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Driving a conventional superconductor with an appropriately tuned classical electromagnetic field can
lead to an enhancement of superconductivity via a redistribution of the quasiparticles into a more favorable
nonequilibrium distribution—a phenomenon known as the Eliashberg effect. Here, we theoretically
consider coupling a two-dimensional superconducting film to the quantized electromagnetic modes of a
microwave resonator cavity. As in the classical Eliashberg case, we use a kinetic equation to study the effect
of the fluctuating, dynamical electromagnetic field on the Bogoliubov quasiparticles. We find that when the
photon and quasiparticle systems are out of thermal equilibrium, a redistribution of quasiparticles into a
more favorable nonequilibrium steady state occurs, thereby enhancing superconductivity in the sample. We
predict that by tailoring the cavity environment (e.g., the photon occupation and spectral functions),
enhancement can be observed in a variety of parameter regimes, offering a large degree of tunability.
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It has been known since the late 1960s that subjecting a
superconductor to strong microwave radiation can lead to an
enhancement of superconductivity [1,2]. The explanation of
thiswas first providedbyEliashberg et al. [3–5],who showed
that the irradiation yields a nonthermal distribution of the
Bogoliubov excitations with an effectively colder band edge.
The degree of enhancement can be obtained by using
standard BCS theory with a nonthermal quasiparticle dis-
tribution function. In the subsequent decades, Eliashberg’s
theoretical explanation for this effect has been extended and
applied to a variety of other systems [6–12].
In recent years there has been a renewed interest in

nonequilibrium superconductivity motivated in part by a
number of “pump-probe” experiments which have found
that materials subjected to intense terahertz pulses exhibit
transient superconducting properties up to very high
sample temperatures [13–15]. Understanding these tran-
sient states has led to a variety of theoretical models which
go beyond the quasiparticle redistribution effect [16–21].
All of these systems concern the interaction between

quantum matter and a classical external field. Particularly
interesting and novel, however, is the effect that a fluctuating
quantum gauge field has on quantum matter. Indeed, it has
been a long-standing focus in the field of cavity quantum
electrodynamics to realize the dynamical quantum nature of
the electromagnetic field through the use of resonant electro-
magnetic cavities [22–26]. Recently, there have been many
advances in this area including the realization of exciton-
polariton condensates [27,28], states formed from hybridiz-
ing cavity photons and semiconductor excitons.
This Letter extends some of these concepts to

superconducting systems with an eye on cavity-induced
Eliashberg-type enhancement of superconductivity. The

central observation is that even in a nonequilibrium steady
state the BCS self-consistency equation

1

g
¼

Z
dE
E

νqpðEÞ½1 − 2nðEÞ% ð1Þ

can be solved for a nonthermal quasiparticle distribution
function nðEÞ, where νqpðEÞ ¼ 2νFjEj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

p
is the

quasiparticle density of states. The solution of this
equation—the BCS superconducting gap Δ—is therefore
a functional of the distribution function nðEÞ as well as the
BCS coupling constant g. Of particular interest are cases
where the gap exceeds its equilibrium thermal value,
δΔ ¼ Δ½nF þ δn% − Δ½nF% > 0. In the classical Eliashberg
effect, this is achieved via irradiation with a coherent
microwave field. For frequencies smaller than 2Δ, pair
breaking is suppressed and existing thermal quasiparticles
are scattered up to higher energies, where their debilitating
effect is lessened by the reduced relative density of states.
This emptying of states near the band edge increasesΔ above
its equilibrium value. In this Letter we generalize this idea to
include the dynamical fluctuations of the electromagnetic
field in a microwave cavity, depicted in the inset of Fig. 1(b).
Our main result is that, by appropriately tuning the param-
eters of the cavity environment (e.g., resonance, linewidth,
temperature, etc.), an enhancement in the BCS gap strength
may be obtained, now in the absence of coherent electro-
magnetic radiation. This gap enhancement is shown in
Fig. 1(a), which illustrates the change in the BCS gap
strength δΔ as a function of the cavity resonant frequency
ω0. The rest of the Letter is devoted to deriving this result.
We begin with a model of an s-wave superconductor

described by the BCS Hamiltonian (setting ℏ ¼ kB ¼ 1)
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H ¼
Z

d2r
"
ψ†
σ

#
−
D2

2m
− μ

$
ψσ − gψ†

↑ψ
†
↓ψ↓ψ↑

%
; ð2Þ

where ψσ is the electron field operator, which is minimally
coupled to the electromagnetic vector potential A through
the gauge covariant derivative D ¼ ∇þ ieA. Throughout,
we will employ the radiation gauge ∇ ·A ¼ 0. The
interaction is decoupled via standard mean-field theory,
and the resulting Hamiltonian is diagonalized with a
Bogoliubov transformation

# ψp;↑

ψ†
−p;↓

$
¼

#
up −vp
vp up

$# γp;þ

γ†−p;−

$
;

u; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

#
1' ξ

E

$s

; ð3Þ

where γp' are the Bogoliubov quasiparticle (BQP) anni-

hilation operators, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2p þ Δ2

q
is the BQP dispersion,

and ξp ¼ p2=2m − μ. The electromagnetic field A is
subject to cavity quantization of the transverse momentum,
leading to a dispersion relation for in-plane momentum q of

