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Efficient product formulas for commutators and applications to quantum simulation
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We construct product formulas for exponentials of commutators and explore their applications. First, we
directly construct a third-order product formula with six exponentials by solving polynomial equations obtained
using the operator differential method. We then derive higher-order product formulas recursively from the
third-order formula. We improve over previous recursive constructions, reducing the number of gates required
to achieve the same accuracy. In addition, we demonstrate that the constituent linear terms in the commutator
can be included at no extra cost. As an application, we show how to use the product formulas in a digital
protocol for counterdiabatic driving, which increases the fidelity for quantum state preparation. We also discuss
applications to quantum simulation of one-dimensional fermion chains with nearest- and next-nearest-neighbor
hopping terms, and two-dimensional fractional quantum Hall phases.
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I. INTRODUCTION

Product formulas approximate a desired unitary operator
with a product of simpler operator exponentials. As a practical
tool, product formulas are widely used in quantum simulation
of condensed matter models and quantum chemistry problems
[1–9], as well as quantum Monte Carlo and statistical physics
problems [10–13]. The simplest example is the first-order Lie-
Trotter product formula

exAexB = ex(A+B) + O(x2), (1)

which approximates the sum of operators A and B. From the
perspective of quantum simulation, this provides a way to ap-
proximate the time evolution of the Hamiltonian H = A + B
by multiplying elementary exponentials of the form e−iδA and
e−iδB (which generally do not commute).

In addition to simulating Hamiltonian evolution of a linear
combination of terms, one can also construct product formulas
for commutators [14,15]. The simplest product formula for
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commutators is the second-order formula

S2(x) := exAexBe−xAe−xB = ex2[A,B] + O(x3). (2)

Such commutator product formulas raise the possibility of
simulating complicated unitaries on a quantum simulator
using limited native gates: Given the time evolution of
operators A and B, the time evolution of any linear com-
bination of nested commutators involving A and B (i.e.,
the Lie algebra generated by A and B) can be simulated.
Moreover, product formulas for commutators with arbitrary
high order k, exp([A, B]x2) + O(xk+1), have been constructed
recursively [14,15].

Now we introduce terminology for product formulas. An
mth-order product formula for a sum is a sequence of elemen-
tary exponentials of A and B that approximates exp[x(A + B)]
to mth order in x:

et1Aet2Bet3Aet4B · · · = ex(A+B) + O(xm+1), (3)

where the time interval for the ith elementary expo-
nential is ti := αix and α1, α2, α3, α4, . . . are parameters
that define the formula. Similarly, an mth-order commu-
tator product formula is a sequence of elementary ex-
ponentials of A and B that approximates ex2[A,B] to mth
order:

et1Aet2Bet3Aet4B · · · = ex2[A,B] + O(xm+1). (4)

Notice that the prefactor of [A, B] is x2 since it arises from
terms quadratic in ti = αix. Both sum and commutator product
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FIG. 1. (a) Exact construction of an mth-order Nm-gate product formula. eAt and eBt ′ are native gates, and the circuit inside the box is
the circuit representation of the mth-order product formula fm(x). In practice, operator A = ∑

i Ai or B = ∑
i Bi is decomposed as a sum of

commuting terms (no overlap between each other). Considering the native gate sets on practical quantum computers, here we use a two-qubit
gate as an example. (b) Construction of an (m + 1)st-order product formula from an mth-order formula by a p-copy recursive formula. The
starting point is the mth-order product formula fm(x), and the integrated circuit inside the box is the (m + 1)st-order product formula fm+1(x),
where each component can be fm(vix) or f −1

m (vix) (not shown in the figure). (c) and (d) Generated next-nearest-neighbor interaction by the
commutator between two nearest-neighbor terms A and B in the 1d chain and the 2d square lattice, e.g., Eqs. (5) and (6).

formulas can be represented as quantum circuits, as shown in
Fig. 1(a). In general, directly determining suitable coefficients
αi is difficult. Reference [13] provides an operator differential
method for computing the coefficients of commutator product
formulas, but it is hard to solve the resulting polynomial
equations.

High-order product formulas can be constructed recur-
sively. In this approach, we choose an invertible product
formula fm(x) as the base formula and recursively increase
accuracy with some prescribed sequence of terms of the form
fm(vix) and fm(vix)−1 for appropriate coefficients vi. By iter-
ating this procedure, we can produce an arbitrarily high-order
approximation of the target exponential. Thus the recursive
method can be viewed as a “product formula of product for-
mulas” where a lower-order product formula is the elementary
unit. We call such a recursive formula a p copy if it uses p
elementary formulas fm and f −1

m to improve the order by 1.
We also consider recursive constructions that use q elementary
formulas fm and f −1

m to improve the order by 2, which we call
a

√
q-copy recursive formula.

See Table I for a comparison of directly constructed
product formulas and recursive formulas. Given an mth-

order product formula fm that uses Nm elementary gates, the
recursive construction gives an (m + 1)st-order product for-
mula fm+1 with Nm+1 = pNm − O(p) gates [16], as shown in
Fig. 1(b). Starting from an mth-order product formula, we can
apply the recursive formula k times to get an (m + k)th-order
product formula.

For practical quantum computation, it is essential to find
product formulas that are as efficient as possible. Previous
research [14,15] starts from the second-order commutator
product formula equation (2) and uses different recursive
methods to improve accuracy. The parameters of these pre-
vious recursive constructions are summarized at the top of
Table II.

In general, the number of gates in any mth-order product
formula is exponential in m [17]. However, distinct methods
have different constants that affect the cost of product for-
mulas in practice. In principle, high-order formulas could be
constructed directly. However, solving algebraic equations to
determine such a formula can be challenging, especially at
high orders. Recursive constructions can straightforwardly
build higher-order product formulas, potentially at the cost of
worse performance than a direct construction.
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TABLE I. Comparison between direct and recursive product formulas.

Nm-gate mth-order product formula p-copy recursive product formula

Explicit form fm(x) = eα1xAeα2xBeα3xAeα4xB · · · eαNm xB fm+1(x) = fm(v1x)±1 fm(v2x)±1 · · · fm(vpx)±1

Elementary unit native gates eAt , eBt a product formula fm(x) and inverse formula fm(x)−1

Number of gates Nm pNm − O(p)
Error O(xm+1) O(xm+2)
Parameters α1, α2, . . . , αn v1, v2, . . . , vp

Finally, we introduce some basic applications of commu-
tator product formulas. Three-spin interactions can naturally
emerge from commutators of two-spin terms. For example,[

σ i
xσ

j
x , σ j

z σ k
z

] = −2iσ i
xσ

j
y σ k

z . (5)

More generally, we can construct multispin operators from
lower-order terms. Furthermore, the commutator between two
bosonic or fermionic nearest-neighbor hopping terms is a
next-nearest-neighbor hopping term:

[a†
i a j + a†

j ai, a†
j ak + a†

ka j] = a†
i ak − a†

kai, (6)

where ai, a†
i are bosonic or fermionic creation and anni-

hilation operators that obey [ai, a†
j ]± = δi, j . This technique

can be used to generate complicated interactions from sim-
ple nearest-neighbor interactions. In Fig. 1(c), we show
the construction of next-nearest-neighbor hopping in a one-
dimensional (1d) system using a commutator. We show a
similar approach to next-nearest-neighbor hopping for a 2d
system in Fig. 1(d).

Summary of results

In this paper, we use the operator differential method [13]
to construct product formulas that combine sums and commu-
tators. Specifically, as described in Sec. II and Appendix A,
we construct a formula that implements

ex(A+B)+Rx2[A,B] + O(x4) (7)

for arbitrary R ∈ R, using six exponentials of A and B.
In the large-R limit, our product formula reduces to the

pure commutator formula

S3(x) := e
√

5−1
2 xAe

√
5−1
2 xBe−xAe−

√
5+1
2 xBe

3−√
5

2 xAexB

= ex2[A,B] + O(x4), (8)

which reduces the error by one order in x compared with the
group commutator formula equation (2), giving substantially
better performance in practice.

