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One of the main topological invariants that characterizes several topologically ordered phases is the
many-body Chern number (MBCN). Paradigmatic examples include several fractional quantum Hall
phases, which are expected to be realized in different atomic and photonic quantum platforms in the near
future. Experimental measurement and numerical computation of this invariant are conventionally based on
the linear-response techniques that require having access to a family of states, as a function of an external
parameter, which is not suitable for many quantum simulators. Here, we propose an ancilla-free
experimental scheme for the measurement of this invariant, without requiring any knowledge of the
Hamiltonian. Specifically, we use the statistical correlations of randomized measurements to infer the
MBCN of a wave function. Remarkably, our results apply to disklike geometries that are more amenable to
current quantum simulator architectures.
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Introduction.—Topologically ordered systems are a class
of gapped quantum phases of matter [1,2], which can have
robust topological ground-state degeneracy and host
excited states with fractional statistics, known as anyons
[3]. These systems, unlike symmetry protected topological
(SPT) phases that have short-range entanglement, acquire
long-range entanglement which makes them a suitable
platform for realizing quantum computation [4,5]. Para-
digmatic examples of chiral topologically ordered systems
are the fractional quantum Hall (FQH) states that in certain
cases are characterized by the many-body Chern number
(MBCN), as their topological invariant.
In recent years, interest in engineering topological states

of matter in synthetic quantum systems has substantially
grown. Examples of such quantum simulators include
neutral atoms [6], superconducting qubits [7,8], photons
[9], and more recently Rydberg atoms [10,11]. With these
developments, the benefit of having direct access to the
wave function in quantum simulators opens new avenues to
investigate and measure the topological properties. In
conventional condensed matter physics, the detection of
topological properties relies on the application of external
probes and linear response framework, and similar schemes
have also been proposed for simulated matter [12–16].

Moreover, ancilla-based approaches have been proposed
that involve a many-body Ramsey interferometry to
measure the topological charge [17] and entanglement
spectrum [18]. But the fact that the ancilla should be
coupled to the entire system limits the applicability of such
schemes. Recently, this question was theoretically
investigated in the context of SPT systems [19–24], but
the problem for topologically ordered systems has been
relatively unexplored.
Here, we propose a novel method for the measurement of

MBCN. Using our recent findings [25], we show that given
a wave function on a disklike geometry, for a single set of
parameters, one can construct the MBCN by applying
certain operators on the wave function, without knowledge
of the Hamiltonian. This should be contrasted with the
common situation where one requires a family of many-
body wave functions, e.g., different twist angles on a torus.
Importantly, such a construction allows one to perform the
measurements using random unitaries [26–28]. Our scheme
requires only a single wave function at a given time, for the
same set of parameters, as schematically shown in Fig. 1.
In other words, in each experimental realization, one
requires only a single copy of the system, and simultaneous
access to several identical copies of the wave function is not
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required. Therefore, this scheme can be easily implemented
with the state-of-the-art ultracold atoms, Rydberg arrays,
and circuit-QED platforms.
First, in the context of topological quantum field theory

(TQFT) [29], we interpret and generalize the polarization
formula for the MBCN [25]. Our approach is extensively
discussed in Ref. [25]; here, we outline the key concepts
and results. Specifically, we demonstrate that by introduc-
ing two symmetry defects, in the space-time manifold, one
can evaluate the MBCN as an expectation value of
symmetry defect operators. This allows us to effectively
change the boundary conditions of the wave function.
Then, by cutting and gluing space-time manifolds, we show
that topologically nontrivial space-time manifolds, such as
a torus, can be obtained from a given wave function on a
rectangular geometry. Such operations can be obtained by
applying a SWAP operator between two subregions [23].
Similar to the Renyi entropy, where the expectation of the
SWAP operator can be evaluated using a single copy of the
wave function at a time, we show how such space-time
surgery can be implemented in an experimental setting.
Importantly, we show that the symmetry defects can be
implemented by postprocessing the data.
As a prerequisite for our protocol, we need to know the

number of flux quanta that must be adiabatically inserted
into a region of the system before a topologically trivial
excitation is obtained [25]. As another feature of our
protocol, we note that the amplitude of the SWAP expecta-
tion value decreases exponentially with the subregion area,
in the absence of spatial symmetries. Moreover, the number
of randomized measurements increases exponentially with
the system size. Therefore, for both reasons, our protocol is

particularly suitable for noisy intermediate-scale quantum
(NISQ) devices [30].
Many-body Chern number.—In order to introduce the