ωn;q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi#
nπc
L

$
2

þ c2q2

s

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ω2

0 þ c2q2
q

; ð4Þ

where n ¼ 1; 2; 3;… indexes the harmonic of the confined
mode. For simplicity, we will only consider the funda-
mental n ¼ 1 harmonic and place the superconducting
sample at the antinode where the coupling to the field is
strongest, as depicted in Fig. 1(b).
To leading order, the interaction between photons and

BQPs obtained from Eq. (2) occurs through the coupling of
the vector potential to the electronic current via

Hint ¼ −e
Z

ddrj ·A:

Applying the Bogoliubov transformation and Fourier trans-
forming to momentum space, this becomes

jq ¼
Z

p

p − 1
2q

m
½ðup−qup þ vp−qvpÞγ†p−q;σγp;σ

þ ðup−qvp − vp−qupÞðγ†p−q;þγ†−p;− − γp;þγ−ðp−qÞ;−Þ%;

ð5Þ

wherewe use the shorthand
R
p… ¼

R
d2p…=ð2πÞ2.We see

there are three types of matrix elements appearing in
Eq. (5), corresponding to scattering (by both emission and
absorption of photons), pair breaking, and pair recombina-
tion, respectively. Through these processes, the fluctuating
cavity photon field will induce transitions among the BQP
eigenstates, resulting in a redistribution of the quasiparticle
occupations. This is described by a kinetic equation

∂np
∂t ¼ I cav½n% −

np − nFð
Ep

Tqp
Þ

τin
: ð6Þ

The first termon the rhs describes thephoton-inducedpairing
or depairing and scattering of quasiparticles while the second
term describes a generic inelastic relaxation mechanism
which describes the coupling to a phonon bath at temperature
Tqp. The approximation here is that the inelastic relaxation
rate τ−1in is small compared to other energy scales, as was
assumed in the original work of Eliashberg [5–7].
In this limit, we can perturbatively solve for the steady

state of the kinetic equation (6) by expanding in small
deviations δn ¼ n − nF from equilibrium. To lowest order,
the correction is δn ¼ τinIcav½nF%. Utilizing the detailed
balance properties of thermal equilibrium, this will end up
depending on the photon occupation function NðωÞ
through its deviation from equilibrium:

δNcavðωÞ≡ NðωÞ − nB

#
ω
Tqp

$
; ð7Þ

where nBðzÞ is the Bose occupation function.
To compute the cavity-induced collision integral, we rely

on Fermi’s golden rule, applied to both the pairing or
depairing and the scattering processes. The result is

FIG. 1. (a) Relative enhancement of the gap function as a
function of cavity frequency ω0 for a particular value of the
overall scaling constant παXDτin=c2 (we take X ¼ 133 and
παDτinT2

c=c2 ¼ 9.17 × 10−5 with Tc set to unity). Curves are
colored and labeled according to the ratio Tcav=Tqp, comparing the
photon and quasiparticle temperatures. The enhancement is seen
set in after the cavity frequency surpasses the pair-breaking energy
2Δ0. (b) Schematic picture of the system used for calculation. The
lowest cavity resonatormodewith cutoff frequencyω0 is shown, as
is the 2D superconducting (SC) layer. (c) Depiction of the various
processes which contribute to the quasiparticle collision integral,
plotted against the equilibrium nðEÞ. The blue arrows depict the
down-scattering terms captured by fðΩ; EÞ, the red arrows depict
the up-scattering terms captured by fð−Ω; EÞ, and the green
arrows represent the pair processes captured by fð−Ω;−EÞ.
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Icav½n% ¼
Z

p0
[Γpair

p;−p0(ð1 − npÞð1 − n−p0ÞNðEp þ E−p0Þ

− fnpn−p0 ½NðEp þ E−p0Þ þ 1%g)
þ (Γscat

p0→pfnp0ð1 − npÞ½NðEp0 − EpÞ þ 1%

− ð1 − np0ÞnpNðEp0 − EpÞg − ðp ↔ p0Þ)]; ð8Þ

with the Γ’s given by

Γpair
p;−p0 ¼

e2

2ϵ0ωp−p0

X

α

&&&&ϵα;p−p0 ·
#
pþ p0

2m

$&&&&
2

× ðupv−p0 − u−p0vpÞ2Ap−p0ðEp þ E−p0Þ ð9Þ

Γscat
p→p0 ¼

e2

2ϵ0ωp−p0

X

α

&&&&ϵα;p−p0 ·
#
pþ p0

2m

$&&&&
2

× ðupup0 þ vp0vpÞ2Ap−p0ðEp − Ep0Þ: ð10Þ

These contain the dependence on the cavity-mode polari-
zation vectors ϵαqðz ¼ L=2Þ, the (momentum resolved)
photon spectral function