In a recursive construction of higher-order product formu-
las, a good base formula can have significant impact. We show
that the third-order commutator product formula S3(x) can im-
prove recursive methods. We numerically check that previous
recursive constructions can perform better when using S3(x)
instead of S2(x) as the base formula. In particular, this change
significantly reduces the total gate count required to achieve a
fixed error.

In addition to a better base formula, we improve the re-
cursive method. We first modify the Childs-Wiebe

√
6-copy

formula (Theorem 2 in Ref. [15]), which uses six instances of
an even-order formula f2k to increase its order by 2. This con-
struction first applies a two-copy recursive formula to increase
the order from 2k to 2k + 1 and then applies a three-copy
recursive formula to get a (2k + 2)nd-order product formula.
We observe that these two steps can be decomposed. In par-
ticular, if we start with an odd-order product formula, we can
apply the three-copy recursive formula first and then apply the
two-copy one. This modified Childs-Wiebe

√
6-copy formula

is denoted V in Table II.
We further propose

√
4-copy,

√
5-copy, and

√
10-copy re-

cursive formulas that use (4Nm − 3), (5Nm − 4), and (10Nm −
4) gates, respectively, to generate (m + 2)nd-order formu-
las from an Nm-gate mth-order formula. Note that using
fewer gates to achieve a given order is not necessarily bet-
ter, since constant factors in the error terms can significantly
affect performance. Indeed, using numerical simulations, we
demonstrate that our

√
10-copy recursive formula requires the

fewest gates to reach the same accuracy.
In summary, we find that (1) the third-order product for-

mula S3(x) [Eq. (8)] performs better than the standard choice
S2(x) [Eq. (2)], serving as a better base formula for all re-
cursive methods in Table II, and (2) other recursive formulas

TABLE II. Comparison of recursive formulas. The first three formulas are previous approaches. The remaining formulas are described in
this paper.

Recursive formula Total number of copies Accuracy improvement Number of gates

Jean-Koseleff [14, Lemma 7] 3 O(xm+1) → O(xm+2) Nm+1 = 3Nm − 2
Childs-Wiebe (five copy) [15, Lemma 7] 5 O(xm+1) → O(xm+2) Nm+1 = 5Nm − 2
Childs-Wiebe (

√
6 copy) [15, Theorem 2] 6 O(x2k+1) → O(x2k+3) N2k+2 = 6N2k − 2

Q (
√

4 copy) 4 O(xm+1) → O(xm+3) Nm+2 = 4Nm − 3
W (

√
5 copy) 5 O(xm+1) → O(xm+3) Nm+2 = 5Nm − 4

V (
√

6 copy) 6 O(x2k ) → O(x2k+2 ) N2k+1 = 6N2k−1 − 4
G (

√
10 copy) 10 O(xm+1) → O(xm+3) Nm+2 = 10Nm − 4
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can offer better performance, with the
√

10-copy formula
performing the best of those we study.

We present two concrete applications of our product
formulas. The first application is in the context of the coun-
terdiabatic driving, a method that was originally proposed
for analog quantum computation using nested commutators
[20–23]. In the context of digital quantum state preparation,
we demonstrate that our product formulas can generate the
commutator terms required for counterdiabatic driving. This
additional term increases the fidelity of the final state without
increasing the number of gates. To illustrate the efficiency of
our approach, we consider state preparation for spins as an
example.

The second application is in the context of the quan-
tum simulation. We show that a one-dimensional fermion
chain with next-nearest-neighbor hopping terms and a model
of two-dimensional fractional quantum Hall phases can be
naturally simulated using our method. In both cases, we
use nearest-neighbor hopping terms to generate next-nearest-
neighbor hopping terms, which break time-reversal symmetry.

The remainder of the paper is organized as follows. In
Sec. II, we use the operator differential method to construct
the third-order commutator product formula. In addition, we
propose a product formula for combined sums and commu-
tators in Sec. II B. Then we derive recursive product formulas
for commutators in Sec. III. We present numerical simulations
of the third-order product formula and recursive constructions
in Sec. IV. Next, in Sec. V A, we demonstrate that the formula
proposed in this paper can implement counterdiabatic driving
and generate next-nearest-neighbor interactions from nearest-
neighbor terms. We show how to simulate a 1d fermion chain
with next-nearest-neighbor hopping terms in Sec. V B and
fractional quantum Hall phases (the Kapit-Mueller model)
in Sec. V C. Finally, we discuss open questions and future
directions in Sec. VI.

II. THIRD-ORDER PRODUCT FORMULA

In this section, we introduce the third-order exponential
product formula, i.e., a formula with error O(x4) where each
elementary exponential has time proportional to x. We first
present a formula for the pure commutator [A, B] and then
present a product formula that includes both the sum A + B
and commutator [A, B].

We derive these product formulas using the operator differ-
ential method [13], as detailed in Appendix A. In particular,
we find the following general expression for a six-gate product
formula:

ep1xAep2xBep3xAep4xBep5xAep6xB = exp[�(x)], (9)

with

�(x) = x(lA + mB) + x2

2
(lm − 2q)[A, B]

+ x3

6

((
l2m

2
− 3r

)
[A, [A, B]]

+
(

m2l

2
− 3s

)
[B, [B, A]]

)
+ O(x4), (10)

where

l := p1 + p3 + p5,

m := p2 + p4 + p6,

q := p2 p3 + p2 p5 + p4 p5,

r := p1 p2 p3 + p1 p2 p5 + p1 p4 p5 + p3 p4 p5,

s := p2 p3 p4 + p2 p3 p6 + p2 p5 p6 + p4 p5 p6. (11)

Thus an arbitrary six-gate product formula �(x) can
be reparametrized by l, m, q, r, s, which are functions of
p1, . . . , p6. By fine-tuning the parameters p1, . . . , p6 (or
equivalently, l, m, q, r, s), we can obtain the desired �(x).
Here we focus on two cases: a third-order commutator product
formula and a third-order product formula for a combination
of the sum and commutator.

To construct a third-order product formula for the commu-
tator, we solve for p1, . . . , p6 so that

l = m = 0,

lm − 2q �= 0, (12)

l2m

2
− 3r = m2l

2
− 3s = 0.

These conditions ensure that �(x) only involves the commu-
tator [A, B] and terms that are O(x4).

Similarly, for the third-order product formula for both
sum and commutator, we would like to keep both the linear
and (non-nested) commutator terms. Hence we should find
p1, . . . , p6 so that

l = m �= 0,

lm − 2q �= 0, (13)

l2m

2
− 3r = m2l

2
− 3s = 0.

We discuss the details in Sec. II A (pure commutator) and
Sec. II B (sum and commutator).

A. Pure commutator

We now derive the six-gate third-order product formula for
commutators:

S3(x) := exp
(√

5−1
2 xA

)
exp

(√
5−1
2 xB

)
exp(−xA)

× exp
(−√

5+1
2 xB

)
exp

(
3−√

5
2 xA

)
exp(xB)

= exp(x2[A, B] + O(x4)). (14)

This formula can be checked by using the Taylor series of each
term up to order x3 to show that the constant, x, x2, and x3

terms on both sides agree. In general, by Eq. (10), the product
formula

ep1xAep2xBep3xAep4xBep5xAep6xB = exp (x2[A, B] + O(x4))
(15)

holds if p1, p2, p3, p4, p5, p6 satisfy the following polynomial
equations resulting from Eq. (12):

l = m = r = s = 0,

q = p2 p3 + p2 p5 + p4 p5 = −1. (16)
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FIG. 2. Error scaling for S2(x) and S3(x) with A = −iσx , B =
−iσz. The error of S3(x) is smaller than that of S2(x) by roughly 10−2.

Equation (14) is a particular solution of the above equa-
tions [24]. Figure 2 shows the empirical error scaling behavior
of S3(x) for a one-qubit example. The error exponent obtained
by fitting the data points in the interval 2 × 10−2 � x � 10−1

is 4.001, in good agreement with theory.

B. Sum and commutator

In this section, we consider the product formula for both
sum and commutator. For arbitrary R ∈ R, we want to find a
set of parameters p1(R), . . . , p6(R) such that

�(x) = x(A + B) + R x2[A, B] + O(x4). (17)

This is equivalent to solving the equations given by Eq. (13):

l = m = 1,

q = −R + 1

2
, (18)

r = s = 1

6
.

