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Abstract
Wepresent an all-dielectric photonic crystal structure that supports two-dimensionally confined
helical topological edge states. The topological properties of the system are controlled by the crystal
parameters. An interface between two regions of differing band topologies gives rise to topological
edge states confined in a dielectric slab that propagate around sharp corners without backscattering.
Three-dimensional finite-difference time-domain calculations show these edges to be confined in the
out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could
enable strong interactions between photonic edge states and quantum emitters.

1. Introduction

Topology is a ubiquitous concept in physics, ranging from electrons in solid state [1, 2], quantumdegenerate
gases [3, 4], and sound [5–8]. A keymanifestation of topological physics is the presence of edgemodeswhich are
robust to local disorder. The prospect of using topological photonicmaterials for such robust propagation of
light has attracted a great deal of interest [9, 10].

Topologically protected edge states have been experimentally demonstrated in systems atmicrowave
freqencies [11, 12] and optical frequencies, specifically in ring resonators [13, 14], and in coupledwaveguides
[15]. Subsequentworkmeasured the invariants characterizing the topology of two-dimensional photonic
systems [16]. Embedding quantum emitters into these optical frequency devices could generate strong optical
nonlinearities that exhibit new physical behavior. Theoretical work has shown that the interplay between
emitters and chiral states results in intriguing phenomena such asmany-body position-independent scattering
[17], dimerization of driven emitters [18] and fractional quantumHall states [19–21].

Strong light–matter interactionswith optical emitters usually require the concentration of light to small
mode-volume nanophotonic devices [22]. Two-dimensional photonic crystals are one of themost promising
nanophotonic platforms for this application because they confine light to less than an optical wavelength
[23, 24]. Recently, several works have proposed photonic crystal structures where deformations open a gap in the
Dirac cone dispersion to achieve non-trivial topological bands [25–29]. Notably, aC6v symmetry-protected
lattice was utilized in [25] to realize a 2 topological photonic crystal where concepts such as photonic
topological bands and pseudo-time-reversal symmetry were studied in detail. However, these proposals either
make use of dielectric cylinders, whichmake it difficult to experimentally achieve out-of-plane confinement in
planar all-dielectric nanophotonic systems, ormake use ofmetallicmirrors to achieve out-of-plane
confinement, which is undesirable for devices operating at optical frequencies where loss inmetals is significant.
Thus, it would be highly desirable to create an all-dielectric topological photonic crystal which is confined in the
out-of-plane directionwithout the use ofmetal.
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Inspired by the results of [25], here we present an all-dielectric topological photonic crystal design that
exhibits two-dimensional edge states confined by total internal reflection in a dielectric slab, enabling low-loss
confinement of light in the third-dimension. This structure addresses the challenge of experimentally realizing
topological photonic crystals and enabling strong interactions with optical emitters. Our system exhibits spin
quantumHall physics for pseudo-spin photonic polarizations. As a result of time-reversal symmetry, the edge
states are helical: edge states of opposite helicity travel in opposite directions.We utilize a honeycomb periodic
structure with six-fold symmetry based on triangular holes. This structure ensures a complete bandgap for
transverse-electric-like (TE-like)modes. Deformations of the unit cell that preserve its rotational symmetry
change the topology of the structure.We show that interfacing twomaterials of different band topologies results
in robust two-dimensionally confined edge states that can propagate around sharp bends.