AqðωÞ ¼
1=τcav

ðω − ωqÞ2 þ ð1=2τcavÞ2
; ð11Þ

with photon lifetime τcav, and the squares of BCS coher-
ence factors

ðupv−p0 − v−p0upÞ2 ¼
1

2

#
1 −

ξpξ−p0 þ Δ2

EpE−p0

$
; ð12Þ

ðupup0 þ vpvp0Þ2 ¼ 1

2

#
1þ

ξpξp0 þ Δ2

EpEp0

$
: ð13Þ

These collision integrals are derived based on the
assumption of a perfectly clean sample, and so momentum
is conserved. In reality, however, impurities are always
present in a quasi-two-dimensional sample and should not
be ignored. Given that the photons of relevance are of long
wavelengths, it is appropriate to invoke the quasiclassical
approximation whereby we restrict our attention to states
near the Fermi surface. In the limit of strong disorder (as
compared to the gap) we then can incorporate elastic
impurity scattering by replacing the photonic momen-
tum-conserving delta function ð2πÞ2δ(q − ðp − p0Þ) with
a constant ðνF=τelÞ−1, where q is the momentum transferred
to the photon, νF is the density of states per spin at the
Fermi level, and τel is the elastic scattering time [29]. We
are then free to independently perform the integrations over
the direction of the momentum. The validity of this
heuristic may be confirmed by appealing to, e.g., the
solution of the Usadel equation [30] or the Keldysh
nonlinear sigma model [12,31,32], which describe the
quasiclassical collective modes of the strongly disordered

superconductor (as described in the Supplemental
Material [33]).
The result of this procedure is a collision integral which

is a function of the quasiparticle energy only. Evaluating
the correction to the quasiparticle distribution function, we
find

δnðEÞ ¼ τin

Z
∞

−∞
dΩJcavðΩÞδNcavðΩÞKðΩ; EÞ; ð14Þ

where KðΩ; EÞ ¼ fðΩ; EÞ þ fð−Ω; EÞ − fð−Ω;−EÞ, with

fðΩ;EÞ¼ θðE−Ω−ΔÞ
νqpðE−ΩÞ

νF

×
1

2

#
1þ Δ2

EðE−ΩÞ

$"
nF

#
E−Ω
Tqp

$
−nF

#
E
Tqp

$%
:

ð15Þ

Here, θðxÞ is the Heaviside step function. The three f
terms appearing in KðΩ; EÞ are depicted schematically in
Fig. 1(c), alongside the various processes they describe.
After the Fermi-surface average, the coupling to the cavity
is effectively characterized by the coupling function

JcavðΩÞ ¼ 4παcD
Z

d2q
ð2πÞ2

AqðΩÞ
2ωq

X

α

ĵϵαq;kj2; ð16Þ

where D ¼ v2Fτel=2 is the electronic diffusion constant and
ϵ̂αq;k indicates that only the in-plane components of the
polarization vector contribute. For a BCS gap of order Δ ¼
10 K we find a corresponding resonance frequency
ω0 ∼ 1.3 THz. Recently, a number of advances have lead
to large enhancements in the strength and tunability of the
light-matter coupling strength in this frequency regime,
such that JcavðΩÞ may potentially exceed what is expected
from our simple planar cavity model by many orders of
magnitude [35–38]. We incorporate this fact by rescaling
the spectral function Jby a phenomenological factor X, so
that JðΩÞ → J̃ðΩÞ ¼ XJcavðΩÞ.
In order to simplify the calculation, we will study the

system in the Ginzburg-Landau regime (Tqp ≲ Tc), which
allows us to expand the gap equation in powers of Δ.
Including the nonequilibrium distribution function contri-
bution, this results in

#
Tc − Tqp

Tc
− 7ζð3Þ

8π2
Δ2

T2
c
− 2

Z
∞

Δ

dE
E

νqpðEÞ
νF

δnðEÞ
$
Δ ¼ 0:

ð17Þ

To leading order in the gap change, we obtain the correction
to the BCS gap
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δΔ
Δ0

¼ −
Tc

Tc − Tqp

Z
∞

Δ0

dE
E

νqpðEÞ
νF

δnðEÞ: ð18Þ

This is plotted in Fig. 1(a) as a function of the cavity
frequency ω0 for different photon temperatures relative to
the quasiparticle temperature Tqp. The enhancement is
ultimately driven by the enhanced BQP recombination
rate which, for a cold photon reservoir serves to remove
detrimental quasiparticles.
This can be seen explicitly in Fig. 2, which shows the

change in the distribution function δn for two different cavity
frequencies. When the cavity frequency is too low, scattering
processes dominate and the photons cool the existing BQPs,
leading to a buildup of particles near the gap edge. At higher
cavity frequencies the pair processes dominate, leading to an
enhancement as photons now cool the system by reducing the
total number of harmful BQPs.
While the effect we predict here essentially relies on the

cooling ability of the cold photon reservoir, we also remark
that our formula for δnðEÞ, presented in Eq. (14), is valid
for a wide variety of photon spectral functions. In particu-
lar, switching from a multimode planar cavity, where
JcavðΩÞ ∼ ω0ð1þ ω2

0=Ω2ÞθðΩ − ω0Þ is roughly constant
for Ω > ω0, to a simpler single-mode cavity, where Jcav ∼
ω2
0f2κ=½ðΩ − ω0Þ2 þ κ2%g is peaked at the resonant fre-

quency, will allow for an enhancement in δΔ even when the
photon reservoir is hotter than the sample. This is explicitly

demonstrated in Fig. 3, where we plot δΔ against ω0 for the
case of a single-modeJcavðΩÞ. The enhancement in δΔ due
to hot photons is now qualitatively similar to the classical
Eliashberg effect, albeit with a narrow spectral broadening
applied to the driving. For cold photons, the enhancement is
similar to that seen in the multimode system and results
from the photons cooling the sample via enhanced BQP
recombination.
In conclusion, we have generalized the classical

