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Abstract
We reduce measurement errors in a quantum computer using machine learning techniques. We
exploit a simple yet versatile neural network to classify multi-qubit quantum states, which is
trained using experimental data. This flexible approach allows the incorporation of any number
of features of the data with minimal modifications to the underlying network architecture. We
experimentally illustrate this approach in the readout of trapped-ion qubits using additional
spatial and temporal features in the data. Using this neural network classifier, we efficiently treat
qubit readout crosstalk, resulting in a 30% improvement in detection error over the conventional
threshold method. Our approach does not depend on the specific details of the system and can be
readily generalized to other quantum computing platforms.

Supplementary material for this article is available online
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Quantum computing tasks involve quantum state preparation,
time evolution, and measurement, accompanied by errors in all
the three stages. To detect and correct errors during the evolution,
quantum error correcting codes are used [1–3]. These codes rely
on redundant encoding of quantum information, which makes it
possible to measure syndromes and fix errors. Measurement
errors not only affect the outcome of the computation, but they
also limit the task of error correction. Consequently, in addition
to high-fidelity operations, high quality multi-qubit readout is
essential for realizing a fault tolerant quantum computer.

The quantum measurement process always involves the
interaction with an external classical system. For example,
collecting fluorescence from a trapped-ion in a cycling
transition can determine the state of the qubit [4]. In super-
conducting qubits, a probe signal is injected to the system
through a resonator, and the phase of the output signal is used

to infer the state of the qubit [5]. Spontaneous decay and
excitation during the external probe can be major sources of
qubit measurement errors [6]. When scaling up, the mea-
surement signal from a qubit can be altered by the state of
other qubits through crosstalk. To address this issue, one can
assume an error model and infer the correct qubit states by
using statistical properties of the measured data [7].

Machine learning (ML) [8] techniques have recently
become popular tools for exploring physical phenomena. For
example, artificial neural networks [9] are now a powerful
method for simulating the dynamics of many-body quantum
systems [10, 11]. These neural networks can efficiently repre-
sent a wide class of highly correlated states [12–14], and can
facilitate quantum state tomography [15, 16]. They are also
used to detect errors and decode quantum error correcting codes
[17–20], and to classify phases of matter [21–23]. In addition to
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neural networks, other ML methods, such as principal comp-
onent analysis and clustering, have been used for various tasks
from classifying phases of matter [24] to discriminating mea-
surement trajectories for improved single qubit readout [25].

In this work, we exploit the versatility of ML techniques
to increase the fidelity of multi-qubit measurements. While
the problem of crosstalk can be partially addressed by careful
statistical analysis of the data, it requires certain assumptions
about the error model, which makes the integration of addi-
tional spatial and temporal features difficult. In our approach,
the machine is ‘trained’ to infer the states from the mea-
surement results without prior knowledge of the error model.
This ML method can therefore be readily generalized to other
quantum computing platforms.

We study the detection accuracy of a chain of Yb171 + ions
confined in an rf Paul trap [26]. The qubit is defined by the
hyperfine-split ground states of the S2

1 2 manifold:
F m0 0, 0Fñ = = = ñ∣ ∣ and F m1 1, 0Fñ = = = ñ∣ ∣ (see

figure 1). Furthermore, we can take advantage of the P2
1 2

level to accomplish both state preparation and measurement
(SPAM) with high-fidelity.

Qubit initialization is achieved by optical pumping via
the P F, 12

1 2 = manifold. The qubit readout, on the other
hand, is performed by state-dependent fluorescence detection
[6] (see figure 2). Specifically, we apply a laser beam resonant
with the S F P F, 1 , 02

1 2
2

1 2=  = cycling transition, and
collect ion fluorescence. While the beam is on, a qubit in 1ñ∣
will scatter photons. In contrast, a qubit in 0ñ∣ remains dark
since the light is 14.7 GHz detuned from the nearest transition
with a natural linewidth of about 20MHz. The ion fluores-
cence is collected by a 0.37 NA lens and each ion in the chain
is imaged onto a separate channel of a 32-channel photo-
multiplier tube (PMT) [26].