2. Photonic crystal design and band structure

Figure 1 shows a schematic of our photonic crystal structure. The starting point is a honeycomb latticemade of
equilateral triangular holes in a dielectricmaterial as shown infigure 1(a).We can view this system as a triangular
lattice with a basis consisting of two triangular holes, as is typically done in studies of graphene [30]. The black
outline shows such a two-hole unit cell. Figure 1(b) shows thefirst Brillouin zone (dashed line), which is a
hexagon.We denote the high-symmetry points [31] byΓ,

~
M and

~
K . Alternatively, we can also view this

structure as a triangular lattice of six-hole unit cells (white dashed hexagons infigure 1(a)whichwe call
honeycomb clusters), where the relevant parameters are the lattice constant of the triangular lattice a0, the
distance between the center of each cluster to the centroid of each triangular holeR, the length of each side of the
equilateral triangular holes s, and the height of the dielectricmaterial h. In the honeycomb lattice, the
relationship =R a 30 holds. Figure 1(b) shows thefirst Brillouin zone as a solid hexagon andΓ,M andK
indicate the high symmetry points. Note that the first Brillouin zone for the six-hole unit cell is smaller than for
the two-hole unit cell due to the larger real space unit cell area.

Wefirst analyze the band structure of this photonic crystal in the two-hole unit cell picture using three-
dimensional numerical finite-difference time-domain calculations (Lumerical FDTDSolutions).We perform
simulations usingGaAs as the dielectric substrate, with index of refraction taken from [32]. The parameters we
use are =a 445 nm0 , s=140 nm, and h=160 nm,which are typical dimensions for photonic crystal

Figure 1. Schematic of our proposed honeycomb-lattice-like photonic crystal. (a)Baseline structure of equilateral triangular holes
arranged in a honeycomb lattice in a dielectricmaterial. This honeycomb lattice can be viewed as a triangular lattice of two-hole unit
cells (black solid rhombus), or alternatively as a triangular lattice of six-hole unit cells (white dashed hexagons), whichwe call
honeycomb clusters with =R a 30 . (b) First Brillouin zones for the six-hole (solid) and two-hole (dashed) unit cells. The letters
indicate high-symmetry points. (c) (and (d)) Same structure as in (a) except that <R a 30 ( )>R a 30 , whichwe call shrunken
(expanded) clusters.
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structures [33–35].We focus on the TE-likemodes of the systemwhere the electricfield at the symmetric plane
of the system lies in-plane. Figure 2(a) shows the band structure of the honeycomb lattice corresponding to
figure 1(a) along the high-symmetry points of the Brillouin zone. The gray region indicates the portion of the
band structure above the light line where there are no guidedmodes confined in the dielectricmaterial offinite

thickness [36]. There is aDirac point at the
~
K point, indicated by the red arrow infigure 2(a), located below the

light line. Near this Dirac point, we canmodify the topological properties of the photonic crystal by changing the
ratio R a0 [25]. However, these perturbations also change the symmetry of the lattice and sowe can no longer
use the rhombus-shaped two-hole unit cell to construct the band structure. Instead, we use the hexagonal six-
hole unit cell to construct the band structure without destroying the rotational symmetry of the system.

We obtain the band structure for the six-hole unit cell by appropriate band folding of the bands obtained

from the two-hole unit cell6. Although both Brillouin zones share the sameΓ point, the
~
K and ¢~

K points for the
two-hole unit cell [30] become folded over onto theΓ point of the six-hole unit cell to form a doubly degenerate
Dirac point at 319 THz (which corresponds to 940 nm) as indicated by the red arrow infigure 2(b).

We perturb this systemby varyingRwith respect to a0 to get clusters that are shrunken ( <R a 30 ) or
expanded ( >R a 30 ) as shown infigures 1(c) and (d) respectively. Figures 2(c) and (d) show the corresponding
band structures specifically for = ´R a0.91 30 and = ´R a1.09 30 respectively. Increasing or decreasing
the ratio R a0 about the honeycomb lattice opens a band gap at theDirac point. In particular, the band gaps are
13 and 25THzwide for the shrunken and expanded clusters respectively. By comparing the eigenstates at theΓ
point for the expanded and shrunken structures, we see that the eigenstates are inverted between the two
structures, indicating that the band topology changes aswe tune the ratio R a0 (see footnote 7). In particular,
the expanded structure gives rise to a non-trivial band topologywhereas the shrunken structure leads to a
topologically trivial band gap (see figure 4(a) in (see footnote 7)).

