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We show how to realize two-component fractional quantum Hall phases in monolayer graphene by
optically driving the system. A laser is tuned into resonance between two Landau levels, giving rise to an
effective tunneling between these two synthetic layers. Remarkably, because of this coupling, the interlayer
interaction at nonzero relative angular momentum can become dominant, resembling a hollow-core
pseudopotential. In the weak tunneling regime, this interaction favors the formation of singlet states, as we
explicitly show by numerical diagonalization, at fillings ν ¼ 1=2 and ν ¼ 2=3. We discuss possible
candidate phases, including the Haldane-Rezayi phase, the interlayer Pfaffian phase, and a Fibonacci
phase. This demonstrates that our method may pave the way towards the realization of non-Abelian phases,
as well as the control of topological phase transitions, in graphene quantum Hall systems using optical
fields and integrated photonic structures.
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Introduction.—The fractional quantum Hall (FQH)
effect is a fascinating phenomenon, where electron-electron
interactions and a magnetic field lead to strong correlations
[1–3]. Soon after the initial discovery, it was realized [4–7]
and experimentally confirmed [8,9] that the electron spin
plays an important role at several fillings. More generally,
multicomponent FQH phases [10] occur in systems with
subbands, as wide quantum wells [11–14], with layers, as
double wells [15,16], or with degenerate valleys, as an
AlAs quantum well [17] or graphene [18–21]. Much effort
has been made towards engineering system parameters like
tunneling, in order to realize different phases. Here we
propose a new method based on light-matter interactions
which enables flexible control in a synthetic FQH bilayer.
Interactions between light and graphene quantum Hall

samples have been the subject of many theoretical [22–25]
and experimental [26–29] studies. FQH phases in inte-
grated GaAs quantum well-cavity structures have also been
explored experimentally [30]. A distinctive feature of
graphene is the linear dispersion, resulting in nonequi-
distant Landau levels (LLs) [31] which can selectively be
coupled with resonant light.
The present Letter explores this possibility. While in the

absence of light a large gap freezes out all but one LL,
resonant light coupling to an empty level provides an
effective tunneling to this new degree of freedom. The
coupled LLs can then be viewed as two layers of a physical
bilayer. Depending on the tunneling rate, which is tunable
via the laser intensity, the system either polarizes in the
lower dressed LL, or it realizes a singlet phase. An analysis
of the Coulomb interaction between different LLs shows

that the repulsion between singlet pairs becomes particu-
larly small when first and second LLs are coupled,
resembling a hollow-core Haldane pseudopotential
[2,32]. Such an interaction favors the formation of a
many-body singlet phase, which we confirm explicitly
by exact diagonalization (ED), at filling ν ¼ 1=2 and
ν ¼ 2=3. We identify the polarized phases as a composite
Fermi sea (ν ¼ 1=2) [33] and a quasihole conjugate 1=3
Laughlin state (ν ¼ 2=3) [34]. The singlet phase at ν ¼ 1=2
has good overlap with the Haldane-Rezayi phase [35], an
intriguing gapless quantum Hall phase [36–39]. Some
evidence of non-Abelian quantum Hall singlets is found
at ν ¼ 2=3, including the Fibonacci phase [40] and the
interlayer Pfaffian phase [41,42], which are interesting
candidates for topological quantum computing [43].
System.—We consider a monolayer of graphene under a

perpendicular magnetic field, in the quantum Hall regime
[31]. We restrict ourselves to a single valley and assume
that the electron spin is fully polarized. The single-particle
states are given by spinors of the form Ψγ;n;jðzÞ ¼
( − γC−

nϕn−1;jðzÞ; Cþ
n ϕn;jðzÞ)T , where C%

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1%δn;0Þ=2

p

are coefficients, z ¼ x − iy are spatial coordinates, and
ϕn;jðzÞ are the (gauge-dependent) nonrelativistic LL wave
functions, characterized by the LL index n ≥ 0 and a
second quantum number j ≥ 0 [31]. In the symmetric
gauge, j specifies the z component of angular momentum,
while in the Landau gauge, it defines momentum along one
direction in the plane. In graphene, a third quantum number
γ ¼ %1 distinguishes between states at positive and neg-
ative energy, Eγ;n ¼ γωc

ffiffiffi
n

p
, where ωc ¼

ffiffiffi
2

p
vF=lB and
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lB ¼
ffiffiffiffiffiffiffiffiffiffiffi
c=eB

p
is the magnetic length. The magnetic field

strength is B, and the Fermi velocity is vF. In the following,
we drop the index γ and assume γ ¼ þ1, without the loss of
generality.
As illustrated in Figs. 1(a) and 1(b), we consider a

coupling between the partially filled n ¼ M level at the
Fermi surface to the empty LL n ¼ M þ 1, described by
(ℏ ¼ 1):

Hcoup ¼
X

j;j0
Ωj;j0ðtÞc†Mþ1;jcM;j0 þ H:c: ð1Þ

Here, c†M;j and cM;j are the creation and annihilation
operators, respectively, in LLM with the (angular) momen-
tum quantum number j. For simplicity, we assume a plane
wave drive, which acts uniformly on all orbitals:
Ωj;j0ðtÞ¼2Ωδj;j0 cosðωtÞ, withω the drive frequency and the
Rabi frequencyΩ. Within the rotating frame, transformed by
U¼exp½−ði=2Þωt

P
jðc

†
M;jcM;j−c†Mþ1;jcMþ1;jÞ', a rotating-

wave approximation (RWA) removes the time dependence
from the coupling. The effective single-particle Hamiltonian
then reads

Hsp ¼
X

j

−
δ
2
τðjÞz þ ΩτðjÞx ; ð2Þ

with δ the detuning of the light from the LL resonance,
i.e., δ ¼ EMþ1 − EM − ω. The notation of Eq. (2), using
Pauli operators τðjÞz ≡ jM; jihM; jj − jM þ 1; jihM þ 1; jj
and τðjÞx ≡ jM; jihM þ 1; jjþ jM þ 1; jihM; jj, captures
the analogy to a spin-1=2 system, if the n quantum number
is interpreted as the z component of spin, or to a bilayer
system, if n is associated with a layer index. The first term in
Eq. (2) corresponds to a Zeeman term (in the spin picture),
while the second term mimics interlayer tunneling (in the
bilayer picture). Both terms are independently tunable. The
single-particle eigenstates are dressed LLs at energies
% ~Ω ¼ %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδ2=4Þ þ Ω2

p
; see Fig. 1(c). While strong cou-

pling and/or far detuning lead to polarization in the lower
dressed level, bothmanifolds are occupied if the gap between
dressed states becomes small compared to the interaction
strength, e2=ϵlB, i.e., if Ω and δ are sufficiently small.