MBCN, we first consider a full multiplet of s topologi-
cally degenerate ground states on a torus. The wave
functions are Ψαðϕx;ϕyÞ defined on a torus geometry,
with length Lx and Ly along the x and y directions,
respectively. Here, α ¼ 1;…; s, and we consider
Abelian quantum Hall states with Hall conductance
σxy ¼ ðe2=hÞðp=qÞ, where p and q are coprime integers
and the parameter s ¼ q. In this case, the parameter s is the
number of flux quanta that have to be inserted before a
topologically trivial excitation is obtained. We note that,
in general, the parameter s can be different from q when
the degenerate ground-state subspace is composed of
multiple topological sectors [31].
The twisted boundary conditions are defined as

t̂jðLkk̂ÞΨðϕx;ϕyÞ ¼ eiϕkΨðϕx;ϕyÞ, where k ¼ x, y and
t̂jðr⃗Þ is the magnetic translation operator of the jth
particle along the direction r⃗. The MBCN of a FQH system
is of the form [32]

C ¼ 1

2πi

Z
2πs

0

dϕx

Z
2π

0

dϕyF ðϕx;ϕyÞ; ð1Þ

where F ðϕx;ϕyÞ ¼ h∂ϕx
Ψαj∂ϕy

Ψαi − h∂ϕy
Ψαj∂ϕx

Ψαi is
the Berry curvature obtained from adiabatically varying
the twist angle boundary conditions (ϕx,ϕy), for a single
wave function jΨαi.
Alternatively, one can obtain the MBCN, when the wave

function is given only as a function of one twist angle.
Specifically, let jΨαðθxÞi be the ground-state wave function
in the presence of a flux through the x directionH
dxAx ¼ θx, and we take the flux in the y direction to

be zero,
H
dyAy ¼ 0. We note that for the following

argument, one can also consider a cylinder instead of a
torus. Following the work of Resta [33], we define the
polarization operator as Ry ¼

Q
x;y e

ið2πy=lyÞn̂ðx;yÞ, where the
product is taken over the whole system. We then compute

T ðθx; sÞ ¼ hΨðθxÞjRs
yjΨðθxÞi: ð2Þ

Adiabatically changing θx is equivalent to applying an
electric field Ex, which induces a current in the y direction
due to the Hall conductivity, corresponding to a changing
polarization along the ŷ direction. The MBCN therefore
can be obtained as

C ¼ d
dθx

arg T ðθx; sÞ: ð3Þ

We note that Eq. (3) converges to the MBCN in the
thermodynamic limit. For systems with finite size, a more
robust result can be obtained by averaging over the twist
angle: C ¼ ð1=2πÞ H dθxðd=dθxÞ arg T ðθx; sÞ. The Hall
conductivity corresponds to σH ¼ ðC=sÞðe2=hÞ.

FIG. 1. Randomized measurement scheme. We define two
regions, R1 (red) and R2 (green), in the lattice with side lengths
l1 × ly and l2 × ly, respectively. We prepare two identical wave
functions jψAi and jψBi in experiments A and B, respectively.
The local unitary operator V̂ is applied in the region R1 in Exp. 1.
Subsequently, the random unitary ÛR1

is applied in the region R1

on both wave functions. The projective measurements on the
particle occupation basis are performed on regions R1 and R2 in
both experiments. The MBCN can be inferred from the statistical
correlation between the randomized measurement results in
experiment A and experiment B.
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We note Eqs. (1) and (2) are equivalent to each other and
require toroidal and cylindrical geometries, respectively.
While there are theoretical proposals to implement such
geometries [34,35], an experimental realization remains
challenging.
TQFT generalization of Resta formula.—We interpret

and generalize the polarization formula (2) using the TQFT
formalism and Chern-Simons response theory. The low-
energy response of the system can be encoded in an
effective action for the background electromagnetic gauge
field A, such that the TQFT partition function on a space-
time manifold M is given by

