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We propose an experimental scheme to construct an optical lattice where the atoms are confined to the
surface of a torus. This construction can be realized with spatially shaped laser beams which could be
realized with recently developed high resolution imaging techniques. We numerically study the feasibility
of this proposal by calculating the tunneling strengths for atoms in the torus lattice. To illustrate the
nontrivial role of topology in atomic dynamics on the torus, we study the quantized superfluid currents and
fractional quantum Hall (FQH) states on such a structure. For FQH states, we numerically investigate the
robustness of the topological degeneracy and propose an experimental way to detect such a degeneracy.
Our scheme for torus construction can be generalized to surfaces with higher genus for exploration of richer
topological physics.
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Introduction.—In the past decades, ultracold atoms in
optical lattices have been widely used to study a range of
interesting coherent and many-body physics [1]. In particu-
lar, there has been remarkable progress in investigating
phenomena [2–5] in both different dimensions [6–8] and
lattice geometries, such as square [2,6], triangular [9],
honeycomb [10], kagome [11], ring [12], cylinder [13],
and more recently ribbon lattices with synthetic dimen-
sions [14].
Meanwhile, intriguing physics can be explored in

systems with nontrivial topologies. For example, it is
theoretically predicted that there are topologically protected
degeneracies on surfaces with nonzero genus, like the
fractional quantum Hall (FQH) model [15,16] or spin
liquids [17–19]. Such systems are expected to not only
contain rich many-body physics but also possibly be used
in topological quantum computation [17]. While there have
been interesting proposals to make torus surfaces in ultra-
cold atomic systems, using synthetic dimensions [20] and
semi-2D geometries by modifying cylinders [21,22], the
experimental construction of a torus in real space has
remained challenging. Moreover, the presence of edge
physics and the finite size effect have made the observation
of the FQH effect in ultracold atoms challenging.
In this Letter, we propose a scheme to construct an

optical lattice in which atomic dynamics is confined to the
surface of a torus. Our construction makes use of recent
advances in beam shaping, in the context of ultracold
atomic systems [23–27]. Specifically, we show that a
rectangular square lattice with a hole in the middle can
be turned into the surface of a torus by shaping a single
beam perpendicular to the layers (Fig. 1). Moreover, we

discuss that this construction could be generalized to
surfaces with higher genus. To illustrate the nontrivial role
of topology in atomic dynamics on the torus, we first
investigate the hydrodynamics of bosonic superfluid on the
torus. Specifically, we demonstrate a sequence of optical
manipulations that generates quantized supercurrents in
two intersecting noncontractible cycles. Furthermore, in the

FIG. 1. (a) Schematic beam configuration for a torus surface in
an optical lattice. Plane wave beams in the horizontal directions
generate a rectangular lattice in the xy plane. In the z direction, a
superlattice structure created by pairs of blue-detuned and red-
detuned beams confines atoms in two layers. The -z propagating
blue-detuned beam has the beam shape of a square annulus.
(Inset) Different laser intensities turn the interlayer tunneling on
and off in different regions. To complete the torus surface,
only the interlayer tunneling in the edge region is allowed.
(b) Generalization of the scheme to surfaces with higher genus
(g ¼ 2, 3 shown, for example) can be achieved by puncturing
more holes in the middle of the lattice.
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strongly correlated regime, we discuss a FQH model which
can be realized on this torus. To numerically investigate the
topological degeneracy on such system, we consider a
relatively small square lattice (6 × 6) with torus topology.
We show that the anticipated topological degeneracy exists
and is robust against the discrepancy between inter- and
intralayer tunneling and disorder. Moreover, we propose a
way to experimentally detect the topological degeneracy.
Torus construction.—In the following, we show that by

using several pairs of laser beams in the x, y, and z
directions, one can build an optical lattice in which atomic
dynamics is confined to the surface of a torus (Fig. 1). We
first make a bilayer system by creating a superlattice
structure in the z direction. Using high resolution optics,
we then tailor one of the beams used in the superlattice
structure to have the shape of a square annulus. This square
annulus divides the xy plane into three regions: bulk, edge,
and empty space [Fig. 1(a)]. By having a different set of
intensities in these regions, the trap potential can be
arranged to only allow atoms to vertically tunnel through
lattice sites in the edge region, thus confining atoms to the
surface of a torus.
To prepare a bilayer system, we use a 3D optical lattice