For a specific value of R, we can solve these equations nu-
merically and obtain a third-order product formula with the
exponent equation (17). In general, these equations are dif-
ficult to solve analytically, but one can find an approximate
solution for large R:

p1 = (g − 1)

√
R + 1

2
, p2 = (g − 1)

√
R + 1

2
+ 1,

p3 = −
√

R + 1

2
+ 1, p4 = −g

√
R + 1

2
,

p5 = (2 − g)

√
R + 1

2
, p6 =

√
R + 1

2
,

(19)

where g :=
√

5+1
2 . This choice corresponds to

l = m = 1,

q = −R + 1

2
,

r = −(g − 1)

(
R + 1

2
−

√
R + 1

2

)
, (20)

s = (g − 1)

(
R + 1

2
−

√
R + 1

2

)
.

While this does not satisfy r = s = 1
6 , the leading order of r

and s is O(R) [whereas for a general choice of {pi}, the leading
order is O(R

3
2 )]. Substituting Eq. (20) into Eq. (10), we find

that the linear term vanishes, the quadratic term is

lm − 2q

2
x2[A, B] = Rx2[A, B], (21)

and the x3 term is

x3

6

((
l2m

2
− 3r

)
[A, [A, B]] +

(
m2l

2
− 3s

)
[B, [B, A]]

)

= x3O(R). (22)

From Eq. (10), we have constructed

fR(x) = exp [x(A + B) + Rx2[A, B] + x3O(R)

+ x4O(R2) + · · · + xkO(R
k
2 ) + · · · ]. (23)

Notice that the coefficient in front of the xk term for k � 4
contains products of pi1 pi2 · · · pik , where each pi j is O(R

1
2 ).

We then use the third-order product formula to implement
a new gate from existing gates. Assume that we can perform
gates of the form eθ1A and eθ2B for θ1, θ2 ∈ R and our goal is
to perform

eα(A+B)+β[A,B] (24)

for some desired α, β ∈ R. First, we pick a large integer n
such that x := α

n is small and R := βn
α2 is large. Using the

function equation (23) constructed above, we have

fR

(α

n

)
= exp

[
α

n
(A + B) + β

n
[A, B] + O

(
αβ

n2

)

+ · · · + O

(
β

k
2

n
k
2

)
+ · · ·

]
. (25)

Repeating this function n times gives the desired gate:

f βn
α2

(α

n

)n
= exp

[
α(A + B) + β[A, B] + O

(
αβ + β2

n

)]
.

(26)

This implementation uses 6n gates and achieves error O( 1
n ).

In the limit α → 0, β constant, and n � 1, Eq. (25)
converges to

exp

(
(g − 1)

√
β

n
A

)
exp

(
(g − 1)

√
β

n
B

)
exp

(
−

√
β

n
A

)

× exp

(
−g

√
β

n
B

)
exp

(
(2 − g)

√
β

n
A

)
exp

(√
β

n
B

)

= exp
(

β

n
[A, B] + O

(
β2

n2

))
, (27)

where g =
√

5+1
2 , which reduces to the pure commutator for-

mula in Sec. II A. Notice that the error has the same order with
or without the sum A + B, which means that there is no extra
cost to simulate the sum along with the commutator.
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In Sec. V, we use Eq. (26) to generate new Hamilto-
nian terms from existing ones, such as next-nearest-neighbor
(NNN) hopping terms from nearest-neighbor (NN) hopping
terms. There is another useful formula that can easily be
derived from Eq. (25):

exp
(α

n
C

)
fR

(α

n

)
= exp

(
α

n
(A + B + C) + β

n
[A, B] + O

(
1

n2

))
, (28)

or equivalently,(
exp

(α

n
C

)
fR

(α

n

))n

= exp
(

α(A + B + C) + β[A, B] + O

(
1

n

))
, (29)

which uses 7n gates and has error O(1/n).

III. RECURSIVE FORMULAS

In this section, we introduce the recursive construction of
higher-order product formulas. We first focus on the pure
commutator formula, where we improve over previous pro-
cedures [14,15]. Then we discuss recursive formulas for both
sum and commutator, following the same strategy as the re-
cursive formula for the sum alone [13,25,26].

A. Pure commutator

In this section, we introduce recursive formulas that use
4, 5, 6, or 10 copies of an nth-order formula to generate an
(n + 2)nd-order formula. To begin, assume that we have an
nth-order formula for the commutator, of the form

fn(x) = exp(x2[A, B]) + Cnxn+1 + Dnxn+2 + O(xn+3) (30)

for some coefficients Cn, Dn ∈ R. As in previous recursive
constructions, we make essential use of inverse product for-
mulas. Given an nth-order product formula fn(x), its inverse
formula is fn(x)−1, where

fn(x)−1 fn(x) = 1. (31)

Since fn(x) is a product of elementary exponentials

fn(x) = ep1xAep2xBep3xA · · · epkxB, (32)

its inverse is simply

fn(x)−1 = (ep1xAep2xBep3xA · · · epkxB)
−1

= e−pkxB · · · e−p3xAe−p2xBe−p1xA. (33)

Notice that we include coefficients Cn and Dn to keep track
of the xn+1 and xn+2 terms, respectively. From fn(x), we can
construct other product formulas:

f −1
n (x) = exp(−x2[A, B]) − Cnxn+1 − Dnxn+2,

fn(−x) = exp(x2[A, B]) − (−1)nCnxn+1 + (−1)nDnxn+2,

f −1
n (−x) = exp(−x2[A, B]) + (−1)nCnxn+1 − (−1)nDnxn+2,

(34)

where we omit the O(xn+3) error term for brevity. We use
fn(x) and Eq. (34) as building blocks for higher-order product
formulas.

In particular, if n = 2k is even, there is a recursive formula
that increases the order of the product formula by 1 using only
two copies of the product formula fn [15, Corollary 3]:

f2k+1(x) := f2k

(
x√
2

)
f2k

(
− x√

2

)
= exp(x2[A, B]) + O(x2k+2). (35)

For general n, there are two previously established ways to
increase the order by 1.

(1) One way is the Jean-Koseleff formula [14]:

fn+1(x) = exp (x2[A, B] + O(xn+2))

=
{

fn(tx) fn(sx) fn(tx) if n is even
fn(ux) fn(vx)−1 fn(ux) if n is odd,

(36)

with t = (2 + 22/(n+1))−1/2, s = −21/(n+1)t , u = (2 −
22/(n+1))−1/2, and v = 21/(n+1)u.

(2) The other way is the Childs-Wiebe (five-copy)
formula [15]:

fn+1(x) = exp (x2[A, B] + O(xn+2))

= fn(νx)2 fn(μx)−1 fn(νx)2, (37)

with μ = (4sn)1/2, ν = (1/4 + σ )1/2, and σ = 4
2

n+1

4(4−4
2

n+1 )
.

1.
√

6-copy recursive formula

Theorem 2 of Ref. [15] defines a
√

6-copy recursive con-
struction that improves the order of an even-order product
formula f2k (x) by 2 using six copies of f2k (x) and f2k (x)−1.
We observe that this construction first applies the two-copy
formula equation (35) and then applies the Jean-Koseleff for-
mula equation (36). Alternatively, we can consider these two
steps independently and combine them in different ways. In
particular, given an odd-order product formula, we can first
apply the the Jean-Koseleff formula and then apply the two-
copy formula.

Here, we explicitly describe this alternative
√

6-copy recur-
sion for odd-order product formulas. Let Vn(x) be a product
formula that approximates exp(x2[A, B]) with error O(xn+1)
for odd n.

The two-step recursive relation has the form

Vn+2(x) = Vn

(
ux√

2

)
Vn

(
vx√

2

)−1

Vn

(
ux√

2

)
× Vn

(−ux√
2

)
Vn

(−vx√
2

)−1

Vn

(−ux√
2

)
, (38)

where u = (2 − 22/(n+1))−1/2 and v = 21/(n+1)u. Here, the first
three terms and the last three terms are (n + 1)st-order formu-
las, which combine to give an (n + 2)nd-order formula. This
construction increases the order by 2 using six copies of Vn

and V −1
n , so we call it a

√
6-copy recursion.

