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The study of open physical systems concerns finding ways to incorporate the

lack of information about the environment into a theory that best describes the

behavior of the system. We consider characterizing the environment by using the

system as a sensor, mitigating errors, and learning the physics governing systems

out of equilibrium with computer algorithms.

We characterize long-range correlated errors and crosstalk, which are impor-

tant factors that negatively impacts the performance of noisy intermediate-scale

quantum (NISQ) computing devices. We propose a compressed sensing method for

detecting correlated dephasing errors, assuming only that the correlations are sparse

(i.e., at most s pairs of qubits have correlated errors, where s� n(n− 1)/2, and n

is the total number of qubits). Our method uses entangled many-qubit GHZ states,

and it can detect long-range correlations whose distribution is completely arbitrary,

independent of the geometry of the system. Our method is also highly scalable: it

requires only s log n measurement settings, in contrast to the naive O(n2) estimate,

and efficient classical postprocessing based on convex optimization.



For mitigating the effect of errors, we consider measurements in a quantum

computer. We exploit a simple yet versatile neural network to classify multi-qubit

quantum states, which is trained using experimental data. We experimentally il-

lustrate this approach in the readout of trapped-ion qubits using additional spatial

and temporal features in the data. Using this neural network classifier, we efficiently

treat qubit readout crosstalk, resulting in a 30% improvement in detection error over

the conventional threshold method. Our approach does not depend on the specific

details of the system and can be readily generalized to other quantum computing

platforms.

To learn about physical systems using computer algorithms, we consider the

problem of arrow of time. We show that a machine learning algorithm can learn

to discern the direction of time’s arrow when provided with a system’s microscopic

trajectory as input. Examination of the algorithm’s decision-making process reveals

that it discovers the underlying thermodynamic mechanism and the relevant physical

observables. Our results indicate that machine learning techniques can be used to

study systems out of equilibrium, and ultimately to uncover physical principles.
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Chapter 1: Introduction

1.1 Motivation

Since its inception in the early 20th century, quantum mechanics has signifi-

cantly changed our lives. For example, understanding the wave nature of electrons

has led to the invention of transistors, and understanding the quantum statistics

of photons has led to the creation of lasers. However, most of these applications

involve controlling a collective degree of freedom in a physical system. Currently,

we are observing a second wave of inventions that involve meticulous manipula-

tion of individual quantum degrees of freedom, such as the electronic state of an

ion [1]. One application of these experimental advancements is the realization of

small quantum computers [2]. In particular, these advances have allowed for the cre-

ation of tailored patterns of quantum correlations among many individual quantum

bits (qubits) known as entanglement [3]. Such correlations cannot exist classically

and harnessing them holds the key to finding advantage in quantum technologies

over their classical counterparts. This advantage exist in different applications such

as sensing or computation. For example, it has been shown that using entangled

states enhances sensitivity of the sensors. Additionally, the famed Shor’s algorithm

utilizes a quantum system to factor integers more efficiently than currently known
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classical algorithms [4].

The sensitivity of quantum systems to external variables is both a curse and

a blessing. Uncontrolled interaction with the environment destroys the quantum

system’s coherence and erases the advantage of these systems over their classical

counterparts. At the same time, it makes these devices very good sensors[5]. More-

over, understanding how the environment affect the evolution of a quantum system

is an interesting theoretical question in itself. The main theme of this thesis is

characterizing the effect of environment on the system, undoing its adverse effects,

controlling the system in the presence of noise, and finally understanding fundamen-

tal physical laws governing the physical systems out of equilibrium.

1.2 Open quantum systems

The dynamics of a closed quantum system is governed by the Schrodinger

equation. The state of the system is represented by a vector |ψ〉 in Hilbert space H.

The dynamics is then given by (setting the Planck’s constant ~ = 1) [6]

d|ψ〉
dt

= −iH|ψ〉, (1.1)

where H, the generator of the dynamics, is a Hermitian operator called the Hamil-

tonian. Consequently, the time evolution operator U(t, t′) = T exp[−i
∫ t
t′
H(τ)dτ ] is

a unitary operator such that |ψ(t)〉 = U(t, t′)|ψ(t′)〉. Here, T is the time ordering

operator.

We now consider a situation, where our universe is comprised of a system

2



and an environment, in Hilbert spaces H1 and H2, respectively. We also focus

on finite dimensional Hilbert spaces. The overall dynamics of the universe is still

unitary and governed by (1.1). However, the system without the information about

the environment is now an open quantum system, and its reduced dynamics is no

longer unitary [7]. Specifically, let us assume that the universe at t = 0 is in the

state |Ψ(0)〉 = |ψ1(0)〉 ⊗ |ψ2(0)〉. After time t we have |Ψ(t)〉 = U(t, 0)|Ψ(0)〉. If we

do not have any information about the environment this point, we have to express

the state of the system as a statistical mixture that reflects this lack of knowledge

about the state of the environment. This is achieved by using the density matrix

formalism and taking the partial trace of the full state of the universe

ρ1(t) = tr2[|Ψ(t)〉〈Ψ(t)|] =
∑
i

〈ei|Ψ(t)〉〈Ψ(t)|ei〉 = E(t, 0)[|ψ1(0)〉〈ψ1(0)|] (1.2)

where {|ei〉} is a complete basis for H2, and ρ1(t) is a density matrix, a positive

semi-definite matrix with unit trace that encodes our knowledge about the sys-

tem alone. The evolution of the system alone is not necessarily unitary anymore,

and is described by a linear completely positive trace preserving map E , that is

called a quantum channel. Unlike the unitary dynamics that is always divisible,

quantum channels are not necessarily divisible, that is E(t, 0) is not always equal

to E(t, t′)E(t′, 0). However, there exists an important class of quantum channels,

the set of Markovian channels, that are infinitely divisible. In this case, the dy-

namics of the system follows the Gorini-Kossakowski-Sudarshan-Lindblad equation

∂ρ
∂t

= L(ρ)[8, 9]. Therefore, we have E(t) = eLt, where we omitted the initial time
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t = 0 in the notation. The generator L is called the Lindbladian and has to be in

the form [9]

L(ρ) = −i[H, ρ] +
∑
α,β

cα,β(LαρL
†
β −

1

2
{L†βLα, ρ}), (1.3)

where H is the system’s Hamiltonian, {Lα} are called Lindblad operators, [A,B] =

AB−BA, and {A,B} = AB+BA. The matrix C = (cij), that is also known as the

Kossakowski matrix, has to be positive-semidefinite so that the map E is completely

positive.

The language of open quantum systems is useful when we consider how noise

affects our system. After all, noise essentially stems from our lack of knowledge about

the system environment interactions, and how the information about the system is

lost in the environment degrees of freedom. For example, dephasing noise studied

in Chapter 2 and Appendix A can result from either stochastic magnetic field or

interactions with another quantum system. In the former, our lack of knowledge

corresponds to the stochasticity of the magnetic field, whereas in the latter the

information about the state of the environment is lacking. Another example is the

spontaneous emission of atoms, which we discuss in Chapter 3.

1.3 Dephasing

A common noise process in physical systems is dephasing. As the name sug-

gests, it corresponds to the loss of phase information in a quantum state. Under

dephasing the off-diagonal elements of the density matrix in the energy basis, also

known as cohrences, decay to zero.
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As noted earlier, the noise process can either result from a classical stochastic

process or from interactions with another quantum system. Here, we study the

example of a qubit’s time evolution under classical Gaussian dephasing noise[5].

Consider a two-level system that evolves under

H =
1

2
ω0σz +

1

2
δB(t)σz, (1.4)

where ω0 is the energy splitting between the two levels, σz is the Pauli z matrix, and

δB(t) is a time-dependent fluctuating magnetic field, that is a stationary Gaussian

process such that E[δB(t)] = 0 and E[δB(t)δB(t′)] = K(t − t′). For simplicity we

set ω0 = 0, which in effect is similar to transforming to a rotating frame with that

frequency. In this example, dephasing eventually transforms a superposition state,

1√
2
(|0〉 + |1〉), to a balanced statistical mixture of |0〉 and |1〉 states, where |0〉 and

|1〉 are eigenstates of σz corresponding to eigenvalues ±1, respectively. To see this

more clearly, consider a system intially in the state ρ(0) =

ρ00 ρ01

ρ10 ρ11

 at t = 0.

It evolves to

ρ(t) = exp[− i
2

∫ t

0

δB(s)σzds]ρ(0) exp[
i

2

∫ t

0

δB(s)σzds] (1.5)

=

 ρ00 ρ01e
−iθ(t)

ρ10e
iθ(t) ρ11

 , (1.6)

where θ(t) =
∫ t

0
δB(s)ds. Note that θ(t) is a random variable. Therefore, we have
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to average over different realizations of noise to find

ρ̄(t) = E[ρ(t)] =

 ρ00 ρ01e
−γ(t)

ρ10e
−γ(t) ρ11

 , (1.7)

where γ(t) = 1
2

∫ t
0

∫ t
0
E[δB(s)δB(s′)]dsds′. We see that even though the additional

picked up phase θ(t) has a well-defined value in each realization, our lack of knowl-

edge about its value translates to the decay of coherences on average. The decay

factor γ(t) is more commonly expressed as

γ(t) =
1

2

∫ ∞
−∞

dω

2π
Wt(ω)J(ω), (1.8)

where Wt(ω) = 4
ω2 sin2(ωt/2) is called the window function, and J(ω) is the Fourier

transform of K(t) and is called the spectral density of noise. In the Markovian limit,

δB(t) is white noise and we have K(t − t′) = 2γ0δ(t − t′). Therefore, we find that

γ(t) = γ0t, which leads to the familiar exponential decay.

Given the explicit expression for the noise-averaged density matrix ρ̄(t) in the

Markovian limit, we can take its derivative and find that

∂ρ̄

∂t
=
γ0

2
(σzρ̄σz − ρ̄) =

γ0

2
(σzρ̄σz −

1

2
{σzσz, ρ̄}), (1.9)

which is in the Lindblad form (1.3).

While we introduced dephasing through a single qubit example, the situation

can be more complex for muli-qubit systems and the noise can be correlated. We
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investigate such processes in Chapter 2.

1.4 Quantum detectors

As noted earlier, quantum systems are sensitive to external environment.

Therefore, they can be used to measure unknown signals. For example, one can

measure an unknown magnetic field thorough Ramsey interferometry [10]. Specif-

ically, consider a qubit evolving under the Hamiltonian H = ω0

2
σz + 1

2
B0σz, where

B0 is an unknown constant magnetic field that we wish to measure. Again, let us

set ω0 = 0 for simplicity. We can measure B0 as follows:

1. Prepare the qubit in the |ψ0〉 = |0〉 state.

2. Apply UHadamard = 1√
2

1 1

1 −1

 to |ψ0〉 to get |ψ1〉 = 1√
2
(|0〉+ |1〉).

3. Let the system evolve under H for some time t. The state of the system is

|ψ2〉 = 1√
2
(e−iB0t/2|0〉+ eiB0t/2|1〉) after this step.

4. Apply U †hadamard to get |ψ3〉 = cos(B0t/2)|0〉 − sin(B0t/2)|1〉.

5. Measure the qubit in the σz basis, and obtain 〈σz(t)〉 = cos2(B0t/2)−sin2(B0t/2) =

cos(B0t).

Hence, B0 can be obtained from 〈σz(t)〉, by measuring it at different times. This

procedure is known as Ramsey interferometry. This protocol can also be used to

characterize dephasing noise in the system. Specifically, in the Markovian case the
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oscillatory signal obtained in step 5, becomes an exponanetially decaying signal, and

from the decay rate one can obtained γ0 that was discussed in Sec. 1.3.

Extensions of the concepts discussed above appear in quantum metrology and

quantum noise spectroscopy [5]. For example, it has been shown that using entangled

states can improve the sensitivity of the measurement device. Another extension is

the study of non-Markovian noise, where one needs to apply a control Hamiltonian

in order to access information about J(ω) for different values of ω. Additionally, the

noise can be spatially correlated, which requires an extension of Ramsey experiments

to multiple qubits to learn about correlations.

Additionally, determining the best control strategy to achieve a given task in

the presence of noise has many practical applications. For example, one can perform

higher fidelity quantum gates by looking for control strategies that compensate for

noise [11, 12, 13].

1.5 Steady state dynamics

An important question in the study of open systems is determining the prop-

erties of the steady state of the system, that is the state(s) that system reaches

at t → ∞. For example, consider a quantum system evolving under the Lindblad

equation (1.3). For many systems, there exist a state or multiple states such that

L(ρ) = 0. The symmetries, entanglement properties, and correlations of the steady

state as a function of the parameters of the problem has long been a subject of

interest in the study of open quantum systems [14, 15, 16].
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Even in the classical domain, there are some open questions regarding the

steady state of the system. For example, it is not known if there is a principle

similar to maximum entropy principle, that gives us a recipe for finding steady state

of non-equilibrium systems. This is in contrast to problems in equilibrium physics,

where we know that systems always try to minimize their free energy.

In recent decades there has been an increased interest in the out-of-equilibrium

physics of microscopic systems, leading to a deepened understanding of non-equilibrium

fluctuations and their relation to the second law of thermodynamics [17, 18, 19]. One

example of these advancements, is the quantification of the time’s arrow. In partic-

ular, it has become appreciated that fluctuations lead to an effective “blurring” of

time’s arrow at the nanoscale, and that our ability to discern its direction can be

quantified in a system-independent manner [17, 20, 21].

Motivated by these advancements and in hope of developing techniques for

understanding physical laws using computer algorithms, and possibly discovering

new ones, we study how machine learning tools can be utilized to analyze this arrow

of time problem and to identify the relevant physical observables.

1.6 Challenges

As the size of quantum systems grows, their description become more com-

plex. In fact, resources for completely characterizing quantum systems using quan-

tum state and quantum process tomography scales exponentially with the system

size [22].
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To overcome the limitation imposed by the aforementioned exponential scaling

of resources we may want to use prior knowledge about the system under study or

make certain assumptions about the model that is used to describe the system.

However, it might be difficult to find an effective model for the process of interest.

In these cases, it might be advantageous to use a black box approach.

To contrast these two approaches, consider the task of correcting errors in

measuring the state of a qubit in an experiment, which we extensively study later

in this dissertation. In the first approach, one first finds a mathematical models of

the error processes that occur during the measurements, find the parameters of the

model using experimental data, and use that model to correct the errors. However,

In the black box approach the whole process is considered to be black box whose

input is the measurement signal, and the output is the correct quantum state that

the signal corresponds to.

Therefore, to build and operate a large scale quantum systems we need a

combination of these techniques to both efficiently characterize the dynamics of the

system and mitigate the errors when a complete understanding is not available.

Lastly, there has been a great interest in applying machine learning tools to

problems in many areas physics of physics, such as statistical mechanics, particle

physics, and quantum theory [23]. An outstanding challenge in using these tech-

niques in the study of physics, and science in general, is to develop algorithms that

are interpretable [24]. Many of the powerful machine learning algorithms act as

black boxes that perform well on the desire task, but offer no understanding of the

underlying process. As mentioned above, in certain cases this lack of understanding
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is acceptable. However, for the purpose of scientific discovery and gaining insight

about physical processes it is important to develop interpretable tools. The existing

theories and available experimental and numerical data can serve as a test bed for

building such a tool box with the hope that ultimately it could be used to answer

open questions in physics.

1.7 Outline of Thesis

The rest of this thesis is organized follows:

• In Chapter 2 we discuss correlated dephasing. Long-range correlated errors

and crosstalk are an important factor that negatively impacts the performance

of noisy intermediate-scale quantum (NISQ) computing devices. Character-

izing these errors can be particularly difficult when there are many qubits,

and when one has limited prior information about which qubits are affected.

We propose a compressed sensing method for detecting correlated dephasing

errors, assuming only that the correlations are sparse (i.e., at most s pairs

of qubits have correlated errors, where s � n(n − 1)/2, and n is the total

number of qubits). Our method uses entangled many-qubit GHZ states, and

it can detect long-range correlations whose distribution is completely arbi-

trary, independent of the geometry of the system. Our method is also highly

scalable: it requires only s log n measurement settings, and efficient classical

postprocessing based on convex optimization.

Later in Appendix A we discuss a control problem in a noisy environment.
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We identify, under modest assumptions about the statistical properties of the

signal and noise, the optimal quantum control to detect an external signal in

the presence of background noise using a quantum sensor. This part is based

on Ref. [25]

• In Chapter 3 we consider how noise and cross-talks affect the measurement

accuracy of a physical system. We use machine learning techniques to reduce

measurement errors in a quantum computer . We exploit a simple yet ver-

satile neural network to classify multi-qubit quantum states, which is trained

using experimental data. This flexible approach allows the incorporation of

any number of features of the data with minimal modifications to the under-

lying network architecture. We experimentally illustrate this approach in the

readout of trapped-ion qubits using additional spatial and temporal features

in the data. Using this neural network classifier, we efficiently treat qubit

readout crosstalk, resulting in a 30% improvement in detection error over the

conventional threshold method. Our approach does not depend on the specific

details of the system and can be readily generalized to other quantum com-

puting platforms. The results presented in this Chapter have been previously

appeared in Ref. [26].

Later in Appendix B we discuss how trapped-ion qubits can be utilized to

simulate other quantum systems. Specifically, we devise practical proposals

for analog simulation of simple lattice gauge theories whose dynamics can be

mapped onto spin-spin interactions in any dimension. This part is based on
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Ref. [27].