The transition occurs near Ω ∼ 10−2 (in units of e2=ℏϵlB),
above the threshold required for thermalization in the rotating
frame Hamiltonian, Ω > 10−4, as estimated below.
Applying RWA to the interactions, the many-body

Hamiltonian reads H ¼ Hsp þHint, where

Hint ¼
X

fn;jg
An1;j1;n2;j2
n3;j3;n4;j4δn1þn2;n3þn4c

†
n1;j1c

†
n2;j2cn3;j3cn4;j4 : ð3Þ

The interaction matrix elements An1;j1;n2;j2
n3;j3;n4;j4 are the same as

without light, but the RWA enforces conservation of single-
particle energy, i.e., δn1þn2;n3þn4 .
Results.—Before numerically solving H for small sys-

tems, we gain some intuition by decomposing the inter-
actions into Haldane pseudopotentials [32]. These
pseudopotentials describe the interaction strength Vj of
two particles at fixed relative angular momentum j. In our
case, we distinguish between intralayer processes VðnÞ

j

within LLn and interlayer processes V↑↓;↓↑
j and V↑↓;↑↓

j ,
where the index ↑ð↓Þ shall denote the LLMþ1 (LLM).
Clearly, the difference between VðMþ1Þ

j and VðMÞ
j breaks the

Z2 symmetry usually present in a system of two equivalent
layers. However, as seen from Fig. 2(a), this breaking is
weak, since only potentials at odd j contribute to the intra-
LL scattering of fermions, whereas the strongest n depend-
ence occurs for VðnÞ

0 . A more important difference from
standard bilayer systems stems from the interaction V↑↓;↑↓

j

where scattering particles exchange their LL index, while in
standard bilayers only density-density-type interactions
V↑↓;↓↑
j occur between two layers. Both types of inter-LL

processes can conveniently be accounted for by a single
pseudopotential V inter

j . Therefore, we switch to a singlet or
triplet basis, j%i ∼ j↑↓i% j↓↑i, where the corresponding
pseudopotentials are V%

j ¼ ðV↑↓;↓↑
j % V↑↓;↑↓

j Þ=2. Since
jþi (j−i) is even (odd) under particle exchange, it requires
odd (even) j, and it is sufficient to consider

FIG. 1. (a) A single graphene layer driven by light at Rabi
frequency Ω. (b) LL structure with partial filling and optical
transitions LL0−1 and LL1−2. (c) Formation of dressed states due
to coupling between two LLs.
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FIG. 2. (a) Pseudopotentials for scattering of two particles in
the same graphene LL, n ¼ 0, n ¼ 1, and n ¼ 2. (b) Pseudopo-
tentials for scattering in different LLs, as defined in Eq. (4). If
n ¼ 1 is coupled to n ¼ 2, V inter

j is dominated by the contribution
j ¼ 1.
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V inter
j ¼ ½V↑↓;↓↑

j þ ð−1ÞjV↑↓;↑↓
j '=2: ð4Þ

As seen from Fig. 2(b), these inter-LL pseudopotentials
V inter
j are dominated by j ¼ 0 for a coupling between LL0

and LL1 (denoted LL0-1). In contrast, the repulsion between
singlets at j ¼ 0 is suppressed for a coupling between LL1

and LL2 (denoted LL1-2), and V inter
1 becomes the dominant

contribution. This behavior leads to the general expectation
that coupling LL1-2 favors singlet phases and could give
rise to bilayer quantum Hall phases which are derived from
a hollow-core Hamiltonian. In the following, we will test
this expectation at filling factors ν ¼ 1=2 and ν ¼ 2=3
using ED on a torus [1,44], sphere, and disk [3].
ν ¼ 1=2.—Since the discovery of the FQH effect, under-

standing the physics of a half filled LL has been a
challenge. Early generalizations of the Laughlin wave
functions to systems with spin provide an Abelian spin-
singlet state at ν ¼ 1=2, known as the (331)-Halperin state
[4]. However, in most systems, no quantum Hall plateaux
are observed at ν ¼ 1=2. This fact has been explained by
Halperin, Lee, and Read through a theory which attaches all
magnetic fluxes to composite fermions [33]. As a conse-
quence, these fermions do not feel a magnetic field and may
form a compressible Fermi liquid. In an alternative sce-
nario, the composite fermions undergo BCS pairing which,
due to the Meissner effect, leads to incompressibility
[36,45]. The most prominent paired state is the Moore-
Read Pfaffian state. It involves p-wave pairing and is spin
polarized. In contrast, a spin-singlet state can be obtained
via d-wave pairing and is known as the Haldane-Rezayi
(HR) state [35]. Evidence of non-Abelian excitations has
been discussed for both states [37]. The HR phase has been
identified as a critical phase between strong and weak
pairing [36], providing an example for a gapless FQH
system. Hollow-core two-body interactions, i.e., pseudo-
potentials given by V intra

j ∼ δj;1 and V inter
j ∼ δj;1, yield a

parent Hamiltonian for the HR state.
Accordingly, given the pseudopotential structure of

coupled LLs discussed above, the HR phase becomes a
likely candidate for coupling LL1-2. Indeed, for sufficiently
weak Rabi frequencies, numerical results support this
expectation: In all three geometries, the ground state is a
singlet, having large overlaps with the HR state (see
Table I). We have also evaluated the overlap with the
Jain singlet, which is known to have a large overlap
with the ground state of pseudopotential V0 ≃ V1 [46].
However, since this overlap decreases rapidly with the
system size, we excluded the Jain singlet as a possible
candidate [47]. For the observed singlet phase, the topo-
logical degeneracy on the torus is 4q-fold with ground
states at high-symmetry points K ¼ ð0; 0Þ, K ¼ ð0; N=2Þ,
K ¼ ðN=2; 0Þ, and K ¼ ðN=2; N=2Þ. While this is com-
patible with a (331) phase, no sizable overlap with this
phase is found in any geometry. The HR phase, as obtained
from the hollow-core model, exhibits ground states at the

same high-symmetry K points but has two linearly inde-
pendent ground statesK ¼ ð0; 0Þ. This 5q-fold degeneracy
of the HR phase has been discussed as a consequence of its
criticality [36,37], leading to a zero mode which can be
either occupied or empty. However, the torus degeneracy of
the HR state in the hollow-core model differs from the
number of sectors in the underlying conformal field theory
which is 4q [38], suggesting that the fifth ground state is
not crucial for realizing the HR phase. In light of this point
and based on the strong numerical evidence, the HR
phase appears as the likely description of the observed
singlet phase.
Upon increasing the Rabi frequency, a crossing of energy

levels indicates a second-order phase transition (at Ω ≈
0.025 and δ ¼ 0.02 in units e2=ϵlB, for N ¼ 8 electrons on
the torus). The ground state on the strong-coupling side is
fully polarized in one LL, and the system exhibits Fermi sea
behavior, indicated by ground states at finite angular
momentum on the sphere and at nonzero pseudomomenta
on the torus. A Fermi liquid phase is also found for
coupling LL0-1, where this behavior extends to Ω → 0.
For LL0−1, increasing Ω only rotates the LL polarization
from h