Eliashberg effect to include both quantum and thermal
fluctuations, as realized by a thermal microwave resonator
cavity. In the appropriate parameter regime, we show that the
photonic reservoir can be used to drive the quasiparticles into
a nonequilibrium state which enhances the superconducting
gap Δ. In our calculation, we assumed that the cavity
relaxation rate τ−1cav was fast, allowing us to essentially ignore
the dynamics and kinetics of the photons themselves. We
should not expect this to remain the case when we go to the
limit of a high-quality cavity, in which the relaxation rate τ−1cav
is no longer small compared to all the other energy scales in
the problem. In the high-quality limit, a more elaborate
treatment which treats the joint evolution of fermion-photon
system is required. Though potentially much more compli-
cated, the inclusion of photons as a participating dynamical
degree of freedom may unveil many new and interesting
phenomena. These range from the formation of new collec-
tive modes (including polaritons) [39,40], superradiant
phases [24,41], and potentially photon-mediated supercon-
ductivity [42]. The prospect of exploring the full breadth of
these joint matter-gauge systems is an exciting development
in the fields of quantumoptics and condensedmatter physics.
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FIG. 2. Change in quasiparticle distribution function due to
cavity photons. The two curves are at the same temperature
(Tcav=Tqp ¼ 0.5) but different cavity frequencies ω0=Δ0. For
low cavity frequency (orange), the gap Δ is diminished due to
an accumulation of cooler quasiparticles near the gap edge, due to a
down-scattering of particles. For higher cavity frequency (blue), the
recombination processes are more dominant and lead to a net
reduction in quasiparticles, enhancing the gapΔ. The kink features
labeled A and C reflect the onset of the term fðΩ; EÞ in Eq. (14),
which is nonzero only for E > ω0 þ Δ0. At higher cavity frequen-
cies (ω0 > 2Δ0) an additional kink feature (located atB) emerges at
E ¼ ω0 − Δ0. For E < ω0 − Δ0, the term fð−Ω; EÞ (which
represents the pair processes) contributes over the entire integration
region of Ω > ω0, while for E > ω0 − Δ0 the integral only
captures some of the frequencies where this term contributes.

FIG. 3. Gap enhancement δΔ0 for a single-mode cavity, for
both cold and hot photons. The y axis is determined by the overall
scale 4παDτinT2

c=ððπ
ffiffiffi
3

p
Þ3c2ÞX; with the same values chosen for

X and τin, τel, vF=c as in Fig. 1. Curves are colored and labeled
according to the ratio Tcav=Tqp, comparing the photon and
quasiparticle temperatures. Here, the cavity width is held fixed
at 1=2τcav ¼ 10ω0.
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KELDYSH NON-LINEAR SIGMA MODEL

In order to derive the correction to the quasiparticle distribution functions in the presence of disorder, we employ
the Keldysh nonlinear σ model (KNLσM) as derived by Feigelman et al. [1].

Schematic derivation of the model

We first briefly outline the derivation of the Keldysh nonlinear sigma model before describing the calculations
performed in our work. For more details on the KLNσM we refer the reader to Feigelman et al. [1] or Kamenev [2].
The derivation of the sigma model begins with a minimally coupled BCS action on the Keldysh contour in the

presence of a random impurity potential

S =

∮

C
dtdx

[

ψ̄
(

i∂t − ϵ̂
(

−i∇+
e

c
A
)

+ µ− Vimp

)

ψ +
λ

ν
ψ̄↑ψ̄↓ψ↓ψ↑

]

(1)

with ϵ̂ being the quasielectron energy, µ the chemical potental, ν the density of states at the Fermi surface, λ the
BCS coupling strength, Vimp is the impurity potential.

∮

C denotes integration over the Keldysh contour. One now
averages over gaussian disorder which induces an effective disorder interaction in the usual manner

iSdis = −
1

4πντ

∫

C
dtdt′dxψ̄(t)ψ(t)ψ̄(t′)ψ(t′). (2)

The bilinears ψ̄(t)ψ(t) describe rapidly varying modes on the length scales of the impurities. However, the bilinears
ψ̄(t)ψ(t′) describe slowly varying degrees of freedom. Therefore a Hubbard-Stratonovich field Q dual to ψ̄(t)ψ(t′) is
introduced to decouple the disorder interaction. The BCS interaction is also decoupled via the Hubbard-Stratonovich
field ∆ in the usual fashion. Coupling to the A-field is handled via the paramagnetic coupling j ·A ≈ e

cvF ·A. At
this point one performs the Larkin-Ovchinnikov rotation and integrates out the fermions. This leads to an action for
the Hubbard-Stratonovich fields Q and ∆

iS = −
πν

8τ
Tr Q̌2 +Tr ln

[

Ǧ−1 +
i

2τ
Q̌−

e

c
vF · Ǎ+ ∆̌

]