• In Chapter 4 we study classical systems out of equilibrium and use machine

learning to learn the direction of time’s arrow. We show that a machine learn-

ing algorithm can learn to discern the direction of time’s arrow when provided

with a system’s microscopic trajectory as input. The performance of our al-

gorithm matches fundamental bounds predicted by nonequilibrium statistical

mechanics. Examination of the algorithm’s decision-making process reveals

that it discovers the underlying thermodynamic mechanism and the relevant

physical observables. Our results indicate that machine learning techniques

can be used to study systems out of equilibrium, and ultimately to uncover

physical principles. The Chapter previously appeared in Ref. [28].
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Chapter 2: Compressed sensing measurement of long-range corre-

lated noise

2.1 Correlated Dephasing

We consider a model of spatially correlated noise, for a system that consists

of n qubits. We consider the case of dephasing noise, where H = 0, and Lj = Zj

(the Pauli σz operator acting on the j’th qubit) in the Lindblad equation (1.3)

dρ

dt
= L(ρ) =

n∑
j,k=1

cjk

(
ZkρZ

†
j −

1

2
{Z†jZk, ρ}

)
. (2.1)

As noted in Chapter 1, the noise is then fully described by the matrix C = (cjk) ∈

Cn×n. The elements cjk indicate correlations between the noise affecting qubits j

and k (see Fig. 2.1 a and b). In order for the time evolution of the system to be a

completely positive map, the matrix C must be positive semidefinite.

2.2 Sparsity and Compressed Sensing

Our main contribution is an efficient method for learning the off-diagonal part

of the correlation matrix C, under the assumption that it is sparse, i.e., it has at
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most s nonzero elements, where s� n(n− 1)/2.

For simplicity, we first consider the special case where C is real, and its diagonal

elements are known exactly. (Later, we will show how our method can be extended

to handle complex C, whose diagonal elements are only known approximately.)

2.2.1 Dephasing of GHZ-like states

We begin by describing a subroutine that allows us to measure certain linear

functions of the matrix C. This is essentially a generalization of Ramsey spec-

troscopy discussed in Chapter 1 (see also Fig. 2.1c). Consider an n-qubit state of

the form

|ψab〉 =
1√
2

(|a〉+ |b〉) ∈ (C2)⊗n, (2.2)

where a,b ∈ {0, 1}n, |a〉 = |a1, a2, . . . , an〉 and |b〉 = |b1, b2, . . . , bn〉. Note that, by

choosing a and b appropriately, one can make |ψab〉 be a single-qubit |+〉 state, a

two-qubit Bell state, or a many-qubit GHZ state (while the other qubits are in a

tensor product of |0〉 and |1〉 states).

Say we prepare the state |ψab〉, then allow it to evolve for time t under the

Lindbladian (2.1), see Fig. 2.1(d). Let ρ(t) be the resulting state. The coherences

in the state decay as follows:

ρ(t) =
1

2

(
|a〉〈a|+ e−Γabt|a〉〈b|+ e−Γabt|b〉〈a|+ |b〉〈b|

)
(2.3)

where the decay rate Γab ∈ R is defined so that L(|a〉〈b|) = −Γab|a〉〈b|.
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We claim that, by estimating the decay rate Γab, we can measure a certain

linear function of the correlation matrix C. To see this, we write:

Γab = −
∑
ij

cij[(−1)ai+bj − 1
2
(−1)ai+aj − 1

2
(−1)bi+bj ] (2.4)

= −
∑
ij

cij[αiβj − 1
2
αiαj − 1

2
βiβj], (2.5)

where we defined αi = (−1)ai and βi = (−1)bi . We can then express the above

equation as

Γab = −αᵀCβ + 1
2
αᵀCα+ 1

2
βᵀCβ (2.6)

= −1
2
[αᵀC(β −α) + (α− β)ᵀCβ] (2.7)

= −1
4
[αᵀC(β −α) + (α− β)ᵀCβ + βᵀC(α− β) + (β −α)ᵀCα] (2.8)

= 1
2
(α− β)ᵀC(α− β) (2.9)

= 1
2
(2rᵀ)C(2r) (2.10)

= 2rᵀCr, (2.11)

where the symmeterization from the second to the third line was possible because

C is real and C = Cᵀ, and we also defined a new variable r = α−β
2
∈ {1, 0,−1}n.

Note that r can also be defined in terms of a and b, via the identity:

r = b− a. (2.12)
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2.2.2 Estimating the decay rate Γab

There are many possible ways to estimate the decay rate Γab. For concreteness,

we describe one simple method here

1. Choose some evolution time t ≥ 0 such that 1
2
≤ Γabt ≤ 2. This ensures that

the variance of our estimator for Γab, which is introduced later, is bounded.

We assume that such t can be chosen in advance or adaptively. The detailed

analysis of the convergence of errors will be presented in a future work.

2. Repeat the following experiment Ntrials times:

• Prepare the state |ψab〉 = 1√
2
(|a〉+ |b〉), allow the state to evolve for time

t, then measure in the basis 1√
2
(|a〉 ± |b〉).

Let N+ and N− be the number of 1√
2
(|a〉 + |b〉) and 1√

2
(|a〉 − |b〉) outcomes,

respectively. Note that the probabilities of these outcomes are given by P+ =

1
2
(1 + e−Γabt) and P− = 1

2
(1− e−Γabt).

3. Define:

∆ =
N+ −N−
Ntrials

. (2.13)

Then return the following estimate for Γab:

Γ̂ab = −1

t
ln(∆). (2.14)
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Note that ∆ is an unbiased estimator for P+−P−, that is, E(∆) = P+−P− =

e−Γabt. This motivates our definition of the estimator Γ̂ab.

2.2.3 Reconstructing the correlation matrix C

The relationship (2.11) suggests a recipe for estimating C. By preparing dif-

ferent states |ψ〉 of the form (2.2), and measuring the decay rate Γ of the coherences,

we can estimate certain linear functions of C, which are proportional to rᵀCr. Here,

we propose a method for estimating C efficiently when its off-diagonal elements

are sparse. Our method consists of two steps: first, we perform single-qubit spec-

troscopy in order to learn the diagonal elements of C; second, we apply techniques

from compressed sensing (e.g., random measurements, and `1-minimization) in order

to recover the off-diagonal elements of C.

First, we can estimate the diagonal elements cjj, for j = 1, . . . , n, as follows:

1. Let a = (0, 0, . . . , 0) and b = (0, . . . , 0, 1, 0, . . . , 0) (where the 1 appears in the

j’th position). By equation (2.12), we have that r = b−a = (0, . . . , 0, 1, 0, . . . , 0).

2. Prepare the state |ψ〉 = 1√
2
(|a〉 + |b〉) = |0〉 · · · |0〉|+〉|0〉 · · · |0〉, and construct

an estimate gj of the decay rate Γab = 2rTCr = 2cjj. Note that this is

equivalent to performing single-qubit noise spectroscopy on the j’th qubit.

Let g = (g1, . . . , gn) ∈ Rn be the output of this procedure. We can view 1
2
g as an

estimate of a “sensing operator” that returns the diagonal elements of the matrix C.

Furthermore, we assume we know an upper-bound ε1 on the error of this estimate
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(in `2 norm, say). Formally, we write this as

‖1
2
g − diag(C)‖2 ≤ ε1, (2.15)

and we define the linear operator diag : Rn×n → Rn where diag(C) = (c11, c22, . . . , cnn).

In order to estimate the off-diagonal elements of C, we will use a certain type

of random measurement. First, we fix some probability p ∈ [0, 1
2
], and we choose

some parameter m, which controls the number of different measurements. (We

will specify the choice of m later.) Now, for j = 1, . . . ,m, perform the following

procedure:

1. Choose vector a,b ∈ {0, 1}n at random, by choosing each coordinate ai and

bi independently at random with the following probabilities:

ai, bi =


1 with probability p,

0 with probability 1− p.

(2.16)

2. Define r = b−a ∈ {−1, 0, 1}n as given by equation (2.12). Note that ri = −1, 1

with probability p̃ = p(1−p), and ri = 0 with probability 1− p̃ = p2 +(1−p)2.

3. Prepare the state |ψ〉 as follows, identical to equation (2.2):

|ψ〉 =
1√
2

(|a〉+ |b〉). (2.17)

This is a GHZ state on a subset of the qubits, with some bit flips. It can be
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obtained by preparing those qubits i with ai = bi in the state |ai〉, preparing

qubits with ai 6= bi in a GHZ state, and applying a Pauli X gate on those

qubits with ai = 1. Let Uab denote the overall operation that prepares this

state.

4. Construct an estimate hj of the decay rate Γab = 2rTCr.

Let h = (h1, . . . , hm) ∈ Rm be the output of the above procedure. Again, we

can view 1
2
h as an estimate of a “sensing operator” Φ that is applied to the matrix

C. We assume we know an upper-bound ε2 on the error of this estimate (in `2

norm). Formally, we write

‖1
2
h− Φ(C)‖2 ≤ ε2, (2.18)

where we let r(1), r(2), . . . , r(m) be independent random vectors chosen from the same

distribution as r (described above), and we define the operator Φ : Rn×n → Rm

such that

Φ(C) =
(
(r(1))TCr(1), (r(2))TCr(2), . . . , (r(m))TCr(m)

)
. (2.19)

In order to recover the off-diagonal elements of C, we solve the following

optimization problem. We are given g and h, and we are promised that the matrix

C is positive semidefinite, and its off-diagonal part is sparse. In general, this sparsity

constraint leads to an optimization problem that is computationally intractable.

However, we will use a well-known strategy from compressed sensing: we will solve

a convex relaxation of the above problem, where we minimize the `1 (vector) norm

of the off-diagonal part of the matrix. This can be written as the following convex
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Figure 2.1: Illustration of the noise model and the protocol. (a) The qubits expe-
rience correlated Markovian dephasing. The red lines corresponds to non-zero cij,
indicating correlated noise affecting the pairs of qubits connected by those lines.(b)
The C matrix corresponding to the correlation graph in panel a. The diagonal
elements correspond to single qubit dephasing whereas the off-diagonal elements in-
dicate correlated dephasing noise. (c) Ramsey spectroscopy for characterizing single
qubit dephasing. The plot shows the exponential decay of the overlap P+ with the
rate Γ as a function of t. The inset shows the Ramsey protocol, where a superposition
of qubit states is prepared with the first Hadamard gate H, the system goes through
the dephasing noise channel Et, and the second H followed by a measurement in the
computational basis measures the overlap P+. (d) The generalized measurement
protocol involves generating vectors a and b whose elements are randomly chosen
from {0, 1}. We first prepare those qubits i with ai = bi in the state |ai〉, prepare
qubits with ai 6= bi in a GHZ state, and apply a Pauli X gate on those qubits with
ai = 1. The overall effect of these operations is given by Uab. We then let the system
evolves under the dephasing noise for time t, represented by Et. Finally, we apply
U †ab and measure the control qubit in the computational basis. The probability of
obtaining the outcome 0, gives the overlap Pab. The overlap decays exponentially
in time, and we estimate its decay rate to find Γab. By measuring this decay rate
for various a’s and b’s we can recover C.
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program:

Find W ∈ Rn×n that minimizes
∑
i 6=j

|wij|, such that: (2.20)

diag(W ) = 1
2
g, (2.21)

‖1
2
h− Φ(W )‖2 ≤ ε2 +

√
m
√
nε1, (2.22)

W � 0. (2.23)

Note that we have constructed the constraints (2.21) and (2.22) slightly dif-

ferently from the error bounds (2.15) and (2.18) that we were given. In particular,

in (2.21) we force the diagonal elements of W to be equal to 1
2
g, even though 1

2
g

may contain an error of size ε1. To allow for this additional error in W , we add

‖Φ(diag(diag(C) − 1
2
g))‖ ≤

√
m
√
nε1 on the right-hand side of (2.22) and use the

fact that Φ is acting on a matrix that is diagonal. Constructing the constraints this

way makes the convex program simpler to analyze, since it removes the optimization

over the diagonal elements of W .

Nonetheless, it is natural to ask what happens if we replace (2.21) and (2.22)

with the more obvious constraints:

‖1
2
g − diag(W )‖2 ≤ ε1, (2.24)

‖1
2
h− Φ(W )‖2 ≤ ε2. (2.25)

We expect that this will not make much of a difference, for most experimental setups.

In most experiments, single-qubit spectroscopy is fairly easy to perform, hence we
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can estimate g quite accurately, so we are in the regime where ε1 � ε2. In this

regime, the preceding two sets constraints are approximately the same.

Since this is a convex program, it can be solved efficiently (both in theory

and in practice), for instance by using interior point algorithms. Let W (opt) be the

optimal solution. We want to show that W (opt) ≈ C. In the following section, we

will prove a rigorous recovery guarantee that upper-bounds the error ‖W (opt)−C‖F

(in the Frobenius norm, which is equivalent to the 2-norm for vectors).

2.2.4 Recovery guarantee

We now want to analyze the solution W (opt) to the convex program in (2.20)-

(2.23), and upper-bound the recovery error ‖W (opt)−C‖F . To do this, we will further

relax the convex program, by removing the positivity constraint (2.23). This makes

the program simpler to analyze, and in fact, we will be able to prove a strong

recovery guarantee even without using the positivity constraint (2.23).

(In practice, we would of course solve the convex program with the positivity

constraint, in order to get a physically plausible result. Alternatively, we could

solve the convex program without the positivity constraint, and then project the

solution onto the positive semidefinite cone. We expect that enforcing positivity

will typically improve the accuracy of the solution.)

We first state the main result of this chapter informally and prove it in the

following.

Let C denote the correlation matrix of the noise, with s non-zero off-diagonal
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elements. Assume that we have an estimate 1
2
g for the diagonal elements of C

that satisfies ‖1
2
g − diag(C)‖2 ≤ ε1. Additionally, assume that we have a noisy

estimate 1
2
h for the sensing operator Φ(C) that satisfies ‖1

2
h− Φ(C)‖2 ≤ ε2. With

m ∼ Õ(s polylog(n)) random measurements we can find W (opt) by solving the convex

program (2.20)− (2.22) that satisfies

‖W (opt) − C‖F ≤ C1(
1√
m
ε2 +
√
nε1), (2.26)

with high probability. Here, C1 is a constant. Our notation Õ hides logrithmic

factors in s and log(n).

We establish the recovery guarantee by showing that the collection of mea-

surements approximately act as an isometry on sparse signals. Therefore, when the

off-diagonal part of C is sparse, there is enough information in the measurements for

its recovery. We formalize this statement by defining the restricted isometry prop-

erty and restating a well-established theorem from the field of compressed sensing.

Definition 1 A matrix A satisfies the restricted isometry property (RIP) of order

k if there exists a δk ∈ (0, 1) such that

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2 (2.27)

hold for all x ∈ Σk, where Σk = {x : ‖x‖0 ≤ k}, is the set of all k-sparse vectors[29].

Theorem 2 (Theorem 1.2 of Ref. [30]) Suppose A satisfies the RIP of order 2k
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with δ2k <
√

2− 1. Let y = Ax + e where ‖e‖2 ≤ ε. Then the convex program

min‖x‖1 subject to ‖y − Ax‖2 ≤ ε (2.28)

assumes a solution x̂ which obeys

‖x̂− x‖2 ≤ C0σk(x)1 + C1ε, (2.29)

where σk(x)1 = min
x′∈Σk

‖x′−x‖1, that is the `1 error of the best k-sparse approximation

of x , and C0 and C1 are constants that only depend on δ2k.

We now show that the measurements defined in Sec. 2.2.3 satisfy RIP when the

diagonals of C are fixed. It is easier to analyze the measurements if we enforce the

symmetries of C by construction. Because C is real and symmetric, and its diagonals

are fixed, we only need to recover the upper diagonal part of it. Note that the decay

rate can be simply rewritten as Γ = 2
∑

ij riCijrj = 2
∑

i r
2
iCii + 4

∑
i<j rirjCij.

Let uvec(X) to be the operation that gives vectorized upper triangular part

above the main diagonal of a matrix X, that is x = uvec(X). Therefore, Eq. (2.22)

takes a simpler form

‖Qw − y‖ ≤ ε2 +
√
mnε1, (2.30)

where y = 1
4
h− 1

2
Φ(1

2
diag(g)), w = uvec(W ), and Q = (qij) is a matrix whose rows

Qi are given by Qi = 1
2p̃

uvec(r(i)(r(i))ᵀ). Note that the elements of Q are bounded,
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i.e., |qij| ≤ 1
2p̃

. Moreover, Qi are isotropic random vectors, that is

E[Q] = 0, (2.31)

E[QQᵀ] = I, (2.32)

which follows from



E[rirj] = 0 i 6= j

E[rirjrkrl] = 0 i 6= j and k 6= l and {i, j} ∩ {k, l} = ∅

E[rirjrkrl] = 0 i 6= j and k 6= l and |{i, j} ∩ {k, l}| = 1

E[rirjrkrl] = 4p2 i 6= j and k 6= l and i = k and j = l

. (2.33)

Note that in the last line of Eq. 2.33, we cannot have a case with i = l and j = k,

as the requirements of i < j and k < l lead to a contradiction. Therefore, using the

following theorem we establish that Q satisfies the RIP.

Theorem 3 (Theorem 5.71 of Ref. [31]) Let A = (aij) be an m × n matrix whose

rows Ai are independent isotropic random vectors in Rn. Let K be a number such

that all entries |aij| ≤ K almost surely. Then the normalized matrix Ā = 1√
m
A

satisfies the following for m ≤ n, for every sparsity level 1 < k ≤ n and every

number δ ∈ (0, 1):

if m ≥ Cδ−2k log n log2(k) log(δ−2k log n log2 k) then Eδk(Ā) ≤ δ. (2.34)
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Here C = CK > 0 may depend only on K.