with a superlattice structure in the z direction. Red-detuned
laser beams with wave vectors �kxx̂ and �kyŷ form
a 2D rectangular lattice with lattice spacings ðax; ayÞ ¼
ðπ=kx; π=kyÞ. For the superlattice structure, we use a pair of
blue-detuned lasers with wave vectors �kzẑ and another
pair of red-detuned lasers with wave vectors �qzẑ. When
the �z propagating beams do not vary in the xy plane, the
combined vertical dipole potential is given by VzðzÞ ¼
VbðzÞ þ VrðzÞ ¼ Vbluecos2ðkzzÞ − Vredcos2ðqzzÞ for prop-
erly chosen relative phases, where Vblue (Vred) is the
amplitude of the dipole potential generated by the blue-
detuned (red-detuned) beam pair alone. Then atoms with
atomic massm can be confined at two neighboring minima,
which we call the �z0, as shown in Fig. 2(b). Atoms in
these minima constitute the bilayer system.
To complete the torus surface, we tailor the −z propa-

gating blue-detuned beam in the shape of a square annulus
in the xy plane, adjusted to achieve the desired interlayer
tunneling only along edge sites. In particular, we make the
laser intensity lower at the edge compared to the bulk
region. The resulting potential barrier in the z direction is
shallower at the edge than the bulk, which makes the
interlayer tunneling nonzero at the edge while negligible
in the bulk region. With the laser intensity of the −z
propagating beam set to zero in the empty space region, the
þz propagating blue-detuned beam generates a higher
dipole potential in the empty space compared to the edge
and the bulk region. This difference in dipole potential
energetically prevents atoms from escaping the designated
square annulus.
To be concrete, we consider the following beam shapes

for the blue-detuned beams:

Eþðr; tÞ ¼ ŷðeþikzðz−ctÞ þ c:c:ÞEþ;

E−ðr; tÞ ¼ ŷðe−ikzðzþctÞ þ c:c:Þ

8><
>:

EB bulk

EE edge

0 empty space

: ð1Þ

In this discrete setting, bulk and edge regions correspond to
the zones around bulk and edge sites in the square annulus,
within the distance ax=2ðay=2Þ in the xðyÞ direction. The
rest of the area is designated as empty space. For illustrative
purposes, we assume the model beam has sharp boundaries
between different regions, but in an experimental realiza-
tion, one can relax this constraint and construct a good
approximation of Eq. (1) using beams with sufficient
numerical apertures (0.17–0.80) [28]. The recent progress
in beam-shaping techniques for optical lattices [23–27,34]
could allow one to realize such a beam profile in the lab.
Note that this beam profile should be placed properly in the
xy plane, such that regional distinctions in Eq. (1) match
with horizontal lattice sites.
This beam profile gives rise to the combined vertical

dipole potential including interference between the þz and
-z propagating beams:

VzðrÞ ¼ VbðrÞ − Vredcos2ðqzzÞ;

VbðrÞ ¼

8><
>:

VBcos2ðkzzÞ þ Vð0Þ
B bulk

VEcos2ðkzzÞ þ Vð0Þ
E edge

VS empty space

; ð2Þ

FIG. 2. Numerically evaluated dipole potential and tunne-
ling strengths. We consider Rb87 atoms with ax ≃ ay ¼
480nm and kx ¼ kz=2 ¼ 2qz. In the unit of recoil energy Er≡
ℏ2k2x=2mðEr;z ≡ ℏ2k2z=2mÞ, V0 ¼ 8Er, VE ¼ 60Er ¼ 15Er;z,
VB ¼ 120Er ¼ 30Er;z, and Vred ¼ 20Er ¼ 5Er;z. (a) Dipole
potentials in the xy plane on the upper layer. (b) Dipole
potentials in the yz plane. Interlayer tunneling strengths in bulk
(Jbulkz ) and edge (Jedgez ) are shown for comparison. (c) Numeri-
cally evaluated tunneling strengths represented as the thickness
of bonds in the 3D lattice. Shown tunneling strengths range
from 0.03Er to 0.04Er.
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where the lattice potential amplitudes are VB=E ¼
4f0EþEB=E, and the energy offsets are Vð0Þ

