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Dissipation generally leads to the decoherence of a quantum state. In contrast, numerous recent
proposals have illustrated that dissipation can also be tailored to stabilize many-body entangled quantum
states. While the focus of these works has been primarily on engineering the nonequilibrium steady state,
we investigate the buildup of entanglement in the quantum trajectories. Specifically, we analyze the
competition between two different dissipation channels arising from two incompatible continuous
monitoring protocols. The first protocol locks the phase of neighboring sites upon registering a quantum
jump, thereby generating a long-range entanglement through the system, while the second destroys the
coherence via a dephasing mechanism. By studying the unraveling of stochastic quantum trajectories
associated with the continuous monitoring protocols, we present a transition for the scaling of the averaged
trajectory entanglement entropies, from critical scaling to area-law behavior. Our work provides an
alternative perspective on the measurement-induced phase transition: the measurement can be viewed as
monitoring and registering quantum jumps, offering an intriguing extension of these phase transitions
through the long-established realm of quantum optics.
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While coupling a quantum system with the environment
is often detrimental for preserving entanglement, dissipa-
tion can also be engineered and utilized to stabilize exotic
and highly entangled many-body states [1–3]. With the
development of recent experimental platforms, such as
circuit quantum electrodynamics (QED) [4–7] and Rydberg
polaritons [8], strongly entangled photonic states can be
engineered with reservoir engineering [9] and tailored
dissipation schemes [10–15].
Quantum phase transitions [16] typically come with

different phases for entanglement entropy, as shown for
the exemplary Bose-Hubbard model [17], where numerous
works investigated the scaling of correlationswith the system
size [18–20]. Also, local projective measurements of a
quantum state destroy the entanglement generated by unitary
evolution, which may lead to a phase transition of entangle-
ment entropy across the system. A number of recent works
have explored quantum circuits of random unitaries alter-
nated with local measurements, and a phase transition
was seen for the scaling of entanglement entropy [21–31].
Later, a similar transition was reported for the stochastic
trajectories from quantum systems under a local continuous-
monitoring protocol, which induces an interplay with the
entanglement from the unitary dynamics of the Hamiltonian
[32–34]. More generally, it is worth investigating whether
stochastic quantum trajectories, a well-established quantum
optics formalism [35,36], can provide more insight into
measurement-induced phase transitions, by employing the
possibility of registering the quantum jumps.

Here, we present a scaling transition of entanglement
entropy in a quantum system, governed entirely by dis-
sipative dynamics—coming from the interplay of two
continuous monitoring protocols—in the absence of uni-
tary dynamics. In Fig. 1(a), we illustrate the model; a chain
of bosonic modes, of length L and with open boundaries, is
first monitored with a protocol that locks the phase of two
adjacent sites with jump operators

dj ≡ ða†j þ a†jþ1Þðaj − ajþ1Þ; ð1Þ

where aj (a
†
j ) is the annihilation (creation) operator for the

bosonic mode on site j [1]. The second monitoring protocol
is dephasing, with jump operators

cj ≡ a†jaj: ð2Þ

The rates of the monitoring for phase-locking dj and
dephasing cj are given by Λ and Γ, respectively. We
investigate the competition between the two monitoring
schemes in terms of the reduced dephasing rate

γ ≡ Γ
Λ
: ð3Þ

The continuous monitoring and the recording of the
jumps is a crucial element of this work. While dissipation is
often introduced to account for the decoherence of a
quantum state, we elaborate specific implementation
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schemes that allow for the continuous tracking of the
system in a circuit QED setup [37]. The random occurrence
and detection of the quantum jumps (1) and (2) imply that
the dynamics of a quantum state jψðtÞi is inherently
stochastic, as depicted in Fig. 1(b). To characterize the
state of the system jψðtÞi, we use the entanglement entropy
of a subsystem A, a state-dependent quantity, which is
evaluated as SA½jψðtÞi� ¼ −TrρA log ρA with ρA the
reduced density matrix of the state jψðtÞi on A. It is
crucial that SA is a strongly nonlinear function of the
stochastic states jψðtÞi. As an immediate consequence,
statistical averages of SA½jψðtÞi� over the states can not be
retrieved from a master-equation approach. This is in stark
contrast with linear quantities, such as operator expectation
values hOit ¼ hψðtÞjOjψðtÞi [35,38], which converge to
the master equation and exhibit a notion of ergodicity [39]
and thermalization [40,41]. Importantly, there is a con-
vergence time tst for SA, after which the stochastic state
jψðtÞi is sampled from a steady-state distribution.
We present a scaling transition for the averaged entan-