P
jτ

ðjÞ
z i ¼ N and h

P
jτ

ðjÞ
x i ¼ 0 for Ω → 0 to

h
P

jτ
ðjÞ
z i ¼ 0 and h

P
jτ

ðjÞ
x i ¼ −N for Ω → ∞. This pseu-

dospin rotation is understood on the single-particle level by
assuming that the ground state always remains polarized in
the lower dressed LL.
ν ¼ 2=3.—At filling fractions 1=q with q odd, electrons

can anticorrelate by forming a Laughlin state [34].
Similarly, a Laughlin state of holes provides a good trial
wave function at ν ¼ 1 − 1=q, including ν ¼ 2=3. In a
bilayer at ν ¼ 2=3, various singlet phases compete with the
polarized Laughlin state. Similar to the ν ¼ 1=2 case,
Halperin ðmmnÞ states [4] are possible, including the
(112) state and the (330) state, the latter being two
uncorrelated copies of the 1=3 Laughlin states. Apart from
these Abelian phases, there are also different non-Abelian
phases. It has been argued that tunneling between the layers
can transform the (330) state into a phase supporting

TABLE I. Overlaps of ground states in different geometries, for
weak LL1−2 coupling (Ω ¼ 10−3 and δ ¼ 0.02), with the HR
state (ν ¼ 1=2), and with the interlayer Pfaffian (IP) state
(ν ¼ 2=3). At ν ¼ 2=3, fast decay of the overlap with N suggests
a different phase, possibly a Fibonacci phase (see the discussion);
however, we are not aware of unique trial wave functions to test
the overlaps with this phase.

Sphere Disk Torus

ν ¼ 1=2 0.85 (N ¼ 6Þ 0.97 0.83 ðK ¼ 0Þ
(HR) 0.75 (N ¼ 8Þ (N ¼ 6, L ¼ 24) 0.72 ðK ≠ 0Þ

0.72 (N ¼ 10Þ (N ¼ 8Þ
ν ¼ 2=3 0.99 (N ¼ 4Þ 0.81 (N ¼ 6, L ¼ 18)
(IP) 0.55 (N ¼ 8Þ 0.63 (N ¼ 8, L ¼ 36)

0.39 (N ¼ 12Þ
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Fibonacci anyons [40]. These anyons are defined by simple
fusion rules but still allow for universal quantum computing
[43]. Other non-Abelian phases are obtained via p-type
pairing, either between particles within a layer or between
all particles, leading to intra- and interlayer Pfaffian wave
functions [41,42]. Recently, extensive numerical works
have revealed some of these phases if interactions are
properly modified [57–59]. In particular, studies on the thin
torus [40] as well as exact numerics [58] point towards a
Fibonacci phase if the short-range contribution to the
interlayer interactions is weakened.
In both coupling scenarios LL0-1 and LL1-2, ED on a

torus and sphere gives clear hints for a hole-conjugate
Laughlin phase when the Rabi frequency is sufficiently
strong. If the Laughlin state is formulated in a dressed LL
basis, overlaps with this state reach close to 1; see Figs. 3(c)
and 3(d). As already observed at ν ¼ 1=2, the two coupling
scenarios show different behavior when Ω is decreased.
Again, while for LL0-1 tuning the Rabi frequency only
rotates the spin, a transition into a singlet phase occurs for
LL1-2; see Figs. 3(e) and 3(f). In contrast to ν ¼ 1=2, where
the transition occurs between two gapless phases, we now
observe a transition between gapped phases, and the gap
vanishes only at the critical point; see Fig. 3(b). Also, at
ν ¼ 2=3, the transition does not affect the symmetry of the
ground state [K ¼ ð0; 0Þ on both sides].
The identification of the singlet phase at weak LL1-2

coupling is challenging. On the sphere, where our numerics

extend up to 12 electrons, we find large gaps for N ¼ 8 and
N ¼ 12 but tiny gaps for N ¼ 6 and N ¼ 10, suggesting a
tetraperiodic system behavior. While an intralayer Pfaffian
state, requiring mod ðN; 4Þ ¼ 0, would explain this pattern,
the overlap with this state is zero (for N ¼ 8 on a sphere
and disk). In contrast, significant overlaps are obtained with
the interlayer Pfaffian state (see Table I). However, the
corresponding (3q)-fold torus degeneracy is not seen for
eight or ten electrons. Lacking obvious ground state
degeneracies beyond the q-fold center-of-mass degeneracy,
an Abelian phase such as Jain’s spin-singlet state seems
possible [3,46,60], but only infinitesimal overlap is found.
Given the relative weakness of V inter

0 , we shall also consider
the Fibonacci phase. On the torus, it is characterized by 2q
ground states at K ¼ ð0; 0Þ [58]. While we obtain the
second and the third state at K ¼ ð0; 2Þ and K ¼ ð2; 0Þ on
an isotropic torus, squeezing the torus changes this pattern,
and the lowest two eigenstates indeed become singlets at
K ¼ ð0; 0Þ. Moreover, they have large overlaps with the
corresponding eigenstates of the hollow-core Hamiltonian
(0.76 and 0.81 on an isotropic torus), previously identified
as representatives of the Fibonacci phase [58]. This makes
the Fibonacci phase more likely than other candidate
phases, although a final conclusion is impossible based
on the available numerical results.
Thermalization.—In this work, we have assumed that

the electronic system thermalizes to the ground state in the
rotating frame of the optical drive field. To estimate the
validity of this approximation, we must compare the time
scale for relaxation of the optically excited Landau levels to
the time scale for thermalization of the electronic system
with the lattice. The carrier lifetime of optically excited
Landau levels has contributions from optical relaxation,
phonon relaxation, and Auger scattering into other Landau
levels [61]. In Ref. [62], it was measured at moderate
magnetic fields in epitaxial graphene samples to be roughly
10–20 ps. Although one expects longer lifetimes in higher-
quality graphene samples suitable to observe the FQH
effect, we can use this as an upper bound on the relaxation
rate. In units e2=ϵlB, the inverse of this time scale translates
to roughly 10−3 to 10−4, depending on the magnetic field.
For LL0-1 coupling, the Laughlin state of the driven and the
nondriven regime are adiabatically connected, and one can
adiabatically prepare the system by slowly turning on the
light. In contrast, the singlet states for LL1-2 coupling cannot
be connected to the nondriven regime, which makes the
thermalization problem particularly relevant. For the case of
the ν ¼ 2=3 singlet phase, we can roughly estimate the
thermalization time by the size of the many-body gap in the
spectrum, which, from Fig. 3, is on the order of 10−2. As a
result, there is a large separation of time scales between the
thermalization and carrier relaxation, which allows the
system to remain in the rotating frame ground states before
carrier relaxation. For the gapless phases at ν ¼ 1=2, the
system will still thermalize in the rotating frame; however,