ZðM;AÞ ¼ ZðM; 0Þeiðp=qÞSCS½A�: ð4Þ

The Chern-Simons response action is given by
SCS½A� ¼ ð1=4πÞ RM ϵμνλAμ∂νAλ, where μ ¼ t; x; y. The
space-time manifold M is S2 × S1, where y and t are on
the sphere S2 and x is on the circle S1. Note that the x − y
plane forms a torus. The twisted boundary condition
required in the wave functions of Eq. (2) can be realized
by applying Ax ¼ θxδðxÞ and Ay ¼ 0. We interpret Resta’s
polarization operator as an application of an electric
field along the y direction at t ¼ 0, and therefore
At ¼ ð2πsy=lyÞδðtÞ. Under these conditions, the partition
function is given by ZðM;AÞ ¼ ZðM; 0ÞeiCθx, where
C ¼ sp=q ¼ p. The background gauge fields in Eq. (4)
form two symmetry defects which are wrapped around two
distinct noncontractible loops on the manifoldM, as shown
in Fig. 2(a).
Now, instead of measuring the MBCN on the x − y torus,

here we cut and glue the space-time manifold in TQFT to
construct the partition function on a topologically nontrivial
manifold by starting with the state on simple space

manifolds. This allows us to create two noncontractible
loops on a disk geometry. We start from two identical wave
functions jψAijψBi. We apply the SWAP operation ŜRA

1
;RB

1

between the two wave functions in the region R1 as shown
in Fig. 1. For an infinitesimal time interval ϵ, the SWAP
operation glues the space-time manifold from t ¼∓ ϵ in A
to t ¼ �ϵ in B, respectively, as shown in Fig. 2(b). If we
perform a π rotation on the manifold of B along the x̂ axis,
it becomes clear that the two required noncontractible loops
are formed, as shown in Figs. 2(c) and 2(d). These
noncontractible loops are used to apply the symmetry
defects of the gauge potentials At and Ax in this synthetic
nontrivial topology.
Now, we make a connection between the TQFT and

microscopic theory to explicitly express the symmetry
defects in Fig. 2 in terms of the system operators. These
symmetry defects are local in time and can be simply
constructed by the local density operator n̂ðx; yÞ.
Specifically, the operators that represent the polarization
and the twist angle are

V̂R¼
Y

ðx;yÞ∈R
eið2πsy=lyÞn̂ðx;yÞ; ŴRðθxÞ¼

Y
ðx;yÞ∈R

ein̂ðx;yÞθx : ð5Þ

Now, the MBCN can be obtained as the expectation value
of the SWAP operator, which constructs the nontrivial
space-time, and the above operators. Specifically,

T ðθxÞ¼hψAjhψBjV̂†
RA
1

ŴRB
2
ðθxÞŜRA

1
;RB

1
Ŵ†

RA
2

ðθxÞV̂RA
1
jψAijψBi;

ð6Þ

where RAðBÞ
i is the ith region of the wave function jψAðBÞi,

and ŜRA
1
;RB

1
is the SWAP operation between the two copies

of the wave function and T ðθxÞ ∝ eiCθx . Therefore, the
winding number of arg½T ðθxÞ� corresponds to the MBCN.
We note that while our TQFT derivation of this formula is
applicable to cylindrical geometries, extensive numerical
simulations indicate that the same formula can also be
applied to disklike geometries [25].
Randomized measurement scheme.—We now present the

experimental protocol to measure the MBCN via random
measurements. Equation (6) involves the SWAP operator
between two copies of the wave function, and the expect-
ation value can be obtained by performing a beam-splitter
interaction between the two copies and a parity measure-
ment [36–39]. In contrast, we show that a random meas-
urement protocol requires only a single wave function, at a
given time. Our key observation is that, without the
symmetry defect operators, Eq. (6) is reminiscent of the
second Renyi entropy expression and its evaluation
through the SWAP operator expectation value, which
can be extracted using a randomized measurement [26].
Here, we need to generalize that scheme to incorporate the
symmetry defect operators.