glement entropy of stochastic states, after some evolution
time, across a critical value of the reduced dephasing rate
(3), as presented in Fig. 1(c). When phase-locking domi-
nates, the state is superfluid, and entanglement entropy has
a strong dependence on subsystem size. We report the

critical scaling, characterized by an effective central charge
cðγÞ (green line). While an appropriate scaling analysis is
difficult due to numerical constraints, our hypothesis is
motivated by the results in the inset of Fig. 1(c): the
effective curvature cα found for averaged higher-order
Rényi entropies Sα ¼ 1=ð1 − αÞ log Trρα follows the uni-
versal scaling from conformal field theory (CFT) [42,43]

cαðγÞ ¼
cðγÞ
2

�
1þ 1

α

�
; ð4Þ

and the effective central charge cðγÞ shows the onset of a
power-law divergence for γ → 0. While the full master
equation in this regime is expected to converge to a mixed
steady state with a volume law, there is no a priori reason
why trajectory entanglement entropy should follow the
same scaling.
When dephasing becomes more important (higher γ),

the scaling changes to an area law, marked by cðγÞ ≈ 0.
Intuitively, the transition can be further understood from an
order parameter in a simple Gutzwiller (GW) picture,
elaborated in [37]. In circuit-models, two incompatible
types of measurements without unitary entangling gates
can also lead to a scaling transition for entanglement
entropy [44,45]. Our work aims to extend the recent
understanding of a measurement-induced phase transition,
as seen in discrete random circuits, to the stochastic
trajectories of an unraveling associated with the continuous
monitoring of a quantum system.
Stochastic trajectories.—The system dynamics is fully

governed by the two competing monitoring protocols. A
state jψðtÞi then follows a stochastic trajectory, as was
originally introduced in the seminal works [35,38] as a way
to sample the master equation of an open quantum system.
Whereas the unraveling for sampling a master equation is
not unique, here, it relates unequivocally to the monitoring
protocol presented in Figs. 1(a)–1(b), thereby relying
explicitly on the hypothesis of detector-dependent stochas-
tic pure-state dynamics [36].
The sampling of quantum trajectories from the continu-

ous monitoring goes as follows. At time t, we evaluate
whether there is a jump in the differential time
interval ½t; tþ Δt� by evaluating the probability Δp ¼P

L−1
j¼1 Δp

ðdÞ
j þP

L
j¼1 Δp

ðcÞ
j , a summation over the proba-

bilities ΔpðdÞ
j and ΔpðcÞ

j of the jumps dj and cj to occur,

with ΔpðbÞ ¼ γðbÞhψðtÞjb†bjψðtÞiΔt and γðbÞ ¼ fΛ;Γg,
accordingly.
If no jump is detected (probability 1 − Δp), we evolve

the state over Δt with the anti-Hermitian Hamiltonian
Heff ¼ −ðiΛ=2ÞPL−1

j¼1 d
†
jdj − ðiΓ=2ÞPL

j¼1 c
†
jcj. If a jump

is recorded (probability Δp), we select one b ∈ fdj; cjg
with probabilities ΔpðdÞ

j or ΔpðcÞ
j , respectively, to evalu-

ate jψðtþ ΔtÞi ¼ bjψðtÞi.

(a)

(c)

(b)

FIG. 1. A schematic illustration of our setup and the scaling of
trajectory entanglement entropy. (a) We analyze the stochastic
evolution of the system under continuous monitoring with two
competing monitoring protocols, characterized by the registering
of jump operators dj and cj with rates Λ and Γ, respectively.
(b) The quantum state jψðtÞi, starting from zero entropy, follows
a stochastic trajectory under the continuous monitoring with dj
and cj, which can be seen as random fluctuations of entanglement
entropy of a subsystem. Over long enough times tst, the system is
expected to converge to a steady state. (c) The fitting parameter
from Eq. (6) cðγÞ, with γ ≡ Γ=Λ, obtained from fitting to a
system with L ¼ 32, showing a transition from area law (high γ)
to nonarea law (low γ). The inset shows cðγÞ, derived from cαðγÞ
from the Renyi entropy of order α for CFT’s (4). The coincidence
of the cðγÞ curves for different order α for small γ is suggestive for
a phase of critical scaling, where the effective central charge
shows the onset of a power-law divergence as a function of γ.
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After each time step Δt, the state jψðtÞi is normalized to
simulate the stochastic evolution of jψ iðtÞi in the monitor-
ing scheme. Importantly, both detection (probabilityΔp) as
well as absence of a jump (probability 1 − Δp) in Δt yields
information about the state of the system to an observer.
This was illustrated in several recent experiments to
monitor the stochastic evolution of a superconducting qubit
[46–49] and how simultaneously monitoring dephasing and
relaxation leads to an interplay [50].
The phase locking (1) stabilizes a pure Bose-Einstein