FIG. 3. (a),(b) Energy levels (above the ground state in units of
e2=ϵlB) vs Rabi frequencyΩ, for coupling LL0-1 (a) and LL1-2 (b).
(c),(d) Ground state overlaps with trial wave functions (particle-
hole conjugate 1=3 Laughlin state and a singlet phase obtained
from the hollow-core model). Trial states are constructed in three
different bases: (i) LL basis. All the electrons reside in the lower
LL. (ii) Dressed basis. All electrons reside in lower eigenstates
of Eq. (2), i.e., jji ∝ ðδ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4Ω2
p

ÞjM þ 1; jiþ 2ΩjM; ji.
(iii) Antisymmetric basis. All electrons reside in the singlet state,
i.e., jji ∝ −jM þ 1; jiþ jM; ji. (e),(f) Spin polarization Sα ¼
1=2N

P
jh
P

jτ
ðjÞ
α i of the ground state vsΩ for LL0-1 (e) and LL1-2

(f). Data in all panels (a)–(f) were obtained for eight electrons on
the torus, and δ ¼ 0.02.
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the time scale is more difficult to estimate, as it depends on
the slowest diffusive modes in the system.
A more detailed study of the thermalization dynamics in

this regime is beyond the scope of the present work;
however, it is worth noting that there has been recent
progress in the understanding of thermalization of driven
isolated systems [63–65] and also thermalization of Floquet
systems coupled to a bath [66,67]. It has been pointed out
that electron-phonon interaction and specific Fermi reser-
voirs could lead to thermalization of the system in the
rotating frame, in the long-time steady-state limit [67].
In conclusion, we have considered single-layer graphene

in the FQH regime with an optical field in resonance with a
LL transition. The proposed scheme synthesizes a two-
component FQH system, with the light field playing the
role of tunneling between two layers. For weak tunneling
between LL1 and LL2, a many-body singlet phase is formed
at ν ¼ 1=2 and ν ¼ 2=3. In contrast, strong tunneling and/
or tunneling between LL0 and LL1 leads to a polarized
phase within the lower dressed LL. Our study gives new
impetus towards the experimental realization of multi-
component FQH states and in situ control of the phase
transition using externally applied optical fields and gra-
phene. A similar scheme could also be applied to other 2D
materials with Dirac bands, such as monolayer transition
metal dichalcogenides [68,69]. Conceptually, our approach
is also connected to recent quantum simulations with cold
atoms in which novel topological phases are engineered in
synthetic spatial dimensions which are generated by the
optical coupling of internal states [70–77].
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Supplementary online material for the paper
Light-induced fractional quantum Hall phases in graphene

EXACT DIAGONALIZATION TECHNIQUE AND SUPPLEMENTAL NUMERICAL DATA

Disk

Basis states

On a disk the perpendicular magnetic field is most conveniently taken into account by the symmetric gauge A ⇠
(y,�x, 0). The eigenstates of (p � eA)2/2, are then described by the LL index n and a quantum number which is
related to the z-component of angular momentum `

z

= ~(m� n). The (unnormalized) single-particle wave functions
read

�
m,n

(z) ⇠ exp
⇥
|z|/(2lB)2

⇤
zm�nLm�n

n

⇥
|z|/(2l2B)

⇤
, (S1)

with Lm

n

(x) denoting the generalized Laguerre polynomials. The graphene eigenstates are spinors composed by
wavefunctions �

m,n�1(z) and �
m,n

(z), as described in the main text.
Although a real quantum Hall sample usually is flat, as is the disk geometry, calculations on the disk might fail to

describe the physics in the real system due to finite-size e↵ects. In contrast to curved geometries (torus, sphere), the
disk is not compact and thus it exhibits both bulk and edge states. Moreover, there is no natural cuto↵ for the m
quantum number, and thus the filling factor (i.e. electrons per states in a given LL) cannot be defined. Instead, the
state of a few- or many-body system with N electrons is characterized by M =

P
i

m
i

, which in the lowest LL coincides
with the z-component of total angular momentum. This allows for performing exact diagonalization in finite Hilbert
spaces characterized by N and M , and provides a strict cuto↵ for single-particle momenta m

i

 M�(N2�3N+2)/2.
In practice, though, single-particle momenta m

i

relevant for low-energy physics are much smaller, and the cuto↵ can
be chosen di↵erently.

Yrast line

In order to find hints for the phases which might be exhibited also in a larger system, we have scanned, at fixed
particle number N , a range of values M . The behavior of the ground state energy as a function of M , the so-called
Yrast line, is shown in Fig. S1, for couplings LL0�1 and LL1�2. At certain values of M , downward cusps in E(M) give
hints for incompressible phases, since decreasing M from these values is energetically costly, and M also parametrizes
the system size. Notably, these cusps are much more pronounced for coupling LL1�2. In this case, all cusps seen in
Fig. S1 (for N = 6 electrons, cusps at M = 15, 18, 21, 24, 27) come along with a relatively large gap, and the ground
states are fully unpolarized, i.e. P ⌘ (N"�N#)/N = 0. In contrast, for LL0�1, all downward cusps (at M = 15, 21, 25)
stem from almost fully polarized grond states, i.e. P ⇡ N . This observation confirms our expectation that coupling
LL1�2 supports the formation of singlets, while coupling LL0�1 does not.