Figure 2.Band structures showopening and closing of a band gap around theDirac point as we perturb the lattice. (a)Band structure
of the honeycomb lattice in the two-hole unit cell picture. The gray area represents the region above the light line, where light can leak
out of the plane. ADirac point exists at the

~
K point (red arrow) and is below the light line. (b)–(d)Band structure calculatedwith the

six-hole unit cell with honeycomb clusters ( =R a 30 ), shrunken clusters ( = ´R a0.91 30 ), and expanded clusters
( = ´R a1.09 30 ) respectively. The red arrow indicates theDirac point, and the green areas represent the band gap.

6
Formore details, see appendix.
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To further confirm the numerically observed band inversion, we also analytically study the systemwith a
tight-bindingmodel (see footnote 7). TheHamiltonian of our system reduces to the Bernevig–Hughes–Zhang
model for the quantum spinHall effect [37], where themass term changes signwhen the clusters are shrunken
and expanded around =R a 30 . Consequently, the bands acquire non-zeroChern numbers that are the direct
indication of non-trivial band topology. In this case, the polarization profile of the in-plane electric field acts as
the pseudo-spin (see footnote 7).

3. Two-dimensionally confined topological edge states

Non-trivial band topologiesmanifest themselvesmost dramatically in the formof guided topological edge states
at the boundary between two gapped regions that have different band topologies. To confirm this, we perform
three-dimensional simulations of the structure schematically shown infigure 3(a)using the same values for the
parameters a0, s and h as previously.We examine topological edge states at an interface between one region
composed of unit cells with shrunken clusters (13 clusters wide) and another region of expanded clusters (12
clusters wide). These two regions share a commonband gap in bulk as shown infigures 2(c) and (d).

Figure 3(b) shows the one-dimensional band structure along the x-direction. Note that introducing an
interface creates two bands crossing the original bandgap of the individual regions. The two newly formed bands
have opposite group velocities, indicating counter-propagating directional edge states.

The edge states in this system are helical, i.e., the pseudo-spin degree of freedom controls the direction of
propagation [1].We verify the helicity of the edge states by exciting the systemwith a circularly polarized electric
dipole placed at the location indicated by the green star infigure 3(a). By choosing the excitation polarization to
be positively (negatively) circularly polarized, we can selectively excite an edgemode propagating in the-x (+x)
direction (figures 4(b-i) and (b-ii)). The excitation frequency is 320THz (equivalent to awavelength of 938 nm).

Figures 4(c) and (d) show the electricfield intensity distribution of the three-dimensional, vertically confined
edge state (corresponding tofigure 4(b-ii)) in xz and yz cross-sections respectively. Thefield is confinedwithin
the dielectric slab due to total internal reflection at the air-dielectric boundary. This proves that one can realize
topological edge states in three-dimensions within dielectricmaterials at optical frequencies without significant
out-of-plane loss.

One of themost distinguishing features of topological edge states is their robustness against perturbations.
To test this robustness, we introduced four 90° bends to the structure as shown infigure 4(e). Excitation of the
edgemode in this configuration shows that there is very little backscattering along the entire path. Thus our edge
states exhibit topological protection against certain disorder and defects, in contrast to chiral, but topologically
trivial, waveguidemodes [38, 39].

Figure 3. Schematic and band structurewhich gives rise to topological edge states. (a) Schematic of two regions with different band
topologies.White dotted linemarks the boundary between the two regions. The star (green) indicates the locationwherewe placed a
circularly polarized electric dipole to excite topological edge states. (b)Corresponding one-dimensional band structure shows two
bands crossing the band gap in bulk. The opposite group velocities in the crossing region indicate the existence of counter-propagating
directional edge states.
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4.Discussion and conclusion

Wenote that the topological protectionwe obtain in the presence of time-reversal symmetry differs in an
important respect from that of electronic quantum spinHall systems. The general classification of topological
insulators reveals that the 2 topological invariant describing the latter requires that = -T 12 , whereT is the
time-reversal symmetry operator. Theminus sign is a particular feature of fermionic systems. In contrast,
Maxwell’s equations (and other bosonic systems) obey =T 12 . This symmetry taken alone does not afford any
topological protection in two-dimensions.