Remark 4 While Theorem 3 only guarantees the RIP in the expectation value,

it is well known that one can obtain a version of this theorem with high probability

1−n−c log3 k using concentration of measure techniques [31, 32]. Specifically, one can

obtain this bound using Theorem 6.17 in Ledoux and Talagrand [33] and Eq. (6.19)

in Ref. [34] as shown by one of the authors in Ref. [35].

Therefore, we can reach our main result from Theorems 2 and 3 and Remark 4

with our measurements Q as the matrix A in the statement of the Theorems. The

RIP order k in Definition 1 should be chosen such that 2k > s, which is achieved

in expectation value by having m ∼ Õ(s log(n)) through Theorem 3. Then, Theo-

rem 2 and Remark 4 guarantees the recovery of the off-diagonal part of C with high

probability –at the expense of extra factors of log(n)– and provide an upper-bound

on the recovery error. Note that with this chosen value of m the first error term in

the right hand side of Eq. (2.29) vanishes.

2.2.5 Complex C

Here we show that if C is complex the same measurements can be used to

recover both the imaginary part and the real part of C.

2.2.5.1 Derivation

Let C = V + iT , where we is a real symmetric matrix and T is a real skew-

symmetric matrix, encoding the real and imaginary part of C. Moreover, let R =
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(Rij) denote the coefficients of the Lamb shift Hamiltonian H =
∑

ij RijZiZj that

arises from interactions with a dephasing environment. We can see that L(|a〉〈b|) =

(−Γab + iΩab)|a〉〈b|, where

Γab =
1

2
(α− β)ᵀV (α− β), (2.35)

Ωab =
1

2
(αᵀTβ − βᵀTα)− (αᵀRα− βᵀRβ). (2.36)

with α and β defined as in Section 2.2.1. Therefore, the signal has an oscillatory part

and a decaying part. Note that it is possible to measure Γab and Ωab by sampling

the signal exp[(iΩab − Γab)]t different times t. Similar to spectral lines commonly

encountered in atomic physics, the squared magnitude of the Fourier transform of

the measurement time series is a Lorentzian function whose maximum’s location

gives the oscillation frequency and its half width at half maximum gives the decay

rate. From an estimate of the decay rate we can recover V , the real part of C as

before. We now show that the measurements of the frequencies satisfy RIP and

boundedness properties. Therefore, from these measurements we can extract T , the

imaginary part of C, together with the Lamb shift Hamiltonian R.
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2.2.5.2 Properties of the measurements

The measurements acts on the imaginary part of C denoted by T and the

Lamb shift R in the Hamiltonian as

Ωab =

[
αᵀ βᵀ

]−R 1
2
T

1
2
T ᵀ R


α
β

 . (2.37)

Again it is easier to analyze the measurements if we enforce the symmetries of

R and T . Note that T and R are real skew-symmetric and symmetric matrices,

respectively. Moreveover, they are both traceless. Therefore we have

Ωab = 2
∑
i<j

(αiβj − βiαj)Tij + 2
∑
i<j

(αiαj − βiβj)Rij (2.38)

We can define the measurement operator V as a matrix whose rows Vi are given by

Vi =

uvec(αβᵀ − βαᵀ)

uvec(ααᵀ − ββᵀ)

 . (2.39)

Therefore, to show that Vi’s are isotropic random vectors, we have to show that

E[V] = 0, (2.40)

E[VVᵀ] = I. (2.41)
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Let us assume that α and β are chosen independentry at random as

αi, βi =


−1 with probability p

1 with probability 1− p

. (2.42)

We then have

E[αiαj] = E[αiβj] = E[βiβj] = (1− 2p)2, (2.43)

which shows that E[V] = 0.

For the covariance matrix, E[VVᵀ], we have to consider correlations in uvec(αβᵀ−

βαᵀ), uvec(ααᵀ − ββᵀ) and their cross correlations.

We first consider

E[(αiβj−βiαj)(αkβl−βkαl)] = E[αiβjαkβl−αiβjβkαl−βiαjαkβl+βiαjβkαl] (2.44)

Similar to the analysis of Q we consider different cases. Note that in the following

we assume i < j and k < l as we are only considering off-diagonal uppertriangular

elements of V .

If {i, j} ∩ {k, l} = ∅ we have

E[αiβjαkβl − αiβjβkαl − βiαjαkβl + βiαjβkαl] = 0, (2.45)

because of the symmetry of the terms.
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If |{i, j} ∩ {k, l}| = 1, without the loss of generality we assume that i = k and

find



E[αiβjαkβl] = E[αiαiαjαl] = E[α2
iβjβl] = E[βjβl] = (1− 2p)2

E[αiβjβkαl] = E[αiβiβjβl] = (1− 2p)4

E[βiαjαkβl] = E[βiαiαjβl] = (1− 2p)4

E[βiαjβkαl] = E[βiβiαjαl] = E[β2
i αjαl] = E[αjαl] = (1− 2p)2

. (2.46)

Therefore, we find

E[αiβjαkβl − αiβjβkαl − βiαjαkβl + βiαjβkαl] = 2(1− 2p)2 − 2(1− 2p)4. (2.47)

Note that if we had assumed j = l we would have obtained the same results.

Finally, when |{i, j} ∩ {k, l}| = 2, we have that i = k and j = l and find

E[αiβjαkβl − αiβjβkαl − βiαjαkβl + βiαjβkαl] = E[α2
iβ

2
j − αiβiαjβj − αiβiαjβj + β2

i α
2
j ]

(2.48)

= 2− 2(1− 2p)4 (2.49)

For the contributions from the R matrix, the elements of the measurement vector

are αiαj − βiβj. Therefore, we have to consider

E[(αiαj−βiβj)(αkαl−βkβl)] = E[αiαjαkαl−αiαjβkβl−βiβjαkαl+βiβjβkβl], (2.50)
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where i < j and k < l. Similarly, we consider different cases:

If {i, j} ∩ {k, l} = ∅ we have

E[αiαjαkαl − αiαjβkβl − βiβjαkαl + βiβjβkβl] = 0, (2.51)

because of the symmetry of the terms.

If |{i, j} ∩ {k, l}| = 1, without the loss of generality we assume that i = k and

find



E[αiαjαkαl] = E[αiαiαjαl] = E[α2
iαjαl] = E[αjαl] = (1− 2p)2

E[αiαjβkβl] = E[αiβiαjβl] = (1− 2p)4

E[βiβjαkαl] = E[βiαiβjαl] = (1− 2p)4

E[βiβjβkβl] = E[βiβiβjβl] = E[β2
i βjβl] = E[βjβl] = (1− 2p)2

. (2.52)

Therefore, we find

E[αiαjαkαl − αiαjβkβl − βiβjαkαl + βiβjβkβl] = 2(1− 2p)2 − 2(1− 2p)4. (2.53)

Finally, when |{i, j} ∩ {k, l}| = 2, we have i = k and j = l and find

E[αiαjαkαl − αiαjβkβl − βiβjαkαl + βiβjβkβl] = E[α2
iα

2
j − αiβiαjβj − αiβiαjβj + β2

i β
2
j ]

(2.54)

= 2− 2(1− 2p)4 (2.55)
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By choosing p = 1
2

we can satisfy conditions (2.40) and (2.41).

We now consider cross correlations given by

E[(αiβj−βiαj)(αkαl−βkβl)] = E[αiβjαkαl−αiβjβkβl−βiαjαkαl+βiαjβkβl], (2.56)

with i < j and k < l. If {i, j} ∩ {k, l} = ∅ we have

E[αiβjαkαl − αiβjβkβl − βiαjαkαl + βiαjβkβl] = 0, (2.57)

because of the symmetry of the terms.

If |{i, j} ∩ {k, l}| = 1, without the loss of generality we assume that i = k and

find



E[αiβjαkαl] = E[αiβjαiαl] = E[α2
iβjαl] = E[βjαl] = (1− 2p)2

E[αiβjβkβl] = E[αiβjβiβl] = (1− 2p)4

E[βiαjαkαl] = E[βiαjαiαl] = (1− 2p)4

E[βiαjβkβl] = E[βiαjβiβl] = E[β2
i αjβl] = E[αjβl] = (1− 2p)2

. (2.58)

Therefore, we find

E[αiβjαkαl − αiβjβkβl − βiαjαkαl + βiαjβkβl] = 2(1− 2p)2 − 2(1− 2p)4. (2.59)
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Finally, when |{i, j} ∩ {k, l}| = 2, we have i = k and j = l and find

E[αiβjαkαl−αiβjβkβl−βiαjαkαl+βiαjβkβl] = E[α2
iβjαj−αiβiβ2

j−βiαiα2
j+β

2
i αjβj] = 0

(2.60)

By choosing p = 1
2

we can satisfy conditions (2.40) and (2.41).

2.3 Numerical examples

In this section we show how theorems developed in Sec. 2.2.3 applies in prac-

tice.

Assume that we have n qubits, whose individual dephasing rates is fully char-

acterized. However, correlations in noise cannot be observed in single qubit mea-

surements. We assume that there are s′ pairs of qubits that are correlated. To

generate the correlation matrix C that is positive semidefinite with a controllable

number of non-zero offf-diagonal elements s = 2s′, we choose


cii = 2 i = 1, . . . , n

cij = 1
2

j = i± 1 and 1 ≤ i ≤ s′

(2.61)

We then remove the spatial structure in the matrix by randomly permuting the

rows and columns of C, that is we map cij to cπ(i),π(j) with π ∈ Sn. This procedure

ensures that the eigenvalues of C are non-negative. We then generate noiseless

measurements by choosing m samples of a, and b. Finally, we assume that the

diagonal elements of C are known and we solve the convex program (2.20)-(2.23)
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Figure 2.2: Scaling of the reconstruction error ‖W (opt) − C‖∞ under various cir-
cumstances. The solid lines are the average errors over 100 random instances of
the problem and the shaded region is their standard deviation. (a) The reconstruc-
tion error as a function of the number of noiseless measurements m for sparsity
s = 16 and various values of sparsity s. The errors go through a phase transitions
whose location scales linearly with s. (b) The reconstruction error as a function of
the number of noiseless measurements m for n = 64 qubits and various number of
qubits n. The phase transition point scales logarithmically with n. (c) The recon-
struction error as a function the number of measurements m for different values of
added noise strength σε for (n, s) = (64, 12). The inset shows the errors after the
transition point scale linearly with σε as expected.

with ε1 = ε2 = 0 using CVXPY a convex optimization package for Python [36, 37].

In Fig. 2.2(a) we show the recovery error as a function of m for a fixed n and various

choices of s. The sharp transition in the recovery error as a function of m is evident.

Moreover, as shown in the inset of Fig. 2.2(a), the transition point mc, that we

define as the point where ‖C −W (opt)‖∞, scales linearly with s, consistent with our

analytical results. In Fig. 2.2(b) we fix s, vary n, and study the recovery errors as

a function of m. Again, we observe a transition in the errors as a function of m. In

this case, mc scales polynomially with log(n) as suggested in the inset of Fig. 2.2(b).

We also investigate the effect of noise on the measurements. We add a random

vector e whose entries are independent Gaussian random variables with mean 0 and

standard deviation σε to measurement results 1
2
h. Additionally, we assume that

the diagonals of C are known and hence ε1 = 0. We choose ε2 = E‖e‖2 =
√
mσε
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and solve (2.20)-(2.23). The scaling of the reconstruction error ‖W (opt) − C‖∞ as a

function of σε is shown in Fig. 2.2 (c). The recovery error after the phase transition

point scales linearly with σε, consistent with our analytical bounds.

2.3.1 Effect of gate errors

We investigate the effect of gate errors on infering the decay rates in the

experiment. Let ρ0 and E0 denote the noiseless initial state and observable of

interest, respectively. We have

ρ0 = E0 =
1

2
(|a〉〈a|+ |b〉〈b|+ |b〉〈a|+ |a〉〈b|). (2.62)

We consider error channels Es and Em that act on state preparation and meausrement

operations as

ρ̃ = Es(ρ0) = ρ0 + δρ (2.63)

Ẽ = Em(E0) = E0 + δE, (2.64)

where ‖δρ‖1 ≤ εs and ‖δE‖ ≤ εm, and εs,m are small parameters. The outcome of

the protocol is now given by

P̃+(t) = Tr[ẼEt(ρ̃)]. (2.65)
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where Et = exp(Lt) is the evolution under the correlated dephasing noise (2.1). We

show that our protocol is robust against gate errors and in short times the decay of

P+ is still dominated by Γab. Using Eqs. (2.63) and (2.64) we find that

Tr[ẼEt(ρ̃)] = Tr[E0Et(ρ0)] (2.66)

+ Tr[E0Et(δρ)] + Tr[δEEt(ρ0)]

+ Tr[δEEt(δρ)]

The first term is the outcome without gate errors and we have

Tr[E0Et(ρ0)] =
1 + e−tΓab

2
. (2.67)

We can find the effect of errors on the second and third term by considering the

effect of Et on ρ1 and E1. Specifically, we find

Tr[E0Et(δρ)] = Tr[E†t (|a〉〈a|)δρ] + Tr[E†t (|b〉〈b|)δρ] + Tr[E†t (|a〉〈b|)δρ] + Tr[E†t (|b〉〈a|)δρ]

(2.68)

= Tr[|a〉〈a|δρ] + Tr[|b〉〈b|δρ] + e−ΓabtTr[|a〉〈b|δρ] + e−ΓabtTr[|b〉〈a|δρ]

(2.69)

= ηs + ζse
−Γabt (2.70)
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where E†t = exp(L†t) is the adjoint dephasing map, which coincides with Et in our

case as the Lindblad operators are all Hermitian. Similarly we find

Tr[δEEt(ρ0)] = Tr[δEEt(|a〉〈a|)] + Tr[δEEt(|b〉〈b|)] + Tr[δEEt(|a〉〈b|)] + Tr[δEEt(|b〉〈a|)]

(2.71)

= Tr[δE|a〉〈a|] + Tr[δE|b〉〈b|] + e−ΓabtTr[δE|a〉〈b|] + e−ΓabtTr[δE|b〉〈a|]

(2.72)

= ηm + ζme
−Γab (2.73)

We see that these terms decay with the same rate as the first case and do not afffect

the exponential decay. However, the last term can, in principle, contain different

decay rates and can cause deviation from a single exponential decay. Therefore, we
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bound the rate at which R(t) = Tr[δEEt(δρ)] grows:

|Ṙ(t)| = | ∂
∂t

Tr[δEEt(δρ)]| (2.74)

= |Tr[δEL(δρ)]| (2.75)

≤ ‖δE‖‖L(δρ)‖1 (2.76)

≤ ‖δE‖‖
∑
ij

LiδρL
†
j −

1

2
{L†jLi, δρ}‖1 (2.77)

≤ ‖δE‖
∑
ij

‖LiδρL†j −
1

2
{L†jLi, δρ}‖1 (2.78)

≤ ‖δE‖
∑
ij

‖Li‖‖L†j‖‖δρ‖1 +
1

2
‖L†j‖‖Li‖‖δρ‖1 +

1

2
‖L†j‖‖Li‖‖δρ‖1 (2.79)

≤ ‖δE‖‖δρ‖1(
∑
ij

2‖Li‖‖L†j‖) (2.80)

≤ 2εmεs(n+ s) (2.81)

where we used the Hölder’s inequality in deriving the third line from the second

line[38]. We also used the fact that Li = Zi in our problem and ‖Zi‖ = 1. In

deriving (2.78) from (2.77) we used the following identity

‖AB‖1 ≤ ‖A‖‖B‖1 (2.82)

We can obtain this inequality by first noting that for any matrix A and B, σ(AB)i ≤

σmax(A)σi(B), where σi are the ordered singular values[39].

Now we prove that σ(AB)i ≤ σi(A)σmax(B). First note that for Hermitian
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matrices A and B we have:

A ≥ B =⇒ λi(A) ≥ λi(B) (2.83)

where λi’s are ordered eigenvalues, and A ≥ B means that A−B is positive semidef-

inite. We then show that λi(AB) ≤ λmax(A)λi(B) if A ≥ 0 and B ≥ 0, that is A

and B are positive semidefinite. Note that λi(AB) = λi(B
1
2AB

1
2 ), which can be

seen by

AB|i〉 = λi|i〉 =⇒ AB
1
2B

1
2 |i〉 = λi|i〉

×B
1
2

=⇒ B
1
2AB

1
2 (B

1
2 |i〉) = λi(B

1
2 |i〉) (2.84)

Next, note that λmax(A)I − A ≥ 0. Therefore, B
1
2 (λmax(A)I − A)B

1
2 ≥ 0. This is

because 〈x|B 1
2 (λmax(A)I − A)B

1
2 |x〉 = 〈y|λmax(A)I − A|y〉 ≥ 0 for all |y〉 = B

1
2 |x〉.