Overlaps

Further, we have tried to identify the ground states at the cusps by determining the overlap with trial wave functions.
On the disk geometry, decomposing a given N -body wave function into Fock basis states can straightforwardly
be achieved for small systems (see Ref. [1]). We then denote as “overlap” the scalar product between this Fock
representation of the trial wave function, and the Fock representation of our numerically obtained ground state. Of
course, this number would only correspond to the spatial overlap if the Fock basis sets are the same. Here, however,
the numerical wave functions are obtained in di↵erent graphene LLs, while trial wave functions are defined in the
lowest non-relativistic LL (i.e. �

m,0(z)). Yet, since a one-to-one mapping between the two Hilbert spaces exists, our
measure of overlap still serves to compare the correlations in both states.

The ground state at the cusp at M = 18 has significant overlap (0.81) with the interlayer Pfa�an wave function.
A smaller overlap of 0.68 is found with the 330-Halperin state, i.e. a combination of two independent 1/3-Laughlin
states. The overlap with the intralayer Pfa�an state is zero. Unfortunately, we are unaware of a wave function
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FIG. S1. Energy of ground state and first excited state, for N = 6 electrons on a disk, as a function of M . We assume a
coupling of LL0 and LL1 (red lines), or LL1 and LL2 (blue lines), at detuning � = 0.02, and ⌦ = 10�3. Pronounced downward
cusps, together with large gaps, are found for the coupling between LL1 and LL2 at M = 15, 18, 21, 24, 27, giving a hint for
incompressible phases. Units of energy are e2/(✏lB).

describing the Fibonacci phase which we expect to compete with these phases. We have also considered a system of
N = 8 electrons at M = 36, where the overlap with the interlayer Pfa�an state still reaches 0.63.

At M = 24, the Haldane-Rezayi wave function can be constructed (which in the thermodynamic limit corresponds
to ⌫ = 1/2), but also a composite-fermion state corresponding to ⌫ = 2/3. The latter is obtained by multiplying the
flux attaching Jastrow factor

Q
i<j

(z
i

�z
j

)2 with Slater determinants for the composite fermions [2]. For six particles,
the Slater determinant has M = 30, so the target value M = 24 can be reached by filling the three composite fermions
of each component into flux-reversed LLs, with m

i

= 0,�1,�2. Evaluation of the overlaps shows a clear favor for the
Haldane-Rezayi phase (overlap 0.97), while the overlap with the composite fermion wave function is almost zero.

At M = 27, the Haperin 331-state can be constructed, but its overlap with the ground state is infinitesimal.
We are not aware of any unpolarized trial wave functions which might correspond to the cusp at M = 21. In
summary, overlap calculations on the disk show good overlap with the Haldane-Rezayi phase corresponding to half-
filling, and average overlap with the interlayer Pfa�an phase at 2/3-filling. However, there are hints for other
incompressible phases without known trial wave function description. Therefore, we cannot exclude the possibility
that these states correspond to the same filling factors, which would give rise to a competition between di↵erent
phases in the thermodynamic limit.

Torus

The advantage of torus geometry relies in the fact that it allows to obtain topological degeneracies of the ground
state. In this case we work in Landau gauge, namely A = B(�y, 0, 0). We take the torus to be rectangular,
characterized by the dimensions L

x

and L
y

(� = L
x

/L
y

defining axis ratio). After imposing periodic boundary
conditions (PBC), the single particle wave functions are [3]

�
n,j

(x, y) = C
n

1X

m=�1
e

i

l

2
B

(Y
j

�mL

y

)x
e
� (y+mL

y

�Y

j

)2

2l2
B H

n

✓
y +mL

y

� Y
j

l
B

◆
, (S2)

where C
n

= (L
x

p
⇡l

B

2nn!)
� 1

2 , Y
j

= kl2
B

= 2⇡jl2
B

/L
x

. Here j is an integer, which takes the values 0, 1 · · ·N
s

� 1,
N

s

= L
x

L
y

/2⇡l2
B

describing the degeneracy of each LL and corresponds to the number of elementary magnetic flux
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FIG. S2. (a,b) Energy spectra of 8 electrons with 16 fluxes (⌫ = 1/2) on the torus (axis ratio 0.99), when LL1 and LL2 are
weakly coupled with Rabi frequency ⌦ = 0.01 (a), or strongly coupled with Rabi frequency ⌦ = 0.1 (b), at detuning � = 0.02.
All energies are in units e2/✏lB. (c) First Brillouin zone of the Haldane pseudomomenta, with the red squares marking the 4
quasi-degenerate minima in the weak-coupling phase, and the green diamonds marking the 4 fully degenerate minima in the
strong-coupling phase. The 4 ground states in the weak-coupling phase have significant overlap with the HR state (zero-energy
eigenstates of hollow-core potential), namely 0.83 at |K| = 0, and 0.72 at other values of K.

threading the torus. j is the quantum number characterizing momentum in x direction, which is a conserved quantity
due to the translational invariance. For the many-body problem the filling factor is defined as ⌫ = N

e

/N
s

. Using the
single particle eigenstates of graphene the interaction matrix element of (3) in main text can be written in the form
[3]

An1,j1,n2,j2
n3,j3,n4,j4

=
�0
j1+j2,j3+j4

2L
x

L
y

X0

q

�0
j1�j4,q

x

L

x

/2⇡V (q)eiqy(Yj1
�Y

j3
)F

n1,n4(q)Fn2,n3(�q), (S3)

where primed summation excludes q = 0 term and primed Kronecker �0 is defined modN
s

. V (q) is the Fourier
transform of the Coulomb interaction, and F

n1,n2(q) are the form factors of the Landau levels. The graphene form
factor are given by [4]

F
n1,n2(q) = e�

|q|2l

2
B

4

s
(n2 � 1)!

(n1 � 1)!

✓
� q̄l

Bp
2

◆
n1�n2


C�

n1
C�

n2
Ln1�n2
n2�1

✓
|q|2l2

B

2

◆
+ C+

n1
C+

n2

r
n2

n1
Ln1�n2
n2

✓
|q|2l2

B

2

◆�
, (S4)

when n1 � n2 and

F
n1,n2(q) = e�

|q|2l

2
B

4

s
(n1 � 1)!

(n2 � 1)!