condensate dark state with long-range entanglement, where
all L particles are injected in the zero-momentum mode;
jDi ¼ ða†k¼0ÞLj0i, with a†k the creation operator of a photon
with momentum k [1,2], while dephasing (2) directs the
system to a product of local Fock states with zero
entanglement.
While the local Uð1Þ symmetry is broken by the phase

locking (1), a global Uð1Þ symmetry is present in our
system; both jumps dj (1) and cj (2) conserve the total
particle number. For the upcoming analysis, we fix the
filling factor n ¼ 1, and the evolution starts from the Fock
state jψðt ¼ 0Þi ¼ j…1111…i.
Gutzwiller approach.—Given a stochastic trajectory

state jψðtÞi, upon taking the thermodynamic limit
L → ∞, we can study the dynamics of on-site observables
in the Gutzwiller approximation by considering a mean-
field coupling to neighboring sites for the single-site
reduced density matrix [51,52]. An effective single-site
Liouvillian can be constructed for the Gutzwiller master
equation of the reduced density matrix after averaging over
trajectories. A full numerical analysis of the mean-field
order parameter α≡ hai shows that it vanishes across a

critical value γðGWÞ
c ≈ 3, as such providing a suggestive sign

for a trajectory transition, see [37].
Trajectory entanglement entropy.—We focus on evalu-

ating the Von Neumann entanglement entropy of the
trajectory states from a system of size L, jψLi, in a
subsystem A containing l sites from the left: SðlÞ½jψLi� ¼
−Tr½ρA log ρA�, with ρA ¼ TrBjψLihψLj the reduced den-
sity matrix ofA and B containing the remaining L − l sites.
We evaluate the averaged entanglement entropy of a set of

M stochastic trajectory states jψ ðγÞ
L ðtÞii, i ∈ ½1;M�, at time t

in a system with reduced dephasing rate γ (3),

S̄ðγÞL ðl; tÞ ¼ 1

M

XM
i¼1

SðlÞ½jψ ðγÞ
L ðtÞii�: ð5Þ

Numerical results.—We use matrix product states (MPS)
[53] to sample the stochastic quantum states [54] with the
C++ package ITENSOR [55].
In Fig. 2, the scaling of the averaged entanglement

entropy S̄ðγÞL ðlÞ for trajectories sampled from the steady
state is illustrated for three parameters l (a), L (b), and γ (c).

In Fig. 2(a), we see that the curves S̄ðγÞL ðlÞ show a transition

from a strong concave behavior as a function of l when
phase locking dominates (black, blue, and orange lines) to a
regime with an area-law behavior (green and red lines).
After numerical analysis, we identify the scaling of the
curves in the phase-locking regime as logarithmic, remi-
niscent of the scaling of entanglement entropy for ground
states of critical Hamiltonians with open boundary con-
ditions [17], given by a result from CFT [42],

S̄ðγÞL ðlÞ ¼ cðγÞ
6

log

�
2L
π

sin

�
πl
L

��
þ s0ðγÞ: ð6Þ

Here, cðγÞ is the effective central charge and s0ðγÞ the
residual entropy.
A fitting procedure (dotted lines) with the functional

form (6) gives the parameters cðγÞ (indicated above the
curve) and s0ðγÞ, in close agreement with the numerical
results (solid lines). In Fig. 1(c), we summarize our key
result: the fitted central charge shows a transition from a
nonzero value to zero upon increasing the effective dephas-
ing rate γ. Consequently, we report a transition from critical
scaling of entanglement (6) to an area law, characterized by
cðγÞ ¼ 0, which has a plateau value s0ðγÞ for the bulk
entanglement entropy. In the limit γ → ∞, no entanglement

can build up, and S̄ðγÞL ðlÞ → 0, so that, also, s0ðγÞ → 0.
In the inset of 1(c), we analyze the critical behavior

more closely by investigating Rényi entropies of order α,
which satisfy the universal relation for CFT (4) [42,43].
The central charge cðγÞ is shown, as obtained from cαðγÞ of

