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A hallmark feature of topological physics is the presence of
one-way propagating chiral modes at the system boundary1,2.
The chirality of edge modes is a consequence of the topological
character of the bulk. For example, in a non-interacting
quantum Hall model, edge modes manifest as mid-gap states
between two topologically distinct bulk bands. The bulk–
boundary correspondence dictates that the number of chiral
edge modes, a topological invariant called the winding
number, is completely determined by the bulk topological
invariant, the Chern number3. Here, for the first time, we
measure the winding number in a 2D photonic system. By
inserting a unit flux quantum at the edge, we show that the
edge spectrum resonances shift by the winding number. This
experiment provides a new approach for unambiguous
measurement of topological invariants, independent of the
microscopic details, and could possibly be extended to probe
strongly correlated topological orders.

Recently, there has been a surge of interest in investigating topo-
logical states with synthetic gauge fields. Synthetic gauge fields have
been realized in various atomic4–7 and photonic systems8,9. In par-
ticular, topological photonic edge states have been imaged in two
recent concurrent experiments10,11 and the robustness of their trans-
port has been quantitatively confirmed both in the microwave12 and
telecom domains13. Several other interesting studies have investi-
gated topological states in 1D14–16, 2D17–21 and also 3D22 synthetic
structures. Topological states are characterized by topologically
invariant integers2. In fermionic systems, conductance measure-
ments reveal these integer invariants. However, direct measurement
of these integers is non-trivial in bosonic systems, mainly because
the concept of conductance is not well defined23,24. Whereas these
integers have been measured in 1D bosonic systems15,25,26, the 2D
bosonic case has been limited to atomic lattices7.

Here, we experimentally demonstrate that selective manipulation
of the edge can be exploited to measure topological invariants, that
is, the winding number of the edge states. We implement an integer
quantum Hall system using a fixed, uniform synthetic gauge field in
the bulk and couple an extra, tunable gauge field only to the edge.
The edge state energy spectrum flows as a function of this tunable
flux. With the insertion of a unit quantum of flux, the edge state res-
onances move by ±1, which is the winding number of edge states in
our system. This spectral flow can be directly observed in an exper-
iment as the flow of transmission resonances, and thus provides a
direct measurement of the winding number. For this demonstration,
we employ the unique ability of our photonic system to selectively
manipulate edge states—a feature that is challenging to achieve in
current electronic and atomic systems.

To model the spectral flow of a quantum Hall edge, with winding
number k = 1, we consider a linear edge dispersion Ep = vp where Ep

is the energy, v is the group velocity, and p is the momentum
along the edge. When a gauge flux (θ) is coupled to the edge, the
momentum is replaced by the covariant momentum:

Ep = v p − q
θ
L

( )
(1)

where L is the length of the edge and q is the charge of the edge exci-
tations. For non-interacting photons, the charge q = 1. Note that the
corresponding vector potential is simply θ/L. For a finite system, the
quantization of momentum on the edge results in

En =
2πv
L

n −
θ
2π

( )
(2)

where n is an integer. Thus, the insertion of θ = 2π flux shifts
En→ En−1 resulting in an anomalous spectral flow, as shown in
Fig. 1a. This is in contrast to the case of a topologically trivial
system where there is no net shift and, zero and 2π fluxes are equiv-
alent to each other. However, in quantum Hall systems, these linear-
dispersion mid-gap modes continuously interpolate between two
topologically distinct bulk bands and the difference between the
Chern numbers of these bulk bands dictates the shift, and hence
the winding number of the edge states. For winding numbers
larger than one (k > 1), there exist k edge modes in the bandgap
and hence k copies of this relation, that is for a unit quantum of
flux insertion, the edge state resonances shift by k units. Such a spec-
tral flow is similar to Laughlin’s charge pump27,28 but with an
important distinction: here, the gauge flux is coupled only to the
edge of the system (see Supplementary Information). Moreover,
the observable in our interferometric measurement is expected to
be an integer, in contrast to a previous scheme23 that measured
Hall drift, a continuous variable. More generally, our scheme pro-
vides a powerful universal probe (independent of microscopic
details) of topological order that can be generalized to the case of
strongly correlated topological systems.