(a)

(d)
(b)

(c)

FIG. 2. (a) Space-time manifold of the ZðM;AÞ in Eq. (4),
without showing the y axis. The green line represents the
symmetry defects Ax, and the red line corresponds to At.
(b) SWAP operator ŜR1

, which creates a branch cut in the region
R1 that connects the space-time between system A and system B.
The red and the green curves depict the operators V̂ and ŴðϕÞ,
respectively. (c) π rotation around the x axis in the system B
mapping the branch cut in (b) to a space-time cylinder, which is
topologically equivalent to (d).
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Let us consider a two-dimensional square lattice system
with open boundary conditions. Equation (6) involves
nonlocal SWAP operations between two replica of the
wave functions. It can be performed through the following
two randomized measurements as described in Fig. 1.
We start by preparing the wave function jψi in open

boundary conditions. We first apply the operator V̂R1
on the

state in experiment A. We then perform the random unitary
operation Û and the measurements on the occupation
probability in the regions R1 and R2 for both experiments
A and B. The random unitary operations are sampled from
an approximate unitary 2-design [40,41]. After repeating
the measurement NM times, we obtain the probability
distribution over the occupation basis jbi. The results
of the two experiments are PV

UðbÞ ¼ jhbjÛ V̂ jψij2 and
PUðb0Þ ¼ jhb0jÛjψij2, respectively. We repeat the two
experiments with different random unitary operations Û
forNU times. The statistical correlation of the measurement
results in experiments A and B gives

T̃ ðθxÞ ¼
X
fbg

X
fb0g

Ob;b0 ðθxÞPV
UðbÞPUðb0Þ; ð7Þ

where the bar, � � �, means the average over the random uni-
taries from an approximate unitary 2-design. The coeffi-
cient Ob;b0 ðθxÞ¼δN1ðbÞ;N1ðb0ÞDbð−DbÞδb;b0−1ei½N2ðbÞ−N2ðb0Þ�θx ,
where N1ðbÞ and N2ðbÞ are the number of particles of the
basis state jbi in the regions R1 and R2, respectively, and
Db ¼ ð l1ly

N1ðbÞÞ. Since T̃ ðθxÞ ¼ T ðθxÞ for an ensemble average
over a unitary 2-design [42], the winding number of the
measurement result arg½T̃ ðθxÞ� gives the Chern number C̃.
In the following, we consider the randomized measure-

ment scheme for a system with a nontrivial Chern number
with a finite number of NU and a number of projective
measurements NM for each realization of a randomized
measurement.
Numerical results.—We present the measurement of

MBCN for bosonic fractional quantum Hall states
with filling ν ¼ 1=2. We consider hard-core bosons on
the Nx × Ny square lattice in open boundary conditions,
with a magnetic tunneling Hamiltonian of the form

Ht ¼ −J
X
x;y

ðâ†xþ1;yâx;y þ e−iΦxâ†x;yþ1âx;yÞ þ H:c:; ð8Þ

where âx;yðâ†x;yÞ is the bosonic annihilation (creation)
operator on site ðx; yÞ, and Φ ¼ 2π=q is the magnetic flux
on each plaquette. The ground state is known to be a FCI
phase, with the MBCN C ¼ 1 [43–45]. The FCI ground
state with open boundary conditions can be prepared via an
adiabatic process [42,44,45] and engineered dissipation
[46]. We note that the system size of our simulation is
within reach of the state-of-the-art quantum computation
platform [47].

In Fig. 3(a), we first show that the MBCN of this phase
can be extracted, using the SWAP operator formula,
Eq. (6). We observe that the correct quantized value
C̃ ¼ 1 can be obtained when the region size is larger than
the magnetic length of the system, which is less than a
lattice spacing in our case.
Then, in Figs. 3(b)–3(d), we show that the MBCN can be

extracted using randomized measurements [Eq. (7)]. In
order to implement random unitaries, we apply quench
dynamics [27]. We consider the number-conserving ran-
dom quench unitary operation Û ¼ Qη

k¼1 e
−iHqk

T , where η
is the depth of the random quench and T is the time step of
each quench. The kth quench Hamiltonian is of the form

Hqk ¼ −J
X

hi;ji;i;j∈R1

ða†i aj þ H:c:Þ þ
X
i∈R1

Δk
i n̂i; ð9Þ

where Δk
i is a Gaussian distributed random number with

mean zero and standard deviation Δ. It has been shown that
when the magnitude of Δ is comparable to T−1 and J,
the random quench unitary operator gives the approximate
2-design unitary [27].
The performance of the randomized measurement is

characterized by the probability of obtaining the correct
MBCN P½C̃ ¼ 1�. In Fig. 3(b), we consider the limit of
NM → ∞, and the performance of the randomized
measurement weakly depends on the number of qubits
in the measurement regions R1 and R2. In Figs. 3(c)