This approach can applied to our third-order formula S3(x)
to get higher-order formulas. Letting NV

n denote the number
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of gates in the nth-order formula, we have

NV
n+1 =

{
3NV

n − 2 if n is odd

2NV
2 if n is even.

(39)

Starting from N3 = 6, this gives

NV
2k+1 = 1

15
(13 · 6k + 12). (40)

2.
√

10-copy recursive formula

Let Gn(x) be an invertible product formula that approx-
imates exp(x2[A, B]) with error O(xn+1). If n is odd, the
Childs-Wiebe (five-copy) formula, Eq. (37), can be used to
increase its order by 1. If n is even, we can apply Eq. (35) to
increase the order by 1 using two copies of Gn. Overall, we use
ten copies of Gn and G−1

n to increase the order by 2. Therefore
Gn(x) is a

√
10-copy product formula.

Let NG
n denote the number of gates in the nth-order for-

mula. For odd n = 2k + 1, we have

NG
2k+2 = 5NG

2k+1 − 2, (41)

and for even n = 2k, we have

NG
2k+1 = 2NG

2k . (42)

Combining Eqs. (41) and (42), we have

NG
2k+3 = 10NG

2k+1 − 4. (43)

Starting from the base formula with N3 = 6, we have

NG
2k+1 = 1

9
(5 · 10k + 4). (44)

3.
√

5-copy recursive formula

We now consider the product

Wn(−s′x)W −1
n (x)Wn(sx)W −1

n (−x)Wn(−s′x)

= exp ((s2 + 2s′2 − 2)x2[A, B])

+ (sn+1 + 2s′n+1 − 2)Cnxn+1

+ (sn+2 − 2s′n+2)Dnxn+2 + O(xn+3). (45)

We first choose s′ = 2− 1
n+2 s such that sn+2 − 2s′n+2 = 0.

To eliminate the coefficient (sn+1 + 2s′n+1 − 2), we have
sn+1 + 2s′n+1 = (1 + 2

1
n+2 )sn+1 = 2. Therefore we choose

s = ( 2

1+2
1

n+2
)

1
n+1 . Then we define a new variable

x′ := x
√

(s2 + 2s′2 − 2)

= x

√(
2

1 + 2
1

n+2

) 2
n+1

(1 + 2
n

n+2 ) − 2

=: rx. (46)

We can check that r > 0 for n > 1. Finally, we get the (n +
2)nd-order formula

Wn+2(x′) = Wn(−s′ x′
r )W −1

n ( x′
r )Wn(s x′

r )W −1
n (− x′

r )Wn(−s′ x′
r ).
(47)

Letting NW
n denote the number of gates in Wn, we have the

recursive relation

NW
n+2 = 5NW

n − 4. (48)

With N3 = 6, we have

NW
2k+1 = 5k + 1. (49)

4.
√

4-copy recursive formula

We now discuss a way to use only four copies of an nth-
order product formula to generate an (n + 2)nd-order product
formula. Let Qn(x) be an invertible product formula that ap-
proximates exp(x2[A, B]) with error O(xn+1). Consider the
following product:

Qn(ax)Q−1
n (bx)Qn(cx)Q−1

n (dx)

= exp ((a2 − b2 + c2 − d2)x2[A, B])

+ (an+1 − bn+1 + cn+1 − dn+1)Cnxn+1

+ (an+2 − bn+2 + cn+2 − dn+2)Dnxn+2 + O(xn+3).
(50)

To produce a formula of order n + 2, we want to find a, b, c, d
satisfying

an+1 − bn+1 + cn+1 − dn+1 = 0,

an+2 − bn+2 + cn+2 − dn+2 = 0,

a2 − b2 + c2 − d2 �= 0. (51)

If a solution exists, we can define a new variable x′ = sx,
with s :=

√
|a2 − b2 + c2 − d2|, to find the (n + 2)nd-order

formula

Qn( a
s x′)Q−1

n ( b
s x′)Qn( c

s x′)Q−1
n ( d

s x′)

=
{

Qn+2(x′) if a2 − b2 + c2 − d2 > 0
Q−1

n+2(x′) if a2 − b2 + c2 − d2 < 0.
(52)

Let NQ
n be the number of gates of the nth-order formula. The

number of gates in such a formula satisfies

NQ
2k+3 = 4NQ

2k+1 − 3. (53)

With N3 = 6, we have

NQ
2k+1 = 5 · 4k−1 + 1. (54)

We can take a = 1, b = 2, and numerically solve Eq. (51) to
find c and d . Table III presents numerical solutions for n =
3, 5, 7, 9, 11. We prove in Appendix B that a solution exists
for general n.

B. Sum and commutator

We also construct a recursive formula for the product for-
mula equation (25) for a linear combination of a sum and a
commutator, using the same idea as the

√
6-copy approach

described above. Suppose that we have an mth-order product
formula of the form

fR,m(x) = exp

(
x(A + B)+ xβ

α
[A, B]

)
+ Cmxm+1 + O(xn+2).

(55)
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TABLE III. Numerical solutions of Eq. (51) for n = 3, 5, 7, 9, 11.

n = 3 n = 5 n = 7 n = 9 n = 11

a 1 1 1 1 1
b 2 2 2 2 2
c 1.982590733 1.996950166 1.999411381 1.999880034 1.999974677
d −0.8190978288 −0.8642318466 −0.8911860667 −0.9091844711 −0.9220693131
a2 − b2 + c2 − d2 0.2597447625 0.2409130177 0.2034332678 0.1729037481 0.1496868917

In this formula, the commutator term scales with x instead
of x2. While the commutator term is x2R[A, B] in Eq. (23),
it becomes xβ

α
[A, B] with the choice of large R = β

αx . Since
A + B and [A, B] are both first-order terms, the recursive
formula for sum and commutator should be similar to the
recursive formula for sum. Here, we use Suzuki’s method
[26] to construct the recursive product formula for sum and
commutator.

If m is even, then we consider the three-copy sequence

fR,m(ax) f −1
R,m(bx) fR,m(ax)

= exp

(
(2a − b)x(A + B) + (2a − b)

xβ

α
[A, B]

)
+ (2am+1 − bm+1)Cmxm+1 + O(xn+2). (56)

To obtain an (m + 1)st-order product formula, a, b should
satisfy

2a − b = 1, 2am+1 − bm+1 = 0 (57)

to eliminate the (2am+1 − bm+1)Cm+1xm+1 term. The solution
is

a = (2 − 21/(m+1))−1, b = 21/(m+1)a. (58)

If m is odd, then we consider the two-copy sequence

fR,m(−ax)−1 fR,m(bx)

= exp

(
(a + b)x(A + B) + (a + b)

xβ

α
[A, B]

)
+ (−am+1 + bm+1)Cmxm+1 + O(xn+2). (59)

To eliminate the Cmxn+1 term, we must have

a + b = 1, −am+1 + bm+1 = 0, (60)

which is satisfied with

a = b = 1

2
. (61)

IV. NUMERICAL EVIDENCE

The analytical formulas presented above indicate how
the errors scale with powers of x. However, the constant
factors in the error terms of different product formulas sig-
nificantly affect their performance in practice. To better
understand this, we numerically compare the different ap-
proaches. Specifically, we evaluate the performance of our√

10-copy,
√

6-copy,
√

5-copy, and
√

4-copy recursive formu-
las built from the base formula S3(x) and compare them with
the previous best method, the Childs-Wiebe

√
6-copy formula

[15] [which is built from the base formula S2(x)].

We evaluate the commutator product formulas with A =
−iσx and B = −iσz for x ∈ [10−2, 10−1]. Figure 3 plots the
error compared with the exact exponential of the commutator
[A, B]. The errors scale as x6.001 (G5), x5.958 (V5), x5.867 (W5),
x6.371 (Q5), and x4.920 (Ṽ4), in good agreement with the analyt-
ical scalings [27].

