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Optical imprinting of superlattices in two-dimensional materials
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We propose an optical method of shining circularly polarized and spatially periodic laser fields to imprint
superlattice structures in two-dimensional electronic systems. By changing the configuration of the optical field,
we synthesize various lattice structures with different spatial symmetry, periodicity, and strength. We find that
the wide optical tunability allows one to tune different properties of the effective band structure, including Chern
number, energy bandwidths, and band gaps. The in situ tunability of the superlattice gives rise to unique physics
ranging from the topological transitions to the creation of the flat bands through the kagome superlattice, which
can allow a realization of strongly correlated phenomena in Floquet systems. We consider the high-frequency
regime where the electronic system can remain in the quasiequilibrium phase for an extended amount of
time. The spatiotemporal reconfigurability of the present scheme opens up possibilities to control light-matter
interaction to generate novel electronic states and optoelectronic devices.
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I. INTRODUCTION

A superlattice structure in two-dimensional (2D) materials
has opened a new way to engineer electronic bands, starting
with the investigation of a honeycomb superlattice struc-
ture in monolayer graphene [1]. Recently, the Moiré pattern
in a twisted-bilayer van der Waals heterostructure has been
immensely successful in generating a variety of band struc-
tures, including Hofstadter butterfly [2,3] and flat bands [4–8].
These bands can induce intriguing strongly correlated phases
such as fractional Chern insulator [3], anomalous Hall phase
[9,10], Mott insulating phase [8,11–13], nontrivial magnetic
phases [9,14–16], and superconductivity [7,13,17–19]. Yet,
this passive way of creating a superlattice has been largely
limited by the microscopic structure of the 2D materials since
different samples should be prepared for different superlattice
structures. Therefore, it is interesting to find alternative ways
to synthesize a spatiotemporal structure in 2D materials.

At the same time, the recent progress in the beam-shaping
technique has enabled the generation of arbitrary beam
patterns with high resolution comparable to the optical wave-
lengths [20–25], which already found remarkable successes
in ultracold-atom systems [26–30]. This wide tunability of
light can be naturally applied to 2D electronic systems to
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imprint arbitrary superlattices, regardless of the underlying
microscopic lattice structure. This is particularly interesting
in the context of the “Floquet topological insulator,” where
the illumination of circularly polarized (CP) light can turn a
trivial system into a topological insulator [31–40].

In this paper, we propose a method to create superlattice
structures in a 2D material by shining spatially periodic laser
beams, as schematically shown in Fig. 1. We illustrate the
idea with an example of monolayer graphene irradiated by a
circularly polarized beam with a superlattice structure, where
the beam amplitude is spatially periodic. To demonstrate the
tunability of this superlattice structure and unique physics
originating from the superlattice, we first study the case of
a square superlattice and explore the topological phase tran-
sition induced by varying the superlattice size. Then, we
investigate the topological phase transitions, when the square
superlattice is sheared to a stretched hexagonal one. In par-
ticular, we examine the relationship between this topological
phase transition and the role of lattice geometry in creating
complex tunneling phases. Further, we demonstrate the possi-
bility of creating more exotic lattices by superposing multiple
lattices, with an example of tuning between a hexagonal and a
kagome lattice where the flat bands can be obtained. These flat
bands particularly can harbor strongly correlated phenomena
in Floquet systems.

II. GRAPHENE WITH SPATIALLY PATTERNED LIGHT

Let us consider a monolayer graphene with the interatomic
distance a and the tight-binding energy t between the near-
est neighbors. The low-energy description for this monolayer
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FIG. 1. A 2D material irradiated by a spatially periodic CP
light with frequency ω. Here, we use the example of a monolayer
graphene. The superposition of multiple CP Gaussian beams gener-
ates a periodic amplitude pattern A0(r) with translation vectors L1

and L2. |L1| = l . Upper inset: We denote the interatomic distance of
the graphene as a and the tight-binding energy between the nearest
neighbors as t . Lower inset: Each Gaussian beam has a peak ampli-
tude A0 and a half waist w (black lines). The overall beam amplitude
(red line) results from the superposition of the Gaussian beams.

graphene under the electromagnetic field A(r, t ) is given by

H = v[p + eA(r, t )] · (τzσxx̂ + σyŷ), (1)

where σx, σy, σz are Pauli matrices acting on sublattice de-
grees of freedom, v = (3/2)ta is the Fermi velocity at Dirac
points, and τz = ±1 is the valley index [41]. In particular, if
we shine the CP beam with spatial amplitude pattern A(r, t ) =
A0(r)eiωt (x̂ + iŷ) + c.c. (Fig. 1), the effective Floquet Hamil-
tonian to the first order in ω−1 becomes [31,42–47]

Heff = v(τz pxσx + pyσy) + τz
4e2v2

ω
|A0(r)|2σz. (2)

We denote the peak amplitude of A0(r) as A0. Then, Eq. (2)
becomes a valid description when frequency ω is high enough
(ω � evA0) and the amplitude varies in length scale larger
than a (A0/max{|∇A0(r)|} � a). For brevity, we set h̄ = 1
from here on.