✓
ql

Bp
2

◆
n2�n1


C�

n1
C�

n2
Ln2�n1
n1�1

✓
|q|2l2

B

2

◆
+ C+

n1
C+

n2

r
n1

n2
Ln2�n1
n1
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|q|2l2

B

2

◆�
, (S5)

when n1 < n2 and we use the notation q = q
x

+ iq
y

and q̄ = q
x

� iq
y

in this section.
As has been shown before [3, 5] for many-body system there is a relative translation operator T i

R (pL
mn

) which
commutes with the full Hamiltonian. Here p is defined by filling factor ⌫ = p/q, where p and q are coprime integers
and L

mn

= mL
x

x̂+nL
y

ŷ is the translation lattice vector. The relative translation operator acts on many-body state
|n1j1, n2j2 . . . , nN

e

j
N

e

i

T i

R (pL
mn

) |n1j1, n2j2 . . . , nN

e

j
N

e

i = (�1)pqmn(N
e

+1)e�i

2⇡mK

x

N |n1(j1 + nq), n2(j2 + nq) . . . , n
N

e

(j
N

e

+ nq)i, (S6)

where N
e

= pN and K
x

=
P

N

e

i

j
i

modN is the total momentum in x direction. We use the quantum numbers K
x

and K
y

characterizing the eigenvalues of T i

R (pL
mn

) to classify the eigenstates of the Hamiltonian.
In Fig. S2 the spectra for 8 electron at filling factor ⌫ = 1/2 is shown obtained on the torus with axis ratio 0.99,

when LL1 and LL2 are weakly coupled with Rabi frequency ⌦ = 0.01 (a) and strongly coupled with Rabi frequency
⌦ = 0.1 (b). At weakly coupled case the four ground states are located at the center and edges of the Brillouin
zone, are spin-singlet states and have considerable overlap with Haldane-Rezayi state. At strongly coupled case the
location of four ground states in the Brilloin zone changes and the system is spin-polarized, indicating compressible
Fermi liquid phase. Similar spectra for filling factor ⌫ = 2/3 is shown in Fig. S3 for two di↵erent axis ratios 0.99
(a,c) and 1.5 (b,d) for both weak and strong coupling cases. In weak coupling case the ground state at |K| = 0 is
again spin-singlet although it is only triple degenerate due to the center of mass degeneracy. Squeezing the torus
makes two lowest states to be located at |K| = 0, which denotes six-fold degeneracy and is compatible with Fibonacci
phase [6, 7]. In strong coupling phase the ground state is unique regardless of torus axis ratio and is spin-polarized
indicative of particle-hole conjugate Laughlin 2/3 phase.
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(a)

(b)

(c)

(d)

FIG. S3. (a–d) Energy spectra of 8 electrons with 12 fluxes (⌫ = 2/3) on the torus at axis ratio 0.99 (a,c), and axis ratio
1.5 (b,d). The coupling is between LL1 and LL2, at weak Rabi frequency ⌦ = 10�3 (a,b), and at strong Rabi frequency
⌦ = 0.05 (c,d), with detuning � = 0.02. All energies are in units e2/✏lB. While there is a unique ground state at |K| = 0 in the
strong coupling regime independently from the axis ratio, the pattern in the weak coupling regime is less evident. A two-fold
quasidegeneracy, at |K| = 0 and |K| ⇡ ⇡/2, is seen for axis ratio 0.99, but squeezing the torus renders two states at |K| = 0
to be the ones of lowest energy. Such degeneracy would be compatible with a Fibonacci phase.

Sphere

The exact-diagonalization calculations on a sphere has a similar structure as on the disk, although the sphere being
compact does not su↵er from mixing of the bulk and edge states. We use the calculations on the sphere mostly
for obtaining overlaps with proposed trial states. The magnetic field on a sphere is produced by placing magnetic
monopole with the strength Q at the center of the sphere [8, 9] and this produces N

s

= 2Q elementary magnetic flux
threading the sphere. Due to the spherical symmetry both total angular momentum and its projection are conserved
quantities. The single particle eigenstates in the lowest LL are obtained for angular momentum l = Q and have the
form

�
Qm

(u, v) =


2Q+ 1

4⇡

✓
2Q

Q�m

◆� 1
2

(�1)Q�muQ+mvQ�m·, (S7)

where u = cos (✓/2) ei�/2 and v = sin (✓/2) e�i�/2 are the spinor variables and quantum number for angular momentum
in z direction m takes the values �Q,�Q+ 1 . . . , Q. Therefore, the degeneracy of the LL in this case is 2Q+ 1. For
many-body system the filling factor is related to number of electrons by N

s

= N
e

/⌫�S, where S denotes the shift. For
the calculation on the sphere, di↵erent LLs are considered as layer indices all described by lowest LL eigenstates. The
structure of di↵erent LLs is completely encoded in Haldane pseudopotentials, which define the interaction Hamiltonian

An1,m1,n2,m2
n3,m3,n4,m4

=
2QX

L=0

LX

M=�L

hQm1, Qm2|LMiV n1n2n3n4
2Q�L

hLM |Qm3, Qm4i, (S8)

where hLM |Qm1, Qm2i are the Clebsch-Gordon coe�cients, L and M are the total angular momentum and z projec-
tion of it for the pair and V n1n2n3n4

m

are the Haldane pseudopotentials. For Coulomb interaction we use the values of
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FIG. S4. (a) The dependence of the overlap of the ground state for coupling LL12 with Haldane-Rezayi and Jain’s singlet
states on system size. (b) The dependence of the gap for the case of coupling LL12, HR and Jain’s singlet phases on the system
size. The calculations are done on the sphere for filling factor ⌫ = 1/2 at detuning � = 0.02, and ⌦ = 10�3. The HR and Jain’s
singlet states are obtained with non-zero pseudopotentials equal to one. The gap for the case of coupling LL12 is normalized
by the value of V inter

1 pseudopotential.

the pseudopotentials obtained on the plane, which should be a good approximation in thermodynamic limit. This form
of interaction potential can be used also to obtain trial wave functions described by two-body interaction and specific
non-zero pseudopotentials. Besides that three-body interaction Hamiltonian can be straightforwardly defined on the
sphere as well, which can be used to obtain trial wave function for some non-Abelian phases, such as Moore-Read [10]
and Interlayer Pfa�an state [11, 12].

For ⌫ = 1/2 at weak light-matter coupling and for spin singlet phase the possible trial states are the (331) Halperin
state, HR state and Jain’s singlet [13, 14]. The (331) state is described by the shift S = 3. For that shift the ground
state of the system considered in this work correspond to the state with total angular momentum L = 2 for 8 electrons.
This shows that ground state is not translationally invariant phase at that shift and (331) is not a good candidate.
The HR and Jain’s singlet state are characterized with the shift S = 4. HR is a gapless phase, whereas Jain’s singlet
is gapped. HR state is the exact zero energy eigenstate of hollow core Hamiltonian (only V intra

1 and V inter
1 being

non-zero). Since constructing the exact wavefunction of a Jains singlet state for ⌫ = 1/2 is numerically expensive,
instead, we use the ground state of a Hamiltonian with pseudopotentials V0 = V1, which is known to have a large
overlap with the Jains singlet state [14]. In Fig. S4 (a) we compare overlaps of the ground state of the singlet phase
at Rabi frequency ⌦ = 10�3 for the system considered in this work with HR state and the Jain’s singlet state. As can
be seen from the figure the overlap with HR state is always larger and it drops much slower with system size than
Jain’s singlet. In Fig. S4 (b) the dependence of the gap of these three systems on system size is presented. The HR
state and Jain’s singlet state are obtained with non-zero pseudopotentials equal to one and the gap for singlet state
at coupling LL12 is normalized by the value of V inter

1 . As can be seen from the figure the gap of HR state decreases
with system size, whereas the gap of Jain’s singlet fluctuates. While the gap for singlet phase for coupling LL12 does
not show clear trend of decreasing with system size, it is small compared to other systems. This non-decreasing of
the gap with system size is possibly related to the small system sizes considered in the calculation and this leads us
conclude that the spin singlet phase observed at ⌫ = 1/2 is HR phase.