We then obtain

B
1
2AB

1
2 ≤ B

1
2AB

1
2 +B

1
2 (λmax(A)I − A)B

1
2 = λmax(A)B (2.85)

Therefore, B
1
2AB

1
2 ≤ λmax(A)B together with (2.83) implies that

λi(AB) = λi(B
1
2AB

1
2 ) ≤ λmax(A)λi(B). (2.86)

Now for arbitrary square matrices A and B we have

σi(AB) =
√
λi(B†A†AB) =

√
λi(A†ABB†). (2.87)
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Therefore, we can use (2.86) for positive-semidefinite matrices A†A and BB† to

obtain

λi(A
†ABB†) ≤ λmax(A†A)λi(BB

†). (2.88)

Since both sides of the inequality are positive, we can take their square root to

obtain

σi(AB) ≤ σmax(A)σi(B), (2.89)

which implies

‖AB‖1 =
∑
i

σi(AB) ≤ σmax(B)
∑
i

σi(A) = ‖B‖‖A‖1, (2.90)

Therefore, we find

P̃+(t) = Tr[ẼEt(ρ̃)] =
1

2
(1 + ηs + ηm + (1 + ζs + ζm)e−Γabt) +R(t). (2.91)

We attribute deviations from a single exponential decay to R(t). Using Eqs. (2.81)

and (2.91) we can see that the decay of P̃ (t) is dominated by exp(−Γabt) for evolu-

tion times t . 1/(2εsεm(n+ s))−1.

We also numerically investigate the effect of gate errors on the decay rate.

Specifically, we generate the error channels Es and Em on n qubits by adding n

auxiliary qubits and applying unitary operations Us and Um on 2n qubits. We

control the strength of errors by a parameter ∆ such that U = exp(i∆H), where H

is a Hermitian operator on 2n qubits. Then, we find |ψs,m〉 = Us,m(ρ0 ⊗ |0〉〈0|⊗n),
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Figure 2.3: Deviations of the exponential decay for different gate errors. We simulate
the decay of a 3 qubit GHZ state. We choose a correlation matrix C with s′ = 2 in
Eq. (2.61). The panels show the decay under different noise strengths: (a) ∆ = 0.01,
(b) ∆ = 0.05, (c) ∆ = 0.1. The dashed lines show decay with no errors, and
solid lines correpond to different gate error channels. The solid lines resemble the
dashed lines for short evolution times. The black and blue lines indicate correlated
and uncorrelated dephasing processes. These two cases are distinguishable in the
presence of gate errors.

and choose ρ̃ = Traux(|ψs〉〈ψs|) and Ẽ = Traux(|ψm〉〈ψm|), where the partial trace is

taken over the auxiliary system. To generate different error channels we choose H =

1
2
(M + M †), where elements of M are complex numbers whose real and imaginary

parts are chosen uniformly at random from [0, 1]. We observe that the decay rate is

dominated by Γab in short times, and is distinguishable from the uncorrelated case,

see Fig. 2.3.

2.4 Conclusion and outlook

We proposed a measurement protocol and a reconstruction algorithm to mea-

sure spatial correlations in the noise process that is provably efficient when the

correlations are sparse. We expect that our methods can be generalized to the char-

acterization of Markovian noise processes whose Lindblad operators are Hermitian

and commuting. Moreover, our methods combined with the techniques developed in
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Ref. [40] may also be used to estimate correlations in certain non-Markovian noise

models more efficiently.

We expect our protocol to be useful in characterizing dephasing in the presence

of weak relaxation processes, i.e. when the relaxation time is much longer than the

dephasing time. However, the question of characterizing concurrent relaxation and

dephasing efficiently at the generator level remains open and is a subject of future

research.

While we use entangled states to probe the correlations in the noise process,

it is intriguing to ask whether it is possible to achieve a similar scaling using non-

entangled states. This motivates the more general question of whether entanglement

can help noise spectroscopy in the same way that it is helpful in metrology[41].
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Chapter 3: Improving readout fidelity of trapped-ion quantum com-

puters with machine learning

3.1 Introduction

Quantum computing tasks involve quantum state preparation, time evolution,

and measurement, accompanied by errors in all the three stages. To detect and

correct errors during the evolution, quantum error correcting codes are used [42,

43, 44]. These codes rely on redundant encoding of quantum information, which

makes it possible to measure syndromes and fix errors. Measurement errors not

only affect the outcome of the computation, but they also limit the task of error

correction. Consequently, in addition to high-fidelity operations, high quality multi-

qubit readout is essential for realizing a fault tolerant quantum computer.

The quantum measurement process always involves the interaction with an

external classical system. For example, collecting fluorescence from a trapped ion

in a cycling transition can determine the state of the qubit [45]. In superconducting

qubits, a probe signal is injected to the system through a resonator, and the phase of

the output signal is used to infer the state of the qubit [46]. Spontaneous decay and

excitation during the external probe can be major sources of qubit measurement
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Figure 3.1: The setup and readout scheme for the trapped-ion quantum computer.
(a) Schematic of our experimental setup. A single ion fluoresces inside an ion trap
and its radiated photons are collected by a 0.37 NA lens. This fluorescence is then
imaged onto a single channel of a multi-channel photo-multiplier tube detector. (b)
Energy levels in the 171Yb+ atomic system used for fluorescence detection. If the
qubit state is |0〉, the applied detection laser is off resonance and nearly no photons
are scattered. If the state is |1〉 the transition is on resonance and the ion fluoresces
strongly.

errors [47]. When scaling up, the measurement signal from a qubit can be altered

by the state of other qubits through crosstalk. To address this issue, one can assume

an error model and infer the correct qubit states by using statistical properties of

the measured data.[48].

Machine learning (ML) [49] techniques have recently become popular tools for

exploring physical phenomena. For example, artificial neural networks [50] are now

a powerful method for simulating the dynamics of many-body quantum systems [51,
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52]. These neural networks can efficiently represent a wide class of highly correlated

states [53, 54, 55], and can facilitate quantum state tomography [56]. They are also

used to detect errors and decode quantum error correcting codes [57, 58, 59, 60],

and to classify phases of matter [61, 62, 63]. In addition to neural networks, other

ML methods, such as principal component analysis [64] and clustering [65], have

been used for various tasks from classifying phases of matter [66] to discriminating

measurement trajectories for improved single-qubit readout[67].

In this chapter, we exploit the versatility of ML techniques to increase the fi-

delity of multi-qubit measurements. While the problem of crosstalk can be partially

addressed by careful statistical analysis of the data, it requires certain assumptions

about the error model, which makes the integration of additional spatial and tem-

poral features difficult. In our approach, the machine is “trained” to infer the states

from the measurement results without prior knowledge of the error model. This ML

method can therefore be readily generalized to other quantum computing platforms.

3.2 Initialization and Readout

We study the detection accuracy of a chain of 171Yb+ ions confined in an

rf Paul trap [2]. The qubit is defined by the hyperfine-split ground states of the

2S1/2 manifold: |0〉 = |F = 0,mF = 0〉 and |1〉 = |F = 1,mF = 0〉 (see Fig. 3.1).

Furthermore, we can take advantage of the 2P1/2 level to accomplish both state

preparation and measurement (SPAM) with high fidelity.

Qubit initialization is achieved by optical pumping via the |2P1/2, F = 1〉
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manifold. The qubit readout, on the other hand, is performed by state-dependent

fluorescence detection [47] (see Fig. 3.2). Specifically, we apply a laser beam res-

onant with the |2S1/2, F = 1〉 → |2P1/2, F = 0〉 cycling transition, and collect ion

fluorescence. While the beam is on, a qubit in |1〉 will scatter photons. In contrast,

a qubit in |0〉 remains dark since the light is 14.7 GHz detuned from the nearest

transition with a natural linewidth of about 20 MHz. The ion fluorescence is col-

lected by a 0.37 NA lens and each ion in the chain is imaged onto a separate channel

of a 32-channel photo-multiplier tube (PMT) [2].

The histogram of the photon counts in some integration time follows a near-

Poissonian distribution, centered around 0 for state |0〉 (the “dark” state) and 9

counts for state |1〉 (the “bright” state) following a 150 µs integration time. The

deviations from Poissonian statistics indicate the error mechanisms in this readout

scheme. The dark state histogram includes a small contribution at higher counts

due to off-resonant dark-to-bright pumping during the detection step [68]. More im-

portantly, the bright state histogram has a non-Poissonian tail towards lower photon

counts due to off-resonant excitation to the |2P1/2, F = 1〉 manifold, detuned by 2.1

GHz, from which decay to |0〉 is possible [68]. By choosing an optimal collection

time, 150 µs in our system, the overlap between the photon distributions correspond-

ing to |0〉, and |1〉 can be minimized. Thus, by discriminating the two distributions

one can deduce the state of the qubit. One of the commonly used techniques to

distinguish between these distributions is a simple threshold discriminator, where

instances with observed photon counts greater than the threshold are taken to be |1〉,

and those below to be |0〉 (see Fig. 3.2). This method works very well in the single
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qubit case and results in a detection fidelity, that is F = p(measured x|prepared x),

of 99.4% for |1〉, and 99.6% for |0〉, which gives an average detection fidelity of 99.5%

in our setup. This error can be reduced by increasing the collection angle of the

objective and reducing the detection time. A readout fidelity of ∼ 99.99% has been

demonstrated using this method [69].

Similar dark-to-bright or bright-to-dark pumping errors exist in other readout

schemes, e.g., when a separate state with a finite lifetime is used as the dark state,

known as a shelf state [48]. Smaller error contributions include laser light scattering

off the ion trap and into the PMT as well as PMT dark counts, which account for

20 counts per second and 2 counts per second respectively. Both of these errors

contribute only one false count for an average of 300 experiments and are therefore

well discriminated using a thresholding method.

Figure 3.2: The histogram of observed photons for an integration time of 150 µs for
state detection. The photon counts follow a Poisson distribution, in which the state
|0〉 (solid blue) gives a mean close to zero, while the state |1〉 (shaded pink) results
in nine photons on average.

When detecting the state of more than one qubit, a bright ion can cause

events on other ion detector channels. This crosstalk between the PMT channels
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modifies the distribution of observed photons, and the average detection fidelity

decreases. One can choose a different threshold for each ion based on the state

of its neighbors to partially mitigate these errors. In addition, using maximum

likelihood methods, one can calculate the probability that an observed data point

corresponds to the |0〉 or |1〉 state, and choose the most probable option [48, 70].

However, these methods are all tailored for a specific scenario and it is difficult to

integrate other sources of information about the state, such as counts from extra

PMT channels when imaging the ions onto alternating detectors, or photon arrival

times. The latter contributes information about the state because bright-to-dark or

dark-to-bright pumping events have characteristic photon arrival time distributions,

i.e. photons arriving predominantly early or late in the detection window, which

can be included in the discrimination procedure. To incorporate all data sources in

a single framework and reduce the effect of crosstalk we take advantage of advances

in the field of machine learning, and use an artificial neural network to perform the

discrimination task. Before proceeding to the main results, we briefly introduce the

neural network framework that is used in this chapter.

3.3 Methods

With N qubits, the measurement consists of photon counts and their arrival

times on M ≥ N PMT channels. These photon counts can be binned into T time-

bins to give M×T numbers that completely describe the measurements. Our goal is

to classify these measurement results into 2N states, in an N -qubit basis. Therefore,
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Figure 3.3: An artificial neuron and a neural network. (a) A single neuron takes
inputs xk and outputs f(

∑
k wkxk + b), where f is called the activation function,

and wk’s and b are weights and the bias of the neuron. (b) A neural network is
composed of artificial neurons stacked in layers and connected to each other.

we consider a supervised learning scenario, where a set of measurement results and

their corresponding states is used to train the machine and predict the correct state

corresponding to a given input. We use a feed-forward neural network as depicted

in Fig. 3.3 [71]. The network is built from a collection of neurons arranged in layers

(columns in Fig. 3.3). A neuron is a unit that takes the input values xk, and evalutes

f(
∑

k wkxk + b), where f is a mathematical function called the activation function,

and wk and b are scalar parameters that are referred to as neuron’s weights and bias,

respectively. There are various choices for the function f . A common example is the

rectifier f(z) = max(0, z). When neurons are arranged in layers, the output of the

previous layer serves as the input to the next layer. We represent weights and biases

of the ith layer by the matrix W(i) and the vector b(i), respectively. In this notation,

the rows of W(i) represent the weights of the neurons in layer i, and elements of

the vector b(i) are the correponding biases. Therefore, we have x(i+1) = f(z(i)),

where z(i) = W(i)x(i) + b(i), and the function f is applied element-wise. The first
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layer is called the input layer, where the neurons output the input data. Here,

we have M × T neurons representing integrated photon counts from each ion in a

time-bin (pixel values in Fig. 3.4). The last layer of the network is called the output

layer. This layer captures different classes (states) that the input can take, that is

it models p(state i|input). Here, we use one-hot encoding to represent the classes

n, corresponding to the 2N different quantum states in our system (image labels

in Fig 3.4). That is, for each sample s, ys,n = 1, if the sample is prepared in the

nth state, and ys,n = 0, otherwise. For classifying data into exclusive classes, it

is common to use the softmax activation at the output layer, i.e. f(z)n = ezn∑
k e

zk
.

With this choice of activation, the output is normalized and can be interpreted

as the probability of the input belonging to class n. The output with the highest

probability is chosen as the predicted class. All the layers between the input and

output are called hidden layers, and we use the rectifier function for them.

In order to predict the correct class, i.e., the quantum state, associated with

each input, the network has to be trained. For example, with 3 ions and 7 PMT

channels, the machine should predict that the input x
(in)
s = (1 10 2 1 1 10 1)T

corresponds to the state |101〉, which is the 6th class and is represented by ys =

(0 0 0 0 0 1 0 0)T . The performance of the network can be quantified by a cost-

function that measures the difference between the network’s prediction and the

target. Hence, the task of training is to find the weights and biases that optimize this

cost-function. In this chapter, we use the ADADELTA optimizer [72] to minimize

the cross entropy
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C({W(i)}, {b(i)}) = −
Ns∑
s=1

2N∑
n=1

ys,n log(ỹs,n) (3.1)

where {W(i)} and {b(i)} are the sets of network weights and biases, respectively. Ns

is the number of samples, 2N is the number of classes, and ỹs,n is the output value

of the network corresponding to the class n for the sample s.

To design and train the network, we split the data in three sets: training

(60%), cross-validation (20%), and test sets(20%). The training set is used to train

a given network and find its optimal weights and biases. The cross-validation set is

used to evaluate the performance of networks with different number of hidden layers

and neurons to choose the optimal network architecture. We observe that networks

with two hidden layers perform the best. For each network, all hidden layers have

the same number of neurons. This number varies from 8, for the simplest case, to 40,

for the network with the most features. Such an architecture is complex enough to

correctly classify the measurement data without overfitting it. Lastly, the reported

performance of the optimal networks is evaluated, using the previously unseen test

set.

3.4 Results

We now discuss the results in detail. We begin by moving a single trapped

ion to the positions that would be occupied by ions in the multi-ion chain that we

wish to investigate. This method allows us to to recreate the experimental setup

with N qubits. We typically image ions onto alternating PMT channels to reduce
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Figure 3.4: Results of an instance of the experiment for different initial states. Pho-
ton counts for all eight computation basis states over three qubits (000,001,. . . ,111)
are binned into 30 µs time-bins in a total of 150 µs collection. The last column shows
the total counts and darker color indicates more photons. The effect of crosstalk is
visible in the intermediate channels (unlabeled rows).

the crosstalk, which leaves the intermediate channels unused. We also take data

imaging them onto neighboring PMT channels in order to explore how detection

errors would change for a chain of ions with smaller inter-ion distance. Then, we

either initialize the ion in |0〉 to take data on dark states or we use a high-fidelity

microwave pi-pulse to create |1〉 for bright-state data. Finally, we detect the qubit

state by counting how many photons are detected on the ion’s corresponding PMT

channel as well as neighboring channels. In addition, the photon arrival time is

recorded with sub-µs resolution. By loading only a single ion, we can create the full

statistics for all the 2N computational basis states by superimposing these individual

distributions. This procedure separates SPAM errors from other systematic errors

present in the system such as addressing crosstalk errors. The average detection
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fidelity, which includes a small error from state preparation, is given by

F̄ =
1

2N

∑
i

p(measured i|prepared i), (3.2)

where the sum is carried over all the 2N computational basis states.

We compare six different methods and show that machine learning approaches

outperform the two commonly used strategies in state discrimination. Below we

describe these six strategies:

(i) Fixed threshold (FT ): A threshold for photon counts is chosen to maximize

the discrimination between bright and dark probability distributions. The

same threshold is used for all the ions. In experiments with more than one

qubit, this threshold is higher than the single qubit case because of crosstalk.

Additional background noise from superimposing the statistic of individual

qubits do not significantly contribute to errors.

(ii) Adaptive threshold (AT ): The threshold for each ion depends on the state

of its neighbors. First, the state is determined by a fixed threshold, and

then the inference process is iterated based on the state of neighbors and the

corresponding thresholds.

(iii) Neural network (NN ): First the photon counts from the ion PMT channels and

their corresponding 2N states (classes) are fed into a neural network. After the

training, the neural network can predict the state of a given array of photon

counts.
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Figure 3.5: Comparison of different methods for state detection defined in the main
body. We can see that the neural network (NN) methods outperform the conven-
tional thresholding (FT, AT ) methods. In addition, the performance is enhanced
gradually as we provide the neural network with more features, e.g. intermediate
channels (indicated by + at the end of label names) and time stamps (indicated by
T at the beginning of label names). The errors given in parentheses are statistical.

(iv) Neural network with intermediate channels (NN+): Similar to NN, but the

input also contains the intermediate PMT channel’s data.

(v) Neural network with time-stamped data (TNN ): The photon counts from the

ion PMT channels are collected into time-bins to form a 2D image, where one

axis is the time, and the other represents the location of the ions. The color

intensity then represents the number of photons observed in that time-bin (see

Fig. 3.4). These images with their corresponding labels are used to train the

neural network.

(vi) Neural network with time-stamped data and intermediate channels (TNN+):

The time-binned photon counts of the ion PMT channels and the intermediate

channels are used to form an image, which the neural network learns to classify.