We specifically study the superlattice structure created
by a spatially periodic amplitude |A0(r)| = |A0(r + L1)| =
|A0(r + L2)|. While the 2D material with spatially modulated
beams has been studied in the different contexts [48–50], here
we investigate the generation of a superlattice with spatially
periodic beams. In particular, to make the beam experimen-
tally relevant, we consider the superposition of CP Gaussian
beams positioned on the superlattice,

A0(r) =
∑
n1,n2

A0 exp

(
−|r − n1L1 − n2L2|2

2w2

)
, (3)

where w is the radius of each Gaussian beam. This beam
configuration is achievable with recent progress in beam-
shaping technologies [20–25]. For the cases |L1|, |L2| = l �
a, the Brillouin-zone folding occurs on a momentum scale
1/l . Furthermore, the hybridization of Floquet sidebands is
suppressed for v/l � ω so that the low-energy description

is captured by Eq. (2) (see Appendix A). We obtain Bloch
eigenstates |ψm,k〉 and eigenenergies Em,k, where m is the
band index and k is the crystal momentum within the Brillouin
zone set by reciprocal lattice vectors of L1 and L2. Note that
Eq. (2) preserves particle-hole symmetry (σxH∗

effσx = −Heff)
and therefore the energy spectrum is symmetric with respect
to the zero energy. Also, σyHeffσy = Heff|τz→−τz

, so two val-
leys have the same spectrum and eigenstates up to a unitary
operation, σy. This also ensures that both valleys have the
same Chern number. For brevity, let us only consider the
τz = 1 valley from now on.

III. ILLUMINATION OF SQUARE SUPERLATTICE

We first consider the simplest case of a square superlattice,
L1 = l x̂ and L2 = l ŷ. Before directly diagonalizing Eq. (2),
we can make some speculations. First of all, the contribution
from the spatial average of |A0(r)| opens up the gap around
the zero energy (�b) as in the case of the graphene under
the CP uniform light, where the Chern number, C1, of the
first band above E = 0 is nonzero [31–33,48,51]. C1 remains
nonzero for small l , as far as the maximum kinetic energy
within the Brillouin zone, which is of the order of v/l , is
much larger than the spatial Fourier components of the σz

term in Eq. (2), which is of the order of e2v2A2
0/ω. On the

other hand, as l → ∞, the contribution of the kinetic term
becomes negligible and therefore the bands become flat. Also,
the Bloch wave functions look similar regardless of k and
therefore the bands become topologically trivial. Therefore,
there must be a topological phase transition where C1 changes
from a nonzero value to zero as we increase l . This topological
transition would occur at a superlattice size that makes the two
energy scales e2v2A2

0/ω and v/l comparable to each other.
For a succinct description of this phase transition, we use the
rescaled superlattice size

χ = (ve2A2
0/ω)l (4)

so that the critical superlattice size χc is O(1). Here, χ repre-
sents the ratio of the effective superlattice potential over the
kinetic energy.

To study the detail of this topological phase transition, we
numerically diagonalize Eq. (2) as shown in Fig. 2(a). Along
with the energy spectrum, we present the Chern number C
of each band calculated based on Ref. [52]. In Fig. 2, we
set A0 = 0.006(ea)−1, ω = 0.06t , and w/l = 0.3. With these
parameters, we can check that the topological phase transition
occurs at χc = 0.965, which is close to 1. This topologi-
cal transition accompanies the direct gap closing at k = M
and the band inversion between the first- and second-lowest
positive-energy bands. To see this, we compare the particle
and current densities of the lowest positive-energy band’s
wave function at the direct-gap closing point. Here, for the
Bloch wave function of the mth band, ψ (r) = 〈r|ψm,k〉, the
particle and current densities are given by

n(r) = ψ†(r)ψ (r),

j(r) = −eψ†(r)
∂Heff

∂p
ψ (r) = −evψ†(r)(σxx̂ + σyŷ)ψ (r).

(5)
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FIG. 2. (a) Energy spectrum for square superlattices with differ-
ent superlattice size χ . We set A0 = 0.006(ea)−1, ω = 0.06t , and
w/l = 0.3. Only the positive-energy spectrum is shown for sim-
plicity. The Chern numbers of low-lying bands, C, are presented as
colors. The topological phase transition occurs at χc = 0.965. Upper
inset: Direct gap at k = M between the first- and the second-lowest
positive band (δM ) is plotted in the vicinity of χc. Lower insets:
The particle density n(r) and current density j(r) of the Bloch
wave function of the lowest positive band at k = M are shown for
χ = 0.8 < χc and χ = 4 > χc. In the density plots, the centers of the
Gaussian beams are located at the corners of the plotted region. The
particle density is shown in units of l−2. The amplitude of the current
density is presented with the color in units of ev/l2 and the direction
of j(r) is represented by arrows. (b) Orbital magnetization Morb for
the lowest positive band for different superlattice sizes. (c) For the
lowest positive band, we plot the energy gap below the band (�b),
the energy gap above the band (�t ), the direct band gap at k = M
(δM ), and the bandwidth (δE ) with respect to the superlattice size
χ . α0 is the minimum value of (4e2v2/ω)|A0(r)|2. The black dashed
lines are asymptotic lines showing that El/v is constant, indicating
E ∝ χ−1.

The comparison of n(r) and j(r) before (χ = 0.8) and after
(χ = 4) the transition point shows a drastic change in the
wave function, which signifies that the band inversion has
occurred in the phase transition. In the current density plot,
one can also find that the circulation direction of the electron
flips as the band inversion occurs. This phenomenon can also
be captured in the calculation of the mth band contribution to
the orbital magnetization [53–55],

Morb = Im
∫

d2k
(2π )2

e
∂ 〈um,k|

∂kx
(Hk + Em,k )

∂ |um,k〉
∂ky

, (6)

where |um,k〉 = e−ik·r |ψm,k〉 and Hk = e−ik·rHeffeik·r. In
Fig. 2(b), one can see that Morb of the lowest positive band
shows the sign flip at the phase transition point, agreeing with
the observation in the current density plots. We also remark
that even if this topological phase transition theoretically ex-
ists regardless of the Gaussian beam size, it is desirable to
keep w comparable to l for experimental realizations since a
fainter superlattice will imply a smaller direct band gap.