(a) (b)

(c)

FIG. 2. Different scalings of S̄ðγÞL ðlÞ from averaging over 10 000

steady-state trajectory states. (a) The scaling of S̄ðγÞL¼32ðlÞ as a
function of l for different values of the reduced dephasing γ. A
transition is seen from critical scaling (black, blue, orange lines)
to an area law (green and red lines), as obtained from the effective
central charges cðγÞ found by fitting (dotted lines) the functional

form (6). (b) The scaling of S̄ðγÞL ðL=2Þ (solid) and S̄ðγÞL ðL=4Þ
(dashed) as a function of L. (c) The dependence of S̄ðγÞL ðL=2Þ on γ
for different system sizes L; we distinguish a critical point γc
where the lines start to coincide, close to the Gutzwiller critical
point γc ≈ 3.
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the Rényi entropy Sα, averaged over steady-state trajecto-
ries, analogous to (5). We conclude that the central charges
cðγÞ coincide within numerical precision, as such, retriev-
ing the universality relation from CFT and confirming the
reported critical scaling. Moreover, as we let γ → 0, the
central charge c1ðγÞ appears to show a power-law diver-
gence, as was also seen for free fermion trajectories with
dephasing [34].
The exact critical γc for the scaling transition is difficult

to extract from our numerical data. We are computationally
limited (mainly the finite bond dimension and local Fock-
space truncation of the MPS) to sampling system sizes of
L≲ 32 with γ ≳ 0.35, making a finite-size scaling analysis
difficult. We also leave it as an open question whether the
power-law scaling for cðγÞ persists or stabilizes to a finite
value at γ > 0.
Alternatively, the scaling of entanglement entropy with

system size L can be studied, as shown in Fig. 2(b), for the

averaged half-chain entanglement entropy S̄ðγÞL ðL=2Þ (solid
lines) and quarter-chain entanglement entropy S̄ðγÞL ðL=4Þ
(dashed lines). When γ is below the critical point (black,
blue, and orange lines), a monotonic growth of entangle-
ment entropy is observed when L is increased and a
significant difference can be distinguished between the
curves of half-chain and quarter-chain entanglement
entropy, relating back to the critical scaling of the lines
seen in Fig. 2(a). For larger γ, when dephasing dominates
(green and red lines), both half-chain and quarter-chain
entropy coincide and remain constant as a function of
system size, thus, reflecting the area law with a plateau of
the residual entropy s0ðγÞ when cðγÞ ≈ 0 in (6), shown in
Fig. 2(a).
To study the behavior across the transition, we show, in

Fig. 2(c), the steady-state scaling of half-chain entropy

S̄ðγÞL ðL=2Þ as a function of γ for different system sizes L.
When γ is below γc, the critical point we find in the
Gutzwiller approach [37], the curves for different L fall

apart. Upon increasing γ, S̄ðγÞL ðL=2Þ decreases for all L, and
when a critical point is reached, close to γðGWÞ

c ¼ 3 from the
Gutzwiller analysis [37], the curves for different L con-
verge. For higher γ, the curves coincide, which confirms

that S̄ðγÞL ðL=2Þ is uniform for different system sizes L in the
dephasing regime, shown in Fig. 2(b).
We believe that we have strong indications for critical

scaling, in particular, by satisfying (4). However, to
unambiguously exclude the possibility of a volume law
over critical scaling for γ → 0, a thorough analysis of larger
system sizes L is required. Also, topological entanglement
entropy [29] could be a promising route. However, this
quantity is prohibitively difficult to obtain with MPS
simulations.
Finally, Fig. 3 shows the evolution of half-chain entan-

glement entropy S̄ðγÞL ðL=2; tÞ over time for L ¼ 32 (solid

lines) and L ¼ 16 (dashed lines) for different values of γ.
Starting from a zero entropy state, we let the system evolve
and sample trajectories to see the rise in entanglement