However, we can construct a ‘pseudo’ time-reversal symmetry operator based on the (C6v) crystal symmetry
of the lattice which obeys = -T 12 [25].While this assures that the bulkmay be classified according to a 2

topological invariant, gapless edgemodes are not guaranteed since this symmetry is broken at the boundaries.
This symmetry breaking canmix the counter-propagating edge states and open amini-gap in the edgemode
[28]; in a quantum spinHall system, this would be akin to amagnetic impurity at the edge of the system.
Apparently, in our realization this symmetry breaking is weak sincewe do not observe a gap in the edge states
(figure 3(b)).We can decouple the pseudo-spin degrees of freedomup to linear order in k near theΓ point. By
considering these degrees of freedom as being completely decoupled, we can characterize the topology of the
systemby a stronger  spinChern number given by the difference of theChern numbers for each pseudo-
spin [40].

Figure 4.Three-dimensional, vertically confined topological edge states at optical frequencies in an all-dielectricmaterial. (a)
Schematic diagramof the three-dimensional photonic crystal where the colored planes correspond to the cross-sections shown in (b),
(c), and (d). (b-i) and (b-ii)Electric field intensities for a topological edge state excitedwith a positively and negatively circularly
polarized electric dipole showdirectional propagation in the-x and+x directions respectively. (c) and (d)Cross-section view along
the xz and yzplane of the electric field intensity confirms that total internal reflection at the air-dielectric boundary prevents light from
leaking out of the plane. (e)Electric field intensity for an edge state with four 90◦ bends show that light can propagate around defects
without backscattering.
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Wealso note that althoughwe have focused on studying TE-likemodes here, transverse-magnetic-like (TM-
like)modes could also give rise to topological edge states in principle, as long as aDirac point below the light line
can be found and the appropriate symmetry can be broken.However, for the parameters we studied, therewere
noDirac points at theΓ point in the band structure for TM-likemodes.Moreover we have chosen to study TE-
likemodes because experimentally it can be easily coupled to in-plane grating couplers for light injection and
extraction of the topological edge states [41].

To conclude, we have proposed a new all-dielectric photonic crystal design and presented simulation results
showing that three-dimensionally guided topological edge states at optical frequencies can be realized.Our
design parameters are amenable to implementationwithwell-established nanofabrication techniques. Our
simulations focus onGaAs as the dielectric substrate but the photonic crystal design principles that give rise to
topological edge states are applicable tomany other dielectricmaterials such as indiumphosphide, silicon, and
diamond.With the future prospect of integrationwith various quantum emitters ranging fromquantumdots
[42–44], defects in two-dimensionalmaterials [45] and diamond [46, 47], this systempromises to open a new
path to research in topological phenomenawith optical systems.
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Appendix

Figures referred to in the appendix refer tofigures in the appendix unless otherwise noted.

AppendixA. Band structure of a honeycomb lattice with circular holes

One idea is to implement our honeycomb-lattice-like photonic crystal structure with circular holes instead of
triangular holes, as shown infigure A1(a). Although the band structure of the TEmodes, as shown infigure
A1(b), does give rise to aDirac point, it turns out that it does not give rise to a band gap in the region of interest.
The horizontal white dashed line shows the frequency at theDirac point and thewhite dotted region encloses a
range of wavevectors for which one of the bands crosses the frequency at theDirac point, thus preventing the
appearance of a band gap across the Brillouin zone even after perturbation, which is critical for realizing
topological edge states. This can be avoidedwith the use of equilateral triangular holes, where a band gap is
possible after perturbations to the system.