This topological phase transition could be experimentally
detected in several ways. The change in C1 causes the differ-
ence in the Hall current carried by the chiral edge state, and
such difference can be revealed by transport measurements,
similar to Ref. [35]. For the bulk property, one can measure
the orbital magnetization, where the sudden jump would be
observed at the phase transition shown in Fig. 2(b).

As the superlattice size χ increases, the electrons become
localized at the local minima of |A0(r)|. This provides an
explanation for the exponential suppression of the bandwidth
of the lowest positive-energy band (δE ) in χ [Fig. 2(c)].
For well-localized electrons, the dynamics can effectively be
described by a tight-binding model, and the tunneling energy
of that model is approximately given by the WKB integrals.
This integral decays exponentially with the distance between
the superlattice sites, so the bandwidth decreases exponen-
tially as well. The band gaps (�b, �t , δM) decay as O(χ−1),
where the details of this band-gap scaling are explained in the
Appendix B.

IV. SUPERLATTICE SHEARING

To further investigate the role of the superlattice geometry,
let us shear the square superlattice by angle θ so that L1 = l x̂
and L2 = l (tan θ x̂ + ŷ). From the perspective of the Floquet
Chern insulator created by uniform CP light, in a large super-
lattice size limit where the tight-binding description is valid,
we might interpret the electron tunneling between superlattice
sites as the chiral currents around the strongly irradiated re-
gion. That is, the paths that these chiral currents flow would
give the major contribution to the path integral from one
superlattice site to another. In this viewpoint, two superlattice
sites can have a complex tunneling phase between them if the
system has no reflection symmetry along the line connecting
the two sites [Fig. 3(a)], which is analogous to Ref. [56]. Then
we can see that the tunneling terms of the tight-binding model
for the square lattice (θ = 0 and θ = π/4) are real. At angles
close to θ = tan−1(1/2), the localized electrons form a hexag-
onal superlattice under a uniform strain and can have complex
tunneling phases between the next-nearest neighbors. Then
we can construct a tight-binding model for the lowest pos-
itive band similar to the Haldane model [57], as explained
in the Appendix C. Similar to the Haldane model, a complex
tunneling phase in the next-nearest-neighbor tunneling makes
C1 nonzero at this angle. With these considerations, we can
predict successive topological phase transitions as we increase
θ from 0 to π/4.

We obtain the phase diagram numerically in Fig. 3(b) by
calculating the Chern number of the lowest positive-energy
band for each value of χ and θ . As we predicted, we can ob-
serve the successive topological phase transitions at χ larger
than a certain value, which corresponds to the phase transi-
tion point described in Fig. 2. Another salient feature is that
the C1 = 1 regime very sharply blows up toward the angle
θ = tan−1(1/2), at which the χ region for C1 = 1 diverges.
This can be explained by combining the fact that the size of
tunneling strengths decreases exponentially with the distance
between the superlattice points and another fact that the Dirac
cones can disappear and the topologically trivial gap opens in
the extreme strain (see Appendix C). We can also see that the
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topological phase transition also accompanies the gap closing
and the band inversion, as shown in the particle density plots
[Fig. 3(c)].

V. HEXAGONAL LATTICE TO KAGOME LATTICE

To engineer favorable features such as flatter bands, we
can create an even more complicated superlattice by super-
posing different kinds of lattices. For instance, we consider
the superposition of the triangular lattice beam Atri(r) and
the hexagonal lattice beam rAhex(r), where r is the ampli-
tude ratio of the two lattices (Fig. 4). When the contribution
from the hexagonal lattice beam is negligible, the localized
electrons form a hexagonal superlattice and the lowest part of
the positive-energy spectrum can be explained by a two-band
model. As r increases, electrons are confined to a kagome
superlattice [58] and the lowest part of the positive-energy
spectrum can be explained by a three-band model including
a flat band. Note that slight gaps are observed in both the two-
band model for the hexagonal superlattice and the three-band
model for the kagome superlattice. The gap in the two-band
model can be explained with the Haldane model with complex
phases in the next-nearest-neighbor tunneling, as shown in
Fig. 3(a). The gap in the kagome lattice comes from the
complex phase in the nearest-neighbor tunneling [47,59]. At

FIG. 3. (a) We shear a square lattice by angle θ . Tunneling be-
tween two sites can be understood as the flow of chiral edge currents
around each Gaussian CP beam. If the system has reflection symme-
try around the line connecting the two sites, this tunneling should be
real. Otherwise, the tunneling can have a complex phase. As exam-
ples, the next-nearest-neighbor tunnelings for the θ = 0, π/4 case
and the θ = tan−1(1/2) case are presented. (b) The Chern number
of the lowest positive-energy band C1 is shown as a phase diagram
between the shearing angle θ and the superlattice size χ . (c) Energy
spectra for χ = 2.4 at selected angles are shown, where the colors of
low-lying bands represent the Chern numbers. The particle density in
units of l−2 is plotted for angles before and after the phase transition.

FIG. 4. Superposition of the triangular lattice beam Atri (r) and
the hexagonal lattice beam rAhex(r). As we increase the ratio r, we
effectively change the electron superlattice from the hexagonal lattice
to the kagome lattice. Energy spectra for χ = 5.4 at selected values
of r are shown where the colors of low-lying bands represent the
Chern numbers. By zooming in the spectrum, we can check the gaps
in the two-band model and the three-band models in the lowest part
of the spectrum.

r = 0, we can see that the third band is nearly flat, while it
is gapped well from the other bands. This flat band can be
potentially used to stabilize strongly correlated phases.