The histogram of the photon counts in some integration
time follows a near-Poissonian distribution, centered around 0
for state 0ñ∣ (the ‘dark’ state) and nine counts for state 1ñ∣ (the
‘bright’ state) following a 150 μs integration time. The
deviations from Poissonian statistics indicate the error
mechanisms in this readout scheme. The dark state histogram
includes a small contribution at higher counts due to off-
resonant dark-to-bright pumping during the detection step
[27]. More importantly, the bright-state histogram has a non-
Poissonian tail towards lower photon counts due to off-
resonant excitation to the P F, 12

1 2 = manifold, detuned by
2.1 GHz, from which decay to 0ñ∣ is possible [27]. By
choosing an optimal collection time, 150 μs in our system, the
overlap between the photon distributions corresponding to 0ñ∣ ,
and 1ñ∣ can be minimized. Thus, by discriminating the two
distributions one can deduce the state of the qubit. One of the
commonly used techniques to distinguish between these dis-
tributions is a simple threshold discriminator, where instances
with observed photon counts greater than the threshold are
taken to be 1ñ∣ , and those below to be 0ñ∣ (see figure 2). This
method works very well in the single qubit case and results in
a detection fidelity, that is p measured x prepared x = ( ∣ ), of
99.4% for 1ñ∣ , and 99.6% for 0ñ∣ , which gives an average
detection fidelity of 99.5% in our setup. This error can be
reduced by increasing the collection angle of the objective

Figure 1. The setup and readout scheme for the trapped-ion quantum
computer. (a) Schematic of our experimental setup. A single ion
fluoresces inside an ion trap and its radiated photons are collected by
a 0.37 NA lens. This fluorescence is then imaged onto a single
channel of a multi-channel photo-multiplier tube detector. (b) Energy
levels in the Yb171 + atomic system used for fluorescence detection. If
the qubit state is 0ñ∣ , the applied detection laser is off resonance and
nearly no photons are scattered. If the state is 1ñ∣ the transition is on
resonance and the ion fluoresces strongly.

Figure 2. The histogram of observed photons for an integration time
of 150 μs for state detection. The photon counts follow a near-
Poissonian distribution, in which the state 0ñ∣ (solid blue) gives a
mean close to zero, while the state 1ñ∣ (shaded pink) results in nine
photons on average.
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and reducing the detection time. A readout fidelity of
∼99.99% has been demonstrated using this method [28].

Similar dark-to-bright or bright-to-dark pumping errors
exist in other readout schemes, e.g., when a separate state
with a finite lifetime is used as the dark state, known as a shelf
state [7]. Smaller error contributions include laser light scat-
tering off the ion trap and into the PMT as well as PMT dark
counts, which account for 20 counts per second and 2 counts
per second respectively. Both of these errors contribute only
one false count for an average of 300 experiments and are
therefore well discriminated using a thresholding method.

When detecting the state of more than one qubit, a bright
ion can cause events on other ion detector channels. This
crosstalk between the PMT channels modifies the distribution
of observed photons, and the average detection fidelity
decreases. One can choose a different threshold for each ion
based on the state of its neighbors to partially mitigate these
errors. In addition, using maximum likelihood methods, one
can calculate the probability that an observed data point
corresponds to the 0ñ∣ or 1ñ∣ state, and choose the most
probable option [7, 29]. However, these methods are all tai-
lored for a specific scenario and it is difficult to integrate other
sources of information about the state, such as counts from
extra PMT channels when imaging the ions onto alternating
detectors, or photon arrival times. The latter contributes
information about the state because bright-to-dark or dark-to-
bright pumping events have characteristic photon arrival time
distributions, i.e. photons arriving predominantly early or late
in the detection window, which can be included in the dis-
crimination procedure. To incorporate all data sources in a
single framework and reduce the effect of crosstalk we take
advantage of advances in the field of ML, and use an artificial
neural network to perform the discrimination task. Before
proceeding to the main results, we briefly introduce the neural
network framework that is used in this work.