(3)

where G is the Bogoliubov-de Gennes Green’s function. One then performs an expansion about the saddle-point
solution for Q as well as a gradient expansion. One notes that the TrQ2 vanishes on the soft manifold Q2 = 1
—where we must keep in mind that the unit matrix must have the proper analyticity structure —indicating that such
modes are massless. The result of these expansions along with the non-linear constraint gives the KNLσM

iSNLSM = −
πν

8
Tr

[

D
(

∂̂Q̌
)2

+ 4i
(

iτ̂3∂tQ̌+ ∆̌Q̌
)
]

− i
ν

2λ
Tr ∆̌†γ̂q∆̌. (4)

Our system

We employ a slightly modified NLSM which includes coupling to a thermal bath

iSNLSM = −
πν

8
Tr

[

D
(

∂̂Q̌
)2

+ 4i
(

iτ̂3∂tQ̌+ i
γ

2
Q̌relQ̌+ ∆̌Q̌

)
]

− i
ν

2λ
Tr ∆̌†γ̂q∆̌ (5)

where D = vfτ2imp/2 is the diffusion constant, ν = ν↑+ ν↓ is the total electronic density of states at the Fermi surface,
and λ is the strength of the BCS type coupling. Tr in the above indicates a trace over all indices: both matrix and
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spacetime. The notation X̌ indicates a matrix in Nambu and Keldysh spaces. The matrix Q̌, describing the soft
electronic degrees of freedom, is a function of position r and two time coordinates t, t′ and is subject to the non-linear
constraint Q̌2 = 1̌. The photon field A couples to the model through the covariant derivative

∂̂X̌ = ∇X̌ + i[Ǎ, X̌] (6)

where we have absorbed the paramagnetic coupling strength into the definition of the A field. All matrices in the
model are 4 × 4 in the product of Keldysh and Nambu spaces. In what follows we employ the conventions used in
Ref. 2. Explicitly

Q̌rel(ϵ) =

(

1 2Feq(ϵ)
0 −1

)

K

Ǎ =
∑

α

aαγ̂
α ⊗ τ̂3

∆̌ =
∑

α

(∆αγ̂
α ⊗ τ̂+ −∆∗

αγ̂
α ⊗ τ̂−)

(7)

where the index α runs over (cl, q) and γcl = σ0 and γq = σ1 are matrices in Keldysh space. We model inelastic
relaxation through a linear coupling to a bath Q̂rel with temperature T [3]. This is equivalent to the relaxation (1/τ)
approximation in the kinetic equation. In particular γ = 1

τin
is the inelastic scattering rate.

The saddlepoint equations of Eq. (5) for ∆∗
q and Q̌ respectively correspond to the BCS gap equation and the Usadel

equation[4] for the quasiclassical Green’s function Q̌. In the absence of the cavity photon field this describes the
superconducting state of the electronic system without the cavity. Our strategy will be to obtain the lowest order in
A correction to the action which is linear in ∆∗

q . This corresponds to the lowest order correction to the gap equation.

In the absence of A the saddle point of Q̌ is

∂̂
(

DQ̌∂̂Q̌
)

+ i{iτ̂3∂t, Q̌}+ i
[

iτ2∆0 + i
γ

2
Q̌rel, Q̌

]

= 0 (8)

where we have assumed ∆cl to be homogenous and real. Assuming a homogeneous, steady state solution Q̌sp(t− t′)
we may Fourier transform to obtain

iϵ[τ̂3, Q̌(ϵ)] + i[iτ2∆0, Q̌(ϵ)] + γ/2
[

Q̌rel(ϵ), Q̌(ϵ)
]

= 0. (9)

At the saddle point Q̌ will have the structure

Q̌ =

(

Q̂R Q̂RF̂ − F̂ Q̂A

0 Q̂A

)

as governed by fluctuation-dissipation.

GAUSSIAN FLUCTUATIONS

Gaussian fluctuations about the saddle point can be parametrized

Q̌ = Ǔ V̌ −1e−W̌/2σ̂3τ̂3e
W̌/2V̌ Ǔ . (10)

with

U(ϵ) =

(

1 Feq(ϵ)
0 −1

)

K

τ̂0

V̌ (ϵ) =

(

eτ1θ/2 0
0 eτ1θ

∗/2

)

K

.

(11)

Here, θ(ϵ) is a complex angle which is determined by the Usadel equation, and satisfies θ(−ϵ) = −θ∗(ϵ). The
matrices U and V are a change of basis which allows us to separate the equilibrium and saddle point properties
from the fluctuation effects: U describes the fluctuation dissipation relation, while V parametrizes the solution to the
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retarded Usadel equation. The matrix W̌ is then composed of fields multiplying the generators of the algebra which
describes rotations on the soft manifold imposed by the nonlinear constraint Q̌2 = 1. In particular, the matrix W̌
anticommutes with σ3τ3 and for W̌ = 0 Eq. (10) reduces to the saddlepoint solution. By expanding the exponential
in this parametrization we can capture the Gaussian fluctuations along the soft manifold. W̌ has 4 independent
components that couple to the vector potential

W̌ (r, t, t′) = i

(

cR(r, t, t′)τ1 dcl(r, t, t′)τ0
dq(r, t, t′)τ0 cA(r, t, t′)τ1

)