VI. EXPERIMENTAL FEASIBILITY

For numerical calculation, we have set A0 = 0.006(ea)−1,
ω = 0.06t , and w/l = 0.3 for Figs. 2 and 3. With the typi-
cal values of t = 3 eV and a = 0.142 nm for the monolayer
graphene, these parameters of the laser field correspond to the
field amplitude 7.6 × 106 V/m, the beam frequency 43.5 THz,
and beam spot size 0.1 μm (FWHM). This is similar to the
beam frequency in a recent experiment [35] while the peak
intensity is about 4% of the beam used in the same exper-
iment. With these parameters, the typical size of the gap
(�b in Fig. 2) is 4 meV. Figure 4 uses A0 = 0.0015(ea)−1

and ω = 0.06t , while w/l = 0.3 and w/l = 0.15 for Atri(r)
and Ahex(r), respectively. Finally, we remark that due to the
injection of photons into the system, heating effects could
eventually destroy the nontrivial topological behavior that is
initially formed. Therefore, we only consider the prethermal
regime where electron-electron and electron-phonon scatter-
ings can be ignored [45]. In the past few years, the existence
of this transient regime has been convincingly demonstrated
in several pump-probe experiments [34,35,60].

VII. OUTLOOK

By considering Coulomb interaction in our nearly flat and
topologically nontrivial bands, one could potentially induce
strongly correlated phases such as fractional Chern insulators
[3,61–63], superconductors [7,13,17–19,64,65], or magnetic
phases [9,14–16]. Moreover, by irradiating with frequencies
comparable to the bare tunneling strength instead of the high-
frequency regime considered here, higher-order terms become
relevant [47] and, therefore, one can induce a wider class of
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structures. While we focus on the Dirac semimetal system
in this paper, our scheme can also be applied to other 2D
materials such as semiconductors [66]. Our approach can
be combined with other methods, such as surface acoustic
waves in a solid-state platform [67], for trapping, cooling,
and controlling charged particles, and for simulation of quan-
tum many-body systems. Finally, these ideas could be used
to engineer a new class of dielectric materials for potential
applications in optical devices [68].
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APPENDIX A: FLOQUET EFFECTIVE HAMILTONIAN
IN HIGH-FREQUENCY REGIME

Let us consider the Hamiltonian given by Eq. (1) with
A(r, t ) = A0(r)eiωt (x̂ + iŷ) + c.c. Then, we can write the
time-dependent Hamiltonian as

H (t ) = v(τz pxσx + pyσy) + 2evτzA0(r) exp(iτzωt )σ+
+2evτzA0(r) exp(−iτzωt )σ−, (A1)

where σ± = (σx ± iσy)/2. For this Hamiltonian,
the nonzero temporal Fourier components Hq =
(ω/2π )

∫ 2π/ω

0 H (t )e−iqωτ dτ are H0 = v(τz pxσx + pyσy)
and H±τz = 2evτzA0(r)σ±. Then, the effective Hamiltonian in
the high-frequency regime is [31,42–47]

Heff = H0 +
∑
q>0

[Hq, H−q]

qω
+ O(ω−2)

= H0 + H1H−1 − H−1H1

ω
+ O(ω−2)

= v(τz pxσx + pyσy) + τz
4e2v2

ω
|A0(r)|2σz + O(ω−2).

(A2)

The description in terms of Eq. (A2) is valid as long
as Hq � ω for every q. The condition ω � evA0 ensures
that Hq=±1 � ω. For H0 � ω, we require v/l � ω and the
parameters we use in our paper satisfy this condition. Yet,
one may wonder if the band structure is affected by the
hybridization of different Floquet sidebands [36,47] since
the driving frequency that we consider in this paper (ω =
0.06t) is much smaller than the original bandwidth of the
graphene which is of the order of t . To see how much our

FIG. 5. Calculated band structure of the square superlattice with
eA0a = 0.006, ω = 0.06t , w/l = 0.3, and χ = 0.8. (a) Calculation
with Eq. (A2) . (b) Calculation with Eq. (A3) . The color of the plot
represents the overlap with the zeroth Floquet sideband, p(0)

s,k.

band structure is affected by the Floquet sidebands’ hybridiza-
tion, we calculate the band structure presented in the left
figure of Fig. 2(a) by diagonalizing the Floquet Hamiltonian,
H (t ) − i∂t . For the spatially periodic Hamiltonian H (r, t ) =
H (r + L1, t ) = H (r + L2, t ), we find the quasienergies εs,k
and the corresponding quasimode wave functions �s,k(r, t ) =
exp(−iεst )�s,k(r, t ) through

e−ik·r[H (t ) − i∂t ]e
ik·r�s,k(r, t ) = εs,k�s,k(r, t ),

�s,k(r, t ) =
∑

n,m1,m2

C(n)
s,m1m2kei{(m1G1+m2G2+k)·r−nωt}, (A3)

