. From simulation, we found that the main disorder terms affecting transmission in a 2D lattice are
∆ω0 and variations in the otherwise uniform magnetic field i.e.∆φ, whereas for a 1D array only the first term is applicable
since there is no magnetic field. In the absence of∆φ, the transmission in the edge state would be even closer to the dashed line
with no disorder. The short-edge transmission in our systemwas however consistently found to be much lower (≈8 dB for 6x6
devices) than expected using simulations, but it tends to match simulation results for bigger sized devices. We expect this to be
the result of some systematic problem with our fabrication process which couples less light to the short edge at the inputport
and hence produces a non-zero intercept on the transmissionaxis. Using through port data, we verified the reduction in coupling
efficiency for the short edge band, for all devices.

SPECTRUM AND DELAY STATISTICS FOR 15×15-LATTICE-SIZED DEVICES

Fig. S1 shows the measured and simulated transmission and delay statistics for 15×15-lattice-sized devices. As was seen in
Fig. 2, the transmission and delay spectra show two regions with reduced noise. The delay statistics is also similar to what is
observed for 8×8-lattice-sized devices. Edge state transport is diffusive whereas the bulk state is localized.



3

 

 

Simulation

 

 

0

0.5

1

1.5

2

0

0.5

1

1.5

2

−0.5 0 0.5 1 1.5 2 2.5 −0.5 0 0.5 1 1.5 2 2.5

Experiment Short Edge

Long Edge

Bulk

(a) (b)

FIG. S2. (a) Gaussian fits to measured delay distributions for edge and bulk states in 8×8-lattice-sized devices. The bulk state distribution
shows a systematic deviation from the Gaussian fit for longerdelay values. (b) Gaussian fits to simulated delay distribution, showing similar
behavior for bulk states.

0

0.4

0.8

1.2

1.6

2

 

 

70x1

30x1

−0.5 0 0.5 1 1.5 2 2.5

FIG. S3. Simulated delay statistics for a 1D array with 70 rings shows localization.

GAUSSIAN FITS TO DELAY DISTRIBUTION

Fig. S2 plots Gaussian fits to measured and simulated delay distributions for 8×8-lattice-sized devices. The bulk states deviate
systematically from the Gaussian fit, towards longer delay times.

LOCALIZATION IN A 1D ARRAY

Fig. S3 shows the simulated delay statistics for a 1D array with 70 rings. The probability distribution is asymmetric indicating
the onset of localization.

MEASURED SPECTRUM FOR 1D DEVICES WITH 10 RESONATOR RINGS

Fig. S4 shows the measured and simulated transmission and delay spectrum for eleven, 1D devices with 10 resonator rings.
The device to device variations in transmission and delay are more or less independent of frequency.
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Device size Worked Bad Did not scan Total

6×6 7 28 0 35
8×8 8 27 0 35

10×10 9 26 0 35
15×15 8 27 0 35
18×18 8 27 0 35
2×1 11 0 21 35
10×1 15 0 20 35
20×1 11 0 24 35
30×1 12 0 23 35
50×1 6 7 22 35

TABLE I. Number of devices measured, good and bad, for each device type

DEVICE YIELD

Table I shows the detailed device yield. For 2D devices, the device yield was found to be≈23%. For 1D devices (other than
50 rings), the device yield was 100%. For 50 ring devices, theyield was≈50%. The devices with a very noisy or attenuated
spectrum were considered as bad.
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