Figure A1.Band structure of a honeycomb latticewith circular holes. (a) Schematic of a honeycomb latticemade of circular holes,
where the parameters a0 is the lattice constant of the hexagonal clusters (white hexagons)which constitute a triangular lattice,R is the
distance from the center of the cluster to the center of a circular holewithin the cluster ( =R a 30 in this case), and s is the diameter of
the circular hole. (b)Band structure for transverse-electricmodes of the structure shown in (a), showing the appearance of aDirac
cone at 312 THz (indicated by the horizontal white dashed line).White dotted ellipse shows one of the bands crossing the frequency at
theDirac point, which prevents the appearance of a band gap across the Brillouin zone after perturbation. Calculations were done
with =a 350 nm0 and s=140 nm.
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Appendix B.Honeycomb lattice with a six-site basis and band folding

The photonic crystal we study is amodification of the usual honeycomb lattice. For the special case that the
lattice parameters obey =R a 30 , the standard honeycomb lattice is recovered (seemain text for definitions).
Typically, the honeycomb lattice is taken to be a triangular lattice with a two-site basis. For the general case
¹R a 30 , it is convenient to consider the system as a triangular lattice with a six-site basis with primitive lattice

vectors

( ) ( )= aa 3 , 0 , 11

( ) ( )= aa 3 2, 3 2 , 22

where =a R3 . Figure B1(a) shows the FBZs for both the two-site (dashed hexagon) and six-site (solid
hexagon) bases.

The equivalence of these two descriptions can be verified by counting the total number of states in each case.
The two-site basis is described by two bands over the FBZof areaA, giving a total number of states
corresponding to an effective k-space area of A2 . In the six-site case, each linear dimension of the FBZ is reduced
by a factor 3 and thus the area is A 3. Since there are six bands, this again gives a total effective area
of ´ =A A6 3 2 .

In the case of graphene, it is well-known that theDirac cones are located at the edges of the FBZ (labeled by
~
K

infigure B1(a)). In the six-site basis, these degrees of freedomnow reside at the zone center (Γ). The
~
K andΓ

points are connected by a reciprocal lattice vector. The bands infigure B1(c) can be obtained by folding along the
vertical dashed lines infigure B1(b) so that the

~
K ismatched toΓ. At this point, the bands formerly at the two

inequivalentDirac points
~
K and ¢~

K come together to form a doubly degenerateDirac point.Wewill designate
these degrees of freedomby a pseudospin (± ) [25].

AppendixC. Tight-binding description of the dispersion

The dispersion of our systemnearΓ ( =k 0) can be obtained by a tight-bindingmodel. Following [48], we take a
set of basis states for which themagnetic field profile is concentrated in a particular hole. The time-evolution of
the system is characterized by ‘hopping’ to adjacent holes in the lattice. Typically, the application of tight-
binding is limited to electronic systems inwhich electrons hop betweenweakly coupled atomic orbitals [49]. In
the present context, the tight-bindingmethod accurately captures the behavior of the band structure nearΓ due
to the fact that the nearΓ, the band-structure is tightly constrained by the symmetries of the lattice. In particular,
the tight-bindingHamiltonian naturally incorporates theC6v symmetry of the lattice and the triangular holes.
For the generic case that ¹a R30 , the spectrum is gapped. For =a R30 corresponding to a honeycomb lattice,
an additionalC3v symmetry ensures that the dispersion remain gapless at theDirac point.