B=E ¼
f0ðEþ − EB=EÞ2, VS ¼ f0E2þ. Here, the proportionality
constant f0 depends on beam frequency, dipole elements,
and transition frequency [35]. By setting EB > EE, the
potential barrier between layers in the edge region is
shallower than in the bulk region. This barrier difference
leads to an interlayer tunneling strength that is stronger in
the edge than in the bulk. Moreover, we need to satisfy two
additional conditions: (i) to have a smooth torus, the on-site
energy in the edge and the bulk regions should be the same,
and (ii) this on-site energy should be smaller than the
potential in the empty space, so that atoms are trapped in
the designated square annulus. To find on-site energies in
these conditions, we should include the zero point energies
in the effective potentials as well. Then, these requirements
can be summarized as

Vð0Þ
B þ ℏωB

2
¼ Vð0Þ

E þ ℏωE

2
< VS; ð3Þ

where the zero point energy of the harmonic confinements

are ℏωB=E=2 ¼ ðℏ=2ÞPs¼x;y;z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m−1∂2

sVðrÞjr∈B=E
q

. To

evaluate this, we consider the total dipole potential
VðrÞ ¼ Vxyðx; yÞ þ VzðrÞ, where the horizontal dipole
potential is Vxyðx; yÞ ¼ V0fcos2ðkxxÞ þ cos2ðkyyÞg and
VzðrÞ is given in Eq. (2). While it is not obvious to
find a set of parameters satisfying these conditions
simultaneously, it is possible to satisfy Eq. (3) by tuning
m, kx, ky, kz, qz, V0, Vred, Eþ, EE, EB, f0. For example, the
parameters in Fig. 2 fulfill these requirements (see
Supplemental Material [28]).
To verify that our beam design leads to the desired

optical lattice, we numerically evaluate the total dipole
potential for Rb87 atoms [Figs. 2(a) and 2(b)]. We approxi-
mately evaluate the tunneling strengths by solving the
Schrödinger equation over the region containing each pair
of the nearest neighboring sites [28]. Figure 2(c) shows that
it is possible to suppress interlayer tunneling in the bulk,
while simultaneously setting interlayer tunneling in the
edge and intralayer tunneling everywhere to be nonvanish-
ing. Here, for boundaries between the different regions, we
use more realistic resolution limited potentials [28] instead
of the step functions in Eq. (1).
Once our scheme for torus construction is realized, it is

straightforward to extend the scheme to genus-g surfaces
[Fig. 1(b)]. The only requirement is to puncture more holes
in the beam shape, which requires no higher resolution in
beam shaping than puncturing a single hole. On such
genus-g surfaces, one can explore richer topological phys-
ics as we discuss later.
Quantized supercurrents in two cycles.—To demonstrate

how topology plays a nontrivial role in the dynamics of

ultracold atoms on a torus surface, we numerically inves-
tigated the hydrodynamics of weakly interacting bosonic
superfluids. Previously, in a ring geometry, it has been
experimentally demonstrated that the flow of supercurrents
is quantized along the single quantization axis [12,36]. The
quantization of supercurrent results from the fact that wave
function of the atomic condensate should be single valued
and its phase should be compact on a closed cycle. More
interestingly, in the torus setting, there are two intersecting
noncontractible cycles [Fig. 3(a)] which allow supercur-
rents to be quantized separately along each. In particular,
the vorticity, which is defined as

vi ¼
1

2πρavg

I
cycle i

Imðψ�∇ψÞ · dl ði ¼ 1; 2Þ; ð4Þ

is quantized to an integer, up to a small finite-size
fluctuation. Here, ρavg is the average condensate density
and ψðrÞ is the condensate wave function. To generate the
supercurrents with nonzero vorticities, we stir the atomic
condensate with an extra dipole potential [37]. In particular,
we prepare a blue-detuned, focused beam and move it
along each noncontractible cycle to generate the super-
current flow in the stirring direction [Fig. 3(a)]. The
supercurrent flows can be detected through established
methods, such as time-of-flight imaging [36].
To specifically show the quantization along each

cycle, we numerically simulate these stirring procedures
[Fig. 3(b)]. In the weakly interacting and tight-binding