∑
n,m1,m2

∣∣C(n)
s,m1m2k

∣∣2 = 1,

where Gi=1,2 are the reciprocal superlattice vectors satisfying
Gi · L j = 2πδi j . Here, the quasienergies are restricted to the
zeroth Floquet sideband, εs,k ∈ [−ω/2, ω/2]. For the time-
independent Hamiltonian H (t ) = H0, Eq. (A3) becomes an
eigenvalue equation for H0 by fixing the Floquet sideband
index n, and n = 0 corresponds to the eigenstates with energy
in [−ω/2, ω/2]. Therefore, if we consider the case that os-
cillating terms are slowly turned on, the relevant quasimodes
should have high overlaps with the zeroth Floquet sideband,
which is quantified by

p(0)
s,k =

∑
m1,m2

∣∣C(0)
s,m1m2k

∣∣2
. (A4)

For the comparison of the two descriptions given by
Eqs. (A2) and (A3), we calculate the band structure plotted in
the left of Fig. 2(a) with these two descriptions, respectively
(see Fig. 5). For the band structure calculated with Eq. (A3),
we represented the overlap with the zeroth Floquet sideband,
p(0)

s,k, for each state. In the energy much lower than ω/2, the
spectrum calculated with the high-frequency expansion and
the quasienergies of the Floquet eigenstates with high overlaps
with the zeroth Floquet sideband agree with each other. As the
energy approaches ω/2, the Floquet sideband hybridization
due to the resonant process affects the band structure. There-
fore, one can use the high-frequency expansion description in
Eq. (A2) for energies far smaller than the driving frequency.
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APPENDIX B: BAND-GAP SCALING
IN SUPERLATTICE SIZE

We consider the eigenvalue problem of the effective Hamil-
tonian in Eq. (2),(

α(r) −iv(∂x − i∂y)
−iv(∂x + i∂y) −α(r)

)(
uA

uB

)
= E

(
uA

uB

)

↔ −iv(∂x − i∂y)uB = [E − α(r)]uA

−iv(∂x + i∂y)uA = [E + α(r)]uB,
(B1)

where α(r) = (4e2v2/ω)|A0(r)|2. This can lead to

0 = ∇2uB + E2 − α(r)2

v2
uB

+ [(∂x + i∂y)α(r)][(∂x − i∂y)uB]

E − α(r)
. (B2)

In the vicinity of minima of α(r), we can approximate this
function as a harmonic potential with rotational symmetry.
This is valid for the square lattice of the Gaussian beam with
the fixed ratio c = w/l ,

α(r) = 4e2v2A2
0

ω

[∑
n1,n2

e−{(x−n1l )2+(y−n2l )2}/(2c2l2 )

]2

. (B3)

For this case, one can show that

∂α

∂x

∣∣∣∣
r=(l/2,l/2)

= ∂α

∂y

∣∣∣∣
(l/2,l/2)

= ∂2α

∂x∂y

∣∣∣∣
(l/2,l/2)

= 0,

α0 ≡ α|(l/2,l/2) > 0,

α1 ≡ l2

2
∂2

x α

∣∣∣∣
(l/2,l/2)

= l2

2
∂2

y α

∣∣∣∣
(l/2,l/2)

> 0,

∂α0

∂l
= ∂α1

∂l
= 0. (B4)

Then we can write α(r) = α0 + α1(r/l )2, where r is the
distance from the minima of α(r). Now we can use polar
coordinates (r, φ), with ∂x ± i∂y = a−1e±iφ (∂r ± ir−1∂φ ). Due
to the rotational symmetry, we can impose uB(r) = β(r)eimφ .
Then,

1

r
∂r (r∂rβ ) − m2

r2
β + 1

v2

[
E2−α2

0 − 2α0α1

(
r

l

)2

−α2
1

(
r

l

)4]
β + 2α1(r∂r + m)β

(E − α0)l2 − α1r2
= 0. (B5)

Note that l → ∞ limit corresponds to ∇2uA + v−2(E2 −
α2

0 ) = 0. The positive spectrum in this limit is [α0,∞) with no
gap in between. To study the behavior of the positive spectrum
for large l , we may define δE = E − α0. For the low-lying
spectrum, we can only consider the limit where δE � α0.
Then we can simplify Eq. (B5) into

1

r
∂r (r∂rβ ) − m2

r2
β + 1

v2

[
2α0δE − 2α0α1

(
r

l

)2]
β

+2(r∂r + m)β

l2δE/α1
= 0, (B6)

FIG. 6. Tight-binding model for the hexagonal lattice under a
uniform strain, in the vicinity of angle θ = tan−1 0.5 in the sheared
lattice.

up to the correction terms of the order of O(δE2), O(η−4).
Now the rescaling r = (vl )1/2(α0α1)−1/4ξ and δE =
(α1/α0)1/2(v/l )(δε) gives

1

ξ
∂ξ (ξ∂ξβ ) − m2

ξ 2
β + 2(δε − ξ 2)β

+ 2(ξ∂ξ + m)β

δε
= 0, (B7)

and this equation is independent of l . Then the spectrum of
δε is independent of l , so that δE should scale as l−1. This
means that �b − 2α0 and �t should be proportional to l−1.
This explains the inverse proportionality of band gaps in χ =
(ve2A2

0/ω)l shown in Fig. 2(b).