K

, (12)

the cooperon (cR, cA) and diffuson (dcl, dq) fields.
We now expand Eq. (5) to quadratic order in the cooperon and diffuson fields c and d. Doing so we generate three

types of terms. The simplest is the quadratic diffusive mode action

iScd =
πν

4

∫
dϵ

2π

∫
dϵ′

2π
tr
[

d⃗ϵ′ϵD̂−1
ϵϵ′ d⃗ϵϵ′ + c⃗ϵ′ϵĈ−1

ϵϵ′ c⃗ϵϵ′
]

(13)

where we have defined the vector notation

d⃗ = (dcl, dq)

c⃗ = (cR, cA)

D̂−1
ϵϵ′ = D−1

ϵ′ϵ σ+ +D−1
ϵϵ′ σ−

Ĉ−1
ϵϵ′ = diag

(

[CR
ϵϵ′ ]

−1, [CA
ϵϵ′ ]

−1
)

,

(14)

and the diffuson and cooperon propagators

D−1
ϵϵ′ = ER(ϵ) + EA(ϵ′)

[CR/A]−1
ϵϵ′ = ER/A(ϵ) + ER/A(ϵ′)

ER(ϵ) = i
(

ϵ+ i
γ

2

)

cosh θϵ − i∆ sinh θϵ

EA(ϵ) =
(

ER(ϵ)
)∗

.

(15)

At linear order we then have a coupling between diffusive modes and the gap

iS∆−cd = πν

∫
dϵ

2π

[

c⃗ϵϵ · s⃗cϵ + d⃗ϵϵσ̂1s⃗
d
ϵ

]

(16)

where we have taken ∆q to be homogeneous and real. Finally, there is a coupling of the diffusons and cooperons to
the photon field

πνD

∫
dω

2π
Aα

−ω ·Aβ
ω

∫
dϵ

2π

[

c⃗ϵϵ · r⃗c;αβϵ + d⃗ϵϵσ̂1r⃗
d;αβ
ϵ

]

(17)

The r⃗i;αβ are matrices in the photon Keldysh space and vectors in the sense induced by Eq. 14. They determined
by the structure of the saddlepoint solution and arise from expanding to covariant derivative term in Eq. (5) to lowest
order in the W matrix fields.
The coupling to the diffusive modes may be removed by making a shift of the fields

c⃗ϵϵ → c⃗ϵϵ − 2∆qĈϵϵs⃗cϵ − 2DĈϵϵ
∫

dω

2π
Aα

−ωA
β
ω r⃗

c;αβ
ϵ (18)

d⃗ϵϵ → d⃗ϵϵ − 2∆qD̂ϵϵσ̂1s⃗
d
ϵ − 2D

∫
dω

2π
Aα

−ωA
β
ωD̂ϵϵσ̂1r⃗

d;αβ
ϵ . (19)

This shift has three effects. The first two are to create a nonlinear term in the photon action, which we will ignore as
we are not considering non-linear effects, and to create term at second order ∆q which we can ignore as ∆q will be
taken to 0 at the end. The important effect is that a coupling between photons and ∆∗

q is induced

iS∆−A = 2πνD∆q

∫
dω

2π

∫
dq

(2π)2
Aα

−ω(−q) ·Aβ
ω(q)

∫
dϵ

2π

[

s⃗cϵĈϵϵr⃗c;αβϵ + s⃗dϵ σ̂1D̂ϵϵσ̂1r⃗
d;αβ
ϵ

]

. (20)
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At this point we may safely integrate out the d modes and henceforth ignore them.[5]
Making the definition

−iΠαβ = 2πνD∆q

∫
dϵ

2π

[

s⃗cϵĈϵϵr⃗c;αβϵ + s⃗dϵ D̂ϵϵr⃗
d;αβ
ϵ

]

(21)

we can write the photon action as

iSA = i

∫
dω

2π

∫
dq

(2π)2
Aα

−ω,−q

(

Š−1
0 (ω,q)− Π̌(ω,q)

)

Aβ
ω,q. (22)

Integrating out a we obtain

iS = −
1

2
Tr ln

[

−i
(

Š−1
0 − Π̌

)]

≈
1

2
Tr
[

Š0Π̌
]

(23)

where we have expanded to linear order in ∆q. Since the momentum q appears only in S we can immediately integrate
over it. Similarly we can trace over the in plane components of A. We thus define

D̂(ω) =
∑

i∈{x,y}

∫
dq

(2π)2
Ŝii(ω,q) (24)

We assume the photon modes to be governed by a density matrix which is diagonal in energy. D can then be written
in the usual form

D̂(ω) =

(

N(ω)(DR(ω)−DA(ω)) DR(ω)
DA(ω) 0

)

(25)

Defining −2πiJ(ω) = DR(ω)−DA(ω) and using the analytic properties of D this can be written

iS =
−i

2

∫

dωJ(ω)
[

N(ω)Π0,0(ω)− (ΠR(ω)−ΠA(ω))
]

(26)

where we have defined ΠR/A as the retarded/analytic part of Π01/10. Defining

ν∆q
(

P c
αβ(ω) + P d

αβ(ω)
)

= −iΠαβ (27)

B(ω) =
P d
R(ω)− P d

A(ω)

P d
0 (ω)

(28)

with P 0 = P00 and PR/A defined analogously to ΠR/A the correction can be broken into two terms. The first is the
equilibrium self-energy correction to to the cavity photons

iSeq
c =

ν∆q

2

∫

dωJ(ω) [B(ω)P c
0 (ω)− (P c

R(ω)− P c
A(ω))] . (29)