FIG. 3. (a) A scheme to generate supercurrents in two cycles.
A focused, blue-detuned laser beam acts as a stirrer along each
cycle, namely, cycle 1 and 2. Note that the stirrer along cycle 2 is
focused on the upper layer. A uniform condensate is loaded on the
torus initially, then the stirring potential along cycle 1 (V1) or cycle
2 (V2) is ramped up and down. (b) Quantization of vorticity in two
cycles. Dotted curves in the upper plots indicate the ramping
sequences of V1 and V2. Solid lines in the upper plots indicate the
number of completed cycles (m) in the stirring process. The lower
plots show vorticities (vi) changing over time. Steady-state wave
functions of the different sequences are shown below.
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regime, atomic dynamics in our optical lattice can be
described in the mean-field approximation,

iℏ∂tψ
↑=↓
j ¼ −J

X
k;jk−jj¼1

ψ↑=↓
k − ðJψ↓=↑

j Þδj∈edge

þ fV↑=↓ðrj; tÞ − μþ Ujψ↑=↓
j j2gψ↑=↓

j ; ð5Þ

where ψ l
j is the condensate wave function at site j on layer

l (l ¼ ↑=↓ for the upper/lower layer). Here, jk − jj indi-
cates the distance between site k and j and δj∈edge ¼ 1 if j
belongs to the edge region (0 otherwise). J is the tunneling
strength, U is the on-site interaction energy, Vl is the
stirring potential on layer l, and μ is the chemical potential.
Superfluid remains stable if the stirring is slower than the
sound speed,

ffiffiffiffiffiffiffiffiffi
μ=m

p
[38]. This dynamics can be simulated

with the numerical methods for the Gross-Pitaevskii
equation [39–41]. See Ref. [28] for further details.
In the simulation, we verify that the stirred superfluid

exhibits the quantized vorticity along each cycle of stirring
[Fig. 3(b)]. We also see that this vorticity increases with the
stirring speed. As expected, the evaluated vorticity along
each cycle coincides with the wave function winding
numbers [Fig. 3(b)]. Also, we observe the creation and
annihilation of vortex-antivortex pairs during the increment
of vorticity [28].
Topological degeneracy in FQH states.—Our construc-

tion allows one to investigate the dynamics of strongly
interacting ultracold atoms on a torus. As an example, we
study a bosonic FQH model, which could be realized by
laser-assisted tunneling [3,4]. Specifically, the lattice
FQH Hamiltonian for bosonic atoms on our torus can be
written as

H ¼
X
n;m

X
l¼↑;↓

�
U
2
al†2n;mal2n;m

− Jeiθ
l
xal†nþ1;ma

l
n;m − Jeiθ

l
yal†n;mþ1a

l
n;mþH:c:

�

−
X

ðn;mÞ∈edge
ðJ0a↑†n;ma↓n;mþH:c:Þ;

where θ↑=↓x ðn;mÞ ¼ ðn∓mÞϕ
2

; θ↑=↓y ðn;mÞ ¼ ðm�nÞϕ
2

:

ð6Þ

Here, aln;m annihilates an atom at site ðn;mÞ on layer l. J
and J0 are the effective intra- and interlayer tunneling
strengths, and U is the on-site interaction energy. With the
proper size of square annulus, the synthetic magnetic flux
per unit cell can be set to ϕ [28]. To obtain the tunneling
phases in Eq. (6), we apply a magnetic field in such a way
that the Zeeman energy gradient becomes ΔxðΔyÞ per site
in the xðyÞ direction. Then we apply Raman beams whose
detuning matches with ΔxðΔyÞ to induce the tunneling in

the xðyÞ direction [Fig. 4(a)]. Since the surface orientations
of two layers are opposite to each other, the required
tunneling phases in each layer should be different as well.
This can be achieved by targeting the different Raman
beams on the different layers [Fig. 4(b)]. To do so, we use a
triplet of beams for each tunneling term, namely,
Ti¼1–4 ≡ fi; iþ; i−g. Here, the beam iði�Þ has the fre-
quency ωiðωi�Þ and the wave vector kiðki�Þ. In this triplet,
the beams iþ and i− have the same x and y components
and have the opposite z components in the wave vectors.
These two beams then form a standing wave in the z
direction. By aligning the beams iþ and i− to destructively
interfere at the lower (upper) layer, the beam triplet Ti can
solely address the upper(lower) layer. In a rotating frame,
these Raman beams result in the effective tunneling terms
given in Eq. (6) [28].