(a) (b)

(c) (d)

FIG. 3. Simulation results for Eqs. (6) and (7), for the FCI phase
with C ¼ 1. (a) MBCN obtained from Eq. (6) for various region
sizes ðl1;l2Þ and ly with Nx ¼ 6, Ny ¼ 8, labeled with different
markers. (b) Probability of obtaining the expected MBCN
(P½C̃ ¼ 1�) from Eq. (7), using randomized measurements, as
a function of the number of random unitary operations NU with
NM ¼ ∞. Region sizes are taken to be l1 ¼ l2 ¼ 2. (c,d)
Probability of obtaining the expected MBCN versus number
of measurements NM for two sets of region sizes. For all panels,
J ¼ 1 and Φ ¼ 2π=3. The probability P½C̃� is computed by
averaging over 500 times independent randomized measurement
results. Random quench parameters are η ¼ 20, Δ ¼ J, T ¼ J−1,
and n0 ¼ 0.5n1 þ n2.
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and 3(d), the shot noise of the measurements is taken into
account. When the number of measurements NM is of the
same order of magnitude as 2n

0
, where n0 ¼ 0.5n1 þ n2,

and n1 and n2 are the number of sites in regions R1 and R2

respectively, the probabilityP½C̃ ¼ 1� starts to saturate. The
factor 20.5n1 originates from the birthday paradox scaling of
the randomized measurement in region R1 [26], and the
factor 2n2 is contributed by the shot noise of the number
operator measurement in region R2. The randomized
measurements can be realized in the current and near-term
experimental platforms. For example, in the circuit QED
architecture with 10-kHz repetition rate, each randomized
measurement can be performed within a few minutes.
Robustness against errors of the NISQ devices.—In

order to demonstrate the feasibility in the NISQ devices,
we show that our protocol is robust against various types of
experimental imperfections. First, we note that the ran-
domized measurement protocol is robust against the small
miscalibration of the quantum hardware. It has been shown
that the leading-order contribution of the miscalibration
vanishes in the randomized measurement protocol [48].
For the amplitude damping error and the readout error,

since the total number of excitations in the whole system is
conserved during the state preparation and random unitary
gate, when either the amplitude damping error or the
readout error occurs, the total number of excitations
changes. A change of the number of excitations heralds
an error, and the run should be discarded. Therefore, up to
the first order of the error rates, the amplitude damping
error or the readout error can be detected.
In the case of the depolarization error, the quantum state

after performing the random unitary operation is of the
form

ρdep ¼ ð1 − pdepÞρideal þ
pdep

D
ID þOðp2

depÞ; ð10Þ

where ρideal is the density matrix in the ideal situation, D is
the dimension of the Hilbert space, and pdep is the
depolarization probability. After performing the measure-
ment and postprocessing described in Eq. (7), we have

T̃ depðθxÞ ≈ ð1 − pdepÞ2T̃ ðθxÞ þ pdepcðθxÞ; ð11Þ

where cðθxÞ is a constant offset which can be calculated
from the measurement results [42].
Since the amplitude of T̃ ðθxÞ is rescaled, the number of

measurements should be increased in order to keep the
same accuracy as the ideal case. For example, one can
increase the number of random unitaries NU by a factor of
½1=ð1 − pdepÞ4� in order to increase the measurement
accuracy by a factor of ð1 − pdepÞ2 [26]. The winding
number of T̃ ðθxÞ can be extracted by fitting the measure-
ment result in Eq. (11) with parameters θx and pdep.
Outlook.—Our work opens up a new avenue for creating

nontrivial topology on a space-time manifold, using the

SWAP operation. It is particularly intriguing that the SWAP
operation can be implemented by random unitaries in NISQ
devices. More broadly, quantum simulators are poised to
realize topologically ordered states that might not occur in
conventional electronic matter. Given this opportunity, it is
important to develop measurement methods that go beyond
linear response formalism. For example, it is interesting to
investigate whether the application of the SWAP operator
through randomized measurement can be used to probe
other topological characterizations, such as modular
matrices [49], topological entanglement entropy [50,51],
and the order parameter of symmetry enriched topological
phases [52].
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