This is the most comprehensive information available about the experiment.
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Figure 3.6: Comparing neural networks with threshold methods for five-qubit state
detection. In this case the intermediate channel data is not available, but neural
networks can still perform better than threshold methods. The errors given in
parentheses are statistical.

We note that due to a large overlap between the photon count distributions of the

intermediate channels with different bright neighbors, it is not possible to utilize

the intermediate channel data with a simple threshold method. The same is true

for the time-binned data, where the overlap of the bright and dark distributions is

significant. This is because the distributions are Poissonian and have close mean

values. However, the neural network can easily incorporate all the features and

extract the available information.

In the first experiment, we consider a three qubit measurement scenario where

the data from intermediate channels is available. We collect 80000 samples for each

class and apply the six strategies and observe that the neural network outperforms

the other methods. In Fig. 3.5, it can be seen that with the same amount of infor-

mation NN outperforms FT and AT, and when additional information is provided

TNN+ can improve the errors over FT and AT by 30% and 17% respectively. It
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can also be seen that the neural network reduces the false positives in detecting 000

and 111 states and improves the crosstalk errors in the other states. Note the archi-

tecture of the neural network is kept the same and only the number of neurons are

increased to represent the more complicated features, therefore providing a flexible

tool for inferring properties of the system from experimental data.

In the second experiment, the ions are moved closer to each other to represent

experiments where there are many ions in the trap, and neighboring PMT channels

are associated with different ions. In this case, the data from intermediate channels

is no longer available, and the crosstalk errors are increased. We consider a five

qubit measurement scenario with 50000 samples for each class and compare FT,

AT,NN and TNN methods.

As shown in Fig. 3.6 we can see that the same behavior observed in the first

experiment persists, and neural networks beat threshold methods, and incorporating

time stamped data further improves the fidelities. Specifically, we observe 29% and

6% improvement by TNN over FT and AT, respectively.

In addition, we employ a recurrent neural network (RNN) as an alternative

approach. These networks are tailored towards studying sequences of data (time-

bins in our case), where the output in each step depends on the history through the

internal state and an external input (see Fig. 3.7 inset). This feedback and memory

effect is useful in capturing correlations in the sequence. While we observe the same

fidelity as TNN+, this method is advantageous for experiments with variable detec-

tion time, since it can handle data sequences with different lengths. We illustrate

this capability by training a long short-term memory (LSTM) network, which is a
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Figure 3.7: Recurrent neural network approach. The inset shows a schematic repre-
sentation of the network, where the carried internal state and the output is affected
by additional sequential inputs (time-binned photon counts). Left ordinate, blue
circles: Performance of a recurrent network for different detection times. The fi-
delity increases with longer detection times. Right ordinate, purple triangles: The
average probability of the ion being bright decreases with the arrival time of the
first photon.

type of RNN [73], with the full sequence of measurement data, using finer time-bins

of 10µs. Then, we evaluate the performance of the network by varying the length

of the test sequence, and observe that indeed the performance increases with the

measurement time (see circles in Fig. 3.7). In addition, we interrogate the network

with artificial data to map out its internal mechanism. Specifically, we construct

sequences with a single photon count, the arrival time of which is scanned. The

output indicates the significance of the photon arrival time in deciding the state of

the qubits. We observe that the network learns that photons with late arrival times

are more likely to come from ions prepared in the dark state, which is consistent

with our physical understanding of error mechanism by off-resonant excitation (see

traingles in Fig. 3.7).
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3.5 Conclusion and outlook

We have shown that a simple neural network classifier can improve the de-

tection fidelities over tradition thresholding methods. The neural network classifier

does not require assumptions about the system and can incorporate different data

sources in one framework in a straightforward way. As the ion-trap systems are

very clean and the measurements are well-described theoretically, we do not expect

neural networks to beat complicated models that take into account possible errors

and evaluate the likelihood of a state corresponding to measured values. Similarly,

we were not able to observe significant improvements over feed-forward networks by

using more sophistaced techniques such as RNNs or convolutional neural networks.

This is because the patterns and correlations in the data are simple and hence well-

captured by feed-forward networks. However, we expect such advanced techniques

to be especially useful in other systems like superconducting qubits, where the mea-

surement processes are more complicated and the data has intricate features.

In addition, we have considered exclusive classes in our classifier, which implies

the size of the network scales exponentially with the number of qubits. However,

we have observed that multi-label classifiers can achieve a performance close to our

method, while maintaining a linear scaling with the number of qubits. Moreover,

while it is not necessary in the current setup, by taking advantage of the locality

of the crosstalk one can bootstrap smaller networks over a few qubits. By taking

majority vote over the outcome of the smaller classifiers, the most probable state

corresponding to the measurement results over many qubits is decided.
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In conclusion, we expect that techniques such as the one presented can sim-

plify and improve the future experiments and serve as a straightforward alternative

for optimizing the readout of quantum computers as they are scaled up to many

qubits.
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Chapter 4: Machine learning thermodynamic arrow of time

4.1 Introduction

While the microscopic dynamics of physical systems are time reversible, the

macroscopic world clearly does not share this symmetry. If we are shown a video

of a macroscopic process, it is typically easy to guess whether the movie is played

in the correct or in time-reversed order. In 1927, Sir Arthur Eddington coined the

phrase “time’s arrow” to express this asymmetry in the flow of events, arguing that

it traces back to the second law of thermodynamics [74]. Nearly a century later,

advances in statistical mechanics have extended our understanding of this problem to

the microscopic regime. Here, fluctuations prevent us from discerning the direction

of time’s arrow with certainty [17, 20, 75]. Instead, the probability that a movie is

being shown in the correct chronological order is determined by the energy dissipated

during the process, as expressed by Eq. 4.2 below. This prediction, which has been

verified experimentally [21], is equivalent to Crooks’s fluctuation theorem [18, 76],

an important result in modern non-equilibrium statistical mechanics [17, 19]. The

recent success of applications of machine learning (ML) and artificial intelligence

(AI) in physics begs the question whether these techniques can speed up scientific

discovery [23, 77]. ML methods have emerged as exciting tools to study problems
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in statistical and condensed matter physics, such as classifying phases of matter,

detecting order parameters, and generating configurations of a system from observed

data [55, 61, 63, 66, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90].

In this Chapter, we apply machine learning to the problem of time’s arrow,

within the framework of nonequilibrium statistical mechanics. We show that a ma-

chine can learn to accurately guess the direction of time’s arrow from microscopic

data and – more importantly – that it does so by effectively discovering the un-

derlying thermodynamics, identifying dissipated work as the relevant quantity and

correctly establishing its relation to time’s arrow. Remarkably, the main machine

learning tool used here, logistic regression (LR), was developed decades before the

derivation of fluctuation theorems by human experts [91, 92]. This suggests that a

data-driven approach could have led to an earlier discovery of these theorems. More-

over, we show that the machine can generate representative trajectories for forward

and backward time directions correctly. Finally, we design a neural network that

can detect the underlying process and classify the direction of time’s arrow at the

same time.

We first introduce the relevant physical laws governing microscopic, non-

equilibrium fluctuations, and briefly review the ML techniques that we will use.

We then apply our methods to various model physical examples and we study the

ability of ML techniques to learn and quantify the direction of time’s arrow.
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4.2 Thermodynamics and the arrow of time

When small systems undergo thermodynamic processes, fluctuations are non-

negligible and the second law is expressed in terms of averages. Thus the Clausius

inequality relating the work W performed on a system to the net change in its free

energy, ∆F , takes the form

〈W 〉 ≥ ∆F, (4.1)

where the angular bracket denotes an average over many repetitions of the process.

These non-equilibrium fluctuations satisfy strong constraints that allow us to rewrite

such inequalities in terms of stronger equalities [18, 76, 93, 94, 95], and to quantify

the direction of time’s arrow as a problem in statistical inference [17, 20, 76, 96, 97].

To frame this problem, let us first specify the class of processes we will study, and

introduce the notation.

Consider a system in contact with a thermal reservoir at temperature β−1.

The system’s Hamiltonian Hλ(x) depends on both the system’s microstate x, and

a parameter λ. An external agent performs work by manipulating this parameter.

Now imagine that the system begins in equilibrium with the reservoir, and then

the agent varies the parameter according to a schedule λF(t) from λF (0) = A to

λF (τ) = B. We refer to this as the forward process. The trajectory describing

the system’s evolution can be pictured as a movie, and is denoted by {xA→B(t)},

where the time interval 0 ≤ t ≤ τ is implied. We refer to this as forward trajectory,

see Fig. 4.1(a). We also imagine the reverse process, in which the system starts in
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an equilibrium state at λ = B, and the agent varies the parameter from B to A

according to λR(t) = λF(τ − t). The trajectory (movie) for this process is denoted

by {xB→A(t)}. Finally, consider the time reversal of this trajectory, x̄B→A(t) =

x∗B→A(τ − t), where the ‘∗’ implies negation of momentum coordinates. This time-

reversed trajectory corresponds to a movie of the reverse process, played backward

in time and is referred to as backward trajectory, see Fig. 4.1(a).

Guessing the direction of time’s arrow can be cast as a game in which a player

is shown either a forward or a backward trajectory – thus in either case the player

only “sees” the parameter being varied from A to B. The player must then guess

which process, forward or reverse, was actually used to generate the trajectory [98].

The player’s score, or accuracy, is the ratio of correct predictions to the total number

of samples.

To optimize the likelihood of guessing correctly, it suffices for the player to

know the sign of the quantity W − ∆F , where W is the work performed on the

system and ∆F = FB −FA is the free energy difference between its initial and final

states, as depicted in the movie. Specifically, let P (F|{x(t)}) denote the likelihood

that a given trajectory, {x(t)}, is obtained by performing the forward process, and

let P (R|{x(t)}) denote the likelihood that the trajectory is the time reversal of

a realization of the reverse process. Note that P (F|{x(t)}) + P (R|{x(t)}) = 1. In

addition, assume that the game is unbiased, e.g. the choice of performing the forward

or reverse process in the first place was decided by flipping a fair coin. Then the

likelihood that the trajectory was generated during the forward process is given
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Figure 4.1: Non-equilibrium physics, time’s arrow, and machine learning. (a) The
system evolves under a Hamiltonian Hλ that depends on a parameter λ. The solid
black trajectories depict the system’s evolution during the forward (A → B) and
reverse process (B → A). In the forward (reverse) process the system starts in
equilibrium peq

A(B),β and λ is varied from A(B) to B(A), respectively. The dashed blue

trajectory {x̄B→A(t)} is the time-reversal of the system’s evolution during the reverse
process. (b) The work distribution ρ(W ) corresponding to the forward WF and the
backward −WR trajectories. The change in the free energy during the forward
process is denoted by ∆F . For macroscopic irreversible phenomena, fluctuations
are negligible, WF > ∆F > −WR, and the distinction between the forward and
backward trajectories are clear. (c) Similar to (b), but for a microscopic system.
Fluctuations are more pronounced compared to (b), and the distinction between the
two distributions is less clear. (d) A trajectory is represented by a matrix X. This
matrix is the input to a neural network which determines the direction of time’s
arrow. The top shows logistic regression network, where the input is flattened and
reshaped into a vector, and the output is calculated by applying a non-linear function
to a linear combination of the input coordinates. The bottom shows a convolutional
neural network, where at first filters are convolved with the input, making feature
maps that encode abstract information about the local structure of the data. Then
these feature maps are reshaped and processed through a fully-connected layer. The
output of the network is used to decide the direction of time’s arrow.
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by [17, 96, 97]

P (F|{x(t)}) =
1

1 + e−β(W−∆F )
, (4.2)

which is greater than (less than) 50% when W − ∆F is positive (negative). Here,

the work performed by the external agent is

W =

∫ τ

0

dtλ̇
∂Hλ(x)

∂λ
, (4.3)

and the change in free energy is given by

∆F = − 1

β
log

(
ZB,β
ZA,β

)
, (4.4)

where

Zλ,β =

∫
dx exp[−βHλ(x)] (4.5)

is the partition function. In macroscopic systems, the values of work performed on

the system corresponding to forward trajectories, WF, and for backward trajecto-

ries, −WR, are sharply peaked around their mean values, Fig. 4.1(b), and the sign

of W −∆F is a reliable indicator of the direction of time’s arrow. (Here, WR is the

work performed during a given realization of the reverse process, therefore for the

corresponding backward trajectory the work value is −WR.) However, for micro-

scopic systems these distributions can overlap significantly, as in Fig. 4.1(c). Eq. 4.2

shows that the player optimizes the chance of success simply by guessing “forward”

whenever W > ∆F , and “reverse” otherwise, without accounting for any further
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details of the trajectory. Note that if |W −∆F | � kBT then determining the arrow

of time is easy, but when |W − ∆F | . kBT the problem becomes more difficult –

in effect, time’s arrow is blurred.

4.3 Neural networks

To train a computer program to infer the direction of time’s arrow from a

movie of the system’s trajectory, we first simulate a number of trajectories from

the forward and the reverse processes, and we “time-reverse” the latter so that

each trajectory is chronologically ordered with λ varying from A to B. To generate

trajectories we closely follow Ref. [76]. We consider a discrete set of time steps

t ∈ {0, 1, . . . , τ}. The value of the control parameter and the state of the system

at each time step is denoted by λt and xt, respectively. In the forward process,

the initial state of the system is drawn from equilibrium with λ = λ0. The time

evolution can be broken into two substeps:

1. With the state of the system fixed, the control parameter is changed λt → λt+1

2. At fixed λt+1, the state of the system evolves xt → xt+1

Here, the second substep is either generated by a stochastic differential equations

(for the Brownian particle) or Metropolis algorithm (for spin examples). The total

work performed in this process is

W =
τ−1∑
t=0

[Hλt+1(xt)−Hλt(xt)] (4.6)
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For producing backward trajectories, the system is initialized in an equilibrium state

with λ = λτ . The dynamics begin with a change in the system state, followed by a

change in λ. In the end, the history of the system state is reversed, and the calcu-

lated work is negated to obtain backward trajectories and their corresponding work

values. We then attach a label y = 0 (reverse) or y = 1 (forward) indicating which

process was used to generate that trajectory. We then provide the machine with

this collection of labelled trajectories, which serves as the training data. A priori,

any one of the trajectories could have been generated from either the forward or the

reverse process, and the training stage now consists of using a neural network (NN)

classifier to construct a model of the function P (F|{x(t)}), which gives the likeli-

hood the trajectory was generated by the forward process. Although this function

is known analytically, Eq. 4.2, the machine is not provided with this information.

We now sketch how the training is accomplished.

Since each numerically generated trajectory consists of a discretized time series

of microstates, we represent the trajectory as a matrix X whose rows correspond

to different times, and whose columns correspond to phase space coordinates. The

training stage amounts to designing a function that maps any such matrix X onto

a real number p between 0 and 1, whose value is the machine’s best estimate of the

likelihood that the trajectory was generated by the forward process.

In this work, we consider two types of classifiers: (i) logistic regression (LR),

which can be thought of as single layer neural network, and (ii) convolutional neural

network (CNN). The input to LR (the top panel of Fig. 4.1(d)) is a vectorized

trajectory a = vec(X), and the output is p = g(Ωᵀa + b), where Ω is a vector of
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weights, b is the bias, and g(z) = 1/(1 + exp(−z)) is the logistic sigmoid function.

The CNN can compute more complicated functions than the LR [99]. The input to

our CNN is a trajectory matrix X, and the output is again a value p. The CNN

has convolutional layers that extract useful information by taking advantage of the

temporal and spatial structure of the data, see the bottom panel of Fig. 4.1(d). A

convolution layer convolves the input with a number of filters, then applies a non-

linear function to the output of the filters. Each convolution operation with a kernel

Ω and bias b, maps an input matrix X, to another matrix Z = Ω ∗X given by [99]

Zj,k =
∑
m,n

Xj×s+m,k×s+nΩm,n + b (4.7)

where s specifies the number of steps the filter moves in each direction. It is called

the stride of the convolution and is a hyperparameter that is tuned using the cross-

validation data. The output of the convolution layer is obtained by applying a

non-linear function g element-wise to Z. The convolution layers can be repeated

many times, and combined with pooling layers where the dimension of the output

is reduced through a procedure such as averaging. At the end, the output of the

convolution layer is flattened to form a vector and that vector is fed into a series of

fully connected layers to produce the network’s output [99].

The CNN’s that we consider has four 2 × 2 filters, with the stride of 1, and

with periodic boundary condition. We choose the rectifier, i.e., g(z) = max(0, z),

for the activation of these filters. The output of all the filters is then combined to

form a single vector. For the CNN classifying the J -protocol (see Fig. 4.4), this
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vector is fed into a single neuron with sigmoid activation, whose values determine

the direction of time’s arrow. For the gating network (Sec. 4.5), this vector is fed

into a fully connected layer with 50 hidden neurons and the rectifier activation,

followed by the output neuron with the sigmoid activation.

To train the classifier, we determine optimal values of parameters (such as the

weights and biases in LR) by minimizing the cross-entropy using a gradient based

optimization algorithm[99]

C = − 1

Nsamp

∑
m

[ym log(pm) + (1− ym) log(1− pm)] (4.8)

The sum is carried over the Nsamp training samples, ym ∈ {0, 1} is the label attached

to the m’th trajectory, indicating which process was used to generate the trajectory,

and pm is the output of the network for that trajectory.

Throughout this work, we always split a given data-set into three parts. We

use 60%, 20% and 20% of the data for training, validation, and testing the model,

respectively. We use a data-set with total of 20000 samples for the Brownian particle.