We describe our system as a triangular lattice with a six-site basis labeled A B C F, , ..., startingwith the right-
most site and progressing in a counter-clockwisemanner (figure C1). The states of our system ∣ ñA , ∣ ñB , ∣ ñC ..., ∣ ñF
are theWannier functions for the system. For example, the state ∣ ñC describes an electromagnetic field

Figure B1.Correspondence between the two-site and six-site bases. (a)Boundaries of the FBZ for the two-site (dashed hexagon) and
six-site (solid hexagon) bases for the honeycomb lattice. (b)The band structure of the honeycomb lattice consideredwith a two-site
basis. The labels on the horizontal axis corresponds to the high-symmetry points in k-space as designated in (a) [31]. The gray area is
the area above the light conewhere guidedmodes are not possible. The red triangles (blue squares) correspond to the red (blue)paths
indicated in (a). (c)The band structure of the honeycomb latticewith a six-site basis as obtained by folding the band structure in (b)
along the dotted vertical lines.
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configuration forwhich the out-of-planemagnetic field is centered on theChole in each six-membered ring. In
the bandwidth of interest, themagnetic field configurations can bewritten as linear combinations

∣ ( ) ( )·

y
y
y
y
y
y

Y ñ =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

zk, e , 3

A

B

C

D

E

F

k ri

where ( )= x yr , and equation (3) is written in the basis

∣ ∣ ∣ ( )ñ = ñ = ¼ ñ =

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
A B F

1
0
0
0
0
0

,

0
1
0
0
0
0

,

0
0
0
0
0
1

. 4

The action of theHamiltonian operator is to evolve the state in time. Roughly, thematrix elements of
indicate thefield configurationswhich can evolve into each other on a time scale~R c . On this time scale, only
states which are localized to adjacent sites can evolve into each other appreciably and thuswe only consider
nearest-neighbor ‘hopping’. TheHamiltonian  = +1 2 receives contributions from intra- and inter-
cluster couplings, respectively. Intra-cluster hopping is characterized by a parameter t1 and takes the form

( ) = -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
t

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

. 51 1

Inter-cluster coupling is described by

( )

·

·

·( )

·

·

·( )

 = -
-

-

-

- -

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

t

t

0 0 0 e 0 0
0 0 0 0 e 0
0 0 0 0 0 e

e 0 0 0 0 0
0 e 0 0 0 0
0 0 e 0 0 0

. 6

k a

k a

k a a
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2 2
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2
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1

2

2 1

1

2

2 1

FigureC1. Schematic of our lattice parameters and the labeling of the lattice sites for our tight-bindingmodel. A cluster consists of six
sites. Then the system is a triangular lattice of clusters with lattice constant a0. The distance from the centroid of each hole to the center
of its cluster isR. The tunneling amplitudes t1 and t2 correspond to intra- and inter-cluster tunneling between the nearest neighbor
holes. The labelsA, B, C,D, E, F denote each lattice sitemaking up the basis.
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We introduce generalized planewave states

∣ ( ) ( )·Y ñ =

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
z

z
z
z
z
z

k,
1

6

1

e , 7k r
2

3

4

5

i

where z is a complex number of unitmagnitudewhose phase is associatedwith angularmomentum around the
hexagonal clusters (or pseudospin, in the terminology of of [25, 48]) and ( )= k kk ,x y . Although the full
rotational symmetry is broken by the crystal axis, the states corresponding to = pz e i 3 possess strong p-like
character, while thosewith = pz e i2 3 have d-like character. This can bemost easily seen by noting that the
various states ∣ ( )Y ñz are ‘sampled’ from continuous angular wave functions as follows

∣ ( ) ∣ ( )Y = ñ =  ñp q 
z pe e , 8i 3 i

∣ ( ) ∣ ( )Y = ñ =  ñp q 
z de e . 9i2 3 i2

The±labels the pseudo-spin degree of freedom. The geometry of thewavefunctions is clarified through the
definitions