FIG. 4. (a),(b) A scheme for FQH Hamiltonian. Different
Raman beam triplets Ti¼1–4 give the different tunneling phases
in Eq. (6). Schematic beam configuration of T1 is shown for an
example. Zeeman energy difference ΔxðΔyÞ in the xðyÞ direc-
tion is matched with detuning of Raman beams in triplets
Ti¼1;3ðTi¼2;4Þ to give tunneling terms in the same direction. To
address each layer independently, beam iþ and i− in triplet
Ti¼1;2ðTi¼3;4Þ destructively interfere at the lower (upper)
layer. (c) Exact diagonalization of the FQH Hamiltonian
for 3 hardcore bosonic atoms on a 6 × 6 square lattice
(Nx ¼ Ny ¼ 6) with periodic boundary conditions and

ϕ ¼ π=3, magnetic length lB ≡ ffiffiffiffiffiffiffiffiffiffiffi
2π=ϕ

p
. Esðjψ siÞ indicates

the sth lowest eigenenergy (eigenstate). (d) Energy spectrums
with distinct intralayer (J) and interlayer ðJ0Þ tunnelings.
(e) Spectrum with a random disorder of scale 0.05J. Energy
splitting between the ground states is 5 × 10−3J. (f) Inserting
flux Φx through the handle of torus is equivalent to the
boundary condition with twist angle αx. (g) With additional
potential VðyÞ ¼ ð0.01J=NyÞy, the spectral flows in αx can be
detected by measuring the y coordinates of the states.
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We numerically investigated the topological degeneracy
in FQH system on the torus. In particular, FQH systems
with filling fraction ν ¼ 1=m on a torus surface have m-
fold ground-state degeneracies [15,16]. To numerically
diagonalize the FQH Hamiltonian, we put the upper layer
part of Hamiltonian in Eq. (6) on a 6 × 6 square lattice with
periodic boundary conditions [Fig. 4(c)]. For filling frac-
tion ν ¼ 1=2, we have the anticipated twofold ground-state
degeneracy [Fig. 4(d)].
To examine the robustness of this degeneracy, we

calculate the energy spectrum for varying interlayer
tunnelings (J0) and a disorder potential [Figs. 4(d)
and 4(e)]. We can see the twofold degeneracy persists
within slight ground energy splittings which are smaller
than the tunneling strengths, the disorder scale, and the
excitation gap. Therefore, this topological degeneracy in a
small FQH system is robust against potential experimental
imperfections.
Furthermore, one can measure the topological degen-

eracy by measuring the spectral flow during the synthetic
magnetic flux insertion though the handle of the torus. As
shown in Fig. 4(f), the insertion of flux Φx is equivalent to
the boundary condition ψðxþ Nx; yÞ ¼ ψðx; yÞ expðiαxÞ,
where αx ¼ ðe=ℏÞΦx. For ν ¼ 1=m, the spectral flow of
each ground state shows the 2mπ periodicity in αx [42,43].
To observe this periodicity, we can introduce a small energy
splitting by applying a potential VðyÞ ∝ y. Such a spectral
flow is manifested in the y-coordinate expectation values of
the ground states [Fig. 4(g)] [28]. This average atom
position can be experimentally detected through the density
measurements.
Outlook.—Aforementioned generalization of the

scheme to a genus-g surface leads to a topologically
protected mg-fold degenerate ground-state subspace for
Abelian and non-Abelian FQH states. In that context, one
can implement modular transformations to probe topo-
logical orders, measure fractional statistics, and realize
fault-tolerant logical gates for topological quantum com-
putations [44,45].
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