To experimentally observe and measure this spectral flow, we
implement the integer quantum Hall model in a photonic system:
a 2D square annulus of ring resonators with a uniform synthetic
magnetic field in the bulk and a tunable gauge field coupled only
to the lattice edge (Fig. 1b–e). The uniform magnetic field with
flux ϕ0 = 2π/4 radians per plaquette is synthesized using asymmetric
placement of site and link resonators, as previously described in ref.
10. To couple a tunable gauge field to the edge, we fabricate metal
heaters above the link ring waveguides on the lattice edge
(Fig. 1c–e). These heaters use the thermo-optic effect to modify
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the accumulated phase of light propagating through the waveguides
and hence result in a gauge flux.

Our system supports two pseudo-spin components, up and
down, which circulate in opposite directions in the ring resonators10.
Each pseudo-spin component experiences a uniform magnetic field,
and we can selectively excite each pseudo-spin by appropriately
choosing the input port (Fig. 1c). Furthermore, with this particular
choice of uniform magnetic field, the energy spectrum exhibits two
bandgap regions3. For spin-up excitation, the low-energy bandgap
corresponds to clockwise (CW) circulating edge states confined on
the outer edge, and anticlockwise (ACW) circulating edge states

on the inner edge, as shown with green arrows in Fig. 1b with
their corresponding winding numbers. Similarly, the high-energy
bandgap corresponds to edge states both on the outer and the
inner edges, however, they circulate opposite to those in the low-
energy bandgap, as shown in Fig. 1b by red arrows. A pseudo-
spin flip swaps the position of CW and ACW edge bands in the
transmission spectrum, and also flips the sign of gauge flux θ
(ref. 29).

Figure 2a,b show the measured and simulated transmission
spectra as a function of θ for spin-up excitation. The edge states
of the outer edge (bright regions) and the bulk states (dark region
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Figure 1 | Schematic of the set-up used to measure the winding number. a, Spectral flow of edge states with coupled gauge flux θ for q = 1 and k = 1. When
θ = 2π, edge states move by one position. b,c, Square annulus of coupled ring resonators that implements the integer quantum Hall effect, with an outer edge
of 10 sites and an inner edge of 4 sites. The uniform synthetic magnetic field for photons is introduced by asymmetrically positioning the link rings.
The system exhibits two pairs of CW and ACW propagating edge states, one each on the outer and the inner edges. The tunable gauge field coupled only to
the edge states is introduced by fabricating heaters on link resonators situated on the lattice edges. The total flux θ introduced by the heaters is the sum of
the individual phases incurred in the link resonator arms. d, SEM image showing the heaters fabricated on top of the link resonators (green). e, Schematic of
the waveguide cross-section showing the ring resonators, the metal heaters and the metal routing layer.
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Figure 2 | Anomalous spectral flow of edge state resonances. a,b, Measured (a) and simulated (b) transmission (T, in linear scale) as a function of θ and ω
(frequency) for spin-up excitation. For a 2π increase in gauge flux, the edge state resonances move by one position, giving k= +1.0 (1) for CW edge band
and k = −1.0 (2) for the ACW band. Insets: Zoom-in of the edge state bands. c,d, Measured (c) and simulated (d) transmission spectra (log scale) for
θ/2π =0, 1. For this 2π increase in flux, the measured spectra approximately match in the edge state regions. The green and red shaded regions indicate the
CW and ACW edge state bands, respectively. The transmission is normalized such that the maximum is unity. Here ω0 is the resonance frequency of the
resonators and J is the coupling rate between site resonators.
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in the middle) are easily identifiable. As θ increases, the energy of
the CW edge states decreases, whereas the energy of the ACW
edge states increases. For a 2π increase in flux, the edge state reson-
ances move by one resonance to replace the position once held by
their neighbours. This flow indicates that the measured winding
number is k = +1.0 (1) for the CW circulating edge states, and
k = −1.0 (2) for the ACW circulating edge states. We note that
only the outer edge contributes to the transmission spectra,
because the edge states are tightly confined to the lattice boundary.
Moreover, such sharpness of edge states allows us to locally create
the extra gauge flux θ by placing the heaters only on the outermost
rings at the boundary. Also note that the flow of resonances
observed here is very distinct in appearance and physical origin
from what is observed in a Fabry–Perot cavity, where increasing

the length of the cavity always reduces the resonant frequencies.
However, in our observations, CW and ACW edge state resonances
shift in opposite directions, and resonance peaks shift exactly
by their winding number.