For ⌫ = 2/3 filling factor and spin-singlet phase we have considered the following trial states for overlap calculation:
Jain’s composite fermion phase (S = 1), (330) phase (S = 3), Interlayer and Intralayer Pfa�an phases (S = 3). We
get almost zero overlap with Jain’s composite fermion and Intralayer Pfa�an phases. There is a sizable overlap with
(330) and Interlayer Pfa�an state, although the overlap with Interlayer Pfa�an is always bigger. We get at Rabi
frequency ⌦ = 10�3 0.99 overlap for N

e

= 4, 0.55 for N
e

= 8 and 0.39 for N
e

= 12 with Interlayer Pfa�an phase.
Therefore, the singlet state for ⌫ = 2/3 is either Interlayer Pfa�an or Fibonacci phase, as was pointed out by torus
calculation. Currently, it is unclear how to obtain Fibonacci trial state on the sphere, although the ground state of
hollow core interaction gives larger overlap than Interlayer Pfa�an state (0.62 for N

e

= 8) and it is claimed that for
⌫ = 2/3 hollow-core interaction supports Fibonacci phase as the ground state [7].
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HALDANE PSEUDOPOTENTIALS

In this section we review in more detail the concept of Haldane pseudopotentials, and derive the appropriate
pseudopotentials for our system. Haldane pseudopotentials are derived from a series expansion for the matrix inter-
actions elements, and typically only a few parameters of this expansion are enough to capture the physics. Therefore,
interaction matrix elements are transformed from a two-particle basis |m1,m2;n1, n2i, characterized by the individ-
ual quantum numbers n1 and n2 (LL indices), as well as m1 and m2 (angular momenta), to a two-particle basis
|m,M ;n1, n2i, where (in the lowest LL) m and M correspond to relative angular momentum and center-of-mass
angular momentum [15]. The matrix interaction elements transform according to:

hm1,m2;n1, n2| V̂ |m3,m4;n3, n4i =
X

m,M,m

0
,M

0

hm,M ;n1, n2| V̂ |m0,M 0;n3, n4i . (S9)

As interactions do not depend on the center-of-mass motion, and a rotationally symmetric interaction will also not
modify relative angular momentum, this can be re-written as

hm1,m2;n1, n2| V̂ |m3,m4;n3, n4i =
X

m,M

V n1,n2,n3,n4
m

hm1,m2;n1, n2| m,M ;n1, n2i hm,M ;n3, n4| m3,m4;n3, n4i

(S10)

with the Haldane pseudopotential defined as

V n1,n2,n3,n4
m

= hm,M ;n1, n2| V̂ |m,M ;n3, n4i , (S11)

which does not depend on M . For interactions which decay su�ciently fast with distance, contributions at large
relative angular momentum m will be small. So only a few pseudopotentials will be needed for calculations on a disk.
Also note that for indistinguishable fermions (i.e. n1 = n2 = n3 = n4) the relative angular momentum can only take
odd values.

Evaluating the Haldane pseudopotentials leads to [16]

V n1,n2,n3,n4
m

=
1

4⇡2

Z
d2qV (q)e

�q

2
l

2
B

2 L
m

(q2l2
B

)F
n1,n4(q)Fn2,n3(�q), (S12)

where F
n1,n2(q) form factors are defined in (S4) and (S5).

In our case, only two LLs will be relevant, so we will in the following replace the LL indices n
i

by symbols " and #.
After transforming Coulomb interactions into the frame rotating with the LL coupling, we have obtained a Kronecker
�
n1+n2,n3+n4 , so only the following Haldane pseudopotentials will be present: intra-level pseudopotentials V "

m

⌘ V "",""
m

and V #
m

= V ##,##
m

, as well as inter-level pseudopotentials V k
m

⌘ V "#,#"
m

= V #","#
m

and V ⇥
m

⌘ V "#,"#
m

= V #",#"
m

. In terms
of these pseudopotentials, the interaction Hamiltonian reads:

V̂ =
X

M

"
X

m odd

�
V "
m

|mM, ""i hmM, ""|+ V #
m

|mM, ##i hmM, ##|
�
+

X

m

V k
m

(|mM, "#i hmM, "#|+ |mM, #"i hmM, #"|) +
X

m

V ⇥
m

(|mM, "#i hmM, #"|+ |mM, #"i hmM, "#|)
#
. (S13)

There are two main di↵erences to conventional bilayer (or spin) systems: First, there are two di↵erent intra-level
pseudopotentials. This breaks Z2 symmetry present in systems of equivalent layers. Second, the inter-level interactions

do not only consist of density-density-interactions, V k
m

, but also contain exchange interactions, V ⇥
m

, usually not present
in bilayer or spin systems. Regarding the first di↵erence we note that, as seen in Fig. 2(a) in the main text, the di↵erent
intra-level pseudopotentials di↵er strongly only at m = 0. Since only odd values of m contribute to the fermionic
system, we expect only a weak e↵ect of this Z2 symmetry breaking.
In order to capture the role of the exchange interactions, we introduce a spin basis in terms of singlet and triplet

configurations:

|+i = 1p
2
(|"#i+ |#"i) ,

|�i = 1p
2
(|"#i � |#"i) .
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Re-writing Eq. (S13) in this basis, we get

V̂ =
X

M

"
X

m odd

V "
m

�
|mM, ""i hmM, ""|+ V #

m

|mM, ##i hmM, ##|
�
+

X

m odd

h
V k
m

+ V ⇥
m

i
|mM,+i hmM,+|+

X

m even

h
V k
m

� V ⇥
m

i
|mM,�i hmM,�|

#
. (S14)

We see that symmetry demands to the wave function allow to give up the distinction between V
k
m

and V ⇥
m

if we define
the inter-level interaction as

V inter
m

=

(
V

k
m

+ V ⇥
m

if m is odd,

V
k
m

� V ⇥
m

if m is even.
(S15)

This allows to directly compare the inter-level interactions in Eq. (S13) with models characterized by a single inter-
layer interaction (i.e. models relevant for bilayer or spin systems). As seen in Fig. 2(b), V inter

1 rather than V inter
0

becomes the dominant contribution, when the first and the second graphene LL are coupled. As we have shown by
explicit numerics in the main text, this will result in the formation of singlet ground states, or even of quantum Hall
phases which are derived from a hollow-core model (i.e. V inter

m

/ �
m,1 and V intra

m

/ �
m,1), like the Haldane-Rezayi

phase.