APPENDIX C: TIGHT-BINDING MODEL FOR
HEXAGONAL LATTICE UNDER A UNIFORM STRAIN

Let us consider the effective lattice model for the sheared
lattice in the vicinity of angle θ = tan−1 0.5. By considering
the terms up to the next-nearest neighbors, we can build a
tight-binding model similar to the Haldane model,

HSH =
∑
m,n

(−t1c(B)†
m,n − t2c(B)†

m−1,n − t3c(B)†
m,n−1

)
c(A)

m,n

+ (
s1c(A)†

m+1,n + s2c(A)†
m,n−1 + s3c(A)†

m−1,n+1

)
c(A)

m,n

+ (
s1c(B)†

m−1,n + s2c(B)†
m,n+1 + s3c(B)†

m+1,n−1

)
c(B)

m,n + H.c. (C1)

Here, c(A/B)†
m,n creates an electron in the sublattice A or B at

the unit cell (m, n) and ti=1,2,3 (si=1,2,3) is the nearest- (next-
nearest)-neighbor tunneling amplitude, as shown in Fig. 6.
This model can be thought of as a hexagonal lattice un-
der a uniform strain. By considering the inversion symmetry
of the corresponding pairs of lattice sites, we can find that
Im(t1) = Im(t2) = Im(t3) = 0. Now we can write the Bloch
Hamiltonian of this tight-binding model as

H(k) = V (k) + hx(k)σx + hy(k)σy + hz(k)σz,

V (k) = 2Re{s1 cos[k · (L2 − L1)] + s2 cos(k · L2)

+ s3 cos(k · L1)},
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hx(k) = −t1 cos

(
k · L1 + L2

3

)
− t2 cos

(
k · L2 − 2L1

3

)

− t3 cos

(
k · L1 − 2L2

3

)
,

hy(k) = −t1 sin

(
k · L1 + L2

3

)
− t2 sin

(
k · L2 − 2L1

3

)

− t3 sin

(
k · L1 − 2L2

3

)
,

hz(k) = 2Im{s1 sin[k · (L2 − L1)] + s2 sin(k · L2)

+ s3 sin(k · L1)}, (C2)

where the σz = ±1 corresponds to the sublattice A or B. In the
absence of the next-nearest-neighbor tunnelings, V = hz = 0
and the location of the Dirac points is determined by hx(k) =
hy(k) = 0. If this equation has two solutions, we denote those
solutions as k = ±KD. In Eq. (C2), we can see that the
second-neighbor tunnelings solely determine the σz compo-
nent of the Bloch Hamiltonian and do not affect the σx and σy

components. By turning on the second-neighbor tunnelings,
we effectively turn on the mass term around each of the Dirac
points ±KD. Since hz(−KD) = −hz(KD), the sign of the ef-
fective mass term is opposite at the two different Dirac points.
Then, each Dirac point equally contributes 1/2 to the Chern
number, just as in the Haldane model. Therefore, if the two
Dirac points exist in the absence of the next-nearest-neighbor
tunneling, the lowest positive band has nonzero Chern num-
ber when the next-nearest-neighbor tunneling is turned on.
Regarding this condition, the equation hx(k) = hy(k) = 0 has
two solutions as long as |ti − t j | < |tk| for every i �= j �= k �=
i. Since the tunneling strength decreases exponentially in the
intersite distance, t1, t2, and t3 become very different as the
superlattice size gets larger. Then there is no Dirac point after
some value of χ , as shown in the square-lattice case. Yet, at
angle θ = tan−1 0.5, t1 = t2, so that |ti − t j | < |tk| is satisfied
as long as t3 �= 0, and therefore C1 can remain nonzero at this
angle.

APPENDIX D: GAUGE-INDEPENDENT CALCULATION
OF ORBITAL MAGNETIZATION

We want to numerically calculate the orbital magnetization
of the mth band expressed in Eq. (6),

Morb = Im
∫

d2k
(2π )2

e
∂ 〈um,k|

∂kx

(Hk + Em,k )
∂ |um,k〉

∂ky

= Im
∫

d2k
(2π )2

e
∂ 〈um,k|

∂kx

Hk
∂ |um,k〉

∂ky

+ 1

2

∫
d2k

(2π )2
eEm,kAm,k, (D1)

where Am,k = 2Im(∂kx 〈um,k j |)∂ky |um,k j 〉 is the Berry curva-
ture. To numerically calculate it, we first need to discretize

the Brillouin zone and calculate the Bloch state |ψm,k j 〉. Al-
though the orbital magnetization is gauge independent, we
need local gauge fixing to make |ψm,k〉 differentiable. While
this local gauge fixing works well for smooth Am,k, it can
work badly for the system in the vicinity of the topological
phase transition. To avoid this subtlety, let us find a way to
calculate this quantity in a gauge-independent way. For Berry
curvature Am,k, a method for gauge-independent calculation
is known [52]. Similar to this method, we can calculate the
first integral of Eq. (D1). For this, let us consider a square
patch whose four corners are ql, j ≡ kl + (δk/2)(s j x̂ + w j ŷ),
where (s1,w1) = (−1,−1), (s2,w2) = (1,−1), (s3,w3) =
(1, 1), and (s4,w4) = (−1, 1). Now,∣∣um,ql, j

〉
= ∣∣um,kl

〉 + δk

2

(
s j∂kx

∣∣um,kl

〉 + w j∂ky

∣∣um,kl

〉 )
+ δk2

8

(
∂2

kx

∣∣um,kl

〉 + 2s jw j∂kx ∂ky

∣∣um,kl

〉+∂2
ky

∣∣um,kl

〉 )
+ O(δk3),

E−4
m,kl

4∏
j=1

〈
um,ql, j

∣∣Hkl

∣∣um,ql,( jmod4)+1

〉

= 1 + δkRe
4∑

j=1

(
s j

〈
um,kl

∣∣∂kx

∣∣um,kl

〉 + w j
〈
um,kl

∣∣∂ky

∣∣um,kl

〉 )
+δk2Re

〈
um,kl

∣∣∇2
k

∣∣um,kl

〉
+ δk2Re

∑
j

s jw j

2

〈
um,kl

∣∣∂kx ∂ky

∣∣um,kl

〉

+ δk2

4Em,kl

4∑
j=1

[
s js( jmod4)+1

(
∂kx

〈
um,kl

∣∣ )Hkl ∂kx

∣∣um,kl

〉
+ s jw( jmod4)+1

(
∂kx

〈
um,kl

∣∣ )Hkl ∂ky

∣∣um,kl

〉
+w j s( jmod4)+1

(
∂ky

〈
um,kl

∣∣ )Hkl ∂kx

∣∣um,kl

〉
+w jw( jmod4)+1

(
∂ky

〈
um,kl

∣∣ )Hkl ∂ky

∣∣um,kl

〉 ] + O(δk3)