Next, we compare the number of gates required to
achieve a fixed accuracy for different recursive formulas.
We set e−iσxx, e−iσzx as our elementary exponentials and
exp([−iσxx,−iσzx]) as our target. We numerically determine
the minimum number of elementary exponentials (i.e., gates)
to achieve a fixed accuracy ‖ f (x) − exp([−iσxx,−iσzx])‖2 =
10−4 for different approximation formulas f (x).

We calculate the number of gates to achieve an error of
at most 10−4 using the aforementioned product formulas.
Specifically, we consider fifth-order product formulas ob-
tained from the base formula S3 using the

√
4-copy (Q5),√

5-copy (W5),
√

6-copy (V5), and
√

10-copy (G5) approaches.
We compare them with the fourth-order formula Ṽ4 obtained
from the base formula S2 using the Childs-Wiebe

√
6-copy

recursion [15]. See Fig. 4 for the numerical comparison. The
number of gates for the

√
10-copy formula G5 is constant in

the interval x ∈ [0.1, 0.3] since its error is always below the
threshold. Asymptotically, the scaling of the number of gates
for an nth-order formula to achieve fixed accuracy is O(x

2n+2
n−1 ).

Figure 4 numerically shows that the
√

10-copy formula
has the best performance. Although the

√
4-copy,

√
5-copy,√

6-copy, and
√

10-copy formulas all have the same error

FIG. 3. Error scaling for G5, V5, W5, Q5, and the previous best
formula Ṽ4. We use the spectral norm ‖ f (x) − exp([−iσx, −iσz]x2)‖
to measure the error. By fitting the last ten points for each formula
(0.05 � x � 0.1), we find that the slopes for G5, V5, W5, Q5, and Ṽ4

are 6.001, 5.958, 5.967, 6.371, and 4.920, respectively.
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FIG. 4. Number of gates to achieve exp(x2[−iσx, −iσz]) within
error 10−4.

scaling, the constant factors determine their performance in
practice.

Figure 5 shows the error in simulating exp([−iσx,−iσz])
using Ṽ4 (the best previous method), Q5, W5, V5, and G5. The
horizontal axis indicates the total number of elementary expo-
nentials, while the vertical axis indicates the simulation error
‖ f (1/

√
r)r − exp([−iσx,−iσz])‖2, where r is the number of

time steps used in the simulation and f (x) is the product for-
mula. In an r-step simulation, the total number of elementary
exponentials for Q5, W5, V5, G5, and Ṽ4 is 21r, 26r, 32r, 56r,
and 22r, respectively. The numerical results show that the
larger number of exponentials in each time step of V5 and G5

is offset by their reduced error.
Figures 4 and 5 show that V5 and G5 improve upon the best

previous result, Ṽ4. Hybrid approaches that combine previous
recursive formulas with the base formula S3(x) proposed in
this paper also give improvements over Ṽ4; however, they do
not perform as well as W5, V5, and G5, and so we do not include
them in Figs. 4 and 5.

FIG. 5. Simulation error of exp([−iσx, −iσz]) for different gate
numbers and formulas.

V. APPLICATIONS TO QUANTUM SIMULATION

A. Counterdiabatic driving

In this section, we discuss using commutator product for-
mulas to implement counterdiabatic driving (CD) [20–22,28].
In an adiabatic process H[λ(t )], the time evolution exp ( −
i
∫

dt H[λ(t )]) keeps the system in its instantaneous ground
state if λ(t ) is slowing varying. In other words,

|
(τ )〉 ≈ exp

(
−i

∫ τ

0
dt H[λ(t )]

)
|
(0)〉, (62)

where |
(t )〉 denotes the ground state of H[λ(t )]. In general,
this approximation fails if λ(t ) varies too rapidly. However,
by introducing counterdiabatic driving terms, the system can
remain in the ground state even though λ(t ) varies rapidly.
Specifically,

|
(τ )〉 ≈ exp

(
−i

∫ τ

0
dt HCD[λ(t )]

)
|
(0)〉, (63)

where [23,28]

HCD[λ(t )] = H[λ(t )] + λ̇Cλ, (64)

with 〈m|Cλ|n〉 = −i 〈m|∂λH|n〉
εm−εn

, where |n〉 denotes an eigenstate
of H(λ) with energy εn, i.e., H(λ)|n〉 = εn|n〉.

Reference [23] proposes using Floquet engineering to gen-
erate the CD term Cλ. This term can be expressed as the sum
of nested commutators [23]

Cλ = i
∑

k

ck (λ) [H, [H, . . . [H︸ ︷︷ ︸
2k−1

, ∂λH]]], (65)

where the coefficients ck (λ) are determined by minimizing the
action

Sl = Tr
[
G2

l

]
, (66)

with

Gl = ∂λH − i[H,Cλ]. (67)

For simplicity, we truncate to only the first term, giving

Cλ ≈ ic1(λ)[H, ∂λH]. (68)

Commutator product formulas can be used to implement
the CD term. To demonstrate this application, we consider the
case H (λ) = H0 + λH1. The time evolution is

exp

(
−i

∫
dt HCD(t )

)
= exp

(
−

∫
dt (iH0 + iλH1 − λ̇c1(λ)[H0,H1])

)
. (69)

For each infinitesimal time interval [t, t + δt], we apply the
following unitary operator:

exp ( − iH0δt − iλH1δt + λ̇c1(λ)[H0,H1]δt ). (70)

This unitary operator can be simulated by the product formula
equation (25) with A = −iH1, B = −iλH0, n = 1

δt , α = 1,

and β = λ̇c(λ)
λ

. The product formula error is O((β + β2)δt ).
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As a concrete example, consider using the product formula
to simulate the counterdiabatic time evolution of the time-
dependent two-qubit Hamiltonian H(λ) = HA + HB, where

HA := hz(λ − 1)
(
σ z

1 + σ z
2

)
,

HB := J
(
σ x

1 σ x
2 + σ z

1σ z
2

)
, (71)

with λ(t ) = sin2 ( π
2 sin2( πt

2τ
)). Notice that HA and HB do not

commute. The first-order counterdiabatic driving term is [23]

Cλ = −Jhz

2

(
σ

y
1 σ x

2 + σ x
1 σ

y
2

)
J2 + 4(λ − 1)2h2

z

. (72)

We can write Eq. (72) as a commutator between HA and HB:

Cλ = i
1

4(1 − λ)

[−iHA,−iHB]

J2 + 4(λ − 1)2h2
z

. (73)

Hence we can construct the first-order counterdiabatic term
using a commutator product formula. In the product formula
setting, we choose A = −iHA, B = −iHB, n = 1

δt , α = 1,
and β = λ̇ 1

4(1−λ)
1

J2+4(λ−1)2h2
z

to implement the counterdiabatic

Hamiltonian over a time interval δt . Defining R = βn
α2 , the

product formula equation (25) gives

fR(δt ) = ep1(R)Aδt ep2(R)Bδt ep3(R)Aδt ep4(R)Bδt ep5(R)Aδt ep6(R)Bδt

= exp (δt (A + B) + βδt[A, B] + O(δt2))

= exp ( − i(HA + HB)δt − i(λ̇Cλ)δt )

= exp(−iHCDδt ), (74)

where pi(R) is the solution equation (19), which provides a
good approximation provided that R is large (i.e., δt is small)
[29]. The overall counterdiabatic time evolution is the product
of fR(δt ) for each time interval, i.e.,

exp

(
−i

∫ τ

0
dt HCD[λ(t )]

)
=

N−1∏
k=0

fR(tk )(δt ), (75)

where tk = k
N τ and δt = τ

N . Notice that in each term, the
operator A and the parameter R depend on tk .

For comparison, the time evolution of the original Hamil-
tonian can be simulated as

exp

(
−i

∫ τ

0
dt H[λ(t )]

)
=

N−1∏
k=0

(e−iHA(tk )δt/3e−iHBδt/3)3, (76)

where we use first-order Trotterization, eAδt/3eBδt/3 =
e(A+B)δt/3 + O(δt2). We choose δt/3 in each time step to
match the total gate number in the counterdiabatic simulation,
which uses six exponentials for each tk .

We consider approximations to the evolution from t = 0 to
t ′ = rδt of H[λ(t )] and HCD[λ(t )] by standard Trotterization
and our digital CD approach, respectively.