For the spin chain examples (B and J -protocols), we use 20000 samples for each

temperature. The samples are then split into three sets and are used to train,

validate, and test the models. The validation set is used to tune the architecture and

hyperparameters of the model, while the test data is used for unbiased evaluation of

the the final model’s accuracy. We use Adam optimizer with parameters suggested

in the original paper for the training [100]. We assess the performance of the network

by testing it over a balanced set of trajectories, i.e. half forward and half backward.
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If pm ≥ 0.5 then the algorithm guesses that the trajectory was generated from the

forward process, otherwise it guesses the reverse process. As a figure of merit, we

consider the accuracy, i.e. the ratio of correct guesses to total number of samples.

To reduce overfitting it is helpful to include a regularization term. This will

help to reduce the difference between the training error and the test error. We

consider L2 regularization α
∑

` Ω2
` , that is adding the square of all the weights in

the network to the cost function. The parameter α is a hyper-parameter of the

model and is tuned using the cross-validation data.

Model α

Brownian particle 0.001
B-protocol 10−4

J -protocol (LR) 2× 10−5

J -protocol (CNN all layers) 10−4

Coarse-grained B and J -protocols 2× 10−5

Gating network (conv. and the hidden layer) 10−5

Gating network (output) 2× 10−5

Alternative activation functions (all layers) 10−5

Table 4.1: The value of L2 regularization parameter α for the NNs in this Chapter.
To reduce overfitting it is helpful to include a regularization term. This will help to
reduce the difference between the training error and the test error. We consider L2

regularization α
∑

` Ω2
` , that is adding the square of all the weights in the network

to the cost function.

Additionally, for training the CNNs in this work, we use the dropout technique

to reduce overfitting. Dropout refers to deactivating and ignoring certain neurons

during the training phase. Specifically, at every training step, a random fraction of

pdrop of neurons are deactivated [101].

We find that our results do not vary significantly with the choice of hyper-

parameters. We choose pdrop = 0.25 for the dropout rate of neurons of the convolu-
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tional layer in the J network, and pdrop = 0.5 for the gating network in the mixture

of experts network of Section 4.5.3. The L2 regularization rates α are shown in

Table 4.1.

4.4 Case studies

We apply the neural network machinery to detect the direction of the time’s

arrow and compare the output of the network with the theoretical optimal result

of Eq. (4.2). We first consider a single Brownian particle in a moving potential

and then move on to the more complicated problem of a spin chain with nearest-

neighbour coupling in a magnetic field and discuss how controlling the field and the

coupling affect the results. The networks not only learn to guess the direction of

the time’s arrow but also learn to closely reproduce the likelihood function.

4.4.1 Brownian particle in a moving potential

An overdamped Brownian particle at temperature β−1 in a harmonic potential

(Fig. 4.2(a)), evolves according to

ẋ = −k
γ

(x− λ) + ξ(t), (4.9)

where k denotes the strength of the potential, λ is the position of the center of the

potential, and γ is the damping rate. The noise term ξ(t) satisfies 〈ξ(t)ξ(t′)〉 =

2(βγ)−1δ(t− t′). In the forward protocol, the value of λ is changed from A to B at

a fixed rate λ̇ = u. Hence the reverse protocol changes λ from B to A with λ̇ = −u.
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After generating samples of the forward and backward trajectories using Eq. (4.9)

(Figs. 4.2(b) and (c)), we train a classifier to predict the label for a given trajec-

tory, as described earlier. In this example it is easy to detect the direction of the

time’s arrow, as the work distributions have a modest overlap, see Fig. 4.2(d). In

Fig. 4.2(e) we compare the accuracy and the output of a LR classifier (grey dots)

with the theoretical likelihood (solid curve) obtained from Eq. (4.2). The remarkable

agreement with the theory can be understood by noting that work W , calculated by

numerically integrating Ẇ = −ku(x−ut) for a given trajectory, is a linear function

of the elements of the trajectory matrix X. Therefore, as we show in Section 4.6 LR

is well-equipped to calculate this quantity and reproduce the likelihood function.

4.4.2 Spin chain in a magnetic field

Now let us consider a more complicated, many-particle system and a non-linear

work protocol, namely a spin chain in a magnetic field, in contact with a thermal

reservoir at temperature β−1, described by a Hamiltonian

H = J(t)
∑
i

σiσi+1 −B(t)
∑
i

σi, (4.10)

where σi ∈ {−1,+1} is the spin variable at site i, J(t) is the nearest-neighbour

coupling strength, and B(t) is the magnetic field. The dynamics of this system

are modeled as a Markov process. The Hamiltonian aligns the spin in preferred

energy configurations, while thermal fluctuations cause the spins to flip randomly.

We consider two scenarios. First, the coupling is assumed to be constant, and the
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Figure 4.2: Brownian particle in a moving potential. (a) An overdamped Brownian
particle with damping rate γ at temperature β−1 is in a harmonic potential Vλ(x),
with stiffness k. The position of the potential’s center, λ, is externally controlled and
is moved from A to B in the forward process. (b) Sample trajectories (grey) and the
average trajectory (black) in the forward protocol. Note that the average trajectory
lags behind the center of the potential (dashed line). In the simulations, γ, β, k are
chosen to be 1, and λ = 0 at t = 0 is varied to λ = 5 at t = 10. (c) Sample backward
trajectories (light blue) and their average (dark blue). The average trajectory leads
the potential’s center (dashed lines). (d) Work distribution for the forward (black)
and the backward (blue) trajectories. They are both normally distributed and are
symmetric around 0. (e) The likelihood of the forward process for a set of test
trajectories. The output of the neural network (N), p, over the test set (grey dots)
resembles the theoretical (T) likelihood P (F|X) (solid black line). The numbers in
legends denote the accuracy of the methods over 4000 test trajectories. The classifier
is trained on 12000 samples.

magnetic field is varied in time, see Fig. 4.3(a). Next, the magnetic field is constant

and the coupling is varied, see Extended Data Fig. 1. We refer to the former as the

B-protocol, and the latter as the J -protocol.

In the forward process of the B-protocol, J(t) is constant over time, and

B(t) = B0 cos(πt/τ) changes from B0 > 0 at t = 0 to −B0 at t = τ , as shown

in Fig. 4.3(b). At low temperatures and large magnetic fields, the spins are aligned
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with the direction of the field. As the temperature is increased, fluctuations become

more prominent (see Fig. 4.3(c) and (d)). These fluctuations increase the overlap in

work distributions, blurring the direction of time’s arrow, see Fig. 4.3 (e). We train

a single classifier using samples of forward and backward trajectories for three dif-

ferent temperatures generated by the Metropolis algorithm. This training scheme,

known as multi-task learning, improves the performance and generalizability of the

classifier [102]. We observe that the success of LR in learning both the correct labels

and in approximating the likelihood function persists, see Fig. 4.3(f). The reason,

again, lies in the functional form of W , which is evaluated by numerically integrating

Ẇ = −Ḃ(t)
∑

i σi, and thus is proportional to a weighted sum of the elements of

the input trajectory. Since ∆F = 0 in this protocol, LR is a perfect model of the

likelihood function for all the temperatures.

The J -protocol is more complicated and has a ferromagnetic-antiferromagnetic

transition. In this protocol, B(t) is constant in time and J(t) = J0 cos(πt/τ) is varied

non-linearly from J0 > 0 at t = 0 to a −J0 at t = τ in the forward process. The LR

classifier does not perform well in this case, see Figure 4.9, as Ẇ = J̇(t)
∑

i σiσi+1

is no longer linearly related to the input. However, by using a CNN with periodic

boundary condition we are able to recover the optimal accuracy and obtain results

similar to those for the B-protocol (see Fig. 4.4). The convolution layer in a CNN

has filters that can capture the two-body nearest-neighbor correlations required to

calculate the work (see Section 4.6.3). Note that in this process ∆F 6= 0, which

adds to the complexity of the problem.
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Figure 4.3: Spin chain in a time-dependent magnetic field. (a) A chain of ten
spins with periodic boundary condition is placed in a magnetic field. The strength
of coupling between nearest neighbors J(t) = −1 is fixed, and all the quantities
are in the units of |J |. The forward process starts with spins in equilibrium at
temperature β−1 with B(0) = +B0 > 0 at time t = 0 and ends at a non-equilibrium
state with B(τ) = −B0 at at time t = τ . (b) The forward (black) and the reverse
(blue) protocols B(t). In our examples B0 = 20 and τ = 500. (c) Sample forward
trajectories encoded in a matrix, where the black and white pixels (±1 entries)
denote spins pointing up and down, respectively. The rows and columns correspond
to time steps and spin positions, respectively. (d) Sample backward trajectories
obtained from time-reversal of the reverse process. (e) The distribution of work
ρ(W ) for the forward (black) and backward (blue) trajectories, (f) the theoretical
likelihood function (solid black line) and the output of the neural network p over the
test set (grey dots) for various temperatures. The numbers in legends denote the
accuracy of the theory (T) and neural network (N) over 4000 test trajectories for
each temperature. In this example, a single classifier is trained simultaneously with
sample trajectory data with three different temperatures (12000 samples for each
temperature). The temperatures corresponding to different rows in panels (c), (d),
(e), and (f) are β−1 = 10, 30, 50 in descending order. As the temperature increases,
the distinction between the forward and backward trajectories is blurred.
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Figure 4.4: Spin chain with a time-dependent coupling. (a) A chain of ten spins
with periodic boundary condition is placed in a constant magnetic field B(t) = −1,
and all the quantities are in the units of |B|. The time-dependent coupling between
nearest neighbors is J(t). The forward process starts with spins in equilibrium
at temperature β−1 with J(0) = +J0 > 0 and ends at a non-equilibrium state
with J(τ) = −J0. (b) The forward (black) and the reverse (blue) protocols J(t).
In our examples J0 = 20 and τ = 500. (c) Sample forward trajectories encoded
in a matrix, where the black and white pixels (±1 entries) denote spins pointing
up and down, respectively. The rows and columns correspond to time steps and
spin positions, respectively. (d) Sample backward trajectories obtained from time-
reversal of the reverse process. (e) The distribution of work ρ(W ) for the forward
(black) and backward (blue) trajectories, (f) the theoretical likelihood function (solid
black line) and the output of the neural network p over the test set (grey circles) for
various temperatures. The numbers in legends denote the accuracy of the theory
(T) and logistic regression (NN) over 4000 test trajectories for each temperature.
In this example, a single classifier is trained simultaneously with sample trajectory
data with three different temperatures (12000 samples for each temperature). The
temperatures corresponding to different rows in panels (c) - (f) β−1 = 10, 30, 50 in
descending order. As the temperature increases, the distinction between the forward
and backward trajectories is blurred.
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4.5 Interpretation and extensions

We now use four approaches to investigate trained networks and to develop

insight into what they have learned.

4.5.1 Inceptionism and dreaming

First, we use inceptionism techniques [103, 104] to learn the network’s ideal

representative of forward and backward trajectories. Specifically, we use a Monte

Carlo approach to transform a randomly selected input trajectory into one for which

the networks trained for B and J -protocols output 1 or 0 corresponding to forward

and backward trajectories, respectively. This is in contrast with the previous section

where we optimized for the weights and biases of the network. Among the simulated

trajectories in the test set, we choose one with p ≈ 0.5 [104] – this is a trajectory for

which the network has difficulty assigning the direction of time’s arrow. We propose

random spin flips and accept those moves that cause the output to get closer to the

desired value of 1 or 0. We additionally demand that there be at most 1 spin-flip

per time step, to ensure that the network ‘dreams’ of trajectories consistent with

our simulations. We find that the networks’ ideas of the forward and backward

trajectories show strong agreement with the true physical picture, see Fig. 4.5(a).

4.5.2 Coarse-grained features and the reduced phase-space

To assign a physical interpretation to the networks’ decision-making pro-

cess, we project the trajectories onto a two-dimensional reduced phase space cor-
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Figure 4.5: Interpreting the neural network’s inner mechanism. (a) Starting with a
random trajectory (leftmost column), we ask the trained network to ‘dream’ of its
idea of the forward (middle column) and backward (rightmost column) trajectories.
Here, t is time and τ is the duration of the process. The top row corresponds to
the B-protocol, with parameters identical to those in Fig. 4.3, and the bottom row
corresponds to the J -protocol with similar parameters, but with values of magnetic
field B(t) and the coupling strength J(t) interchanged. The black and white pixels
denote spins pointing up and down, respectively. The numbers in the inset indicate
the forward likelihood P (F|X), obtained from the theory (T) using Eq. (4.2) and
from the neural network’s output (N). (b) The weights of the networks trained using
coarse-grained trajectories associated with the magnetization Ω(1) and the nearest-
neighbour correlations Ω(2). The network for the B-protocol (top row) is trained
simultaneously at temperatures β−1 = 10, 30, 50 and the network for the J -protocol
(bottom row) is trained at β−1 = 10. The x-axis represents coarse-grained time of
10 steps in trajectories in panel (a). The error bars are standard deviation over 10
trained networks with random weight initialization. The network bases its decision
on the magnetization in the former, and on the nearest-neighbor correlations in
the latter case. If the values of Ω

(`)
NNs of the trained networks (markers) match the

optimal weights Ω
(`)
opt (dashed line), the output of the network agrees with the exact

likelihood (4.2).

responding to the collective coordinates {x̃(1)(t)} = {
∑

i σi(t)} and {x̃(2)(t)} =

{
∑

i σi(t)σi+1(t)} (taking period boundary conditions), representing magnetization
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and nearest-neighbour correlations, respectively. We also replace the value of x̃(`)(t)

within each time window of ten time steps, by the sum of the values within that

window. Specifically, for the two protocols concerning the spin chain in a magnetic

field, the coarse-grained features are

x̃(1)
s =

m(s+1)−1∑
t=ms

n∑
i=1

Xt,i, (4.11)

x̃(2)
s =

m(s+1)−1∑
t=ms

n∑
i=1

Xt,iXt,i+1, (4.12)

where m is an integer and s is the scaled time. We use this feature map as the input

to a LR classifier. Note that the input to the network is a 2τ/m dimensional vectorx̃(1)

x̃(2)

, and the weights corresponding to x̃(`) are denoted by τ/m dimensional

vectors Ω(`) for ` = 1, 2.

By thus coarse-graining in both phase space and time, we reduce the noise

due to finite size effects and variations over samples. We use these coarse-grained

trajectories to train LR classifiers for both B and J -protocols (See Figure 4.10 for

the performance of these classifiers). Finally, we investigate the weights Ω(`) that the

networks assign to the magnetization (` = 1) and the nearest neighbor correlations

(` = 2) of an input trajectory. Fig. 4.5(b) reveals that for the B-protocol (top row),

the network mostly cares about the magnetization, whereas when the J -protocol

is performed (bottom row), the network bases its decision on the nearest-neighbor

correlations. Moreover, the learned values of Ω(`) agree with our analytical results

that reproduces the correct likelihood value (see also Sec. 4.6.4).
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These observations suggest that the network learns that the time derivative

of the Hamiltonian, and by extension the work (4.3), is an important feature in

guessing the direction of time’s arrow. We note that when the process is highly

irreversible, the distributions of the forward and reverse work are well-separated. In

such cases, we observe that while LR has an almost 100% accuracy, it does not learn

work (obtained by inverting the sigmoid function in the output). This is because

the events that enable the network to learn work are extremely rare, and are usually

absent in the training data. However, there are other evident differences that can

show the direction of time’s arrow. We show an example of such a process for the

B-protocol at low temperatures. We observe that the orientation of spins undergoes

a sharp transition as the magnetic field changes sign. However, the time during

which this transition occurs is different in the forward and backward trajectories.

The classifier makes a decision based on the spin configuration at this particular

time. See Figure 4.6.

4.5.3 Mixture of experts

By using our knowledge about the structure of the problem we design a neural

network that can learn to accurately guess the direction of time’s arrow for trajec-

tories generated using multiple protocols, when the identity of the protocol is not

specified. Specifically, we use a mixture of experts (MoE), with an output that is

the weighted sum of expert networks [105]. When the protocol is not specified, the
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Figure 4.6: A highly irreversible version of the B-protocol, with parameters similar
to those in Figure 3 in the main text at a lower temperature β−1 = 1. All in the
qunatities are in the units of the fixed coupling strength |J |. (a) The distributions
of forward (grey) and reverse (blue) work ρ(W ) are well-separated. (b) The forward
likelihood of sample trajectories is either 0 or 1, and the classifier’s prediction (grey
dots), matches the theory (solid curve). The numbers in the legend denote the
accuracy of the theory (T) and the neural network (N). (c) In this example, the value
of work that the network calculates Ŵ (obtained by inverting the sigmoid function)
is different than the actual value of work W . (d) The average forward (X̄F) and
backward (X̄B) trajectories, and the network wights Ω over time t suggests that
the spin orientations midway through the process is a way to decide the direction
of time’s arrow.

net forward likelihood is

P (F|X) = P (F|X,B)P (B|X) + P (F|X,J )P (J |X). (4.13)
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The quantities P (F |X,B) and P (F |X,J ) are modeled using neural networks similar

to those previously considered for B and J -protocols, respectively. These networks

are referred to as experts. Additionally, we use a CNN to model P (B|X) = 1 −

P (J |X). This CNN, which is called the gating network, learns the protocol from

trajectories. Therefore, we obtain a larger three-headed network by combining the

output of the three neural networks as in Eq. (4.13), as illustrated in Fig. 4.7(a).