∣ (∣ ∣ ) ( )ñ = ñ + ñ+ -p p p
1

2
, 10x

∣ (∣ ∣ ) ( )ñ = ñ - ñ+ -p p p
1

i 2
, 11y

where ∣ ñpx is odd about the x-axis, etc. Similarly, we have

∣ (∣ ∣ ) ( )ñ = ñ + ñ- + -d d d
1

2
, 12x y2 2

∣ (∣ ∣ ) ( )ñ = ñ - ñ+ -d d d
1

i 2
, 13xy

where ∣ ñ-dx y2 2 is a wave functionwhosemaxima coincidewith the x- and y-axes as q p= 0 2 , etc.
We nowderive the spectra associatedwith these 4 states nearΓ by expanding equation (6) to linear order in

kx and ky. In this limit, the effective 4×4Hamiltonian is block diagonal, and only states of the same pseudo-
spin are coupled. The effectiveHamiltonian for the (+)-pseudo-spin is given by

( ) [ ( )] ( ) s s s= - + + - + ++ t a k k t t k k
3

2
, 14x x y y x y z2 2 1

2 2

in the (∣ ∣ )ñ ñ+ +p d, T basis. Similarly, in the (∣ ∣ )ñ ñ- -p d, T basis wefind

( ) [ ( )] ( ) s s s= + + - + +- t a k k t t k k
3

2
. 15x x y y x y z2 2 1

2 2

In both cases, we have performed a unitary transformation = spU ei z2 .We note that in the limit that the various
honeycombs are completely decoupled, »t 02 and equations (14) and (15) reflect the fact that the p-states have a
lower energy than the d-states. For =t t1 2,+ and- are characterized by aDirac cone spectrum. For ¹t t1 2,
the spectrum acquires a gap of size ∣ ∣-t t1 2 .

AppendixD. Topology and edge states

In the previous section, we showed that a honeycomb structure can be described by a gapless DiracHamiltonian.
Whenwe introduce the lattice deformations, i.e., shrinking/expanding, a gap openswhich can be described a
mass term ( sm z). Here, we review the concept why the band inversion, i.e., changing the sign ofmass, results in
having a topological edge at the boundary.

When the system is gapped, its topology can be characterized by aChern number for the pseudospins (± ). A
spinChern number takes the form

( )  = -+ -, 16

where  = 
1

2
sgn ( )m , where m are themasses for the two pseudo-spins [51]. Thus, we have

( ) ( ) = -t tsgn . 172 1

Topologically-protected edgemodeswill exist between gapped regionswith different ¢s, i.e., any place that the
quantity -t t2 1 changes sign.
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In order to understand the edge state structure, we begin by considering+with a spatially varyingmass.
For concreteness, we consider the situation outlined infigureD1(b) in themain text. Aswewill see, edge states
are localized to domainwalls for which ( ) = - »m x t t 02 1 . The edge states satisfy theHeisenberg equation of
motionwhich, for+ (equation (14)), is theDirac equation. TheDirac equation corresponding to+ is

[ ( ) ] ( ) s s s- - ¶ + ¶ + Y = Yv m Ei , 18x x y y z

where =v t a3 21 0 andE is the energy of the eigenstateΨ.
Consider the geometry shown infigureD1(b) of themain text, which shows an area of shrunken hexagons

above expanded hegaons. The system is described by amass which depends only on y, i.e., ( ) ( )=m x y m y, and
( ) =m 0 0with

( )<
m

y

d

d
0. 19

In this case, the topologically protected solution

( ) ( ) ( )
 òcY = ¢ ¢⎜ ⎟⎛

⎝
⎞
⎠y

v
m y yexp

1
d , 20

y

0

is an x-independent solution of theDirac equationwith zero energywhereχ is a two-dimensional spinor. This is
the celebrated Jackiw–Rebbi solution of theDirac equationwith a spatially varyingmass [50]. The sign in the
exponent ofΨ (equation (20)) ensures that the solution is normalizable. The edge state decays exponentially for
both >y 0 and <y 0. The spinorχ obeys