With N qubits, the measurement consists of photon
counts and their arrival times on M�N PMT channels.
These photon counts can be binned into T time-bins to give
M×T numbers that completely describe the measurements.
Our goal is to classify these measurement results into 2N

states, in an N-qubit basis. Therefore, we consider a super-
vised learning scenario, where a set of measurement results
and their corresponding states is used to train the machine and

predict the correct state corresponding to a given input. We
use a feed-forward neural network as depicted in figure 3
[30]. The network is built from a collection of neurons
arranged in layers (columns in figure 3). A neuron is a unit
that takes the input values xk, and evaluates f w x bk k kå +( ),
where f is a mathematical function called the activation
function, and wk and b are scalar parameters that are referred
to as neuron’s weights and bias, respectively. There are var-
ious choices for the function f. A common example is the
rectifier f z zmax 0,=( ) ( ). When neurons are arranged in
layers, the output of the previous layer serves as the input to
the next layer. We represent weights and biases of the ith
layer by the matrix W i( ) and the vector b i( ), respectively. In
this notation, the rows of W i( ) represent the weights of the
neurons in layer i, and elements of the vector b i( ) are the
corresponding biases. Therefore, we have fx zi i1 =+ ( )( ) ( ) ,
where z W x bi i i i= +( ) ( ) ( ) ( ), and the function f is applied
element-wise. The first layer is called the input layer, where
the neurons output the input data. Here, we have M×T
neurons representing integrated photon counts from each ion
in a time-bin (pixel values in figure 4). The last layer of the
network is called the output layer. This layer captures dif-
ferent classes (states) that the input can take. Here, we use
one-hot encoding to represent the classes n, corresponding to
the 2N different quantum states in our system (image labels in
figure 4). That is, for each sample s, ys,n=1, if the sample is
prepared in the nth state, and ys,n=0, otherwise. For clas-
sifying data into exclusive classes, it is common to use the
softmax activation at the output layer, i.e. f z n

e

e

zn

k
zk

=
å

( ) . With

this choice of activation, the output is normalized and can be
interpreted as the probability of the input belonging to class n.
The output with the highest probability is chosen as the
predicted class. All the layers between the input and output
are called hidden layers, and we use the rectifier function
for them.

In order to predict the correct class, i.e., the quantum state,
associated with each input, the network has to be trained. For

Figure 3. An artificial neuron and a neural network. (a) A single
neuron takes inputs xk and outputs f w x bk k kå +( ), where f is called
the activation function, and wkʼs and b are weights and the bias of the
neuron. (b) A neural network is composed of artificial neurons
stacked in layers and connected to each other.

Figure 4. Results of an instance of the experiment for different initial
states. Photon counts for all eight computation basis states over three
qubits (000, 001, K, 111) are binned into 30 μs time-bins in a total
of 150 μs collection. The last column shows the total counts and
darker color indicates more photons. The effect of crosstalk is visible
in the intermediate channels (unlabeled rows).
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example, with 3 ions and 7 PMT channels, the machine should
predict that the input x 1 10 2 1 1 10 1s

Tin = ( )( ) corresponds to
the state 101ñ∣ , which is the 6th class and is represented by
y 0 0 0 0 0 1 0 0s

T= ( ) . The performance of the network can
be quantified by a cost-function that measures the difference
between the network’s prediction and the target. Hence, the task
of training is to find the weights and biases that optimize this
cost-function. In this work, we use the ADADELTA optimizer
[31] to minimize the cross entropy

C y y

y y

W b, log

1 log 1 , 1

i
i

i
i

s

N

n
s n s n

s n s n

1 1

2

, ,

, ,

s
N

å å=-

+ - -
= =

({ } { } ) ( ˜ )

( ) ( ˜ ) ( )

( ) ( )

where Ns is the number of samples, 2N is the number of classes,
and ys n,˜ is the output value of the network corresponding to the
class n for the sample s.

To design and train the network, we split the data in three
sets: training (60%), cross-validation (20%), and test sets
(20%). The training set is used to train a given network and
find its optimal weights and biases. The cross-validation set is
used to evaluate the performance of networks with different
number of hidden layers and neurons to choose the optimal
network architecture. We observe that networks with two
hidden layers perform the best. For each network, all hidden
layers have the same number of neurons. This number varies
from 8, for the simplest case, to 40, for the network with the
most features. Such an architecture is complex enough to
correctly classify the measurement data without overfitting it.
Lastly, the reported performance of the optimal networks is
evaluated, using the previously unseen test set.