= 1 + 2δk2Re
〈
um,kl

∣∣∇2
k

∣∣um,kl

〉
+ i

2δk2

Em,kl

Im
(
∂kx

〈
um,kl

∣∣ )Hkl ∂ky

∣∣um,kl

〉 + O(δk3), (D2)

and therefore

eEm,kl

8π2
Arg

(
4∏

j=1

〈
um,ql, j

∣∣Hkl

∣∣um,ql,( jmod4)+1

〉)

= e

4π2
Im

(
∂kx

〈
um,kl

∣∣ )Hkl ∂ky

∣∣um,kl

〉
δk2 + O(δk3), (D3)

and this corresponds to the first integral of Eq. (D1) over the
square patch that we considered. One can easily check that
this expression is invariant under any gauge transformation,
|um,k〉 → exp[iλ(k)]|um,k〉, ∀λ(k), and does not require any
local gauge fixing.

[1] N. Shima and H. Aoki, Phys. Rev. Lett. 71, 4389
(1993).

[2] R. Bistritzer and A. H. MacDonald, Phys. Rev. B 84, 035440
(2011).

043004-7

https://doi.org/10.1103/PhysRevLett.71.4389
https://doi.org/10.1103/PhysRevB.84.035440


KIM, DEHGHANI, AOKI, MARTIN, AND HAFEZI PHYSICAL REVIEW RESEARCH 2, 043004 (2020)

[3] E. M. Spanton, A. A. Zibrov, H. Zhou, T. Taniguchi, K.
Watanabe, M. P. Zaletel, and A. F. Young, Science 360, 62
(2018).

[4] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. 108,
12233 (2011).

[5] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. B 86, 155449 (2012).

[6] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Phys. Rev.
Lett. 122, 106405 (2019).

[7] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[8] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature
(London) 556, 80 (2018).

[9] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe,
T. Taniguchi, M. Kastner, and D. Goldhaber-Gordon, Science
365, 605 (2019).

[10] J. Liu, Z. Ma, J. Gao, and X. Dai, Phys. Rev. X 9, 031021
(2019).

[11] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. v. Oppen, K.
Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. 15, 1174
(2019).

[12] G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K.
Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang, and F. Wang,
Nat. Phys. 15, 237 (2019).

[13] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys. Rev. X
8, 031089 (2018).

[14] L. A. Gonzalez-Arraga, J. L. Lado, F. Guinea, and P. San-Jose,
Phys. Rev. Lett. 119, 107201 (2017).

[15] A. Thomson, S. Chatterjee, S. Sachdev, and M. S. Scheurer,
Phys. Rev. B 98, 075109 (2018).

[16] A. O. Sboychakov, A. V. Rozhkov, A. L. Rakhmanov, and
F. Nori, Phys. Rev. Lett. 120, 266402 (2018).

[17] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T.
Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363,
1059 (2019).

[18] F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett. 121,
257001 (2018).

[19] B. Lian, Z. Wang, and B. A. Bernevig, Phys. Rev. Lett. 122,
257002 (2019).

[20] P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M.
Rispoli, R. Islam, and M. Greiner, Opt. Express 24, 13881
(2016).

[21] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and
A. Browaeys, Science 354, 1021 (2016).

[22] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner,
and M. D. Lukin, Science 354, 1024 (2016).

[23] D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye, and A.
Browaeys, Nature (London) 561, 79 (2018).

[24] N. Schine, M. Chalupnik, T. Can, A. Gromov, and J. Simon,
Nature (London) 565, 173 (2019).

[25] F. M. Fazal and S. M. Block, Nat. Photon. 5, 318
(2011).

[26] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D.
Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M.
Greiner, Nature (London) 546, 519 (2017).

[27] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman,
S. Choi, V. Khemani, J. Léonard, and M. Greiner, Science 364,
256 (2019).

[28] C. S. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F.
Grusdt, M. Greiner, and D. Greif, Science 365, 251 (2019).

[29] J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres,
Phys. Rev. Lett. 122, 173201 (2019).

[30] I. S. Madjarov, A. Cooper, A. L. Shaw, J. P. Covey, V.
Schkolnik, T. H. Yoon, J. R. Williams, and M. Endres, Phys.
Rev. X 9, 041052 (2019).

[31] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[32] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.

Rev. B 84, 235108 (2011).
[33] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
[34] Y. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Science

342, 453 (2013).
[35] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,

G. Meier, and A. Cavalleri, Nat. Phys. 16, 38 (2020).
[36] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A.

Balseiro, Phys. Rev. B 90, 115423 (2014).
[37] G. E. Topp, G. Jotzu, J. W. McIver, L. Xian, A. Rubio, and

M. A. Sentef, Phys. Rev. Res. 1, 023031 (2019).
[38] Y. Li, H. Fertig, and B. Seradjeh, arXiv:1910.04711.
[39] O. Katz, G. Refael, and N. H. Lindner, arXiv:1910.13510.
[40] J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer,

M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J.
Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M.
Ostler, T. Seyller, and S. D. Ganichev, Phys. Rev. Lett. 107,
276601 (2011).