Figure 2c,d show the overlap of the observed and simulated
transmission spectra at θ/2π = 0 and 1, showing an excellent quali-
tative agreement between them. We attribute the small discrepancy
in the observed and simulated results to lattice disorder introduced
by the non-local response of the heaters (see Supplementary
Information). The discrepancy is more pronounced for the ACW
state because of the finite size effects in travelling a shorter path
from the input to the output port. Also note that compared with
measured spectra, the simulated spectra show high transmission
through the two bulk bands. This is because the bulk bands are
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not topologically protected and therefore disorder in the experimen-
tal system suppresses transmission through these bands.

To verify the local character of the gauge coupling, we selectively
couple a non-zero flux θ to the inner edge by heating the link rings
on the inner edge. We observe that heating only the inner edge does
not shift the edge states (Fig. 3a,b), which indicates the strong con-
finement of edge states at the lattice boundary. Furthermore, we
excited the system with a flipped pseudo-spin (compared with
Fig. 2). Figure 3c,d shows the measured and simulated transmission
spectra as a function of θ. As the spin flip reverses both the sign of
the coupled flux θ and the position of the edge bands in the trans-
mission spectrum, the resulting spectrum is similar to Fig. 2.

As a control experiment, to investigate the difference in gauge
coupling to chiral and non-chiral states, we fabricate a ring of reso-
nators (Fig. 4a) that corresponds to 1D tight-binding model. This
system supports topologically trivial Bloch modes, circulating in
the CW and ACW directions, which are degenerate in the absence
of a magnetic flux. Figure 4b,c show the experimentally observed
and the simulated transmission spectra as a function of θ. The
flux lifts the degeneracy of the CW and ACW states and with an
increase in the flux, these states move in opposite directions.
Therefore, for θ = 2π, there is no net shift of the resonances, with
measured k = 0.03(8). The absence of spectral flow proves that this
system is topologically trivial. As shown in Fig. 4d, we observe the
transmission spectra at θ/2π = 0, 1 exhibit an excellent overlap.
However, compared with the simulation, we realize that not all
the states can be resolved in the experimental data. Such discrepancy
is due to the absence of topological protection of non-chiral states
against disorder, which leads to coupling between the CW and
ACW modes.

Here, we used a simple model to describe spectral flow of a chiral
edge coupled to a gauge field, for non-interacting bosons. However,
the emergence of anomalous spectral flow is more general1,2, and
can be modelled using the elegant framework of conformal field
theory of chiral bosons, where this behaviour is known as a chiral
anomaly1,30,31. This framework allows the investigation of systems
with strong photon–photon interaction, such as circuit–QED32

and polariton33 systems, and also ultracold atoms with topological
features4–6,25. In particular, the presence of strong interactions
could lead to the emergence of various fractional quantum Hall
states in the steady-state regime34. Spectral flow could be an interest-
ing way to explore the fascinating features of many-body topological
states in systems with synthetic gauge fields.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Heaters. The heaters used in these devices are 110 nm thick metal (Ti) pads, with
typical resistance of 117 Ω, such that a current flowing through them generates heat
and modifies the refractive index and the accumulated phase of light propagating
through the waveguide. A typical heater requires ≈76.5 mW to induce a 2π phase.
Instead of employing a single heater that may introduce a significant disorder in the
lattice, we distribute the heaters along the edges while maintaining an accumulated
flux of 2π (see Supplementary Information).

Measurement of winding number. To estimate the value of k, we measure the
frequency shift of an edge state resonance for 2π flux insertion; and its separation
from the neighbouring resonance at θ = 0. The integer k, in a given band, is then the
mean of the ratio of shift of resonances to their separation. The standard deviation of
this ratio is the error on k.
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1 Coupling external gauge flux
The implementation of a uniform synthetic magnetic field for photons and coupling an external gauge field to
the edge states hinges on the use of link resonators to couple the site resonators. By vertically displacing the
link resonator we can introduce a direction dependent, fixed, hopping phase for the photons hopping between site
resonators.1, 2 The fabrication of heaters above the link resonator waveguides enables us to tune this hopping phase.
Here, we analyze a system of two site resonators coupled by a link resonator, with a heater on the link resonator
waveguide. The heater introduces a phase 2θ. We show this system is equivalent to two site rings coupled by an
effective coupling rate J and a hopping phase θT , where θT includes the fixed phase incurred due vertical shift of
the link resonator and the tunable external gauge flux introduced by the heater.