The evolved states with these approximations are

∣∣
evolved
Trotter (t ′)

〉 =
r−1∏
k=0

(e−iHA(tk )δt/3e−iHBδt/3)3|
(0)〉,

∣∣
evolved
CD (t ′)

〉 =
r−1∏
k=0

fR(tk )(δt )|
(0)〉. (77)

FIG. 6. The fidelity of the evolved state under standard Trotteri-
zation and CD protocols. The Hamiltonian has J = −1 and hz = 5,
the total evolution time is τ = 1, and the number of steps is N = 100.
There are six exponentials in each step, so each simulation uses 600
gates in total. The CD protocol remains close to the ground state,
while the standard Trotterization approach starts to deviate from the
ground state after t ≈ 0.6τ .

We define the fidelity of the process as the overlap with the
ground state |
(t ′)〉 of H[λ(t )]:

Fα (t ′) := ∣∣〈
(t ′)
∣∣
evolved

α (t ′)〉∣∣2
, α ∈ {Trotter, CD}. (78)

Figure 6 shows a numerical computation of these quanti-
ties. We see that the product formula simulation of counterdia-
batic evolution uses the commutator term to keep the system
close to the ground state, while the corresponding evolution
with standard Trotterization deviates from the ground state
after t ≈ 0.6τ .

We also examine the performance of the standard Trotter
method and our digital CD approach for different numbers of
gates in Fig. 7. When the number of gates is large, the digi-
tal CD protocol has higher fidelity than the standard Trotter
protocol. The final fidelity is determined by the schedule λ(t ).
Moreover, we see that even with fewer gates, the first-order
CD approach has higher fidelity than the standard Trotter
method.

FIG. 7. Comparison of the final fidelity at t = τ using the stan-
dard Trotter protocol and counterdiabatic driving approach.
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FIG. 8. A 1d fermion chain with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping. The NN hopping terms are all t ,
while the NNN terms are it2 and −it2 alternatively (t, t2 are real). This corresponds to π

2 flux insertion in each triangle.

B. 1d fermion chain with next-nearest-neighbor hopping terms

In this section, we discuss how to generate the time evo-
lution of a 1d fermion chain with nearest-neighbor (NN) and
next-nearest-neighbor (NNN) hopping terms using only two-
site gates acting on neighboring sites on a fermionic digital
quantum simulator [30].

Consider a 1d fermion chain with one complex fermion on
each site j. The fermion operators c j, c†

j satisfy the canonical
anticommutation relations

{c j, c†
k} = δ jk, {c j, ck} = {c†

j , c†
k} = 0. (79)

We partition the hopping terms into two sets: those between
sites 2 j and 2 j + 1 and those between sites 2 j + 1 and 2 j +
2. More explicitly, we define

H0 := (c†
0c1 + c†

2c3 + · · · + c†
L−2cL−1) + H.c.,

H1 := (c†
1c2 + c†

3c4 + · · · + c†
L−1c0) + H.c., (80)

where we use periodic boundary conditions and assume that
the total number of sites L is even. Notice that the terms in
H0 pairwise commute, so the time evolution of H0 is exactly
the product of the time evolutions of the individual terms, and
similarly for H1. By choosing A = iH0, B = iH1, α = −tT ,
and β = −t2T in Eqs. (24) and (25), we have

f βn
α2

(α

n

)
= exp

(
− iHeff

T

n
+ O

(
LT 2

n2

))
, (81)

where

Heff = t (H0 + H1) + it2[H0, H1]

= t (c†
0c1 + c†

1c2 + c†
2c3 + c†

3c4 + · · · + H.c.) (82)

+ t2(ic†
0c2 − ic†

1c3 + ic†
2c4 − ic†

3c5 + · · · + H.c.).

Repeating the product formula n times, we find

f βn
α2

(α

n

)n
= exp

(
− iHeffT + O

(
LT 2

n

))
. (83)

The effective Hamiltonian Heff is shown in Fig. 8. It con-
tains NN hopping terms with amplitude t and NNN hopping
terms with amplitude t2 and alternating i and −i factors. Phys-
ically, this Hamiltonian corresponds to the insertion of a π

2

flux in each triangle. If we transform the NNN term c†
j c j+2 to a

qubit representation, it corresponds to a three-qubit interaction
σ+

j σ z
j+1σ

−
j+2 as occurs in lattice gauge theories [31,32].

To simulate H0 or H1, we use L
2 gates. To simulate the

time evolution of Heff, we use 6n × L
2 = 3nL gates, which is

proportional to the number of steps n and the chain length L.
Thus, using only nearest-neighbor terms (or two-qubit gates
in the qubit representation), we are able to simulate the next-
nearest-neighbor terms (or three-qubit gates) with the same

number of gates as in standard Trotterization of a Hamiltonian
with only nearest-neighbor terms [34]. We do not require any
gate decomposition of three-qubit interactions.

C. Fractional quantum Hall phases on lattices

In Ref. [35], Kapit and Mueller showed that the addition
of an appropriate next-nearest-neighbor hopping term to mag-
netic models on lattices can significantly flatten the lowest
band. Such a band flattening can further stabilize and increase
the gap of lattice quantum Hall states such as Laughlin states.
In this section, we discuss how to simulate the Kapit-Mueller
Hamiltonian with nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping terms on a two-dimensional square
lattice using only the time evolution operators of nearest-
neighbor hopping terms.

Using our product formula for both sum and commuta-
tor, as in Eq. (25), we can simulate the Hamiltonian of the
Kapit-Mueller model. The general form of the Kapit-Mueller
Hamiltonian can be regarded as a variation of the Hofstadter
Hamiltonian [36], which involves not only NN hopping but
also long-range hopping. The long-range hopping ensures a
flat band, which can be regarded as a degenerate Landau
level to stabilize fractional quantum Hall states. By truncating
to only the NN and NNN terms, the Kapit-Mueller model
simplifies the interactions while still demonstrating features
of fractional quantum Hall phases.

Specifically, the Kapit-Mueller Hamiltonian is of the form

HKM =
∑

〈 j,k〉,〈〈 j,k〉〉
J (z j, zk )a†

j ak, where

J (z j, zk ) = K (z)e(π/2)(z j z∗−z∗
j z)φ,

K (z) = t × (−1)x+y+xye− π
2 [(1−φ)|z|2], (84)

with z j = x j + iy j denoting the position of the jth site, z =
zk − z j representing the displacement from the jth site to the
kth site, 〈 j, k〉 indicating that j, k are NN sites, and 〈〈 j, k〉〉
indicating that j, k are NNN sites. The a†

j operator is a bosonic
creation operator acting on site j, and φ is the magnetic flux
inside each plaquette, as shown in Fig. 9. The hopping phase
factor (z jz∗ − z∗

j z)φ corresponds to a vector potential in the
symmetric gauge.

For convenience, we use Cartesian coordinates (m, n) to
label lattice sites and rescale πφ to φ. The lattice constant is
set to 1. We divide all the nearest-neighbor hopping terms into
four parts:

H1 = −J
∑

m+n even

e−inφa†
m+1,nam,n + H.c.,
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FIG. 9. Square lattice in a uniform magnetic field. The red links
belong to H1, the dark blue links belong to H2, the green links belong
to H3, and the light blue links belong to H4.

H2 = −J
∑

m+n odd

e−inφa†
m+1,nam,n + H.c.,

H3 = −J
∑

m+n odd

a†
m,n+1am,n + H.c.,

H4 = −J
∑

m+n even

a†
m,n+1am,n + H.c. (85)

Using the bosonic commutation relation [ai, a†
j ] = δi, j , we

see that the commutator between two hopping terms that over-
lap on site j is

−i[K1a†
i a j + H.c., K2a†

j ak + H.c.] = −iK1K2a†
i ak + H.c.