For the training, we use the pre-trained expert networks for the B and J -protocols,

and optimize the cross entropy cost function over sample trajectories from both

protocols. We observe that the performance of this network is similar to that of the

individual networks, as the gating network learns to accurately identify the protocol

of input trajectories (see Fig. 4.7(b)). Note that the predictions of the gating network

are more accurate at lower temperatures. This makes sense as the distribution of

the initial state in the two protocols are distinguishable in low temperatures, but

become less so as the temperature is increased.

4.5.4 Alternative activation functions

The logistic function that appears in the theoretically calculated likelihood in

the time’s arrow problem, is similar to the activation function that is commonly used

for classification in machine learning. To assess the general ability of the networks

in approximating the likelihoods we try different activation functions. Specifically,

we choose g(z) = exp(−z2) and g(z) = sin2(z) as the activation of the last layer

of the neural network so that the output is always between 0 and 1, and can be
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Figure 4.7: Mixture of experts (MoE). (a) The MoE network models the forward like-
lihood P (F|X) for an input trajectory X. It consists of a gating CNN that predicts
the protocol P (B(J )|X), and two networks that predict the forward likelihood of a
trajectory given the protocol P (F|B(J ),X). (b) The output of the gating network,
which models P (B|X), is shown for different sample trajectories of the B (blue trian-
gles) and J (black dots) protocols. The trajectories for the B-protocol correspond
to the same parameters used in Fig. 4.3 with three temperatures β−1 = 10, 30, 50
in the units of |J |. The parameters in the J -protocol are similar, but the values of
magnetic field B(t) and the coupling strength J(t) are interchanged. The horizontal
axis shows different samples in three temperature regions separated by vertical line.
It is harder to predict the protocol at higher temperatures.

interpreted as probabilities. We also add a hidden layer to give the network the

ability to calculate complex functions. We compare the network’s output with the

theoretical likelihoods for the spin chain under the B-protocol with coarse-grained

features discussed in Section 4.6. We only train the network at a single temperature
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and observe that the network can still approximate the likelihood function as shown

in Figure 4.8.

100 0 100
W

0.0

0.2

0.4

0.6

0.8

1.0

p

g(z) = exp( z2)
(a)

100 0 100
W

g(z) = sin2(z)
(b)

Figure 4.8: The theoretical likelihood function (solid black line) and the output of
the neural network with custom activation functions (grey dots) for the last layer
corresponding to the coarse-grained B-protocol at temperature β−1 = 10. The
network has a hidden layer with 50 neurons with tanh activation. The last layer’s
activation functions are (a) g(z) = exp(−z2) and (b)g(z) = sin2(z). The accuracy
of both models is 0.80, which is close to the theoretically optimal value of 0.82.
Comparing the plots with the leftmost column of Figure 4.10b, we observe that the
performance slightly deteriorates. However, the networks still capture the essence
of the likelihood function.

4.6 Optimal Networks

For some of the examples that we considered, it is possible to derive analytical

expressions for the optimal weights and biases of the network. Specifically, we

examine the expression that is used to calculate the work W and the change in free

energy ∆F . Because the logistic sigmoid activation function, i.e., g(z) = 1/(1 +

exp(−z)), used for classification coincides with the form of the likelihood function

P (F|{x(t)}) = 1/(1 + e−β(W−∆F )), in the arrow of time problem [17], we are able to

find the networks parameters {Ω,b} that reproduce the same likelihood function.
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To illustrate this, consider the LR model with the output p = 1/(1 + exp(−z)) and

z = Ωᵀa + b. If we find Ω and b such that z = β(W − ∆F ), the output of the

network p correctly represent P (F|X). In the following we show that when W is

linear in the elements of X, and therefore linear in the elements of a = vec(X), we

are able to find such optimal Ω and b.

4.6.1 Brownian particle in a moving potential

In this example, the system’s state at each time step is described by a scalar

xt, as the position of the particle. We have a total of τ + 1 time steps, therefore, the

input to the NN is a τ + 1 dimensional vector. The LR classifier considered here is

parameterized by a τ+1 dimensional weight vector with elements Ωt for t = 0, . . . , τ

and a bias b. We find

W =
τ−1∑
t=0

1

2
kδλ(−2xt + λt + λt+1), (4.14)

where δλ = λt+1 − λt is independent of t, because the protocol is linear. Note that

∆F = 0 in this example. With the choice of

Ωt =


−βkδλ (t 6= τ)

0 (t = τ)

, (4.15)

b =
τ−1∑
t=0

1

2
βkδλ(λt + λt+1), (4.16)

we can see that Ωᵀa + b = β(W −∆F ), where (a)t = xt.
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4.6.2 Spin chain - B-protocol

The full trajectory of an n-spin system over τ time steps is represented by a

τ × n matrix X. We denote the orientation (up or down) of the ith spin at time t

with Xt,i = ±1. The input to LR classifier, is a vector obtained from rearranging

the trajectory matrix X to shape it into an τn× 1 array. We find that

W = −
τ−1∑
t=0

(δBt

n∑
i=1

Xt,i), (4.17)

where δBt = Bt+1−Bt. Work calculated using Eq. (4.17) is the discrete time version

of W obtained from Ẇ = −Ḃ(t)
∑

i σi. In this example, ∆F = 0 again, and we find

that the optimal weights and bias are given by

Ωt,i = −βδBt (t 6= τ), (4.18)

b = 0, (4.19)

where Ωτ,i = 0. Note that if the input Xt,i is scaled with β, a single LR classifier is

able to reproduce the correct likelihood for different temperatures.

4.6.3 Spin chain - J -protocol

Using the same notation in the previous section, we find that the work, W , is

given by

W =
τ−1∑
t=0

(δJt

n∑
i=1

Xt,iXt,i+1), (4.20)
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where δJt = Jt+1− Jt. Work calculated using Eq. (4.20) is the discrete time version

of W obtained from Ẇ = J̇(t)
∑

i σiσi+1. We also use periodic boundary condition,

which implies Xt,n+1 = Xt,1. Moreover, there is a non-zero change in the free energy,

which is given by [106]

∆F = − 1

β
log(

ε−(βB, βJ0)n + ε+(βB, βJ0)n

ε−(βB,−βJ0)n + ε+(βB,−βJ0)n
) (4.21)

where

ε±(βB, βJ) = exp(βJ) cosh(βB)

±
√

exp(2βJ) cosh2(βB)− 2 sinh(2βJ).

(4.22)

We see that it is not possible to have a logistic regression model that calculates W

accurately, as it is a non-linear function of the elements of X (see Figure 4.9).

However, a convolutional neural network (CNN) can learn the relevant rep-

resentation (i.e. nearest-neighbor correlations) from the input data, and learn the

corresponding weights to calculate work. Specifically, to show that in principle a

CNN can exactly calculate the correct likelihood from the input, we consider a CNN

with four 1× 2 filters with periodic boundary condition and the rectifier activation

g1, followed by the output layer with sigmoid activation g2. We set the biases of the

convolutional layer to zero, and choose the weights Ω[1,i] for filters i = 1, 2, 3, 4 as
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follows 

Ω[1,1]

Ω[1,2]

Ω[1,3]

Ω[1,4]


=



(1 1)

(1 −1)

(−1 1)

(−1 −1)


. (4.23)

Each filter is only activated for one of the possible configuration of two neighboring

spins. Specifically, given the τ × n input X, the output of each filter g1(Ω[1,j] ∗X)

is a τ × n matrix X̃(j) such that

X̃
(1)
t,i = 1 if (Xt,iXt,i+1) = (1, 1), (4.24)

X̃
(2)
t,i = 1 if (Xt,iXt,i+1) = (1,−1), (4.25)

X̃
(3)
t,i = 1 if (Xt,iXt,i+1) = (−1, 1), (4.26)

X̃
(4)
t,i = 1 if (Xt,iXt,i+1) = (−1,−1), (4.27)

and X̃
(j)
t,i = 0 otherwise. We can now rewrite the output of the network as

g2(b2 +
∑
j

(
∑
t,i

Ω
[2,j]
t,i X̃

(j)
t,i ))), (4.28)

where Ω[2,j] contains the weights of the output layer corresponding to X̃(j). The
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optimal values of these weights are given by

Ω
[2,1]
t,i = Ω

[2,4]
t,i = −βδJt (t 6= τ), (4.29)

Ω
[2,2]
t,i = Ω

[2,3]
t,i = +βδJt (t 6= τ), (4.30)

b = −β∆F, (4.31)

where Ω
[2,j]
τ,i = 0.

Therefore, a CNN with four 1× 2 filters is sufficient to capture the likelihood

at a single temperature of β−1. We find that in practice, a CNN with such an

architecture is likely to get stuck at local minima, and finding the optimal parameters

shown above greatly depends on the initial weights of the network. However, we

observe that a CNN with four 2×2 filters can achieve a close to optimal performance

more easily.
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Figure 4.9: Performance of logistic regression in the J -protocol. In the J -protocol,
the magnetic field B(t) = −1 is constant, and all the quantities are expressed in the
units of |B|. The coupling strength varies as J(t) = J0 cos(πt/τ) with J0 = 20 and
τ = 500. The LR classifier is trained simultaneously with sample trajectory data
with three different temperatures β−1 = 10, 30, 50, corresponding to the columns in
the figure from left to right, respectively. We use 12000 samples for each tempera-
ture in the training. The theoretical likelihood function (solid black line) and the
output of the neural network p over the test set (grey dots) are plotted for various
temperatures as a function of the work performed on the system W . LR does not
perform well and cannot match the performance of a CNN as observed in Fig. 4 in
the main text. The numbers in legends denote the accuracy of the theory (T) and
neural network (N) over 4000 test trajectories for each temperature.

4.6.4 Coarse-grained features

To obtain Figure 4.5(b) in the main text, the trajectories are coarse-grained

according to

x̃(1)
s =

m(s+1)−1∑
t=ms

n∑
i=1

Xt,i, (4.32)

x̃(2)
s =

m(s+1)−1∑
t=ms

n∑
i=1

Xt,iXt,i+1, (4.33)

where m is an integer and s is the scaled time. Using this feature map, LR classifier

can calculate W for both B and J -protocols (See Figure 4.10). The input to the
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Figure 4.10: Prediction of logistic regression with coarse-grained features. The
output of the network (grey dots) and the theoretical likelihood function (solid
curve) agree remarkably for both B and J -protocols. Coarse-graining and feature
engineering improves the performance. The parameters of the protocols and the
units are similar to those used in Figs. 3 and 4 in the main text for B-protocol
and J -protocol, respectively. (a) LR’s prediction trained and tested at temperature
β−1 = 10 as a function of the work performed on the system W . (b) LR predicting
the direction of time’s arrow in the B-protocol as a function of W , trained and tested
simultaneously for three different temperatures β−1 = 10, 30, 50, respectively.

network is a 2τ/m dimensional vector

x̃(1)

x̃(2)

. We denote the weights corresponding

to x̃(`) by τ/m dimensional vectors Ω(`) for ` = 1, 2. In this case, we approximate the

optimal weights and bias of the networks by their average over the coarse-grained

92



time window. For the B-protocol we find

Ω(1)
s =

β

m

m(s+1)−1∑
t=ms

δBt, (4.34)

Ω(2)
s = 0, (4.35)

b = 0. (4.36)

Similarly, the weights and bias for the J -protocol are given by

Ω(1)
s = 0, (4.37)

Ω(2)
s =

β

m

m(s+1)−1∑
t=ms

δJt, (4.38)

b = −β∆F. (4.39)

In both cases we can see that β(W − ∆F ) ≈ (Ω(1))ᵀx̃(1) + (Ω(2))ᵀx̃(2), where the

approximation comes from coarse-graining.

Note that in this case, even though LR classifier can calculate βW if the input

is scaled with β, it is not possible to train the network over different temperatures.

This is because ∆F 6= 0, and a simple bias cannot capture multiple values of β∆F .

Therefore, we only consider a single temperature for the J -protocol in studying the

optimal networks with coarse-grained features.
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4.7 Conclusion and outlook

While in this Chapter we rediscovered elements of thermodynamics that were

developed in recent decades, we are ultimately interested in answering open ques-

tions in thermodynamics. The physics of systems out-of-equilibrium is an area of

interest, where there are unsolved questions that one may be able to answer by

studying the dynamics of systems with machine learning algorithms. For instance,

identifying the thermodynamic principle that determines the steady-state of a sys-

tem [107], an outstanding problem in statistical physics, or deciding when a non-

equilibrium system has an effective equilibrium description [108] are both examples

where analyzing time-series data using machine learning could shed light on the

inner mechanism of the problem.

Moreover, machine learning researchers have shown that ML techniques can be

used to detect the playback direction of real-world videos [109, 110]. These studies

are concerned with videos of macroscopic objects that are in principle irreversible,

and the arrow of time has a clear direction. In such scenarios, there are many indica-

tors that can reveal the true playback direction, and therefore it is hard to quantify

the optimal performance. However, in the physical examples the optimal attainable

accuracy of the classifier is dictated by the laws of physics. Therefore, problems

with large number of phase-space coordinates and with complicated dynamics, such

as the J -protocol for 2D Ising model, can serve as a standardized benchmark for

video classification algorithms.
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Chapter 5: Conclusion and Outlook

In this dissertation, we examined characterization and control of open physical

systems. We also considered applications of machine learning in scientific discovery.

Throughout this work, we used our physical knowledge about the system that is

being studied and combined it with advanced computational techniques to learn

more about physical systems and improve their performance.

In the characterization front in Chapter 2 , we made assumptions about the

nature of the noise and its temporal correlations, and designed a protocol to learn

spatial correlations of the noise process using compressed sensing techniques. The

temporal correlations of noise are typically studied under noise spectroscopy [5].

However, the type of operators and their spatial correlations are studied in quantum

tomography and benchmarking, while assuming the noise is Markovian without

any temporal signature [22]. Some benchmarking protocols, such as randomized

benchmarking [111], can recognize the existence of non-Markovian noise, but they

fall short of fully characterizing the temporal structure of the noise. Of course, fully

characterizing a noise channel at different times without any assumptions about

the model is costly. However, using the framework that we built and the techniques

developed in our work, it might be possible to simultaneously characterize the spatial
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and temporal correlations of certain noise processes.

Quantum experiments generate tons of data during every day calibration pro-

cesses. Some of this data is unused as noted in Chapter 3, partly because the data

is noisy or hard to model theoretically. We showed that a black box approach can

take advantage of the information in the unused data and improve the performance

of the system. While we showed an application of machine learning in the measure-

ment process of trapped ion qubits, there is a great potential in applying machine

learning techniques to other tasks in quantum information processing as shown in

Refs. [112, 113]. Therefore, we can expect machine learning to play an import role

in calibrating and automating quantum experiments [114, 115]. An important ques-

tion that remains is the scalability of these techniques. In that regard, it would

be interesting to see to what extent a verified quantum computer can help tuning

another unverified quantum computer [116].

Finally, our ultimate goal is to study physics with the help of computer algo-

rithms. In Chapter 5, we applied machine learning tools to a physical problem and

gained insight about the underlying mechanism and the relevant physical param-

eters in the problem. We note that the theoretical understanding of the problem

that we studied was completed in the past 20 years, whereas the algorithms utilized

in the study were available decades before the development of those theories. It

is conceivable that, with such numerical experiments, one could come up with the

theoretical formulation of the solution before its discovery from physical principles.

Therefore, interpretable machine learning techniques may help us learn physics from

big data in the future. Techniques used in our work, combined with recently de-
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veloped tools such as Neural SDEs [117] can also be used to study and model the

dynamics of out-of-equilibrium systems. We believe our work could inspire future

research directions in classical and quantum non-equilibrium systems as discussed

in the following.

An outstanding question in non-equilibrium statistical physics is identifying

the thermodynamics and the physical principles that determines the steady state of

a system. Specifically, is there a principle similar to maximum entropy principle,

that gives us a recipe for finding steady state of non-equilibrium systems? In other

words, can we find a function of phase space variables, whose minimum/maximum

with some constraints specify the steady state of the system? A concrete problem

to study is self-oscillations of an electron shuttle [107]. The system has two modes

of behavior and depending on the parameters of the problem, it spontaneously

chooses one mode. While the dynamics of this problem is understood, it is not clear

what physical principle determines this behavior. This is in contrast to problems in

equilibrium physics, where we know that systems always try to minimize their free

energy. Therefore, the ultimate question is finding the function that its optimum

determines the steady state. To build the toolbox to answer this question we have

to start with concrete examples that we know how to solve.

First, we can use equilibrium classical physics as a test bed and study what

machines are able to learn about the system’s equilibration process. Specifically,

we can study the snapshots of a system’s approach to equilibrium and try to learn

that it is the free energy that is being minimized. We believe that this is achievable

using techniques developed in inverse reinforcement learning and apprenticeship
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learning [118]. By observing the nature, an algorithm can learn to mimic nature’s

behavior and take systems to equilibrium. An interesting question is whether the

reward function learned by the algorithm coincides with the free energy function?

After establishing this, we can apply our toolbox to the example of the electron-

shuttle and more complicated problems such as Rayleigh–Bénard convection [119]

and see what we can learn about the physics of the problem.

Additionally, there are interesting questions in the study of quantum sys-

tems out-of-equilibrium. For example, one interesting question is whether a driven-

dissipative system has an effective equilibrium description [120, 121], or it falls

under a genuine nonequilibrium universality class [122, 123, 124]. We believe that

machine learning, and specifically time-series classification, can play an important

role in identifying relevant features that lead to these distinct behaviors and shed

light on underlying physical mechanisms. Another problem of interest is distin-

guishing chaotic versus non-chaotic, or integrable versus non-integrable systems. It

is intriguing to ask whether one can identify relevant parameters that differentiates

the two regimes, such as out-of-time-ordered correlators, by observing the system’s

dynamics.