We first analyze the system of site rings coupled by a link ring, using the rigorous transfer matrix method. The
site resonators have a length L and the link ring L+ η. Furthermore, the link ring is vertically displaced by length
ξ and has a heater on the upper arm which introduces a phase 2θ. We label the fields as shown in Fig. S1. Using

(a) (b)
Heater (2   )

Figure S1: (a) A system of two site resonators, coupled by a link resonator with a heater, and also coupled to input
and output waveguides. The figure labels the fields for the transfer matrix analysis. (b) Effective description of the
system in coupled mode theory. The effect of the link resonator is contained in the coupling rate J and hopping
phase θT which accounts for the vertical shift of the link ring and the phase introduced by the heater.
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transfer matrix formalism, we can relate the different field amplitudes as2
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Here, ti and ki are the field transmission and cross coupling coefficients for coupling of link rings to the input and
output ports, and t, k are those for the coupling between the rings. β and α are the propagation constant and the
loss coefficient in the ring resonator waveguide, respectively. These equations then give the field at the drop port
as

ED =
eiθei2βξκ2κ2

i EI
e−(iβ+α)Le−

iβη+i2θ
2

(
ei2θeiβ(L+η) (ti − t) (eαLt− eiβLti) + (1− tti)

(
e2αL − e(iβ+α)Ltti

)) . (S8)

Here we have assumed that the extra length η of the link ring and its vertical shift ξ are negligible compared to L,
so that the loss incurred in these extra lengths is insignificant. In our experimental system, η = 320 nm, ξ = 80
nm and L ≈ 70µm, which justifies the above assumption.

In the weak coupling limit, i.e., when κi,κ ≪ 1 and ti, t ≈ 1, the expression for the drop field can be simplified
to
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This system of two site rings coupled by a link ring can be equivalently described by a system involving only
the site rings, coupled by coupling rate J and a hopping phase ± θT (Fig. S1b). Specifically, we use single mode
approximation for the site rings and employ the coupled mode theory to capture the effect of the link ring in J and
θT . In the coupled mode theory, the rate equations for the time evolution of the site ring energy amplitudes, a1 (t)
and a2 (t), are

da1
dt

= (−iω0 − κex − κin) a1 − iJe−iθT a2 −
√
2κexEI (S10)

da2
dt

= (−iω0 − κex − κin) a2 − iJeiθT a1 , (S11)

where κex is the coupling of the site rings to the input and output waveguides and κin is the resonator loss rate. A

2

2 NATURE PHOTONICS | www.nature.com/naturephotonics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2016.10

ǟɥƐƎƏ6ɥ�!,(++�-ɥ�4 +(2'#12ɥ�(,(3#"ƥɥ�++ɥ1(%'32ɥ1#2#15#"ƥɥ



steady-state solution of the above equations for a plane wave excitation of frequency ω gives

a1 =
(i (ω − ω0)− κex − κin)

√
2κexEI

(i (ω − ω0)− κex − κin)
2 + J2

(S12)

a2 =
iJeiθT a1

(i (ω − ω0)− κex − κin)
. (S13)

Then, the field output at the drop port ECMT
D =

√
2κexa2 is

ECMT
D =

2ieiθT JκexEI
(i (ω − ω0)− κex − κin)

2 + J2
. (S14)

To compare this expression for the drop field to that derived using the transfer matrix approach, we use the
relations2

β =
(ω0 − ω)

vg
(S15)

κin = αvg (S16)

κex =
κ2
i

2

vg
L

(S17)

J =
κ2

2

vg
L
. (S18)

The drop field in the transfer matrix formulation is then

ED =
2eiθT JκexEI

2J (i (ω0 − ω) + κex + κin) cos (
βη+2θ

2 ) + i
(
J2 + (i (ω0 − ω) + κex + κin)

2
)
sin (βη+2θ

2 )
, (S19)

where θT = 2βξ + θ. We see that the introduction of a phase 2θ in one of the arms of the link resonator results in
an additional hopping phase of θ. Further, for βη + 2θ = (π, 3π, 5π, . . . ), i.e., when the link ring is anti-resonant
to the site rings, the two expressions are identical. Because the link ring is anti-resonant, it does not store any
energy and simply acts as a waveguide, without affecting the coupling between the site rings.