[41] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[42] A. Gómez-León and G. Platero, Phys. Rev. Lett. 110, 200403
(2013).

[43] N. Goldman and J. Dalibard, Phys. Rev. X 4, 031027 (2014).
[44] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 90, 195429

(2014).
[45] In a Floquet system, the quantum Hall physics is dominated

by the nonequilibrium distribution that depends on whether the
system is isolated or coupled to a reservoir where photoex-
citation competes with bath-induced cooling, as elaborated in
H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 91, 155422
(2015); K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S.
Rudner, and G. Refael, ibid. 99, 014307 (2019).

[46] A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039
(2015).

[47] T. Mikami, S. Kitamura, K. Yasuda, N. Tsuji, T. Oka, and
H. Aoki, Phys. Rev. B 93, 144307 (2016).

[48] Y. T. Katan and D. Podolsky, Phys. Rev. Lett. 110, 016802
(2013).

[49] Y. Tenenbaum Katan and D. Podolsky, Phys. Rev. B 88, 224106
(2013).

[50] S. Morina, K. Dini, I. V. Iorsh, and I. A. Shelykh, ACS Photon.
5, 1171 (2018).

[51] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev.
X 3, 031005 (2013).

[52] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674
(2005).

[53] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta,
Phys. Rev. Lett. 95, 137205 (2005).

043004-8

https://doi.org/10.1126/science.aan8458
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1103/PhysRevX.9.031021
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevLett.119.107201
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevLett.120.266402
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1364/OE.24.013881
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1038/s41586-018-0817-4
https://doi.org/10.1038/nphoton.2011.100
https://doi.org/10.1038/nature22811
https://science.sciencemag.org/content/364/6437/256
https://doi.org/10.1126/science.aav3587
https://doi.org/10.1103/PhysRevLett.122.173201
https://doi.org/10.1103/PhysRevX.9.041052
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1038/nphys1926
https://doi.org/10.1126/science.1239834
https://doi.org/10.1038/s41567-019-0698-y
https://doi.org/10.1103/PhysRevB.90.115423
https://doi.org/10.1103/PhysRevResearch.1.023031
http://arxiv.org/abs/arXiv:1910.04711
http://arxiv.org/abs/arXiv:1910.13510
https://doi.org/10.1103/PhysRevLett.107.276601
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevLett.110.200403
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevB.90.195429
https://doi.org/10.1103/PhysRevB.91.155422
https://doi.org/10.1103/PhysRevB.99.014307
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1103/PhysRevB.93.144307
https://doi.org/10.1103/PhysRevLett.110.016802
https://doi.org/10.1103/PhysRevB.88.224106
https://doi.org/10.1021/acsphotonics.7b01394
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevLett.95.137205


OPTICAL IMPRINTING OF SUPERLATTICES … PHYSICAL REVIEW RESEARCH 2, 043004 (2020)

[54] D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204 (2005).
[55] J. Shi, G. Vignale, D. Xiao, and Q. Niu, Phys. Rev. Lett. 99,

197202 (2007).
[56] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,

Nat. Phys. 7, 907 (2011).
[57] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[58] In cold-atom systems, the optical kagome lattice has been

implemented for linearly polarized lasers, as in G.-B. Jo, J.
Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M.
Stamper-Kurn, Phys. Rev. Lett. 108, 045305 (2012).

[59] J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, Phys. Rev.
A 82, 043811 (2010).

[60] F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee,
P. A. Lee, and N. Gedik, Nat. Phys. 12, 306 (2016).

[61] M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).

[62] B. Swingle, M. Barkeshli, J. McGreevy, and T. Senthil,
Phys. Rev. B 83, 195139 (2011).

[63] J. Maciejko and G. A. Fiete, Nat. Phys. 11, 385 (2015).
[64] K. Kobayashi, M. Okumura, S. Yamada, M. Machida, and H.

Aoki, Phys. Rev. B 94, 214501 (2016); H. Aoki, J. Supercond.
Novel Magn. 33, 2341 (2020).

[65] I. Martin, Ann. Phys. 417, 168118 (2020).
[66] D. Panna, N. Landau, L. Gantz, L. Rybak, S. Tsesses, G. Adler,

S. Brodbeck, C. Schneider, S. Höfling, and A. Hayat, ACS
Photon. 6, 3076 (2019).

[67] M. J. A. Schuetz, J. Knörzer, G. Giedke, L. M. K. Vandersypen,
M. D. Lukin, and J. I. Cirac, Phys. Rev. X 7, 041019 (2017).

[68] C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming,
T. Ning, Y. Zhou, and G. Yang, Opt. Lett. 33, 869
(2008).

043004-9

https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1103/PhysRevLett.99.197202
https://doi.org/10.1038/nphys2063
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1103/PhysRevA.82.043811
https://doi.org/10.1038/nphys3609
https://doi.org/10.1103/PhysRevLett.103.196803
https://doi.org/10.1103/PhysRevB.83.195139
https://doi.org/10.1038/nphys3311
https://doi.org/10.1103/PhysRevB.94.214501
https://doi.org/10.1007/s10948-020-05474-6
https://doi.org/10.1016/j.aop.2020.168118
https://doi.org/10.1021/acsphotonics.9b00659
https://doi.org/10.1103/PhysRevX.7.041019
https://doi.org/10.1364/OL.33.000869