FORMS OF THE TRIAL WAVE FUNCTIONS

In this section we briefly review the form of the trial wave functions considered in this work for both ⌫ = 1/2
and ⌫ = 2/3 fillings. The simplest two component wave functions belong to Halperin (m,m,n) family [17] and have
Abelian excitations:

 (m,m,n) ({zi}, {wi

}) =
Y

i<j

(z
i

� z
j

)m
Y

i<j

(w
i

� w
j

)m
Y

i,j

(z
i

� w
j

)n , (S16)

where z
i

and w
i

are complex coordinates of the electrons for two components, i = 1 . . . N

2 and Gaussian factor

exp
h
�
P

i

⇣
|z

i

|2 + |w
i

|2
⌘
/4l2

i
is implicitly assumed in all formulas in this section. For filling 1/2 the candidate

Halperin state is (3,3,1), which using Cauchy determinant identity can also be written in paired form

 (3,3,1) ({zi}, {wi

}) = Det

✓
1

z
i

� w
j

◆Y

i<j

(x
i

� x
j

)2, (S17)

where x
i

denotes particles in both components and index i is running 1 . . . N . The (3,3,1) state is spin singlet and is zero
energy ground state of the interaction Hamiltonian with only intralayer V intra

1 and interlayer V inter
0 pseudopotentials

being non-zero. Another candidate wave function for 1/2 filling, which is again spin singlet is Haldane-Rezayi(HR) [18]
state which is obtained by multiplying (3,3,1) state with permanent Per (1/ (z

i

� w
j

)). Using linear algebra identity
HR state can be written in the following form

 HR ({z
i

}, {w
i

}) = Det

 
1

(z
i

� w
j

)2

!
Y

i<j

(x
i

� x
j

)2. (S18)

HR state is characterized with non-Abelian excitations and is the exact zero energy eigenstate of hollow-core (only
V intra
1 and V inter

1 being non-zero) interaction Hamiltonian. When V0 pseudopotentials become comparable with V1

the ground state of the system has larger overlap with gapped Jain’s singlet phase compared to gapless HR state [14].
Jain’s singlet has the following form [13]

 1/2
JSS ({zi}, {wi

}) = PLLL�⌫=2 ({xi

})�(1,1,0) ({zi}, {wi

})�
⌫=1 ({xi

}) , (S19)

where PLLL denotes the projection into lowest LL and �
⌫=n

({x
i

}) denotes completely filled n LLs. It can be
represented in an alternative form, which reveals its d-wave pairing structure [14]

 1/2
JSS ({zi}, {wi

}) = Det

✓
@
z

i

� @
w

j

z
i

� w
j

◆
�2

⌫=1 ({xi

}) . (S20)
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For filling ⌫ = 2/3 possible spin-singlet phases from Halperin (m,m,n) family include (1,1,2) and (3,3,0) states. The
case when interlayer correlation is stronger than intralayer does not correspond to homogeneous state [19], therefore
(1,1,2) state can be excluded. The (3,3,0) state corresponds to two copies of 1/3 Laughlin states without interlayer
correlation and is the zero energy eigenstate of the interaction Hamiltonian with only V intra

1 being non-zero. Another
potential candidate is the Jain’s spin-singlet state with Abelian excitations [20, 21]

 2/3
JSS ({zi}, {wi

}) = PLLL

Y

i<j

|z
i

� z
j

|2 |w
i

� w
j

|2 ⇤
(1,1,2) ({zi}, {wi

}) . (S21)

This is the singlet phase observed for usual bilayer system with small interlayer tunneling and layer separation [22, 23].
There are also several exotic phases proposed for 2/3 filling which support non-Abelian excitations and are possible
candidates for spin-singlet phase observed in this work. The simplest one is the interlayer Pfa�an [24, 25]

 inter ({zi}, {wi

}) = Pf

✓
1

x
i

� x
j

◆
 (2,2,1) ({zi}, {wi

}) , (S22)

where Pf denotes the Pfa�an of antisymmetric matrix and corresponds to p-type pairing between all particles. On
the sphere this is the zero energy eigenstate of the following interaction Hamiltonian

H =
X

i<j<k

V0Pijk

✓
3

2
N� � 3,

3

2

◆
+ V1Pijk

✓
3

2
N� � 2,

1

2

◆
+ V2Pijk

✓
3

2
N� � 1,

1

2

◆
, (S23)

where P
ijk

(L, S) denotes the three particle projection operator into the state with total angular momentum L and
total spin S, N� is the number of flux quantum threading the sphere. For ⌫ = 2/3 N� = 3N

e

/2� 3, where N
e

is the
number of electrons and S = 3 denotes the shift. The next one is the intralayer Pfa�an state [25]

 intra ({zi}, {wi

}) = Pf

✓
1

z
i

� z
j

◆
Pf

✓
1

w
i

� w
j

◆
 (2,2,1) ({zi}, {wi

}) , (S24)

and this corresponds to p-type pairing between the particles in each layer. Based on that this phase is realizable
when number of particles N

e

is divisible by 4. The third possible candidate is the bilayer Fibonacci phase [6] which
is a state based on SU(3)2 Chern-Simons theory, some of the quasiparticles obeying non-Abelian statistics. It was
identified that hollow core interaction Hamiltonian most likely supports the bilayer Fibonacci phase [7]. Finally, as a
spin polarized state for large interlayer tunneling we have considered particle-hole conjugate of 1/3 Laughlin state

 P�H = PLLL

Y

i<j

(z
i

� z
j

)2 �
⌫=�2 ({xi

}) , (S25)

where �
⌫=�2 ({xi

}) = �⇤
⌫=2 ({xi

}) is the wave function of ⌫ = �2 integer quantum Hall state. As the Laughlin state
this is the zero energy eigenstate of the interaction Hamiltonian with only V1 pseudopotential being non-zero.
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