Ultimately, we can repeat the question of what physical principle determines

the approach to the steady state in quantum systems and try to identify the relevant

features and the effective function that its minimum gives the steady state of the

quantum system. Since quantum systems are inherently more complicated than

their classical counterparts, we may need a quantum algorithm to achieve this, for

example, by extending techniques developed in Ref. [125].
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Appendix A: Optimal control for quantum detectors

This chapter is based on the author’s contribution to Ref. [126]. We briefly

describe the results and detail the author’s contribution. We refer the reader to the

original manuscript for more details [126].

A.1 Summary of the results

Quantum systems are promising candidates for sensing of weak signals as

they can provide unrivaled performance when estimating parameters of external

fields. However, when trying to detect weak signals that are hidden by background

noise, the signal-to-noise-ratio is a more relevant metric than raw sensitivity. We

identify, under modest assumptions about the statistical properties of the signal and

noise, the optimal quantum control to detect an external signal in the presence of

background noise using a quantum sensor. Interestingly, for white background noise,

the optimal solution is the simple and well-known spin-locking control scheme. We

further generalize, using numerical techniques, these results to the background noise

being a correlated Lorentzian spectrum. We show that for increasing correlation

time, pulse based sequences such as CPMG are also close to the optimal control for

detecting the signal, with the crossover dependent on the signal frequency. These
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results show that an optimal detection scheme can be easily implemented in near-

term quantum sensors without the need for complicated pulse shaping.

A.2 Numerical optimization of control pulses

We consider a single qubit as a quantum sensor in the presence of a dephasing

signal and noise. Assuming uniaxial control (along σx) and under the rotating wave

approximation, the qubit Hamiltonian is given by,

H(t) =
1

2
J
[√
α s(t) + η(t)

]
σ̂z +

1

2
Ω(t)σ̂x, (A.1)

where Ω(t) is the Rabi frequency of an arbitrary time-dependent control, the sig-

nal s(t) and background noise η(t) are both considered to be classical wide sense

stationary Gaussian stochastic processes, α denotes the ratio of the signal-to-noise

power (SNR) and J2 is the total noise power. These stochastic processes have mean

zero, s(t) = η(t) = 0 and two-point time correlations given by η(t)η(t′) = gη(t− t′),

s(t)s(t′) = gs(t− t′) and η(t)s(t′) = 0 with the normalization gη(0) = gs(0) = 1 and

(· · · ) denoting averaging over noise realizations. Alternatively, the noise correla-

tions may also be represented in the frequency domain, using the power spectrum,

Sη(ω) =
∫∞
−∞ dτgη(τ)e−iωτ , with the normalization

∫∞
−∞ dωSη(ω) = 2π, and similarly

for Ss(ω). We consider the background noise spectrum to be a Lorentzian, corre-

sponding to gη(t) = e−|t|/σt , where σt denotes the correlation time-scale. The signal

power-spectrum Ss(ω) is chosen to be white-cutoff, centered around a frequency Ω0

and width 2∆Ω.
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The aim of this protocol is to optimally detect the presence of a stochastic

signal with a known spectrum in the presence of background noise. The detection

protocol can be described in four steps. (i) Initialize the qubit in the state |+〉 =

1√
2
(|0〉 + |1〉). (ii) Let the qubit evolve for time t = topt, which we specify how to

find later, in the presence of the Hamiltonian, H(t). (iii) Rotate the qubit using a

Hadamard gate UHadamard. (iv) Measure in the σ̂z basis. Record outcome as ‘0’ or

‘1’. Repeat these steps Nshots times.

Examining the dephasing dynamics in the presence of control, the probability

to observe the qubit in state |0〉 is P|0〉(t) = 1
2
(1 + e−χ(t)). Clearly, the dephasing

exponent depends on the presence or absence of a signal and is denoted as χη+s and

χη respectively. The corresponding outcome probabilities are labeled as Pη+s and

Pη respectively. In the following, we compute these two exponents in the regime of

weak noise and signal as well as low SNR, and identify the control protocol that

at a particular optimal time (topt) of measurement gives the maximum separation

between the two decaying average probabilities, ∆P|0〉 = Pη − Pη+s.

Both the signal and the noise cause the qubit to dephase, and the dephas-

ing exponent is straightforwardly obtained in the Second Cumulant Approximation

(SCA) [126]. Since the signal and noise are uncorrelated, the decay in the presence

of a signal is a sum, χη+s = χη + χs, where χs and χη are the decay exponents

obtained from having just the signal or the noise present, respectively. Thus, the

qubit decays at a faster rate in the presence of both signal and noise compared to

just the background noise. In order to optimize for detection, we maximize over the

difference between the two outcome probabilities, ∆P|0〉. We now have an effective
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heuristic for designing optimal detection controls that becomes optimal when the

SCA applies. We define the following objective function,

O(t, {Ω}) = ∆P|0〉 =
1

2
e−χη(t)

(
1− e−χs(t)

)
. (A.2)

We carry out the optimization as a two-step procedure: (i) Optimize over control

trajectories to obtain Ωopt = argmax{Ω} [logO] at a fixed detection time t. Note

that the detection time sets the dimension of the control vector, dim [Ω] = t/∆t

as we are considering discrete time steps. The optimization is implemented using

stochastic gradient descent (SGD) algorithms. We do this using the Adam opti-

mization algorithm implemented in TensorFlow library [100, 127]. Note that it is

also straightforward to add additional constraints on the variables that could be

motivated by experimental requirements. (ii) Optimize over the time of detection,

topt to obtain the optimal detection protocol. The optimal time is obtained using

a grid search over different detection times t. Therefore, we obtain the optimal

detector in the SCA, which we denote as ‘SCA-optimal’, with Oopt = O(topt,Ωopt).

Specifically, we do a grid search over different durations of the protocol, and for

each t, we find the control schedule that optimizes the objective function. Since the

cost function is differentiable, we use the Adam [100] optimizer with default param-

eters in TensorFlow to optimize the object function taking advantage of graphical

processing units to accelerate the optimization procedure. Moreover, we constrain

[Ω]i to be positive for all values of i. We either run the optimization for 10000

iterations, or stop if the magnitude of the difference of the objective function values
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separated by 1000 iterations is smaller than 10−6. In all the optimizations performed

in this Appendix, we discretize the control to ∆t = 0.01J−1. We repeat this pro-

cedure for different control lengths t from 300∆t to 1300∆t in increments of 10∆t.

We then choose a t that has the optimal objective value.

After finishing this two-step optimization, we evaluate ∆P|0〉 at the optimal

time with the optimal control by interpolating the results to a finer discretization

of ∆t = 0.001J−1 and compare it to the value of ∆P|0〉 with other known control

pulses such as CPMG and spin-lock. We obtain the best time for Carr, Purcell,

Meiboom, Gill (CPMG) and spin-lock control schemes by numerically evaluating

the ∆P|0〉 using discretized control with ∆t = 0.001J−1 and varying the duration

of the protocol for t from 3000∆t to 13000∆t in increments of 100∆t. The value

of ∆P|0〉 corresponding to the numerically optimized control, CPMG, and spin-lock

are compared in Fig. A.1.

10 1 100 101

J t

0.1

0.2

0.3

0.4

P |
0

CPMG
Spin lock
SCA-Optimal

Figure A.1: Optimizing for detection for correlated background noise (Lorentzian
spectrum) in the SCA. The signal is at Ω0/J = 10

√
π/30. Maximum of ∆P|0〉 as a

function of background noise correlation, σt, for three different controls is shown.

The optimal protocol compared with Spin-lock and CPMG for different values

of σt, together with their corresponding filter functions, are shown in Fig. A.2.
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To take experimental limitations into account, we also consider a scenario

where the maximum power is limited. This is manifested in a constraint on the

maximum value of Ω at any time. We can implement this constraint by either

adding an L2 regularization term to the objective function, that is OL2 = β||Ω||22,

where β is a hyper parameter that controls the magnitude, or imposing a hard cutoff

Ωc on the value of the optimization variable. We observe that in a regime where the

optimizer finds a CPMG-like control scheme to be optimal, adding these constraint

transforms instantaneous pulses to finite-width version of the pulse that ultimately

reaches the spin-lock solution, see Fig. A.3.
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Figure A.2: Comparison of the numerically optimized protocol (SCA-optimal) with
spin lock and CPMG protocols for different values of noise correlation σt. The
left panel shows the time integrated control protocol cos(Λ(t)), and the right panel
shows the associated filter functions |Ft(ω)|. Note that for small values of Jσt,
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Appendix B: Towards analog quantum simulations of lattice gauge

theories with trapped ions

This chapter is based on the author’s contribution to Ref. [128].

B.1 Summary of the results

Gauge field theories play a central role in modern physics and are at the heart

of the Standard Model of elementary particles and interactions. Despite significant

progress in applying classical computational techniques to simulate gauge theories,

it has remained a challenging task to compute the real-time dynamics of systems

described by gauge theories. An exciting possibility that has been explored in re-

cent years is the use of highly controlled quantum systems to simulate, in an analog

fashion, properties of a target system whose dynamics are difficult to compute. En-

gineered atom-laser interactions in a linear crystal of trapped ions offer a wide range

of possibilities for quantum simulations of complex physical systems. Here we devise

practical proposals for analog simulation of simple lattice gauge theories whose dy-

namics can be mapped onto spin-spin interactions in any dimension. These include

1 + 1D quantum electrodynamics, 2 + 1D Abelian Chern-Simons theory coupled to

fermions, and 2 + 1D pure Z2 gauge theory. The scheme proposed, along with the
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optimization protocol applied, will have applications beyond the examples presented

in this work, and will enable scalable analog quantum simulation of Heisenberg spin

models in any number of dimensions and with arbitrary interaction strengths.

B.2 Tuning spin-dependent forces

Generally, the spin-dependent force in an trapped ion simulator leads to a spin-

ion interactions in the form (am + a†m)(α0I + α3σz), where am is the annihilation

operator corresponding to the mth phonon mode. To engineer some of the gauge

theory Hamiltonians considered in Ref. [128], we have to engineer a spin dependent

force that results in a spin-ion interactions in the form (am + a†m)σz, where am is

the annihilation operator corresponding to the mth phonon mode. Therefore, we

have to find the laser polarization and amplitude that results in α0 = 0 and α3 = 1.

Note that this condition is equivalent to having a spin dependent force such that

F↑ = −F↓.

The qubit is encoded in the magnetically-sensitive | ↑〉 ≡ |F = 0,mF = 0〉

and | ↓〉 ≡ |F = 1,mF = −1〉 hyperfine 2S1/2 states of 171Yb+. Consider a set

of Raman beams with frequencies ωr and ωb, detuned from 2P1/2 manifold by ∆.

In order to produce a spin-dependent force , the beams have to be detuned from

each other by the motional mode’s frequency ωm, that is ∆ω = ωb − ωr = ωm, see

Fig. B.1. In order to find appropriate polarizations and detuning that allow a pure

σz Hamiltonian, three quantities must be calculated in this scheme: i) the Stark

shift induced by red and blue lasers in the Raman pair, ii) the spontaneous emission
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Figure B.1: The level diagram of 171Yb+ relevant to the scheme presented in this
Appendix.

rate from excited states, and finally iii) the spin-dependent force on the qubit. (iii)

must be studied to deduce the conditions under which F↑ = −F↓, while at the same

time (i) must be ensured to vanish, and (ii) must be minimized.

Let us denote the polarization of each beam by ε̂r = r−σ̂− + r0π̂ + r+σ̂+ and

ε̂b = b−σ̂− + b0π̂ + b+σ̂+, where |r−|2 + |r0|2 + |r+|2 = |b−|2 + |b0|2 + |b+|2 = 1.

In calculating these quantities, matrix elements in the form 〈α′F ′m′F |d · ε̂|αFmF 〉

need to be evaluated, where d is the electric dipole operator, and α represents all

other quantum numbers of the state besides the total spin F (nuclear spin added to

electron’s total angular momentum) and its component along the quantization axis,

mF . Such a matrix element can be evaluated using [129]

〈α′F ′m′F |d.ε̂|αFmF 〉 = (−1)J
′+I−m′

F

√
(2F + 1)(2F ′ + 1)


J ′ F ′ I

F J 1

 (B.1)

 F 1 F ′

mF q −m′F

 〈α′J ′||d||αJ〉.
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Here, q = −1 for the σ̂−-polarized light, q = 0 for the π̂-polarized light,

and q = 1 for the σ̂+-polarized light. I and J denote the total nuclear spin and

the electron’s total angular momentum, respectively. “()” corresponds Wigner’s 3j

symbol while “{}” corresponds to Wigner’s 6j symbols. The reduced matrix element

〈α′J ′||d||αJ〉 is related to the spontaneous emission rate γ between states with J

and J ′ quantum numbers for an atom coupled to free space:

|〈α′J ′||d||αJ〉|2 = c0(2J ′ + 1)γ, (B.2)

where c0 is a number that depends on the transitions. For simplicity, in the following

we assume that the 2P1/2 and the 2P3/2 states have the same c0 and γ.

B.2.1 Stark shift

In the limit where ∆� γ, the Stark shift for |mS〉 = | ↑〉, | ↓〉 is given by [130]

δStark(mS) =
1

4

∑
j=r,b

∑
i

|〈mS|d · ε̂jEj|i〉|2

∆i

, (B.3)

where ∆i is the detuning from the states that are virtually occupied, and Ej is the

electric-field amplitude. Using Eq. (B.1), the net Stark shift is found to be

δStark(↑)− δStark(↓) =
c0γωF

122∆(∆− ωF )

×
(
|b−|2 + |r−|2 − |b+|2 − |r+|2

)
. (B.4)
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As is evident, by choosing |b−|2 + |r−|2 = |b+|2 + |r+|2, the net shift can be set to

zero.

B.2.2 Spontaneous emission

The spontaneous emission rate can be evaluated using [130]

RSE =
1

4

∑
i

∑
j=r,b

∑
mS=↓,↑

PmSγi|〈mS|d · ε̂jEj|i〉|2

∆2
i

,

(B.5)

where PmS is the probability of being in the mS ground state. Under the constraint

that sets Eq. (B.4) to zero, one finds that

RSE =
c0γ

2(2 + |r0|2 + |b0|2)

12
√

(1 + |r0|2)(1 + |b0|2)

[
1

∆2
+

2

(∆− ωF )2

]
.

(B.6)

As is seen, with the choice ∆ = (
√

2− 1)ωF one is close to a local minimum of the

spontaneous emission rate.

B.2.3 Spin-dependent force

Finally, the spin-dependent force can be found by considering the resonant

two-photon Raman Rabi rate [130]

Ω(mS) =
ei(ϕb−ϕr)

4

∑
i

〈mS|d · ε̂rEr|i〉〈i|d · ε̂bEb|mS〉
∆i

, (B.7)
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where ϕr and ϕb are the phases of the red- and blue-detuned beams, respectively.

With ∆ϕ ≡ ϕb − ϕr = 0 and ∆ = (
√

2− 1)ωF , one find that

Ω(↓) =
−γ(b0r

∗
0 + b−r

∗
− + b+r

∗
+)

12ωF
, (B.8)

Ω(↑) =
γ(−2b0r

∗
0 + (2 + 3

√
2)b+r

∗
+ − 3(2 +

√
2)b−r

∗
−)

24ωF
. (B.9)

In order to satisfy the condition Ω(↓) = −Ω(↑) or in turn F↑ = −F↓, since the spin-

dependent force is related to the Rabi frequency via FmS = ∆k Ω(mS). A choice

for the polarization vectors is

ε̂b =
3

2−
√

2
(−1,

√
2 +

3√
2
, 1), (B.10)

ε̂r =
3

2−
√

2
(1,

√
2 +

3√
2
, 1). (B.11)

Of course, these analytical solutions rely on the approximations that were made

throughout these calculations, such as equal spontaneous emission rate from all

the excited states considered. When precise values of the physical parameters in

the system are input, the optimal values for the parameters can still be evaluated

numerically using the formalism outlined.
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[107] Christopher W Wächtler, Philipp Strasberg, Sabine HL Klapp, Gernot
Schaller, and Christopher Jarzynski. Stochastic thermodynamics of self-
oscillations: the electron shuttle. New Journal of Physics, 21(7):073009, 2019.

[108] Jeremy T Young, Alexey V Gorshkov, Michael Foss-Feig, and Mohammad F
Maghrebi. Nonequilibrium fixed points of coupled ising models. Physical
Review X, 10(1):011039, 2020.

[109] Lyndsey C Pickup, Zheng Pan, Donglai Wei, YiChang Shih, Changshui Zhang,
Andrew Zisserman, Bernhard Scholkopf, and William T Freeman. Seeing the
arrow of time. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2035–2042, 2014.

[110] Donglai Wei, Joseph J Lim, Andrew Zisserman, and William T Freeman.
Learning and using the arrow of time. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8052–8060, 2018.

[111] Joel J Wallman and Steven T Flammia. Randomized benchmarking with
confidence. New Journal of Physics, 16(10):103032, 2014.

[112] Genyue Liu, Mo Chen, Yi-Xiang Liu, David Layden, and Paola Cappellaro.
Repetitive readout enhanced by machine learning. Machine Learning: Science
and Technology, 1(1):015003, 2020.

[113] Giacomo Torlai, Brian Timar, Evert PL van Nieuwenburg, Harry Levine,
Ahmed Omran, Alexander Keesling, Hannes Bernien, Markus Greiner, Vladan
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