When βη + 2θ is not an odd-integer multiple of π, the two expressions for the drop field, derived using the
coupled mode theory and the transfer matrix method, are identical if we use an effective coupling rate J eff =

J/ sin
(

βη+2θ
2

)
and shift the resonance frequency of the site rings as ωeff

0 = ω0 + J cot
(

βη+2θ
2

)
. In our experi-

ment, we design the link rings such that βη = π. Further, we distribute the external gauge flux θ over 12 heaters
so that the introduction of external gauge flux θ results in negligible correction to coupling rate J and a small shift
in the resonance frequency of the site rings. For example, for θ = 2π divided over 12 link rings, the correction to
the coupling rate J is only. 3.5%. However, the shift in resonance frequency ∆ω0 is 0 .27J , which adds to disorder
in the lattice.

Our system supports two degenerate spin states - circulating CW and CCW in the ring resonators. The above
discussion is for CCW state. Following similar procedure for CW state (spin flipped) results in a negative sign for
the gauge flux theta. Also note that coupling a gauge flux by locally heating an arm of the link resonator is not the
same as increasing the length of the resonator. In particular, the gauge flux θ introduced here has opposite sign for
opposite direction of hopping (right or left, see Fig.S1 b).
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Figure S2: (a) Shifting of eigenvalues as a function of external magnetic flux θ. The annulus now supports two
sets of edge states, at the outer (b,e) and the inner edges (c,d). In a given bandgap, the outer (f,i) and the inner (g,h)
edge states circulate around the lattice in opposite directions because of their opposite group velocity. The arrows
indicate direction of group velocity (energy flow). Furthermore, in the energy spectrum (a), the clockwise and the
counterclockwise circulating states move in opposite directions because of their winding number which is ± 1.
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2 Eigenvalues of square annulus as a function of external flux
The 2D annulus geometry of site resonators (shown in Fig. 1) can be described using coupled-mode theory with a
Hamiltonian1, 2 given as

H0 =− J
∑

x,y

â†x+1,yâx,ye
−iyφ0e± iφtδx,y;edge + â†x,yâx+1,ye

iyφ0e∓iφtδx,y;edge (S20)

+ â†x,y+1âx,ye
± iφtδx,y;edge + â†x,yâx,y+1e

∓iφtδx,y;edge , (S21)

where âx,y and â†x,y are the photon annihilation and creation operators, respectively, at a site resonator with po-
sition index x, y, and J is the hopping rate for photons. The hopping phase φ0 along the x−axis gives rise to a
uniform magnetic field in the bulk with flux φ0 per plaquette.1, 2 In addition to this uniform bulk field, we couple
a tunable gauge flux θ only to the outer (or the inner) edge of the system (Fig. 1). The tunable hopping phase
φt = θ

N , where N = 12 is the number of heaters used on the edge to achieve an accumulated flux θ. The sign
of the tunable phase term is −ve for top and left edges of the annulus; and +ve for bottom and right edges of the
annulus.

Fig. S2 shows the eigenvalues of this annulus as a function of the external flux θ. This system supports two sets
of CW and CCW propagating edge states, one each on the outer and the inner edges. Furthermore, edge states on
the outer edge (e.g. CW) are paired with edge states of opposite chirality (CW) on the inner edge, i.e., they occupy
the same bandgap (left). To illustrate the spectral flow of these edge states as a function of external gauge flux,
we couple the gauge flux to both the outer and the inner edges of the system. We observe that with an increase in
the external flux, all the edge states shift outwards or inwards. The CW-propagating outer edge states in the first
bandgap move toward lower energies, whereas the CCW-propagating outer edge states in the third bandgap move
toward higher energies. The inner edge states move exactly opposite to the outer edge states. More importantly,
for a 2π increase in magnetic flux, each set of states shift exactly by one, their winding number. The direction
of shift indicates the sign of the winding number, as is shown in Fig. S2. After a 2π increase in the flux, the
spectrum returns back to its original shape with θ = 0. Note that in the measured transmission data shown in
the main text, we observe transmission resonances corresponding only to the outer edge states. This is because
in our system, the input and output waveguide couplers are coupled only to the outer edge and their coupling to
inner edge is exponentially suppressed (Fig. 1). Furthermore, it is instructive to compare the flow of resonances
observed here to that in a Fabry-Perot cavity. As we discussed, introduction of an additional gauge flux is not the
same as increasing the length of the resonator. In particular, the sign of the gauge flux is opposite for CW and
CCW propagating states, and therefore, these resonances move in opposite directions. In contrast, increasing the
length of the Fabry-Perot cavity shifts all resonances towards lower frequencies.