( )s c c= . 21x

Thus,

( ) ( )c =
1

2
1
1

, 22

in the (∣ ∣ )ñ ñ+ +p d, T basis. The full edgemode is described by

( )( ) ( ) ( )
 òY = ¢ ¢⎜ ⎟⎛

⎝
⎞
⎠x y

v
m y y,

1

2
1
1

exp
1

d e . 23
y

k x

0

i x

Again, plugging into theDirac equation gives an energy dispersion

( ) ( )= -E k vk . 24x x

Since the group velocity is given by


= ¶
¶

v E

k

1

x
, this represents an edge state travelling in the-x-direction. Indeed,

we see that infigureD1(b)–(i) of themain text, the excitation of the+-pseudospin leads to a left-moving edge
state. Similarly, an edge state derived from the- channel (opposite pseudo-spin)would travel in the
+x-direction.

FigureD1.Band inversion. (a) and (d)Band structures for the shrunken and expanded cluster systems, which are the same asfigure
B1(c) and (d) respectively in themain text, with a subset of the eigenstates indicated at theΓ point. (b) and (c) ((e) and (f))Out-of-
planemagnetic field eigenstates at the symmetry plane z=0 of the lower and upper band for the shrunken (expanded) cluster system
respectively.We see that e.g., the eigenstate px for the lower band in the shrunken cluster system appears on the upper band for the
expanded cluster system,which indicates a change in the band topology.
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Appendix E. Inversion of the eigenstates

Weexamine the out-of-planemagnetic field eigenstates of the system at the symmetry plane (z= 0)
corresponding to theΓ point for the shrunken and expanded clusters. The band structures for the shrunken and
expanded cluster systems are shown infiguresD1(a) and (d) and are the same asfigures B1(c) and (e) in themain
text. The eigenstates corresponding to these band structures show that the eigenstates are inverted; by that we
mean that e.g., the eigenstate px (dxy) shown infiguresD1(b), (c)which appeared on the lower (upper) band for
the shrunken cluster appears on the upper (lower) band for the expanded cluster as shown infigureD1(f), [(e)].
This band inversion indicates that there is a change in the band topology, as discussed in the previous section on
the tight-bindingmodel.

Appendix F. Polarization pseudo-spin of the eigenstates

FromMaxwell’s equations, at the symmetry plane z=0, the out-of-planemagnetic field eigenstates ˆp zx and
ˆp zy lead to an in-plane electric field given by

( )
( ˆ)

( )
( ˆ) ( )

   w w
=  ´ =  ´p pE

r
z E

r
z

i i
, 25x y1

0
2

0

where ˆ ˆ= +E EE x yi ix iy ( =i 1, 2),  » ´ -8.854 100
12 Fm−1 is the vacuumpermittivity, and ( ) r is the

position-dependent relative permittivity. The out-of-planemagnetic fields of the px and py eigenstates are shown
infigures F1(a) and (b), respectively.We see that the px and pymodes are related by a p 2 rotation, sowe have at
the center of the cluster (r=0) the relation

( )=
-⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

E
E

E

E
. 26

x

y

y

x

2

2

1

1

From this wefind the relation

( )
[( ) ˆ] ( )( ˆ ˆ) ( )

 w
 ´  = p p E Ez x y

i

0
i i i . 27x y x y

0
1 1

This implies that at the center of the clusters the in-plane electricfield polarization is either s+- or s--circularly
polarized depending on the out-of-planemagnetic field eigenstates ( ) ˆ=  p pp zi 2x y where

(ˆ ˆ)s =  x yi 2 .We can see this directly infigures F1 (c) and (d), which show ∣ ∣ ∣ ∣sD ~ -+ -E E2 2 where
( )=E E Ei 2x y , characterizing the degree of circular polarization. In both cases we see that at the center

the in-plane electricfield is highly circularly polarized, exceptwith opposite handedness. Thus the out-of-plane
magnetic field eigenstates p± have an associated in-plane electric field circular polarization of swhich act as
pseudo-spins for this topological photonic crystal.
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