We now discuss the results in detail. We begin by
moving a single trapped-ion to the positions that would be
occupied by ions in the multi-ion chain that we wish to
investigate. This method allows us to to recreate the exper-
imental setup with N qubits. We typically image ions onto
alternating PMT channels to reduce the crosstalk, which
leaves the intermediate channels unused. We also take data
imaging them onto neighboring PMT channels in order to
explore how detection errors would change for a chain of ions
with smaller inter-ion distance. Then, we either initialize the
ion in 0ñ∣ to take data on dark states or we use a high-fidelity
microwave pi-pulse to create 1ñ∣ for bright-state data. Finally,
we detect the qubit state by counting how many photons are
detected on the ion’s corresponding PMT channel as well as
neighboring channels. In addition, the photon arrival time is
recorded with sub-μs resolution. By loading only a single ion,
we can create the full statistics for all the 2N computational
basis states by superimposing these individual distributions.
This procedure separates SPAM errors from other systematic
errors present in the system such as addressing crosstalk
errors. Additional background noise from superimposing the
statistic of individual qubits do not significantly contribute to
errors. The average detection fidelity, which includes a small
error from state preparation, is given by

p i i1 measured prepared , 2
i

 å=¯ ( ∣ ) ( )

where the sum is carried over all the computational basis states.

We compare six different methods and show that ML
approaches outperform the two commonly used strategies in
state discrimination. Below we describe these six strategies:

(i) Fixed threshold (FT): a threshold for photon counts is
chosen to maximize the discrimination between bright
and dark probability distributions. The same threshold
is used for all the ions. In experiments with more than
one qubit, this threshold is higher than the single qubit
case because of crosstalk.

(ii) Adaptive threshold (AT): the threshold for each ion
depends on the state of its neighbors. First, the state is
determined by a fixed threshold, and then the inference
process is iterated based on the state of neighbors and
the corresponding thresholds.

(iii) Neural network (NN): first the photon counts from the
ion PMT channels and their corresponding 2N states
(classes) are fed into a neural network. After the
training, the neural network can predict the state of a
given array of photon counts.

(iv) Neural network with intermediate channels (NN+):
similar to NN, but the input also contains the
intermediate PMT channel’s data.

(v) Neural network with time-stamped data (TNN): the
photon counts from the ion PMT channels are collected
into time-bins to form a 2D image, where one axis is the
time, and the other represents the location of the ions.
The color intensity then represents the number of
photons observed in that time-bin (see figure 4). These
images with their corresponding labels are used to train
the neural network.

(vi) Neural network with time-stamped data and intermedi-
ate channels (TNN+): the time-binned photon counts of
the ion PMT channels and the intermediate channels are
used to form an image, which the neural network learns

Figure 5. Comparison of different methods for state detection
defined in the main body. We can see that the neural network (NN)
methods outperform the conventional thresholding (FT, AT)
methods. In addition, the performance is enhanced gradually as we
provide the neural network with more features, e.g. intermediate
channels and time stamps. The errors given in parentheses are
statistical.
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to classify. This is the most comprehensive information
available about the experiment.

We note that due to a large overlap between the photon
count distributions of the intermediate channels with different
bright neighbors, it is not possible to utilize the intermediate
channel data with a simple threshold method. The same is true
for the time-binned data, where the overlap of the bright and
dark distributions is significant. This is because the distribu-
tions are Poissonian and have close mean values. However,
the neural network can easily incorporate all the features and
extract the available information.

In the first experiment, we consider a three qubit mea-
surement scenario where the data from intermediate channels
is available. We collect 80 000 samples for each class and
apply the six strategies and observe that the neural network
outperforms the other methods. In figure 5, it can be seen that
with the same amount of information NN outperforms FT and
AT, and when additional information is provided TNN+ can
improve the errors over FT and AT by 30% and 17%
respectively. It can also be seen that the neural network
reduces the false positives in detecting 000 and 111 states and
improves the crosstalk errors in the other states. Note the
architecture of the neural network is kept the same and only
the number of neurons are increased to represent the more
complicated features, therefore providing a flexible tool for
inferring properties of the system from experimental data.