This term should be included in the bare equilibrium result as it is a property of the equilbrium cavity-superconductor
system and we therefore subtract it off henceforth. The other term

iSfluc =
ν∆q

2

∫

dωJ(ω)(N(ω)− B(ω))(P c
0 (ω) + P d

0 (ω)) (30)

is the fluctuation induced enhancement to superconductivity. This is to be compared with the correction term due to
a classical monochromatic field (i.e. the original Eliashberg effect)

iS = (−iΠ0,0(ω)− iΠ0,0(−ω))|Aω |2 = ν∆q(P0(ω) + P0(−ω))|Aω|2 ≡ ν∆qY (ω)|Aω |2. (31)

Using the functional dependence of the classical Eliashberg effect on frequency Y (ω) the quantum Eliashberg effect
can be written in a Fluctuation-Dissipation like form

iSfluc =
ν∆q

2

∫ ∞

0
dωJ(ω)(N(ω)− B(ω))Y (ω). (32)

It should be noted that in the linearized regime P d
0 goes as γ−1 while P c

0 goes as γ0. Thus, in the limit of γ → 0 we
expect the diffuson contribution to be dominant.
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GAP EQUATION

As mentioned previously, the BCS gap equation is the saddlepoint equation of our action with respect to the source
field ∆q. Including the correction term Eq. (32) the gap equation then becomes

0 =
δiS

δ∆q

∣
∣
∣
∣
∆q=0

= −4i
ν

λ
∆+

πν

2
Tr Q̂K τ̂2 +

ν

2

∫ ∞

0
dωJ(ω)(N(ω)− B(ω))Y (ω) (33)

We therefore define

FBCS =
1

λ
+

iπ

8∆
Tr Q̂K τ̂2

Fphot =
iν

8∆

∫ ∞

0
dωJ(ω)(N(ω)− B(ω))Y (ω)

(34)

Which allows us to write the gap equation as FBCS = −Fphot. Furthermore, Fphot can be broken up into a kinetic
contribution F kin arising from modification of the quasiparticle occupation function and a spectral contribution F spec

due to modification of the density of states from self energy effects, as discussed above. Most notably, because the
gap equation is linearly related to the action, the corrections to the gap equation are related to the conventional via
the same fluctuation-dissipation-like relation.

Effective photonic spectral function

The function J(ω) can be can be calculated by relating the field A to the cavity mode operators a, ā.

Multimode Cavity

As an example of a multimode cavity we take the cavity mode Keldysh action to be given by

iS = i

∫
dω

2π

∫
dq

(2π)2
a†q;α

(

0 ω − iκ− ωq

ω + iκ− ωq 2iκN(ω)

)

︸ ︷︷ ︸

Ĝ−1(ω,q)

aq;α. (35)

to describe a cavity coupled to the environment.[6] Using the fact that we can expression A in terms of a and ā (in
Gaussian units) as

Aq(z) =

√

2πc2

ωq

(

aq;αϵq;α(z) + a†−q;αϵ
∗
−q;α(z)

)

(36)

we can relate the Keldysh component of S and G

2SK
ω,q;ii(L/2, L/2) =

2πc2

ωq

∑

α

|ϵiq;α(L/2)|2
(

GK
−q +GK

q

)

(37)

After some calculation we therefore find

JMM(ω) =

∫
dq

(2π)2
κc2

ωq

∑

α

∣
∣
∣
∣
ϵq;α

(
L

2

)∣
∣
∣
∣

2( 1

(ω − ωq)2 + κ2
−

1

(ω + ωq)2 + κ2

)

(38)

where we have used the fact that ϵ(L/2) is in plane. Now with the explicit forms of ϵi from the main text

ϵ̂1,q(L/2) = −i

√

2

L

ω0

ωq

q

|q|

ϵ̂2,q(L/2) =

√

2

L
e3 ×

q

|q|

(39)
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we can immediately evaluate the angular integral

∫
dθ

2π

∑

i∈x,y,α

|ϵiθ,α(L/2)|2 =
2

L

(

1 +
ω2
0

ω2
q

)

. (40)

We now make a change of variables from |q| → ω′ = ωq. The dispersion relation ω2
q = ω2

0 + c2q2 implies

qdq

2πω′
=

dω′

2πc2
. (41)

This allows us to write J as

JMM(ω) =
2κ

L

∫ ∞

ω0

dω′

(
1

(ω − ω′)2 + κ2
−

1

(ω + ω′)2 + κ2

)(

1 +
ω2
0

ω′2

)

. (42)

This integral may be performed exactly to find

JMM(ω) =
2

L

[(

1 + ω2
0
ω2 − κ2

(ω2 + κ2)2

)(

tan−1 ω − ω0

κ
+ tan−1 ω + ω0

κ

)

+
κωω2

0

(ω2 + κ2)2
log

((

(ω − ω0)2 + κ2
) (

(ω + ω0)2 + κ2
)

ω4
0

)]

. (43)

We will, however, introduce a factor X into J which describes enhancement of the electron-photon coupling due to
e.g. squeezing of mode volume, one factor of

√
X coming from the enhancement of each vertex. In principle this

enhancement should come from a detailed study of the structure of the photon modes. However, this physics is not
captured within our simple parallel plate model and so we include the coupling enhancement phenomenonlogically
via the factor X