entropy. A saturation time tst is found where S̄ðγÞL ðL=2; tÞ
converges to a steady-state value, schematically depicted in
Fig. 1(b), which depends on both the system size L and
reduced dephasing rate γ. When dephasing is dominant (red

lines), S̄ðγÞL ðL=2; tÞ rapidly stabilizes, and the curves for
different L are indistinguishable from each other, as
expected for the area law. In the regime where phase
locking dominates (blue and black lines), the convergence
is much slower, since entanglement spreads between distant
sites. Different system sizes L (solid vs dotted lines) now
converge to different steady-state values, reflecting the

critical scaling of S̄ðγÞL ðlÞ (6), previously shown more
accurately in Fig. 2(b).
The initial growth, shown in the inset of Fig. 3, is close to

linear (dashed lines), i.e., S̄ðγÞL ðL=2; tÞ ¼ κt, with κ ≈ Λ=2
(dotted line). Thus, the growth of trajectory entanglement
entropy is reminiscent of the entanglement growth after a
quench, where an initial linear behavior is also seen which
saturates to a steady value. [56].
Circuit QED implementation.—Although originally pre-

sented in a cold-atom context [1], phase locking (1) can
also be engineered in circuit QED [57]. We propose the
realization of a coupling between two adjacent cavities and
an ancilla qubit Heff ≈ geffdjσxj , with σx ¼ σþ þ σ−. If the
qubit is very lossy, registering a spontaneous qubit decay
corresponds to detecting a phase-locking jump. In [37], we
elaborate a scheme to engineerHeff by coupling the cavities

(a) (b)

FIG. 3. The time evolution of S̄ðγÞL ½ðL=2Þ; t� in time for L ¼ 32
(solid) and L ¼ 16 (dashed) obtained from averaging over 500
trajectories. Below the critical point (black and blue lines),
entanglement entropy for different L converges to different
values, while above (red lines), it converges to the same steady
value. In the inset, we show the short-time behavior and see that
the initial growth is linear (dashed lines), with a rate close to Λ=2
(dotted line). (b) A schematic of the setup proposed for the
experimental implementation. The cavities are coupled two by
two to dissipative ancilla spins for the phase locking jumps and
each cavity is coupled to another ancilla for the dephasing.
Registering spontaneous spin decays in the ancillae allows for the
registering of cavity jumps.
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two by two to a driven ancilla with an anharmonic level
structure, such as a fluxonium qubit [58].
While dephasing noise (2) is ubiquitous in quantum

systems [40,59–62], it is generally not possible to monitor
the environment that induces the noise. In our approach,
however, we keep track of individual trajectories, an
essential aspect, and we propose a scheme to engineer
dephasing processes by coupling each cavity to another
lossy ancilla with ∼a†jajσx. Upon registering an ancilla
emission jump, one can infer the occurrence of a dephasing
jump cj, see [37]. This is in contrast with [48], where a
coupling H ∼ a†aσz was used to monitor the cavity parity
with qubit measurements to register photon decay. In our
proposal, the ancilla serves both to engineer and to register
the dephasing jump cj.
In Fig. 3(b), we show a schematic of the proposal for the

simultaneous realization of the two monitoring protocols
by coupling two ancillae to each cavity, see [37].
Conclusions and outlook.—We have investigated the

scaling transition for entanglement entropy averaged over
trajectory states S̄ðγÞðlÞ from two competing monitoring
protocols. We report a transition in the steady-state trajec-
tory entanglement entropy from area law to critical
scaling (6), where the central charge satisfies the relation
for CFT’s (4) for different Rényi entropies.
Investigating larger filling factor n > 1 would allow for

the study of entanglement entropy in different Uð1Þ charge
sectors [63,64]. The unraveling of a master equation is not
unique, and as such, entanglement depends on the mon-
itoring [65]. It would be fascinating to investigate whether a
similar transition can be seen for different unrave-
lings within the same master equation. Since trajectory
entanglement entropy is a quantity that is challenging (if
not impossible) to measure directly in experiment—it
requires identical copies of the same stochastic state
[66,67]—investigating whether there could be a local
probe to witness the transition, as in circuit models [27],
is an exciting question. Finally, it would be intriguing
to see whether quantum states can be stabilized with
feedback from jumps in a continuous monitoring
scheme [68].
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