(86)
Thus commutators between NN hopping terms can generate
NNN hopping. We compute the following commutators be-
tween different NN hopping terms:

− i[H1, H3] = −J2
∑

m+n=odd

ie−i(n+1)φa†
m+1,n+1am,n + H.c. + J2

∑
m+n=even

ie−inφa†
m+1,n+1am,n + H.c.,

− i[H1, H4] = −J2
∑

m+n=even

ie−inφa†
m+1,nam,n+1 + H.c. + J2

∑
m+n=odd

ie−i(n+1)φa†
m+1,nam,n+1 + H.c.,

− i[H2, H3] = −J2
∑

m+n=odd

ie−inφa†
m+1,nam,n+1 + H.c. + J2

∑
m+n=even

ie−i(n+1)φa†
m+1,nam,n+1 + H.c.,

− i[H2, H4] = −J2
∑

m+n=even

ie−i(n+1)φa†
m+1,n+1am,n + H.c. + J2

∑
m+n=odd

ie−inφa†
m+1,n+1am,n + H.c. (87)

Therefore

−i[H1, H3] − i[H2, H4] + i[H1, H4] + i[H2, H3] = − 2J2 sin

(
φ

2

) ∑
m,n

e−i(n+ 1
2 )φ (a†

m+1,n+1am,n + a†
m+1,nam,n+1) + H.c.

= − i[H1 − H2, H3 − H4]. (88)

Comparing the phase factors of NN hopping in Eq. (85)
and NNN hopping in Eq. (87), we find the effective Hamilto-
nian in terms of H1, H2, H3, H4 and their commutators,

Heff = H1 + H2 + H3 + H4 − iJ ′[H1 − H2, H3 − H4], (89)

which describes a system with NN and NNN hopping where
the magnetic flux inside each plaquette is φ/2. Our product
formula naturally generates the phase factor corresponding to
a uniform magnetic field applied to the lattice. Since we can
control the coefficient of the commutator term in the product
formula, Heff is equivalent to the Kapit-Mueller Hamiltonian
with the choice J ′ = exp(φ/4−π/2)

2J sin(φ/2) , which is fine-tuned to real-
ize a flat band. We can use our product formula equation (28)
to simulate Heff by setting A = i(H1 − H2), B = i(H3 − H4),
and C = i(2H2 + 2H4) and taking α = 1, β = J ′.

VI. DISCUSSION

We conclude by discussing some possible future research
directions.

Trajectories of product formulas.. Given a product formula

ep1xAep2xBep3xAep4xBep5xAep6xB · · · , (90)

we can plot the “time evolution trajectory” of the coeffi-
cients of A and B, namely, (p1, p1 + p3, p1 + p3 + p5, . . . )
and (p2, p2 + p4, p2 + p4 + p6, . . . ), respectively. Reference
[13] studies product formulas for the sum A + B, with the
time evolution trajectory starting from t = 0 and ending at
t = 1. The authors suggest that a good product formula for
the sum should have the entire time evolution trajectory inside
the “allowed” interval [0,1], since times outside this interval
do not correspond to the evolution under consideration.

For commutators, the time evolution trajectory starts and
ends at t = 0, so we do not have an “allowed” interval. How-
ever, we can still plot the time evolution trajectories, as shown
in Fig. 10 for the

√
4-copy and

√
10-copy product formulas.

We see that the
√

10-copy product formula has a smaller range
for the time evolution trajectories of A and B. This may ex-
plain why the

√
10-copy product formula performs better than

the
√

4-copy product formula. Similar considerations hold for
other formulas (for example, the ranges of the trajectories for
the

√
5-copy formula are intermediate between those of the√

4- and
√

10-copy formulas). It might be useful to develop
a more general and quantitative understanding of how the
trajectories of a product formula affect its performance.

013191-12



EFFICIENT PRODUCT FORMULAS FOR COMMUTATORS … PHYSICAL REVIEW RESEARCH 4, 013191 (2022)

FIG. 10. Time evolution trajectories of product formulas. From
top to bottom, Q5(1) (

√
4 copy) for A and B and G5(1) (

√
10 copy)

for A and B.

Optimal recursive relation. We argue that the
√

4-copy
recursive relation may use the smallest possible number of
copies to generate higher-order product formulas. In other
words, it seems unlikely that a recursive relation could use
fewer than two copies of an nth-order product formula to
generate an (n + 1)st-order product formula. To obtain a
pth-order product formula, the coefficients of pth-order com-
mutators must be eliminated. If p is a prime, the number
of independent commutators is 2p−2

p , which is the dimension
of the graded component of a free Lie algebra with length
p [18,19,37]. A (2 − ε)-copy recursive formula would use
a number of exponentials proportional to (2 − ε)p 
 2p−2

p ,
which would mean using far fewer parameters than the num-
ber of polynomial equations to be solved. Thus we conjecture
that there is no (2 − ε)-copy recursive formula.

Direct derivation of a fourth-order commutator product
formula. To better understand possible direct constructions
of commutator product formulas, we would like to solve the
polynomial equations for the fourth-order case, namely [38],

ep1xAep2xBep3xAep4xBep5xAep6xB · · · = ex2[A,B] + O(x5). (91)

We first revisit the polynomial equations (16) for the third-
order product formula. We can rewrite these equations as

A = 0, B = 0, BA = −1,

ABA = 0, BAB = 0,

(92)

where

A :=
∑
i odd

pi = p1 + p3 + p5 + · · · (93)

represents the sum of all coefficients of the A term and

B :=
∑
i even

pi = p2 + p4 + p6 + · · · (94)

represents the sum of all coefficients of the B term. Then

BA :=
∑

i even, j odd, i< j

pi p j (95)

is the sum of all coefficients of the BA term, and similarly

ABA :=
∑

i odd, j even, k odd, i< j<k

pi p j pk,

BAB :=
∑

i even, j odd, k even, i< j<k

pi p j pk . (96)

Following the same strategy, we can derive polynomial
equations for the fourth-order commutator product formula:

A = 0, B = 0,

BA = −1, ABA = 0,

BAB = 0, A2BA = 0,

B2AB = 0, ABAB − BABA = 0,

(97)

where we have defined

A2BA :=
∑

i odd, j even, k odd, i< j<k

1

2
p2

i p j pk
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+
∑

i odd, j odd, k even,
l odd, i< j<k<l

pi p j pk pl ,

B2AB :=
∑

i even, j odd, k even, i< j<k

1

2
p2

i p j pk

+
∑

i even, j even, k odd,
l even, i< j<k<l

pi p j pk pl ,

ABAB :=
∑

i odd, j even, k odd,
l even, i< j<k<l

pi p j pk pl ,

BABA :=
∑

i even, j odd, k even,
l odd, i< j<k<l

pi p j pk pl . (98)

However, we do not have an analytical solution for these
polynomial equations.

Applications of counterdiabatic driving. In Sec. V A, we
gave a two-qubit example to demonstrate the potential ef-
fectiveness of counterdiabatic driving in digital quantum
computers. We believe this approach can be used to pre-
pare ground states of spin-chain systems with high fidelity.
Looking beyond quantum simulation, there might exist
other efficient quantum algorithms based on counterdiabatic
driving.
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APPENDIX A: THE OPERATOR DIFFERENTIAL
METHOD AND COMMUTATOR PRODUCT FORMULAS

In this Appendix, we introduce the operator differential
method and show how it can be used to derive product for-
mulas. We have [13]

ep1xAep2xBep3xAep4xBep5xAep6xB = e�(x), (A1)

with

�(x)

=
∞∑

k=0

(−1)k

k + 1

∫ x

0
(ep1tδA ep2tδB ep3tδA ep4tδB ep5tδA ep6tδB − 1)k

× (p1A + ep1tδA p2B + ep1tδA ep2tδB p3A · · · ) dt, (A2)

where δAO := [A, O] is called the operator differential. For
example, the x term in �(x) comes from integrating the

constant term in Eq. (A2):∫ x

0
(p1A + p2B + p3A + p4B + p5A + p6B)dt

= (lA + mB)x, (A3)

where

l := p1 + p3 + p5,

m := p2 + p4 + p6. (A4)

Notice that only the k = 0 part contributes to the constant term
in the integrand. The x2 term in �(x) comes from the t terms
in the integrand, which have two contributions: From the k =
0 part, we have∫ x