Jeff(ω) = XJ(ω). (44)

Single mode cavity

We can also consider the effective photonic spectral function for a single mode cavity

iS = i

∫
dω

2π
a†α(ω)

(

0 ω − iκ− ω0

ω + iκ− ω0 2iκN(ω)

)

︸ ︷︷ ︸

Ĝ−1(ω)

aα(ω). (45)

Following the steps outlined above we find that

Jeff;SM(ω) =
κc2X

ω0

∑

α

∣
∣
∣
∣
ϵα

(
L

2

)∣
∣
∣
∣

2( 1

(ω − ω0)2 + κ2
−

1

(ω + ω0)2 + κ2

)

. (46)

Photonic corrections to the distribution function

To lowest order in τin = 1/γ, which corresponds to taking a linearized expansion of the collision integral in the
deviation of the occupation function from Fermi-Dirac, and using the fact that J(ω) is an odd function of ω we can
write F kin

phot = Fpair + Fscat with the recombination contribution

Fpair =
αD

γc

∫ ∞

2∆
dωJ (ω) (N(ω)− B(ω))

∫ ω−∆

∆

dϵ

ϵ
(F (ϵ) + F (ω − ϵ))P (ϵ,ω − ϵ)ρqp(ϵ)ρqp(ω − ϵ) (47)

and scattering contribution

Fscatter =
αD

γc

∫ ∞

0
dω ωJ (ω) (N(ω)− B(ω))

∫ ∞

∆

dϵ

ϵ(ϵ + ω)
(F (ϵ)− F (ω + ϵ))L(ϵ,ω + ϵ)ρqp(ϵ)ρqp(ω + ϵ), (48)
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where the fine-structure constant α appears due to reinstating the electron charge in the paramagnetic coupling which
we had previously absorbed into the A field.
With our particular form of J(ω) (G(w, k)) the correction to the gap equation become

Fpair =
αDX

cγ

∫ ∞

2∆
dωJ (ω) (N(ω)− B(ω))

∫ ω−∆

∆

dϵ

ϵ
(F (ϵ) + F (ω − ϵ))P (ϵ,ω − ϵ)ρqp(ϵ)ρqp(ω − ϵ) (49)

and

Fscatter =
αDX

cγ

∫ ∞

0
dω ωJ (ω) (N(ω)− B(ω))

∫ ∞

∆

dϵ

ϵ(ϵ+ ω)
(F (ϵ)− F (ω + ϵ))L(ϵ,ω + ϵ)ρqp(ϵ)ρqp(ω + ϵ). (50)

In the above we have used the definitions

P (ϵ, ϵ′) = 1−
∆2

ϵϵ′
, L(ϵ, ϵ′) = 1 +

∆2

ϵϵ′

F (ϵ) = tanh
ϵ

2T
, N(ω) = coth

ω

2Tp
, B(ω) = coth

ω

2T

(51)

We have assumed the photons to be at temperature Tp while the Fermions are coupled to a bath of temperature T .
The correction terms can be rewritten as

Fpair + Fscat =
αDX

γc

∫ ∞

∆
dϵ
ρqp(ϵ)

ϵ

∫ ∞

0
dωJ(ω) (N(ω)− B(ω))

× [(F (ϵ) + F (ω − ϵ))P (ϵ,ω − ϵ)ρqp(ω − ϵ)Θ(ϵ−∆)Θ(ω −∆− ϵ)

+ (F (ϵ)− F (ϵ+ ω))L(ϵ, ϵ+ ω)ρqp(ϵ + ω)Θ(ϵ−∆)

+ (F (ϵ− ω)− F (ϵ))L(ϵ− ω, ϵ)ρqp(ϵ− ω)Θ(ϵ− ω −∆)] = 2

∫ ∞

∆
dϵ
ρqp(ϵ)

ϵ
n1(ϵ) (52)

which allows us to move this term to the left hand side to obtain

1

λ
−
∫ ∞

∆
dϵ

1− 2nf(ϵ)− 2n1(ϵ)√
ϵ2 −∆2

= 0 (53)

and therefore identify the correction to the occupation function

n1 =
αDX

2γc

∫ ∞

0
dωJ(ω) (N(ω)− B(ω))

× [(F (ϵ) + F (ω − ϵ))P (ϵ,ω − ϵ)ρqp(ω − ϵ)Θ(ϵ−∆)Θ(ω −∆− ϵ)

+ (F (ϵ)− F (ϵ+ ω))L(ϵ, ϵ+ ω)ρqp(ϵ + ω)Θ(ϵ−∆)

+ (F (ϵ − ω)− F (ϵ))L(ϵ− ω, ϵ)ρqp(ϵ− ω)Θ(ϵ− ω −∆)] . (54)

Defining the power spectral density of absorption (αD/c)J(ω), our result can be written

n1(ϵ) = γ−1

∫ ∞

0
dω S(ω)

N(ω)− B(ω)
2

Ielϵ (ω) (55)

where Ieleps(ω) is the related to the conventional Eliashberg expression [7] for a classical microwave field Aω by

nconv.
1 (ϵ,ω) =

αD|Aω |2

γc
Ielϵ (ω). (56)
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