In the second experiment, the ions are moved closer to
each other to represent experiments where there are many
ions in the trap, and neighboring PMT channels are associated
with different ions. In this case, the data from intermediate
channels is no longer available, and the crosstalk errors are
increased. We consider a five-qubit measurement scenario
with 50 000 samples for each class and compare FT, AT, NN
and TNN methods.

As shown in figure 6 we can see that the same behavior
observed in the first experiment persists, and neural networks
beat threshold methods, and incorporating time-stamped data
further improves the fidelities. Specifically, we observe 29%
and 6% improvement by TNN over FT and AT, respectively.

In addition, we employ a recurrent neural network (RNN)
as an alternative approach. These networks are tailored towards
studying sequences of data (time-bins in our case), where the
output in each step depends on the history through the internal
state and an external input (see figure 7 inset). This feedback and
memory effect is useful in capturing correlations in the
sequence. While we observe the same fidelity as TNN+, this
method is advantageous for experiments with variable detection
time, since it can handle data sequences with different lengths.

Figure 6. Comparing neural networks with threshold methods for five-qubit state detection. In this case the intermediate channel data is not
available, but neural networks can still perform better than threshold methods. The errors given in parentheses are statistical.

Figure 7. Recurrent neural network approach. The inset shows a
schematic representation of the network, where the carried internal
state and the output is affected by additional sequential inputs (time-
binned photon counts). Left ordinate, blue circles: performance of a
recurrent network for different detection times. The fidelity increases
with longer detection times. Right ordinate, purple triangles: the
average probability of the ion being bright decreases with the arrival
time of the first photon.
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We illustrate this capability by training a long short-term
memory network, which is a type of RNN [32], with the full
sequence of measurement data, using finer time-bins of 10 μs.
Then, we evaluate the performance of the network by varying
the length of the test sequence, and observe that indeed the
performance increases with the measurement time (see circles in
figure 7). In addition, we interrogate the network with artificial
data to map out its internal mechanism. Specifically, we con-
struct sequences with a single photon count, the arrival time of
which is scanned. The output indicates the significance of the
photon arrival time in deciding the state of the qubits. We
observe that the network learns that photons with late arrival
times are more likely to come from ions prepared in the dark
state, which is consistent with our physical understanding of
error mechanism by off-resonant excitation (see triangles in
figure 7).

We have shown that a simple neural network classifier can
improve the detection fidelities over tradition thresholding
methods. The neural network classifier does not require
assumptions about the system and can incorporate different data
sources in one framework in a straightforward way. As the ion
trap systems are very clean and the measurements are well-
described theoretically, we do not expect neural networks to
beat complicated models that take into account possible errors
and evaluate the likelihood of a state corresponding to measured
values. Similarly, we were not able to observe significant
improvements over feed-forward networks by using more
sophisticated techniques such as RNNs or convolutional neural
networks. This is because the patterns and correlations in the
data are simple and hence well-captured by feed-forward net-
works. However, we expect such advanced techniques to be
especially useful in other systems like superconducting qubits,
where the measurement processes are more complicated and the
data has intricate features.

In addition, we have considered exclusive classes in our
classifier, which implies the size of the network scales
exponentially with the number of qubits. However, we have
observed that multi-label classifiers can achieve a perfor-
mance close to our method, while maintaining a linear scaling
with the number of qubits. Moreover, while it is not necessary
in the current setup, by taking advantage of the locality of the
crosstalk one can bootstrap smaller networks over a few
qubits. By taking majority vote over the outcome of the
smaller classifiers, the most probable state corresponding to
the measurement results over many qubits is decided.

In conclusion, we expect that techniques such as the one
presented can simplify and improve future experiments and
serve as a straightforward alternative for optimizing the readout
of quantum computers as they are scaled up to many qubits.
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