Also note that in the transmission spectra presented in the main text (Fig. 2, 3), only the outer edge contributes
to the transmission spectra. This is because the coupling between the probe waveguides to the inner edge states is
exponentially suppressed as e−d/l0 , where d is the number of rings between the outer and the inner edge (in this
case 4) and l0 = 1/

√
φ0 ≈ 0.8 is the magnetic length in units of the lattice spacing.

3 Heater calibration
We used an add-drop filter (ADF - a ring coupled to two waveguides) with a heater, to calibrate the phase shift
acquired for a unit heater power. The ADF ring has exactly the same dimensions as the rings in the 2D array. The
ring waveguides are designed to be 510 nm wide to ensure single mode (TE) operation at telecom wavelengths
and the typical ring perimeter is ≈ 70µm. The coupling gap between the ring waveguides is 140 nm which gives
a coupling rate J = 40.6 GHz. The heater introduces a phase shift θ in the ADF ring waveguide and shifts its
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Figure S3: Measured phase shift in an ADF, as a function of the heater power. The acquired phase shift (in units
of 2π) increases linearly with the heater power (in mW), with a slope of 0.026(1).

resonance frequency by ∆ω0, such that

θ =
∆ω0

FSR
2π, (S22)

where FSR = 2π vg
L is the free spectral range of the ring, vg is the group velocity and L is the length of the ring.

Measuring the resonance frequency shift as a function of heater power gives us an estimate of the phase difference
introduced by the heater. We used an ADF ring which had exactly the same dimensions as the rings in the square
annulus and the chain of resonators. Fig. S3 shows the observed phase shift as a function of heater power. The
heater resistance was ≈ 120 Ohms and the voltage applied to the heater ranged from 0-3 Volts. We see that the
acquired phase increases linearly with the heater power.

For the square annulus and the chain geometry, we used this calibration curve to estimate θ for a given voltage
applied to the heaters. For the annulus, all the 12 heaters in the outer (and the inner) loop (Fig. 1c)) were serially
connected. The measured resistance was 1.4 KOhms and the applied heater voltage across the loop ranged from ≈
8-14 Volts, which introduced the phase θ = π−3π. Similarly, in the chain of rings (Fig. 4a), all the 20 heaters were
connected serially, giving a total resistance of 2.31 KOhms. The total voltage applied across the heaters ranged
from ≈ 0− 13 Volts, for θ = 0− 2π. Furthermore, as we saw in the previous section, the transfer matrix analysis
of a system of two site rings, coupled by a link ring, shows that if the heater introduces an extra phase 2θ in one of
the arms, the effective hopping phase (using CMT) between the link rings is θ. We have included this factor of 2
in our calculations.

4 Disorder estimation
In our design, the heaters are placed 600 nm above the link resonator waveguides. Because of this, the heat is not
confined only to the ring beneath the heater but instead also heats the neighboring site resonators. Using a three ring
device where two site rings are coupled by a link ring, we estimate that for every unit shift in resonance frequency
of the link ring, the site rings move by 0.3 units. The small curvature observed in the shifting of edge states is also
a result of this disorder. We have accounted for this disorder in our simulation. Moreover, because of this disorder
we find that for the square annulus, the transmission spectrum retains its shape in the range θ ≈ π − 3π. In our
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measurements reported in Fig. 2, the external gauge flux has been normalized to θ = 0− 2π.
Furthermore, because of this nonlocal behavior of the heaters, the device spectrum shifts towards lower fre-

quencies as we increase the voltage applied to the heaters. We have adjusted for this overall shift of the transmission
spectra. For each spectrum, we choose two edge state peaks, one each on CW and CCW bands and align all the
spectra to the center of these two peaks. The resulting plot thus shows only the differential shift between the two
edge state bands. For the ring geometry, the measured spectrum at θ = 2π in Fig. 4d has been scaled along the
frequency axis (by a factor of 0.98), to offset the dispersion effect (due to the overall shift) which results in slight
broadening of the spectrum.

5 Comparison with Laughlin’s charge pump
The spectral flow observed here is very similar to Laughlin’s charge pump.3, 4 The Laughlin’s pump was experi-
mentally observed for 1D dimensional photonic systems,5, 6 and proposed as a way to measure winding number in
2D photonic systems.7 However, our scheme requires manipulation and probe only at the boundary of the system,
unlike Laughlin’s case where the gauge is coupled to both the edge and the bulk. Therefore, our scheme avoids
technical complications that may arise due to the bulk manipulation which is required in Ref.7
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