0
dt t[p1(p2 + p4 + p6) + p3(p4 + p6) + p5 p6]δAB

+ t[p2(p3 + p5) + p4 p5]δBA

= x2

2
[p1(p2 + p4 + p6) + p3(p4 + p6) + p5 p6

−p2(p3 + p5) − p4 p5]δAB, (A5)

and from the k = 1 part, we have

− 1

2

∫ x

0
dt t (p2 + p4 + p6)(p1 + p3 + p5)δBA

+ t (p1 + p3 + p5)(p2 + p4 + p6)δAB

= 0. (A6)

The x2 term is therefore

x2

2
(lm − 2q)δAB, (A7)

where

q := p2 p3 + p2 p5 + p4 p5. (A8)

The x3 term in �(x) has three contributions. The first comes
from the k = 0 part:∫ x

0
dt

t2

2

[
p2

1(p2 + p4 + p6) + p2
3(p4 + p6) + p2

5 p6

+ 2p1 p3(p4 + p6) + 2(p1 + p3)p5 p6

− 2p1 p2(p3 + p5) − 2(p1 + p3)p4 p5
]
δ2

AB

+ t2

2

[
p2

2(p3 + p5) + p2
4 p5 + 2p2 p4 p5

− 2p2 p3(p4 + p6) − 2(p2 + p4)p5 p6
]
δ2

BA. (A9)

Defining

r := p1 p2 p3 + p1 p2 p5 + p1 p4 p5 + p3 p4 p5,

s := p2 p3 p4 + p2 p3 p6 + p2 p5 p6 + p4 p5 p6, (A10)

the k = 0 part can be simplified as∫ x

0
dt

t2

2

[
(l (lm − q) − 3r)δ2

AB + (mq − 3s)δ2
BA

]
= x3

6

[
(l (lm − q) − 3r)δ2

AB + (mq − 3s)δ2
BA

]
. (A11)
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Similarly, for k = 1 we have

− 1

2

∫ x

0
dt t (lδA + mδB)t[(lm − 2q)δAB]

+ 1

2
t2(l2δ2

A + m2δ2
B + 2(lm − q)δAδB + 2qδBδA

)
× (lA + mB)

= −x3

6

[(
1

2
l2m − lq

)
δ2

AB −
(

1

2
m2l − mq

)
δ2

BA

]
, (A12)

and for k = 2 we have
1

3

∫ x

0
dt t2(lδA + mδB)2(lA + mB)

= 1

3

∫ x

0
t2δ2

lA+mB(lA + mB) = 0. (A13)

Overall, the x3 term is

x3

6

[(
l2m

2
− 3r

)
δ2

AB +
(

m2l

2
− 3s

)
δ2

BA

]
. (A14)

1. Pure commutators

To give a pure commutator formula, we would like to find
(p1, p2, p3, p4, p5, p6) such that

�(x) = R[A, B]x2 + O(x4) (A15)

for some constant R. For the first-order term to vanish, we
require

l = p1 + p3 + p5 = 0,

m = p2 + p4 + p6 = 0. (A16)

The x2 term, Eq. (A7), and x3 term, Eq. (A14), contribute

−x2qδAB − x3

2

(
rδ2

AB + sδ2
BA

)
. (A17)

To eliminate the third-order term, we need to solve

l = p1 + p3 + p5 = 0,

m = p2 + p4 + p6 = 0,

q = p2 p3 + p2 p5 + p4 p5 = −1, (A18)

r = p1 p2 p3 + p1 p2 p5 + p1 p4 p5 + p3 p4 p5 = 0,

s = p2 p3 p4 + p2 p3 p6 + p2 p5 p6 + p4 p5 p6 = 0.

One can check that the following choice satisfies the
equations:

p1 =
√

5 − 1

2
, p2 =

√
5 − 1

2
, p3 = −1,

p4 = −
√

5 + 1

2
, p5 = 3 − √

5

2
, p6 = 1.

(A19)

Thus we have the explicit product formula equation (14).

2. Sums and commutators

Now consider a case where we include both linear and
commutator terms, namely,

�(x) = (A + B)x + R[A, B]x2 + O(x4), (A20)

for an arbitrary constant R. The first-order term requires

l = p1 + p3 + p5 = 1,

m = p2 + p4 + p6 = 1,

(A21)

and the x2 and x3 terms are

x2

2
(1 − 2q) + x3

6

[(
1

2
− 3r

)
δ2

AB +
(

1

2
− 3s

)
δ2

BA

]
, (A22)

which agrees with the derivation in Ref. [13]. Therefore the
equations to be solved are

l = p1 + p3 + p5 = 1,

m = p2 + p4 + p6 = 1,

q = p2 p3 + p2 p5 + p4 p5 = −R + 1
2 , (A23)

r = p1 p2 p3 + p1 p2 p5 + p1 p4 p5 + p3 p4 p5 = 1
6 ,

s = p2 p3 p4 + p2 p3 p6 + p2 p5 p6 + p4 p5 p6 = 1
6 .

APPENDIX B: EXISTENCE OF THE
√

4-COPY
RECURSIVE FORMULA

In this Appendix, we prove that a real solution of

an+1 − bn+1 + cn+1 − dn+1 = 0,

an+2 − bn+2 + cn+2 − dn+2 = 0, (B1)

a2 − b2 + c2 − d2 �= 0

exists for any odd n = 2k − 1. We first take a = 1 and b = 2,
giving

c2k − d2k = 22k − 1, (B2)

c2k+1 − d2k+1 = 22k+1 − 1. (B3)

The solution (c, d ) = (2, 1) is trivial since a2 − b2 + c2 −
d2 = 0. We show that there exists a solution of the form
(c, d ) = (2 − ε2,−1 + ε1) with 1 � ε1, ε2 � 0.

For any positive integer k, the solutions of Eqs. (B2) and
(B3) line on curves in the (ε1, ε2) plane. We can check that
the solutions of Eq. (B2) include the two points (ε1, ε2) =
(0, 0), (1, y1) with y1 := 2 − (22k − 1)

1
2k . Similarly, the so-

lutions of Eq. (B3) include (ε1, ε2) = (0, y2) and (1, y3)
with y2 = 2 − (22k+1 − 2)

1
2k+1 and y3 = 2 − (22k+1 − 1)

1
2k+1 .

Notice that y1 > y2 > y3. As shown in Fig. 11, the curve
for Eq. (B2) is monotonically increasing, and the curve for
Eq. (B3) is monotonically decreasing, so these curves must
intersect in the region 0 < ε1 < 1, providing a simultaneous
solution of the two equations.

The final step is to show a2 − b2 + c2 − d2 �= 0, or
equivalently,

(2 − ε2)2 − (1 − ε1)2 �= 3. (B4)

It suffices to show that

(2 − ε2)2 − (1 − ε1)2 = 3 (B5)
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FIG. 11. The blue curve is the solution of Eq. (B2), a monoton-
ically increasing function between (0,0) and (1, y1). The red curve
is the solution of (B3), a monotonically decreasing function between
(0, y2) and (1, y3). They intersect in the region 0 < ε1 < 1. The plot
shows the case k = 2, but the curves are qualitatively similar for any
k.

and

(2 − ε2)2k − (1 − ε1)2k = 22k − 1 (B6)

have no intersection in the interval 0 < ε1 < 1 for k > 1. For
each equation, we can think of ε2 as a function of ε1, i.e.,

f1(x) := 2 − [3 + (1 − x)2]
1
2 ,

f2(x) := 2 − [22k − 1 + (1 − x)2k]
1
2k , (B7)

corresponding to Eqs. (B5) and (B6), respectively. Now con-
sider their derivatives:

f ′
1(x) = 1 − x

[3 + (1 − x)2]
1
2

,

f ′
2(x) = (1 − x)2k−1

[22k − 1 + (1 − x)2k]
2k−1

2k

. (B8)

For 0 < x < 1 and k > 1, we have (1 − x) > (1 − x)2k−1

and [3 + (1 − x)2]
1
2 < [22k − 1 + (1 − x)2k]

2k−1
2k , so f ′

1(x) >

f ′
2(x). Starting from the initial point f1(0) = f2(0) = 0, f1(x)

and f2(x) cannot intersect in the interval 0 < x < 1. Therefore
a2 − b2 + c2 − d2 �= 0, and the solution for Eq. (51) always
exists.
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